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Abstract. We obtain error estimates for the numerical approximation of a distributed control
problem governed by the stationary Navier–Stokes equations, with pointwise control constraints. We
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usual gap known for finite dimensional optimization problems.
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1. Introduction. The goal of this paper is to derive some error estimates for
the numerical approximation of a distributed optimal control problem governed by
the steady-state Navier–Stokes equations, with pointwise control constraints. More
precisely we consider the following problem:

(P) inf
{
F (u,y) | u ∈ Uad and (u,y) satisfies (1.2)

}
,

where

(1.1) F (u,y) =
1

2

∫
Ω

|y(x)− yd(x)|2dx+
N

2

∫
ω

|u(x)|2dx,

(1.2) −ν∆y + (y · ∇)y +∇p = f + Cu in Ω, divy = 0 in Ω, y = 0 on Γ,

C is a localization operator, ω ⊂ Ω, N > 0, ν > 0, and

Uad =
{
u ∈ L2(ω;Rm) | α ≤ u(x) ≤ β for almost every (a.e.) x ∈ ω

}
.

In this setting, Ω is a bounded open and connected subset in Rd, of class C2, with
d = 2 or d = 3, and ω is a nonempty open subset in Ω. We can easily show that
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problem (P) admits at least one solution. On one hand, uniqueness of solution to
problem (P) is not necessarily guaranteed even if (1.2) has a unique solution (which
is not necessarily the case). On the other hand, we can only hope to obtain error
estimates for solutions to problem (P) which are locally unique. Local uniqueness can
be proved for solutions satisfying first order and sufficient second order optimality
conditions. When first order optimality conditions in qualified form are satisfied by a
local solution (ū, ȳ) of problem (P), we have

ū = Proj[α,β]

(
− 1

N
C∗Φ̄

)
,

where Proj[α,β] is a projection operator and Φ̄ is the adjoint state associated with

(ū, ȳ). Thus, even if Φ̄ is regular, because of the projection operator Proj[α,β] (due
to control constraints), ū is only a Lipschitz function.

Assuming that (ū, ȳ) satisfies first order and sufficient second order optimality
conditions, we can define a discrete control problem (Ph) by discretizing the state
equation (1.2) with a finite element method (here h is the mesh size of the underlying
triangulation, and we assume that the family of triangulations is regular; see section
4). We consider two cases, the case where the control set in (Ph) is still Uad, and
the case where the control set Uh

ad is the set of functions in Uad which are piecewise

constant on the elements of the triangulation. We show that there exists ĥ such
that, for all 0 < h ≤ ĥ, the discrete control problem (Ph) admits at least one local
solution ūh in a ballBρ(ū). We prove that the corresponding sequences {ūh}h strongly
converge to ū in L2 (see Theorem 4.11). When the control set in (Ph) is Uad, we show
that

(1.3) ∥ūh − ū∥L2 ≤ Ch2,

while if the control set is Uh
ad, we prove that

(1.4) ∥ūh − ū∥L2 ≤ Ch

(see Theorem 4.18). To the best of our knowledge both results are new. For numerical
computations it seems easier to solve (Ph) when the control set is discretized, that is,
when controls belong to Uh

ad. However, it is also possible to solve it without a priori
discretizing the control set (see, e.g., [16]).

Before comparing our results with the ones existing in the literature, let us make
some comments. Knowing that ū is a Lipschitz function, the error estimate (1.4),
obtained when the discrete control set is defined with piecewise constant functions, is
consistent with estimates obtained by approximating Lipschitz functions by piecewise
constant functions. The result obtained in (1.3) is more surprising. Indeed, as we
are going to see, this kind of result is already known for problems without control
constraints. But in that case the optimal control belongs toH2, and the error estimate
is then directly derived from error estimates for the adjoint state. Here we obtain the
same order of error estimate, but with control constraints. As far as we know, this
kind of result was not previously known. Moreover, our method is quite general, and
it can be used in some other problems, provided that we are able to obtain error
estimates for the discrete state and discrete adjoint equations.

Let us come back to the existing results in the literature. For optimal control
problems of the steady-state Navier–Stokes equations with a distributed control and
a slightly different functional, Gunzburger, Hou, and Svobodny have proved error
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estimates similar to (1.3) in the case when there is no control constraints and when the
control acts everywhere in Ω (see [13, end of section 5.2]). But for a distributed control
localized in Ω, the error estimate is only of order h3/2−ε (see [13, end of section 5.3]).
To prove these estimates they do not assume that the optimal solution (ū, ȳ), which
they want to approximate, satisfies a sufficient second order optimality condition.
But they assume that the optimality system satisfied by (ū, ȳ) is regular, in the
sense that the corresponding linearized optimality system defines some isomorphism.
This approach is the extension—to optimality systems of control problems—of the
classical one used in the numerical approximation of the steady-state Navier–Stokes
equations; see, e.g., [12]. This method has been used in the literature for other
similar problems [17] and for the boundary control of the stationary Navier–Stokes
equations [14, 15]. Observe that the estimates are not the same if the boundary of the
domain where the control is applied is empty or nonempty [14, Theorem 4.6 and the
assumptions in Theorem 3.5]. In any case this method cannot be used for problems
with control constraints. Another approach used more recently for problems without
control constraints is the one by Deckelnick and Hinze [10], which is based on the
Kantorovich convergence theorem of the Newton method. In that case a second order
sufficient optimality condition is needed, but the Kantorovich convergence theorem
is proved only for systems of equations and not for generalized equations. Thus this
method cannot be used for problems with control constraints.

For problems with control constraints the obtention of both optimality conditions
and error estimates is more complicated. Indeed even if the nonlinear Navier–Stokes
equations are well posed, the linearized ones are not necessarily well posed. Thus
in general one can obtain optimality conditions only in nonqualified form, that is,
optimality conditions of Fritz–John type. Such optimality conditions for optimal
control problems of the stationary Navier–Stokes equations have been obtained by
Abergel and Casas [1]; see also Casas [3]. Optimality conditions in qualified form,
that is, optimality conditions of Karush–Kuhn–Tucker type, may be obtained either
by assuming that data of the problem are small enough with respect to the viscosity
parameter ν (see, e.g., Roubiček and Tröltzsch [19], Tröltzsch and Wachsmuth [21],
De Los Reyes [18]) or by assuming some qualification condition of the set of feasible
controls as in Gunzburger, Hou, and Svobodny [15, condition (2.7)] or in [1].

Here, since we are mainly interested in the numerical approximation of control
problem (P), we assume that the local optimal solution (ū, ȳ) we want to approximate
is a nonsingular solution, that is, that the linearized Navier–Stokes equations about
ȳ define some isomorphism. As already mentioned, this is the classical assumption
used in the numerical approximation of the Navier–Stokes equations (see, e.g., [12, p.
297]). Thanks to this assumption we derive a necessary optimality condition of the
form

(1.5) J ′′(ū)v2 ≥ 0 ∀v ∈ Cū,

where Cū is the set of directions belonging to the tangent cone at ū to Uad satisfying
J ′(ū)v = 0; see Theorem 3.6 and Corollary 3.7 (here J(u) = F (u,yu), where yu is
the unique solution to (1.2) corresponding to u, when u belongs to some ball Bρ(ū)).
The weakest sufficient optimality condition we can state is the following:

(1.6) J ′′(ū)v2 > 0 ∀v ∈ Cū such that v ̸= 0.

Under this condition, and assuming that the first order optimality conditions are in
qualified form, we prove that (ū, ȳ) is the unique local solution to (P) in some ball
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Bρ(ū). (See Theorem 3.8. Notice that we cannot hope to prove such a result without
assuming that ū satisfies the first order optimality conditions in qualified form and
condition (1.6).) This local uniqueness result is essential to carry out some numerical
analysis of the control problem. The discrete state equation is stated in section 4.
The well posedness of the discrete state equation is performed in Theorem 4.8, and
error estimates are obtained in Lemma 4.10. The discrete adjoint equation is studied
in section 4.3. Its well posedness and error estimates are proved in Lemmas 4.12 and
4.13. Error estimates for the control problem are obtained in section 4.4.

Let us finally mention that in the case of control problems governed by scalar
semilinear elliptic equations, this approach to derive error estimates has been devel-
oped by Arada, Casas, and Tröltzsch [2], Casas [4, 5], Casas, Mateos, and Tröltzsch
[6], and Casas and Raymond [7].

2. Assumptions and preliminary results. Let us recall that Ω is a bounded
open and connected subset in Rd, of class C2, with d = 2 or d = 3, and that ω is a
nonempty open subset in Ω. We assume that M : ω → Rd×m is a Lipschitz function,
with 1 ≤ m ≤ d (Rd×m denotes the space of d×m real matrices). Let us consider the
linear operator C ∈ L(L2(ω;Rm), L2(Ω;Rd)), defined by (Cu)(x) = M(x)u(x)χω(x),
where χω is the characteristic function of ω. In the functional F : L2(Ω;Rd) ×
L2(ω;Rm) 7−→ R, defined in (1.1), we assume that N > 0 and yd ∈ Lr̄(Ω;Rd), for
some r̄ > d, are given fixed. For u ∈ L2(ω;Rm), we denote by uj the components of
u, that is, u = (uj)1≤j≤m. For 1 ≤ j ≤ m, let −∞ ≤ αj < βj ≤ +∞ be extended
real numbers, and set

Uad =
{
u ∈ L2(ω;Rm) | αj ≤ uj(x) ≤ βj for a.e. x ∈ ω, 1 ≤ j ≤ m

}
.

In the case when αj = −∞, this means that the corresponding constraint is absent.
The same convention is adopted if βj = ∞.

In (1.2) we assume that ν > 0 and f ∈ Lr̄(Ω;Rd).
To study (1.2) we have to introduce some function spaces and operators. Through-

out the following we set H1(Ω) = H1(Ω;Rd), H1
0(Ω) = H1

0 (Ω;Rd), H−1(Ω) =
(H1

0(Ω))
′, Lp(Ω) = Lp(Ω;Rd), and Ws,p(Ω) = W s,p(Ω;Rd) for 1 ≤ p ≤ ∞ and

s > 0. We introduce different spaces of divergence-free vector fields:

V0
n(Ω) =

{
u ∈ L2(Ω) | div u = 0 in Ω, u · n = 0 in H−1/2(Γ)

}
,

V1
0(Ω) = H1

0(Ω) ∩V0
n(Ω),

where n is the outward unit normal to Γ. The dual space of V1
0(Ω) with respect to

the pivot space V0
n(Ω) is denoted by V−1(Ω). Thus we have

V1
0(Ω) ↪→ V0

n(Ω) ↪→ V−1(Ω),

with dense and continuous imbeddings. The orthogonal projector from L2(Ω) onto
V0

n(Ω) will be denoted by P . The operator P can be extended to a bounded operator
from H−1(Ω) to V−1(Ω). For notational simplicity this extension will still be denoted
by P .

Let us consider the bilinear form on H1
0(Ω) defined by

a(y, z) = ν

∫
Ω

∇y : ∇z dx = ν

d∑
i,j=1

∫
Ω

∂xi
yj ∂xi

zj ,
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and the trilinear form on b : L4(Ω)×H1
0(Ω)× L4(Ω) defined by

b(y, z,Φ) =

∫
Ω

(y · ∇)z ·Φ dx.

We define A ∈ L(H1
0(Ω),H

−1(Ω)) by〈
Ay, z

〉
H−1(Ω),H1

0(Ω)
= a(y, z) ∀ z, y ∈ H1

0(Ω),

and the nonlinear operator B from H1
0(Ω) to H−1(Ω) by〈

B(y), z
〉
H−1(Ω),H1

0(Ω)
= b(y,y, z) ∀ z, y ∈ H1

0(Ω).

Equation (1.2) is equivalent to the variational problem

(2.1)
Find y ∈ V1

0(Ω) such that

a(y, z) + b(y,y, z) = (f + Cu, z) ∀ z ∈ V1
0(Ω),

or to the weak formulation

y ∈ V1
0(Ω),

〈
Ay +B(y), z

〉
H−1(Ω),H1

0(Ω)
=

〈
f + Cu, z

〉
H−1(Ω),H1

0(Ω)
∀z ∈ V1

0(Ω).

This last equation is equivalent to

y ∈ V1
0(Ω), PAy + PB(y) = P (f + Cu) in V−1(Ω),

which we shall simply write in the form

(2.2) y ∈ V1
0(Ω), Ay +B(y) = f + Cu in V−1(Ω).

We know that, for all u ∈ L2(ω;Rm), equation (2.1), or equivalently (2.2), admits
at least one solution y ∈ V1

0(Ω). The pressure appearing in (1.2) is the unique function
in

L2
0(Ω) =

{
v ∈ L2(Ω) :

∫
Ω

v(x) dx = 0

}
,

obeying

(2.3) ∇p = (I − P )(f + Cu+ ν∆y − (y · ∇)y).

It is a consequence of [12, Chapter 1, Lemma 2.1].
The following properties are well known. For all y ∈ L4(Ω) obeying divy = 0 in

Ω, and z,w ∈ H1
0(Ω)

(2.4) b(y, z,w) = −b(y,w, z) and b(y, z, z) = 0.

The next lemma follows directly from Green’s formula.

Lemma 2.1. For all y ∈ H1
0(Ω), the operators B′(y) ∈ L(H1

0(Ω),H
−1(Ω)) and

B′(y)∗ ∈ L(H1
0(Ω),H

−1(Ω)) satisfy

⟨B′(y)z,Φ⟩ = b(y, z,Φ) + b(z,y,Φ)

and

⟨B′(y)∗Φ, z⟩ =
∫
Ω

(∇y)TΦ · z dx− b(y,Φ, z)−
∫
Ω

(divy)Φ · z dx

for all z, Φ ∈ H1
0(Ω). Moreover, B′′ ∈ L(H1

0(Ω)×H1
0(Ω),H

−1(Ω)) obeys
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⟨B′′(y, z),Φ⟩ = b(y, z,Φ) + b(z,y,Φ) ∀ z,y,Φ ∈ H1
0(Ω).

The following regularity result will be used throughout this paper. It is an im-
mediate consequence of the classical result by Cattabriga [8].

Theorem 2.2. There exists a constant C > 0 such that if u ∈ L2(ω;Rm) and if
y ∈ V1

0(Ω) is a solution to (2.2), then

∥y∥V1
0(Ω) ≤ C(∥f∥L2(Ω) + ∥u∥L2(ω;Rm)).

There exists a constant Cr > 0 such that if u ∈ Lr(ω;Rm), f ∈ Lr(Ω) with 2 ≤ r < ∞
and y ∈ V1

0(Ω) is a solution to (2.2) and p the associated pressure, then y ∈ W2,r(Ω),
p ∈ W1,r(Ω), and

(2.5) ∥p∥W1,r(Ω) + ∥y∥W2,r(Ω) ≤ Cr(1 + ∥f∥7Lr(Ω) + ∥u∥7Lr(ω;Rm)).

Proof. The estimate of ∥y∥V1
0(Ω) is classical. Using this estimate, since d ≤ 3, we

can write

∥y∥L6(Ω) ≤ C∥y∥V1
0(Ω)

and

∥y ⊗ y∥(L3(Ω))d ≤ C∥y∥2V1
0(Ω).

Thus, from estimates for the Stokes equation, we successively deduce

∥y∥W1,3(Ω) ≤ C(∥y ⊗ y∥(L3(Ω))d + ∥f∥L2(Ω) + ∥u∥L2(ω;Rm))

≤ C(∥f∥2L2(Ω) + ∥u∥2L2(ω;Rm) + 1)

and

∥y∥H2(Ω) ≤ C(∥y∥W1,3(Ω)∥y∥L6(Ω) + ∥f∥L2(Ω) + ∥u∥L2(ω;Rm))

≤ C(∥f∥3L2(Ω) + ∥u∥3L2(ω;Rm) + 1).

Therefore

∥(y · ∇)y∥(L3(Ω))d ≤ C∥y∥H1(Ω)∥y∥H2(Ω) ≤ C(∥f∥4L2(Ω) + ∥u∥4L2(ω;Rm) + 1),

which yields

∥y∥W2,r(Ω) ≤ C(∥f∥4Lr(Ω) + ∥u∥4Lr(ω;Rm) + 1)

if 2 ≤ r ≤ 3. Next we have

∥(y · ∇)y∥(Lr(Ω))d ≤ Cr∥y∥H2(Ω)∥y∥W2,3(Ω) ≤ C(∥f∥7L2(Ω) + ∥u∥7L2(ω;Rm) + 1)

if 3 ≤ r < ∞, which provides the desired estimate.

It is well known that the solution of (1.2) is unique when ν is large enough with
respect to the right-hand side; see, for instance, Temam [20]. Since this is a strong
assumption we are interested in the solutions of (1.2) for which the equation is locally
unique. These solutions, called nonsingular solutions, are defined below.
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Definition 2.3. A function y ∈ V1
0(Ω) is a nonsingular solution of (1.2), or

equivalently (2.2), if P (A + B′(y)) is an isomorphism from V1
0(Ω) into V−1(Ω). If,

moreover, Ay+B(y) = f + Cu in V−1(Ω), with u ∈ L2(ω;Rm), we will also say that
the pair (u,y) is a nonsingular solution of (1.2).

Remark 2.4. For a nonsingular solution (u,y) of (1.2), the condition P (A +
B′(y)) ∈ isom(V1

0(Ω),V
−1(Ω)) corresponds to the one stated in [12, Chapter 4,

condition (3.4)], which is used to get the error estimates for the approximation of the
Navier–Stokes equations.

The following theorem is a straightforward consequence of the implicit function
theorem and will be useful in what follows.

Theorem 2.5. Let (ū, ȳ) ∈ L2(ω;Rm)×V1
0(Ω) be a nonsingular solution of (1.2);

then there exist an open neighborhood O(ū) of ū in L2(ω;Rm), an open neighborhood
O(ȳ) of ȳ in V1

0(Ω), and a mapping G from O(ū) to O(ȳ) of class C∞ such that,
for all u ∈ O(ū), G(u) = yu is the unique solution in O(ȳ) to (2.2). Moreover,
if zv = G′(u)v ∈ V1

0(Ω) and w = G′′(u)v2 ∈ V1
0(Ω), then zv and w satisfy the

equations

Azv +B′(yu)zv = Cv in V−1(Ω),(2.6)

Aw +B′(yu)w +B′′(zv, zv) = 0 in V−1(Ω),(2.7)

and P (A+B′(yu)) is an isomorphism from V1
0(Ω) into V−1(Ω) for all u ∈ O(ū).

Lemma 2.6. Let (ū, ȳ) be as in Theorem 2.5, and let p̄ be the associated pressure
(the solution of (2.3) corresponding to ȳ). Let (uk)k be a sequence in O(ū) weakly
converging to ū in L2(ω;Rm). Let yk be the solution to (1.2) in O(ȳ) corresponding
to uk, and let pk be the associated pressure. Then (yk)k converges to ȳ in V1

0(Ω),
and (pk)k converges to p̄ in L2

0(Ω).

Proof. The proof is an easy consequence of Theorem 2.2 and of formula (2.3).

3. Analysis of the control problem. The existence of a solution of problem
(P) can be obtained by the usual approach of taking a minimizing sequence, which
is bounded in L2(ω;Rm)×V1

0(Ω), and passing to the limit; see, for instance, [18] for
a detailed proof. In this section we will derive the first and second order optimality
conditions for a local solution (ū, ȳ) in Uad ×V1

0(Ω).

3.1. First order optimality conditions. Let us precisely define local solutions
of (P).

Definition 3.1. We shall say that (ū, ȳ) ∈ Uad × V1
0(Ω) is a local solution of

(P) if and only if (ū, ȳ) satisfies (1.2) and there exist neighborhoods O(ū) of ū in
L2(ω;Rm) and O(ȳ) of ȳ in V1

0(Ω) such that F (ū, ȳ) ≤ F (u,y) for all pairs (u,y) ∈
(Uad ∩ O(ū))×O(ȳ) satisfying (1.2).

The following theorem was proved by Abergel and Casas [1] for a slightly different
functional, but the proof can be repeated for our problem step by step, just by doing
the obvious modifications.

Theorem 3.2. Let (ū, ȳ) ∈ Uad × V1
0(Ω) be a local solution of (P); then there

exist a real number λ̄ and some elements Φ̄ ∈ W2,r̄(Ω) and π̄, p̄ ∈ W 1,r̄(Ω) such that
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λ̄+ ∥Φ̄∥V1
0(Ω) > 0,(3.1)

−ν∆ȳ + (ȳ · ∇)ȳ +∇p̄ = f + Cū in Ω, div ȳ = 0 in Ω, ȳ = 0 on Γ,(3.2)

−ν∆Φ̄+ (∇ȳ)T Φ̄− (ȳ · ∇)Φ̄+∇π̄ = λ̄(ȳ − yd) in Ω,(3.3)

div Φ̄ = 0 in Ω, Φ̄ = 0 on Γ,(3.4) ∫
ω

(C∗Φ̄+ λ̄N ū) · (u− ū) dx ≥ 0 ∀u ∈ Uad.(3.5)

These conditions for optimality are of Fritz–John type, and we are interested in
the cases where λ̄ can be chosen equal to one. Gunzburger, Hou, and Svobodny [14]
introduced an assumption on Uad for the local solution (ū, ȳ). The control set Uad is
said to have the property (C) at (ū, ȳ) if the system

−ν∆Φ+ (∇ȳ)TΦ− (y · ∇)Φ+∇π = λ̄(ȳ − yd) in Ω, divΦ = 0 in Ω, Φ = 0 on Γ,

admits at least a nonzero solution (Φ, π) ∈ V1
0(Ω) × L2

0(Ω), and if for any nonzero
solution (Φ, π) we can find u ∈ Uad such that∫

ω

C∗Φ · (u− ū) dx < 0.

It is obvious that if Uad has the property (C) at (ū, ȳ), then (3.2)–(3.5) hold with
λ̄ = 1.

Here we will make a different assumption which will be crucial in what follows,
in particular for the numerical analysis. We consider only local solutions (ū, ȳ) of
(P) such that (ū, ȳ) is a nonsingular solution of (2.2). In that case we shall say that
(ū, ȳ) is a local nonsingular solution of (P). For such a local nonsingular solution we
can apply Theorem 2.5 and define the control problem

(PO(ū)) inf
{
J(u) | u ∈ Uad ∩ O(ū)

}
,

where J : U 7−→ R is given by J(u) = F (u, G(u)). Then ū is a local solution of
(PO(ū)). Let us study the differentiability properties of J .

Theorem 3.3. Function J is of class C∞ in O(ū), and for every u ∈ O(ū) and
v ∈ L2(ω;Rm) we have

J ′(u)v =

∫
ω

(C∗Φu +Nu) · v dx,(3.6)

J ′′(u)v2 =

∫
Ω

(|zv|2 − 2(zv · ∇)zv ·Φu)dx+N

∫
ω

|v|2dx,(3.7)

where zv is the solution of (2.6) and Φu ∈ V1
0(Ω) satisfies

(3.8)

{
−ν∆Φu + (∇yu)

TΦu − (yu · ∇)Φu +∇πu = yu − yd in Ω,

divΦu = 0 in Ω, Φu = 0 on Γ.

The proof follows easily from Theorem 2.5. The only delicate point is the def-
inition of Φu. Let us remark that (3.8) is equivalent to the equation A∗Φu +
B′(yu)

∗Φu = yu − yd in V−1(Ω), and due to Theorem 2.5 the operator P (A∗ +
B′(yu)

∗) is an isomorphism from V1
0(Ω) into V−1(Ω).

By using the previous theorem we get the following result.



ERROR ESTIMATES FOR THE CONTROL OF NAVIER–STOKES 9

Theorem 3.4. Let (ū, ȳ) ∈ Uad ×V1
0(Ω) be a local nonsingular solution of (P),

and let p̄ be the associated pressure; then there exist some elements Φ̄ ∈ V1
0(Ω) and

π̄ ∈ L2
0(Ω) such that (3.2)–(3.5) hold with λ̄ = 1.

Proof. It is enough to take into account that J ′(ū)(u − ū) ≥ 0 for all u ∈ Uad

and to use (3.6).

Using the first order necessary conditions we can deduce some extra regularity
for the optimal control, the state, and the adjoint state.

Theorem 3.5. Let (ū, ȳ) be a local nonsingular solution of (P) and let Φ̄ be the
adjoint state as defined by (3.3)–(3.4) with λ̄ = 1. Then ȳ, Φ̄ ∈ W2,r̄(Ω), p̄, π̄ ∈
W 1,r̄(Ω), and ū ∈ C0,1(ω̄;Rm).

Proof. Taking into account that Cū ∈ L2(Ω) and the assumption on f , it is
enough to apply Theorem 2.2 to deduce that ȳ belongs to H2(Ω) and that Φ̄ belongs
to W2,r̄(Ω). On the other hand, Φ̄ ∈ W2,r̄(Ω) ⊂ C0,1(Ω̄;Rd) because r̄ > d. Now
using the Lipschitz property of the function M defining C and the representation of
the optimal control deduced from (3.5), we obtain

(3.9) ūj(x) = Proj[αj ,βj ]

(
− 1

N
(C∗Φ̄)j(x)

)
for a.e. x ∈ ω,

which gives the desired regularity for ū. Now still using Theorem 2.2, we obtain the
regularity of ȳ.

3.2. Second order optimality conditions. To perform the numerical analysis
of the problem as well as the analysis of the algorithms of optimization, second order
sufficient conditions are required. These sufficient conditions should be as unrestrictive
as possible. One way of measuring this is to compare them with the necessary second
order conditions and check if the gap is small. This is the reason why we first introduce
the second order necessary conditions.

Second order conditions have to be written for directions v ∈ TUad
(ū) such that

J ′(u)v = 0, where TUad
(ū) is the tangent cone at ū to Uad. To characterize these

directions, we introduce d̄(x) = C∗Φ̄(x) +N ū(x) for x ∈ ω, and the following condi-
tions:

vj(x) = 0 if d̄j(x) ̸= 0,(3.10)

vj(x) ≥ 0 if −∞ < αj = ūj(x) and d̄j(x) = 0,(3.11)

vj(x) ≤ 0 if ūj(x) = βj < ∞ and d̄j(x) = 0.(3.12)

Now we define the cone

Cū =
{
v ∈ L2(ω;Rm) | v satisfies (3.10)–(3.12)

}
.

Notice that

(3.13)
J ′(ū)v =

∫
ω

d̄(x) · v(x) dx ∀v ∈ L2(ω;Rm),

d̄(x) · v(x) = 0 for a.e. x ∈ ω and all v ∈ Cū.

Theorem 3.6. Let (ū, ȳ) be a nonsingular local solution of (P). Then

J ′′(ū)v2 ≥ 0 ∀v ∈ Cū.
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Proof. We sketch the proof in the case where −∞ < αj < βj < ∞ for all
1 ≤ j ≤ m. The modifications for the other cases are obvious. Take v ∈ Cū, and for
ε < min{(βj − αj)/2 : 1 ≤ j ≤ m} define

vj,ε(x) =


0 if αj < ūj(x) < αj + ε,
0 if βj − ε < ūj(x) < βj ,

Proj[− 1
ε ,

1
ε ]
(vj(x)) otherwise.

It is clear that |vj,ε(x)| ≤ |vj(x)| and that vj,ε(x) → vj(x) for a.e. x ∈ ω as ε → 0,
and hence vε → v in L2(ω;Rm). A simple inspection convinces us that vε ∈ Cū. Let
us check that ū+ ρvε ∈ Uad for every 0 < ρ < ε2. If d̄j(x) ̸= 0, then vj,ε(x) = 0. So
ūj(x) + ρvj,ε(x) = ūj(x) ∈ [αj , βj ]. For d̄j(x) = 0, we have the following:

(1) If ūj(x) = αj , then vj(x) ≥ 0 and vj,ε(x) ≥ 0. So clearly αj ≤ uj(x)+ρvj,ε(x).

For the other inequality we write uj(x) + ρvj,ε(x) ≤ αj + ε2 1
ε ≤ αj+βj

2 < βj . If
ūj(x) = βj , the argument is completely analogous.

(2) If αj < ūj(x) < αj + ε, then ūj(x) + ρvj,ε(x) = ūj(x) ∈ [αj , βj ]. The same
applies if βj − ε < ūj(x) < βj .

(3) If αj+ε ≤ ūj(x) ≤ βj−ε, then on the left side, ūj(x)+ρvj,ε(x) ≥ αj+ε−ε2 1
ε =

αj , and on the right side ūj(x) + ρvj,ε(x) ≤ βj − ε+ ε2 1
ε = βj .

Thus ū + ρvε belongs to Uad. Making a second order Taylor expansion of J at
ū and taking into account that it is a local minimum for ρ < ε2 small enough, there
exists 0 < θρ < ρ such that

0 ≤ J(ū+ ρvε)− J(ū) = ρJ ′(ū)vε +
ρ2

2
J ′′(ū+ θρvε)v

2
ε .

Since vε ∈ Cū, (3.13) implies that J ′(ū)vε = 0. Therefore the above inequality leads
to J ′′(ū + θρvε)v

2
ε ≥ 0. Now we must take the limit as ρ → 0 to get J ′′(ū)v2

ε ≥ 0.
Next it is enough to take the limit as ε → 0. To do this, let us recall the expression
of J ′′(ū) provided by (3.7):

J ′′(ū)v2
ε =

∫
Ω

(|zvε
|2 − 2(zvε

· ∇)zvε
·Φū) dx+N

∫
ω

|vε|2dx

−→
∫
Ω

(|zv|2 − 2(zv · ∇)zv ·Φū) dx+N

∫
ω

|v|2dx = J ′′(ū)v2 as ε → 0.

The following result is an obvious consequence of the previous theorem and the
expression of J ′′ given by (3.7).

Corollary 3.7. Let (ū, ȳ) be a nonsingular local solution of (P) and let Φ̄ be
the corresponding adjoint state. Then

(3.14)

∫
Ω

(|z|2 − 2(z · ∇)z · Φ̄)dx+N

∫
ω

|v|2dx ≥ 0

for every (v, z) satisfying the linearized state equation (2.6) and v ∈ Cū.

To state second order sufficient conditions we will not suppose that (ū, ȳ) is a
nonsingular solution of the Navier–Stokes equations (1.2). The result we are going to
state is the following.

Theorem 3.8. Let (ū, ȳ, Φ̄) ∈ L2(ω;Rm) × V1
0(Ω) × V1

0(Ω) satisfy (3.2)–(3.5)
with λ̄ = 1. Let us suppose that

(3.15)

∫
Ω

(z2 − 2(z · ∇)z · Φ̄)dx+N

∫
ω

v2dx > 0
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for every (v, z) ̸= (0, 0) satisfying the linearized state equation (2.6) and v ∈ Cū.
Then there exist ε > 0 and µ > 0 such that

F (ū, ȳ) +
µ

2

(
∥u− ū∥2L2(ω;Rm) + ∥y − ȳ∥2L2(Ω)

)
≤ F (u,y)

for every (u,y) satisfying (1.2), u ∈ Uad, and ∥u− ū∥2L2(ω;Rm) + ∥y− ȳ∥2L2(Ω) ≤ ε2.

Proof. Let us suppose the theorem is false. In that case, for all k ∈ N, there exists
(uk,yk) satisfying (1.2), uk ∈ Uad,

∥uk − ū∥2L2(ω;Rm) + ∥yk − ȳ∥2L2(Ω) <
1

k2
,

and

(3.16) F (ū, ȳ) +
1

k

(
∥uk − ū∥2L2(ω;Rm) + ∥yk − ȳ∥2L2(Ω)

)
> F (uk,yk).

Since the sequence {uk}∞k=1 is bounded in L2(ω;Rm), Theorem 2.2 implies that

{yk}∞k=1 is bounded in H2(Ω) ∩V1
0(Ω). Let us set

ρk =
√
∥uk − ū∥2L2(ω;Rm) + ∥yk − ȳ∥2L2(Ω), vk =

uk − ū

ρk
, zk =

yk − ȳ

ρk
.

Clearly ∥vk∥2L2(ω;Rm) + ∥zk∥2L2(Ω) = 1, and hence there exist weakly convergent

subsequences in L2(ω;Rm) and L2(Ω), still indexed by k, such that vk ⇀ v, zk ⇀ z.
We are going to check that the pair (v, z) satisfies the linearized equation (2.6) and
v ∈ Cū.

The pair (vk, zk) satisfies the equation

(3.17)

{
−ν∆zk + (ȳ · ∇)zk + (zk · ∇)yk +∇πk = Cvk in Ω,

div zk = 0 in Ω, zk = 0 on Γ,

where πk = (p̄− pk)/ρk, which is equivalent to the variational formulation

(3.18) a(zk, z) + b(ȳ, zk, z) + b(zk,yk, z) = (Cvk, z) ∀ z ∈ V1
0(Ω).

Taking z = zk and using (2.4), we obtain

a(zk, zk) = (Cvk, zk)−
∫
Ω

(zk · ∇)yk · zkdx.

Using the equality ∥vk∥2L2(ω;Rm) + ∥zk∥2L2(Ω) = 1 and the imbedding H1(Ω) ⊂ L4(Ω),
we obtain

ν∥zk∥2H1(Ω) ≤ ∥C∥+ ∥yk∥H1(Ω)∥zk∥2L4(Ω) ≤ C(1 + ∥zk∥2L4(Ω)),

because (yk)k is bounded in H1(Ω). From the well-known interpolation inequality
when d = 3 (see Temam [20, Lemma 3.5, p. 296]),

∥ζ∥L4(Ω) ≤
√
2∥ζ∥1/4L2(Ω)∥ζ∥

3/4
H1(Ω) ∀ζ ∈ H1

0 (Ω),

and the bound ∥zk∥L2(Ω) ≤ 1, it follows that

∥zk∥2H1(Ω) ≤ C
(
1 + ∥zk∥3/2H1(Ω)

)
.
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Thus the sequence {zk} is bounded in V1
0(Ω), and therefore {zk} converges strongly

to z in L2(Ω). Now we can take the limit in (3.18), and we obtain that (v, z) satisfies
(2.6).

Let us now check that v ∈ Cū. The sign condition (3.11)–(3.12) is satisfied by
vk,j , and this is conserved when we pass to the weak limit because the set of functions
satisfying these sign conditions is closed and convex in L2(ω;Rm). On the other hand,
using condition (3.16), for all k, we have

ρk
k

>
F (ū+ ρkvk, ȳ + ρkzk)− F (ū, ȳ)

ρk

=
1

2

∫
Ω

|ȳ + ρkzk − yd|2 − |ȳ − yd|2

ρk
dx+

N

2

∫
ω

|ū+ ρkvk|2 − |ū|2

ρk
dx

=
1

2

∫
Ω

(2(ȳ − yd) + ρkzk) · zk dx+
N

2

∫
ω

(2ū+ ρkvk) · vk dx.

Since ∥vk∥2L2(ω;Rm) + ∥zk∥2L2(Ω) = 1, ρk < 1/k converges to 0, zk → z in L2(Ω), and

vk ⇀ v weakly in L2(ω;Rm), we can pass to the limit when k tends to infinity, and
we get ∫

Ω

(ȳ − yd) · z dx+N

∫
ω

ū · v dx ≤ 0,

which is exactly ∫
ω

d̄(x) · v(x) ≤ 0.

The sign condition (3.5) implies that d̄j(x)vj(x) ≥ 0 for a.e. x ∈ ω; therefore the
above inequality is equivalent to

m∑
j=1

∫
Ω

|d̄j(x)vj(x)| dx ≤ 0.

Thus if d̄j(x) ̸= 0, vj(x) = 0, 1 ≤ j ≤ m, and hence v ∈ Cū.
Making a second order Taylor expansion of F at (ū, ȳ), with condition (3.16), we

obtain

(3.19)
1

ρk
(∂uF (ū, ȳ)vk + ∂yF (ū, ȳ)zk) +

1

2

∫
Ω

|zk|2 dx+
N

2

∫
ω

|vk|2 dx <
1

k
.

Notice that the pair (vk, zk) satisfies (3.17), but does not satisfy the linearized equa-
tion (2.6). Thus 1

ρk
(∂uF (ū, ȳ)vk + ∂yF (ū, ȳ)zk) is not equal to

∫
ω
d̄(x) · vk(x)dx.

We can write (3.17) as follows:

−ν∆zk + (ȳ · ∇)zk + (zk · ∇)ȳ +∇πk = Cvk − (zk · ∇)(yk − ȳ) in Ω,

div zk = 0 in Ω, zk = 0 on Γ.

Since

∂uF (ū, ȳ)vk + ∂yF (ū, ȳ)zk =

∫
Ω

(ȳ − yd) · zkdx+N

∫
ω

ū · vkdx,

using the adjoint state Φ̄ and making an integration by parts, we get that∫
Ω

(ȳ − yd) · zkdx =

∫
Ω

Φ̄ · (Cvk − (zk · ∇)(yk − ȳ)) dx,
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and therefore

1

ρk
(∂uF (ū, ȳ)vk + ∂yF (ū, ȳ)zk) =

1

ρk

∫
ω

d̄(x) · vk(x)dx−
∫
Ω

(zk · ∇)zk · Φ̄dx.

Since vk satisfy the sign condition, we have d̄(x) ·vk(x) ≥ 0; therefore (3.19) leads to

−2

∫
Ω

(zk · ∇)zk · Φ̄dx+

∫
Ω

|zk|2dx+N

∫
ω

|vk|2dx <
2

k
∀k.

Taking the inferior limit in this inequality we deduce∫
Ω

(|z|2 − 2(z · ∇)z · Φ̄)dx+N

∫
ω

|v|2dx ≤ 0.

Since v ∈ Cū and the pair (v, z) satisfies the linearized equation (2.6), this is possible
only if (v, z) = (0, 0).

The sequence {zk}∞k=1 converges strongly in L2(Ω) and weakly in V1
0(Ω). Since

Φ̄ ∈ L∞(Ω), by passing to the limit when k tends to infinity, we obtain

−2

∫
Ω

(zk · ∇)zk · Φ̄dx+

∫
Ω

|zk|2dx → −2

∫
Ω

(z · ∇)z · Φ̄dx+

∫
Ω

|z|2dx = 0.

The last three relations imply that vk → 0 strongly in L2(ω;Rm). So we have proved
that (vk, zk) → 0 strongly in L2(ω)m × L2(Ω), which contradicts the fact that

∥vk∥2L2(ω;Rm) + ∥zk∥2L2(Ω) = 1.

The proof is complete.

The sufficient condition (3.15) is the best possible. Actually the gap between
(3.15) and the second order necessary condition (3.14) is the same as in finite dimen-
sion. In the case of nonsingular solutions we have the following result analogous to
Theorem 3.6.

Corollary 3.9. Let us assume that (ū, ȳ) is a nonsingular solution of (1.2) and
(ū, ȳ, Φ̄) satisfies (3.2)–(3.5) with λ̄ = 1. Then (3.15) is equivalent to J ′′(ū)v2 > 0
for every v ∈ Cū \ {0}.

This corollary is an immediate consequence of (3.7) and the fact that z = zv if
(v, z) satisfies (2.6).

To make the numerical analysis of control problem (P), we will use the following
equivalent condition to (3.15), which may seem stronger but is not, as we will see
below. Given τ > 0, let us define a bigger cone than Cū in the following way:

vj(x) = 0 if |d̄j(x)| > τ,(3.20)

vj(x) ≥ 0 if −∞ < αj = ūj(x) and |d̄j(x)| ≤ τ,(3.21)

vj(x) ≤ 0 if ūj(x) = βj < ∞ and |d̄j(x)| ≤ τ,(3.22)

and

Cτ
ū =

{
v ∈ L2(ω;Rm) | v satisfies (3.20)–(3.22)

}
.
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Theorem 3.10. Let (ū, ȳ, Φ̄) ∈ L2(ω;Rm) ×V1
0(Ω) ×V1

0(Ω) satisfy (3.2)–(3.5)
with λ̄ = 1. Then the condition (3.15) is equivalent to the existence of δ > 0 and
τ > 0 such that

(3.23)

∫
Ω

(|z|2 − 2(z · ∇)z · Φ̄) dx+N

∫
ω

|v|2 dx ≥ δ
(
∥v∥2L2(ω;Rm) + ∥z∥2L2(Ω)

)

for every (v, z) satisfying the linearized state equation (2.6) and v ∈ Cτ
ū.

Proof. Notice that Cū = C0
ū ⊆ Cτ

ū; therefore (3.23) implies (3.15).
Suppose that (3.15) holds and (3.23) is false. In that case, for every k ∈ N there

exists a pair (vk, zk) satisfying the linearized state equation (2.6), vk ∈ C
1/k
ū , and

(3.24)

∫
Ω

(|zk|2 − 2(zk · ∇)zk · Φ̄)dx+N

∫
ω

v2
kdx <

1

k

(
∥vk∥2L2(ω;Rm) + ∥zk∥2L2(Ω)

)
.

We can suppose that ∥vk∥2L2(ω;Rm) + ∥zk∥2L2(Ω) = 1; otherwise we can redefine vk =

vk/ρk and zk = zk/ρk, with ρk = (∥vk∥2L2(ω;Rm) + ∥zk∥2L2(Ω))
1/2. Then there exist

two weakly convergent subsequences in L2(ω;Rm) and L2(Ω), still indexed by k, such
that vk ⇀ v and zk ⇀ z. Repeating the argument of the proof of Theorem 3.8,
we deduce that the pair (v, z) satisfies the linearized equation (2.6) and {zk}∞k=1 is
bounded in V1

0(Ω). Thus {zk}∞k=1 converges strongly in L4(Ω). Let us prove that
v ∈ Cū. The sign condition (3.11)–(3.12) is again trivial since every vk satisfies it. To
check condition (3.10) we are going to prove that if |d̄j(x)| ̸= 0, then vj(x) = 0. Let

us fix ε > 0 and define ωε = {x ∈ ω : |dj(x)| > ε}. Notice that
∫
ωε

vj,k(x)d̄j(x)dx →∫
ωε

vj(x)d̄j(x)dx when k tends to infinity. From the definition of C
1/k
ū it follows that

for k > 1/ε all the terms of the sequence {
∫
ωε

vj,k(x)d̄j(x)dx}k are 0, and so the limit

is also 0. Since v satisfies the sign condition (3.5), this can happen only if vj(x) = 0
almost everywhere in ωε. Since ε is arbitrarily small, we conclude that vj(x) = 0 for
a.e. x such that |d̄j(x)| ≠ 0, and so v ∈ Cū.

Finally, taking the lower limit in (3.24) we obtain that

∫
Ω

(z2 − 2(z · ∇)z · Φ̄)dx+N

∫
ω

v2dx ≤ 0.

We complete the proof by arguing as at the end of the proof of Theorem 3.8.

Corollary 3.11. Let us assume that (ū, ȳ) is a nonsingular solution of (1.2)
and (ū, ȳ, Φ̄) satisfies (3.2)–(3.5) with λ̄ = 1. Then (3.15) is equivalent to the exis-
tence of δ > 0 and τ > 0 such that

(3.25) J ′′(ū)v2 ≥ δ∥v∥2L2(ω;Rm) ∀v ∈ Cτ
ū.

This a consequence of Theorem 3.10 and the expression of J ′′(ū) stated in (3.7).
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4. Numerical approximation of the control problem.

4.1. Numerical analysis of the state equation. Let Xh ⊂ H1
0(Ω) and Mh ⊂

L2
0(Ω) be two finite dimensional spaces satisfying the assumptions (H1)–(H3) stated

below.
(H1) (Approximation property of Xh). There exists an operator rh ∈ L(H2(Ω)∩

H1
0(Ω),Xh) such that

(a) ∥y − rhy∥H1
0(Ω) ≤ Ch∥y∥H2(Ω) ∀y ∈ H2(Ω) ∩H1

0(Ω),

(b) ∥y − rhy∥L2(Ω) ≤ Ch2∥y∥H2(Ω) ∀y ∈ H2(Ω) ∩H1
0(Ω),

(c) ∥y − rhy∥L∞(Ω) ≤ Ch2−d/2∥y∥H2(Ω) ∀y ∈ H2(Ω) ∩H1
0(Ω),

(d) ∥yh∥L∞(Ω) ≤ Ch−d/2∥yh∥L2(Ω) ∀yh ∈ Xh.

(H2) (Approximation property ofMh). There exists an operator sh ∈ L(L2
0(Ω),Mh)

such that
∥p− shp∥L2

0(Ω) ≤ Ch∥p∥H1(Ω) ∀ p ∈ H1(Ω) ∩ L2
0(Ω).

(H3) (Uniform inf-sup condition). For each ph ∈ Mh there exists yh ∈ Xh such
that

(ph,divyh) = ∥ph∥2L2
0(Ω) and ∥yh∥H1

0(Ω) ≤ C∥ph∥L2
0(Ω),

where C > 0 is independent of h, ph, and yh.

Remark 4.1. Assumptions (H1)(b), (H1)(c), and (H1)(d) are needed to establish
uniform convergence for the approximation of the state and the adjoint state (cf.
Lemmas 4.10 and 4.13). In particular, if we use the finite element method when the
family of triangulations is quasi-uniform, the above assumptions are satisfied for the
Taylor–Hood finite element method and for the (P1-Bubble, P1) finite element method
(see [12, p. 98, Lemma A.7 on p. 103, and Chapter 2]). The quasi-uniformity condition
can be relaxed in some cases. For instance, Eriksson [11] gives some conditions on a
locally refined family of triangulations in order to have an inverse inequality similar
to (H1)(d).

Assumption (H3) is equivalent to the classical inf-sup condition. See Girault–
Raviart [12, Remark II.1.4].

For ρ > 0, ȳ ∈ H1
0(Ω), p̄ ∈ L2

0(Ω), and ū ∈ L2(ω;Rm), let us set

Bρ(ȳ) =
{
y ∈ H1

0(Ω) | ∥y − ȳ∥H1
0(Ω) ≤ ρ

}
,

Bρ(p̄) =
{
p ∈ L2

0(Ω) | ∥p− p̄∥L2
0(Ω) ≤ ρ

}
,

Bρ(ū) =
{
u ∈ L2(ω;Rm) | ∥u− ū∥L2(ω;Rm) ≤ ρ

}
.

For all u ∈ L2(ω;Rm), we define a discrete state equation in Xh×Mh, associated
with (1.2), as follows:

(4.1)

Find (yd, ph) ∈ Xh ×Mh satisfying

a(yh,wh) + b(yh,yh,wh)− (ph,divwh) = (f + Cu,wh) ∀wh ∈ Xh,

(λh,divyh) = 0 ∀λh ∈ Mh.

For a given u ∈ L2(ω;Rm), this equation does not necessarily have a unique
solution yh. Our main objective in this section is to show that there exist ρ1 > 0
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and ρ2 > 0 independent of h, such that, for all u ∈ Bρ2
(ū), (4.1) admits a unique

solution in Bρ1
(ȳ) × Bρ1

(p̄). Let T be the bounded linear operator from H−1(Ω) to
V1

0(Ω)× L2
0(Ω) defined by Tg = (z, q), where (z, q) is the solution of

−ν∆z+∇q = g in Ω, div z = 0 in Ω, z = 0 on Γ.

Let F be the nonlinear mapping from L2(ω;Rm)×H1
0(Ω)×L2

0(Ω) into H1
0(Ω)×L2

0(Ω)
defined by

F(u,y, p) = (y, p) + T [B(y)− (f + Cu)].

Notice that F(u,y, p) = 0 if and only if Ay+B(y) = f+Cu in V−1(Ω) and p ∈ L2
0(Ω)

satisfies ∇p = (I−P )(f+Cu+ν∆y−(y ·∇)y). The operator ∂(y,p)F(u,y, p) belongs
to L(H1

0(Ω)× L2
0(Ω)) and is defined by

∂(y,p)F(u,y, p)(z, q) = (z, q) + T [B′(y)z].

Observe that ∂(y,p)F(u,y, p) does not depend on u ∈ L2(ω;Rm) and p ∈ L2
0(Ω).

Lemma 4.2. Let (ū, ȳ) ∈ L2(ω;Rm)×V1
0(Ω) be a solution of (1.2), with associ-

ated pressure p̄. Then (ū, ȳ) is a nonsingular solution if and only if ∂(y,p)F(ū, ȳ, p̄)
is an automorphism in H1

0(Ω)× L2
0(Ω).

Proof. Let us assume that (ū, ȳ) ∈ L2(ω;Rm)×V1
0(Ω) is a nonsingular solution

of (1.2). Let (ŷ, p̂) be in H1
0(Ω) × L2

0(Ω). We have to check that there exists a
unique pair (y, p) ∈ H1

0(Ω) × L2
0(Ω) such that (y, p) + T [B′(ȳ)y] = (ŷ, p̂). Let

(y0, p0) ∈ V1
0(Ω)× L2

0(Ω) be the unique solution of the equation

−ν∆y0 +B′(ȳ)y0 +∇p0 = −B′(ȳ)ŷ in Ω, divy0 = 0 in Ω, y0 = 0 on Γ.

Set y = y0 + ŷ and p = p0 + p̂. The equality (y, p) + T [B′(ȳ)(y)] = (ŷ, p̂), i.e.,
T [−B′(ȳ)y0 −B′(ȳ)ŷ] = (y0, p0), follows from the definition of T and of (y0, p0). So
we have proved the surjectivity of ∂(y,p)F(ū, ȳ, p̄). For the injectivity let us assume
that (y, p) + T [B′(ȳ)y] = (0, 0). This implies that Ay+B′(ȳ)y = 0 in V−1(Ω); then
y = 0 and therefore p = 0 too.

Conversely, let us assume that ∂(y,p)F(ū, ȳ, p̄) is an automorphism in H1
0(Ω) ×

L2
0(Ω). Let g ∈ V−1(Ω). Let (ŷ, p̂) ∈ V1

0(Ω)× L2
0(Ω) be the solution of the equation

−ν∆ŷ +∇p̂ = g.

Let (y, p) ∈ H1
0(Ω)× L2

0(Ω) be the solution of the equation

∂(y,p)F(ū, ȳ, p̄)(y, p) = (ŷ, p̂).

It is easy to check that y ∈ V1
0(Ω) is the unique solution of Ay +B′(ȳ)y = g.

Let Th be the bounded linear operator from H−1(Ω) to Xh × Mh defined by
Thg = (zh, qh), where (zh, qh) ∈ Xh ×Mh is the solution of

a(zh,wh)− (qh,divwh) = (g,wh) ∀wh ∈ Xh,

(λh,div zh) = 0 ∀λh ∈ Mh.

Let Fh be the nonlinear mapping from L2(ω;Rm)×H1
0(Ω)×L2

0(Ω) into H1
0(Ω)×L2

0(Ω)
defined by

Fh(u,y, p) = (y, p) + Th[B(y)− (f + Cu)].
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Remark 4.3. Notice that if Fh(u,y, p) = 0, then (y, p) belongs to Xh ×Mh and
is a solution of (4.1). Conversely if (y, p) ∈ Xh × Mh is a solution of (4.1), then
Fh(u,y, p) = 0.

Now we want to prove that if ȳ is nonsingular and if ∥y−ȳ∥H1
0(Ω) is small enough,

then ∂(y,p)Fh(u,y, p) is an automorphism in H1
0(Ω) × L2

0(Ω). For that we make the
following additional and usual assumptions concerning the approximation results for
the Stokes problem.

(S1) limh→0 ∥(T − Th)g∥H1
0(Ω)×L2

0(Ω) = 0 ∀g ∈ H−1(Ω).

(S2) ∥(T − Th)g∥H1
0(Ω)×L2

0(Ω) ≤ Ch∥g∥L2(Ω) ∀g ∈ L2(Ω).

Before proving the desired property of ∂(y,p)Fh(u,y, p), we establish several lemmas.

Lemma 4.4. There exists C > 0 independent of h such that

∥Th∥L(H−1(Ω),H1
0(Ω)×L2

0(Ω)) ≤ C.

Proof. We want to estimate sup
{
∥Thg∥H1

0(Ω)×L2
0(Ω) | ∥g∥H−1(Ω) ≤ 1

}
. Recall

that Thg is the solution (zh, qh) to the discrete Stokes problem

a(zh,wh)− (qh,divwh) = (g,wh) ∀wh ∈ Xh,

(λh,div zh) = 0 ∀λh ∈ Mh.

Taking wh = zh, we obtain ∥zh∥H1
0(Ω) ≤ C∥g∥H−1(Ω). The estimate for the pressure

qh follows from inf-sup condition (H3). Indeed if we take wh such that (qh,divwh) =
∥qh∥2L2

0(Ω)
and ∥wh∥H1

0(Ω) ≤ C∥qh∥L2
0(Ω), it is clear that ∥qh∥L2

0(Ω) ≤ C∥g∥H−1(Ω).

We will need the following standard result.

Lemma 4.5. Let X be a Banach space, A ∈ L(X) invertible and B ∈ L(X). If
∥A−B∥L(X) < 1/∥A−1∥L(X), then B is invertible. If ∥A−B∥L(X) < 1/(2∥A−1∥L(X)),
then ∥B−1∥L(X) ≤ 2∥A−1∥L(X).

Proof. A−1B = I −A−1(A−B). Since ∥A−1(A−B)∥ ≤ ∥A−1∥ ∥A−B∥ < 1, we
have that A−1B is invertible and so is B.

B−1A = (I − A−1(A− B))−1 =
∑∞

k=1(A
−1(A− B))k. So ∥B−1∥ ≤ ∥A−1∥/(1−

∥A−1(A−B)∥) ≤ 2∥A−1∥.
Lemma 4.6. Let ȳ ∈ V1

0(Ω) be a nonsingular solution of (2.2). Then for every
ε > 0 there exist hε > 0 and ρε > 0 such that

∥T [B′(ȳ)]− Th[B
′(y)]∥L(H1

0(Ω),H1
0(Ω)×L2

0(Ω)) < ε

for all 0 < h < hε and all y ∈ Bρε
(ȳ).

Proof. With classical calculations we can write

∥T [B′(ȳ)]− Th[B
′(y)]∥L(H1

0(Ω),H1
0(Ω)×L2

0(Ω))

≤ ∥(T − Th)[B
′(ȳ)]∥L(H1

0(Ω),H1
0(Ω)×L2

0(Ω)) + ∥Th[B
′(ȳ)−B′(y)]∥L(H1

0(Ω),H1
0(Ω)×L2

0(Ω))

≤ sup∥z∥
H1

0
(Ω)

≤1 ∥(T − Th)[B
′(ȳ)z]∥H1

0(Ω)×L2
0(Ω)

+sup∥z∥
H1

0
(Ω)

≤1 ∥Th[(B
′(ȳ)−B′(y))z]∥H1

0(Ω)×L2
0(Ω).

Since ȳ ∈ H2(Ω), B′(ȳ)z belongs to L2(Ω), and due to assumption (S2) we have

sup∥z∥
H1

0
(Ω)

≤1 ∥(T − Th)[B
′(ȳ)z]∥H1

0(Ω)×L2
0(Ω)

≤ Ch sup∥z∥
H1

0
(Ω)

≤1 ∥B′(ȳ)z∥L2(Ω) ≤ Ch∥ȳ∥H2(Ω).
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On the other hand, using Lemma 4.4 we have

sup
∥z∥

H1
0
(Ω)

≤1

∥Th[(B
′(ȳ)−B′(y))z]∥H1

0(Ω)×L2
0(Ω)

≤ ∥Th∥L(H−1(Ω),H1
0(Ω)×L2

0(Ω)) sup
∥z∥

H1
0
(Ω)

≤1

∥(B′(ȳ)−B′(y))z∥H−1(Ω)

≤ C∥ȳ − y∥H1
0(Ω).

Taking hε and ρε small enough, we obtain the desired result.

Theorem 4.7. Let (ū, ȳ) ∈ L2(ω;Rm)×V1
0(Ω) be a nonsingular solution of (2.2)

and p̄ the associated pressure. There exist h0 > 0 and ρ0 > 0 such that for all 0 <
h < h0 and all y ∈ Bρ0(ȳ), ∂(y,p)Fh(u,y, p) is an automorphism in H1

0(Ω)× L2
0(Ω),

and

∥∂(y,p)Fh(u,y, p)
−1∥L(H1

0(Ω)×L2
0(Ω)) ≤ 2∥∂(y,p)F(ū, ȳ, p̄)−1∥L(H1

0(Ω)×L2
0(Ω)).

Proof. The proof is a straightforward consequence of the previous lemmas. Take

ε =
1

2∥∂(y,p)F(ū, ȳ, p̄)−1∥L(H1
0(Ω)×L2

0(Ω))

,

and set (h0, ρ0) = (hε, ρε), where (hε, ρε) is the pair corresponding to ε and defined
in Lemma 4.6. For every 0 < h < h0 and all y ∈ Bρ0(ȳ), we have

∥∂(y,p)F(ū, ȳ, p̄)− ∂(y,p)Fh(u,y, p)∥L(H1
0(Ω)×L2

0(Ω)) =

∥T [B′(ȳ)]− Th[B
′(y)]∥L(H1

0(Ω),H1
0(Ω)×L2

0(Ω)) < ε,

and the result follows from Lemma 4.5.

Theorem 4.8. Let (ū, ȳ) be as in Theorem 4.7; then there exist ρ1 > 0, ρ2 > 0,
and h1 > 0 such that for all 0 < h < h1 and u ∈ Bρ2

(ū), the equation Fh(u,yh, ph) =
0 admits a unique solution in Bρ1

(ȳ)×Bρ1
(p̄).

Proof. Let ρ0 and h0 be the positive constants given by Theorem 4.7. For ρ ≤
ρ0, h ≤ h0, and u ∈ Bρ2(ū), we define the mapping Ψu from Bρ(ȳ) × Bρ(p̄) into
H1

0(Ω)× L2
0(Ω) by

Ψu(y, p) = (y, p)−
[
∂(y,p)Fh(ū, ȳ, p̄)

]−1 Fh(u,y, p).

It is clear that any fixed point of Ψu is a solution of Fh(u,y, p) = 0. Let us show that
Ψu is a strict contraction if ρ is small enough.

(i) First, we show that Ψu is a mapping from Bρ(ȳ)×Bρ(p̄) into itself. With the
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identity F(ū, ȳ, p̄) = 0, and a Taylor formula we obtain

∥Ψu(y, p)− (ȳ, p̄)∥H1
0(Ω)×L2

0(Ω)

= ∥
[
∂(y,p)Fh(ū, ȳ, p̄)

]−1 {
∂(y,p)Fh(ū, ȳ, p̄)(y − ȳ, p− p̄)

+ [−Fh(u,y, p) + Fh(u, ȳ, p̄)] + [−Fh(u, ȳ, p̄) + F(ū, ȳ, p̄)]} ∥H1
0(Ω)×L2

0(Ω)

≤ C∥∂(y,p)Fh(ū, ȳ, p̄)(y − ȳ, p− p̄)

−
∫ 1

0

∂(y,p)Fh(ū,yθ, pθ)(y − ȳ, p− p̄)dθ∥H1
0(Ω)×L2

0(Ω)

+ C∥Fh(u, ȳ, p̄)−F(ū, ȳ, p̄)∥H1
0(Ω)×L2

0(Ω)

≤ C

∫ 1

0

∥∂(y,p)Fh(ū,yθ, pθ)− ∂(y,p)Fh(ū, ȳ, p̄)∥L(H1
0(Ω)×L2

0(Ω))dθ

×∥(y − ȳ, p− p̄)∥H1
0(Ω)×L2

0(Ω)

+ C∥(Th − T )[B(ȳ)− f ]∥H1
0(Ω)×L2

0(Ω) + C∥(T − Th)[Cū]∥H1
0(Ω)×L2

0(Ω)

+ C∥Th[C(ū− u)]∥H1
0(Ω)×L2

0(Ω),

where (yθ, pθ) = (ȳ + θ(y − ȳ), p̄+ θ(p− p̄)).
Let us estimate each of the terms. Using the definition of Fh and Lemma 4.4 we

get

∥∂(y,p)Fh(ū, ȳ + θ(y − ȳ), p̄+ θ(p− p̄))− ∂(y,p)Fh(ū, ȳ, p̄)∥L(H1
0(Ω)×L2

0(Ω))

= ∥Th[B
′(ȳ + θ(y − ȳ))−B′(ȳ)]∥L(H1

0(Ω)×L2
0(Ω))

≤ C∥B′(y − ȳ)∥L(H1
0(Ω),H−1(Ω)) ≤ C∥y − ȳ∥H1

0(Ω).(4.2)

With assumption (S2) we have

∥(Th − T )[B(ȳ)− f ]∥H1
0(Ω)×L2

0(Ω) ≤ Ch(∥ȳ∥H2(Ω) + ∥f∥L2(Ω)),

and
∥(T − Th)[Cū]∥H1

0(Ω)×L2
0(Ω) ≤ Ch∥ū∥L2(ω;Rm).

Finally, from Lemma 4.4 it follows that

∥Th[C(ū− u)]∥H1
0(Ω)×L2

0(Ω) ≤ C∥ū− u∥L2(ω;Rm).

Collecting these estimates all together, we have proved that there exists a constant
Ĉ > 0 independent of h and ρ such that

∥Ψu(y, p)− (ȳ, p̄)∥H1
0(Ω)×L2

0(Ω) ≤ Ĉ(h+ ρ2).

We choose ρ̂1 ≤ min{ρ0, 1/(2Ĉ)}, ρ̂2 = ρ̂21, and ĥ1 = min{h0, ρ̂1/(2Ĉ)}. It is clear

that for all 0 < h < ĥ1 and all u ∈ Bρ̂2(ū), Ψu is a mapping from Bρ̂1(ȳ) × Bρ̂1(p̄)
into itself.

(ii) Now we look for conditions to have a strict contraction. Take (y1, p1), (y2, p2) ∈
Bρ̂1(ȳ)×Bρ̂1(p̄), 0 < h < ĥ1, and u ∈ Bρ̂2(ū). Classical calculations lead to

∥ Ψu(y1, p1)−Ψu(y2, p2)∥H1
0(Ω)×L2

0(Ω)

=
∥∥∥(y1 − y2, p1 − p2)

−
[
∂(y,p)Fh(ū, ȳ, p̄)

]−1
{
Fh(u,y1, p1)−Fh(u,y2, p2)

}∥∥∥
H1

0(Ω)×L2
0(Ω)

=
∥∥∥ [∂(y,p)Fh(ū, ȳ, p̄)

]−1
{
∂(y,p)Fh(ū, ȳ, p̄)(y1 − y2, p1 − p2)

−
∫ 1

0

∂(y,p)Fh(ū,y1 + θ(y2 − y1), p1 + θ(p2 − p1))(y1 − y2, p1 − p2)dθ
}∥∥∥

H1
0(Ω)×L2

0(Ω)
.
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The norm ∥
[
∂(y,p)Fh(ū, ȳ, p̄)

]−1 ∥L(H1
0(Ω)×L2

0(Ω)) can be estimated by a constant C

independent of h; see Theorem 4.7. To estimate the expression in brackets we can
repeat the argument of inequalities (4.2), since y = y1 + θ(y2 − y1) ∈ Bρ̂1

(ȳ). There

then exists C̃ > 0 independent of ρ̂1 and h such that

∥Ψu(y1, p1)−Ψu(y2, p2)∥H1
0(Ω)×L2

0(Ω) ≤ C̃ρ̂21.

Choosing ρ1 = min
{
ρ0, 1/(2Ĉ), 1/

√
2C̃

}
, ρ2 = ρ21, and h1 = min

{
h0, ρ1/(2Ĉ)

}
, we

have established that, for all 0 < h < h1 and all u ∈ Bρ2
(ū), Ψu is a strict contraction

in Bρ1
(ȳ)×Bρ1

(p̄).

Remark 4.9. We have proved that, for all 0 < h < h1 and all u ∈ Bρ2
(ū), the

equation Fh(u,yh, ph) = 0 admits a unique solution (yh(u), ph(u)) in (Bρ1
(ȳ) ×

Bρ1
(p̄)) ∩ (Xh × Mh), and that ∂(y,p)Fh(u,yh(u), ph(u)) is an automorphism in

H1
0(Ω) × L2

0(Ω). Therefore the mapping Gh from Bρ2
(ū) into (Bρ1

(ȳ) × Bρ1
(p̄)) ∩

(Xh ×Mh) defined by Gh(u) = (yh(u), ph(u)), obeys Fh(u, Gh(u)) = 0, and the im-
plicit function theorem implies that it is of class C∞ in the interior of the ball Bρ2(ū).
Notice that Gh is not an approximation of G because G(u) = yu is a velocity field,
while Gh(u) stands for a velocity field and a pressure.

4.2. Discretization of the control problem. For simplicity throughout the
following we assume that ω is a polygonal domain. But we could consider a more
general situation if we take into account the error we introduce by approximating ω
by a polygonal domain.

For h > 0, let Th be a triangulation of ω. Although the discretization of the control
can be done independently of the discretization of the state equation, in practice, when
we use the finite element method to approximate the state and adjoint state equation,
the same family of triangulations is used. Some assumptions must be made on the
family of triangulations in order to have the inverse estimate of assumption (H1)(d).
We will suppose that the family is quasi-uniform (see, e.g., [9, p. 135]): In this case
h = maxT∈Th

ρ(T ), where ρ(T ) is the diameter of the set T . We denote by σ(T )
the diameter of the largest ball contained in T . We assume there exist two positive
constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all 0 < h.
In the following we would like to treat in the same way the cases when the control

set is discretized and when it is not. We shall see that we obtain better estimates
when the control set is not discretized. For that we set

Uh =
{
u ∈ L2(ω;Rm) | ui|T ∈ P0(T ) ∀T ∈ Th

}
,

Uh
ad =

{
u ∈ Uh | αi ≤ ui ≤ βi ∀ 1 ≤ i ≤ d

}
.

In the discrete control problem stated below, the case when the control set is not
discretized corresponds to the choice Uad,h = Uad, while the case when the control set
is discretized corresponds to Uad,h = Uh

ad.
We can now define the discrete control problem associated with (P) in the follow-

ing way:

(Ph) inf
{
F (u,y) | (u,y, p) ∈ Uad,h ×Xh ×Mh and (u,y, p) satisfies (4.1)

}
.
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Let us recall that (u,y, p) satisfies (4.1) if and only if

(4.3) Fh(u,y, p) = 0.

Our aim is to study the existence of local minima of problems (Ph) which ap-
proximate the local minima of (P). This can be proved for nonsingular local solutions
of (P). Let us start by proving some error estimates for the state equation. Given a
nonsingular solution (ū, ȳ) of (1.2), let h1 > 0 and ρ2 > 0 be given by Theorem 4.8.

By using the function Gh from Bρ2
(ū) into (Bρ1

(ȳ)×Bρ1
(p̄))∩ (Xh×Mh) intro-

duced at the end of the previous section in Remark 4.9, we set (yh
u, p

h
u) = Gh(u) =

(yh(u), ph(u)). Now we have the following result.

Lemma 4.10. Let (ū, ȳ) be as in Theorem 4.7. There exists a constant C > 0
such that, for all u, û ∈ B̄ρ2

(ū), and 0 < h < h1, the following estimates hold:

∥yu − yh
u∥L2(Ω) ≤ Ch2∥yu∥H2(Ω),(4.4)

∥yu − yh
û∥H1

0(Ω) + ∥pu − phû∥L2
0(Ω) ≤ C(h+ ∥u− û∥L2(ω;Rm)).(4.5)

Moreover, if uh ∈ Bρ2
(ū) and uh ⇀ u weakly in L2(ω;Rm), then yh

uh
→ yu in

C(Ω̄;Rd).

Proof. (i) The estimate (4.4) directly follows from usual estimates for the approx-
imation of the Navier–Stokes equations by a finite element method. See, for instance,
Girault–Raviart [12, Theorem IV.4.2].

(ii) To prove (4.5), let us write

∥yu − yh
û∥H1

0(Ω) ≤ ∥yu − yh
u∥H1

0(Ω) + ∥yh
u − yh

û∥H1
0(Ω),

∥pu − phû∥L2
0(Ω) ≤ ∥pu − phu∥L2

0(Ω) + ∥phu − phû∥L2
0(Ω).

Usual finite element estimates [12, estimate (4.7)] give us

∥yu − yh
u∥H1

0(Ω) + ∥pu − phu∥L2
0(Ω) ≤ Ch.

If u belongs to the interior of Bρ2(ū), from the definition of Gh it follows that

G′
h(u)v = −[∂(y,p)Fh(u,y

h
u, p

h
u)]

−1Th[Cv].

Hence, with Lemma 4.4 and Theorem 4.7 we obtain

∥Gh(u)−Gh(û)∥H1
0(Ω)×L2

0(Ω)

=

∥∥∥∥∫ 1

0

[∂(y,p)Fh(uθ,y
h
uθ
, phuθ

)]−1Th[C(u− û)]

∥∥∥∥
H1

0(Ω)×L2
0(Ω)

≤ C∥u− û∥L2(ω;Rm),

where uθ = û + θ(u − û). Collecting the previous estimates, the proof of (4.5) is
complete.

(iii) Let (uh)h be a sequence in Bρ2
(ū)∩Uad, weakly converging to u in L2(ω;Rm).

Due to Theorem 2.2, yu belongs to W2,r̄(Ω) and {yuh
}h is bounded in W2,r̄(Ω).

Thus it converges to yu in Lp(Ω) for all 2 ≤ p < ∞, and the sequence {yuh
⊗ yuh

}h
converges to yu ⊗ yu in (Lp(Ω))d for all 2 ≤ p < ∞. The function yuh

− yu satisfies
the equation

A(yuh
− yu) = div

(
(yu ⊗ yuh

)− (yuh
⊗ yu)

)
+ C(uh − u) in V−1(Ω).



22 E. CASAS, M. MATEOS, AND J.-P. RAYMOND

Let p satisfy d < p < 6. From classical estimates for the Stokes equations it follows
that

∥yuh
− yu∥W1,p(Ω) ≤ C∥div

(
(yu ⊗ yuh

)− (yuh
⊗ yu)

)
+ C(uh − u)∥W−1,p(Ω)

≤ C
(
∥(yu ⊗ yuh

)− (yuh
⊗ yu)∥Lp(Ω) + ∥C(uh − u)∥W−1,p(Ω)

)
.

Since W1,p(Ω) ↪→ L∞(Ω), and L2(Ω) is compactly embedded in W−1,p(Ω) (because
p < 6), it is clear that {yuh

}h tends to yu in L∞(Ω).
We have

∥yh
uh

− yu∥L∞(Ω) ≤ ∥yuh
− yu∥L∞(Ω) + ∥yh

uh
− yuh

∥L∞(Ω)

≤ ∥yuh
− yu∥L∞(Ω) + ∥yh

uh
− rhyuh

∥L∞(Ω) + ∥rhyuh
− yuh

∥L∞(Ω).

From (H1)(c) and (H1)(d) we deduce that

∥yuh
− rhyuh

∥L∞(Ω) ≤ Ch2−d/2∥yuh
∥H2(Ω),

and
∥rhyuh

− yh
uh

∥L∞(Ω) ≤ Ch−d/2∥rhyuh
− yh

uh
∥L2(Ω)

≤ Ch−d/2∥rhyuh
− yuh

∥L2(Ω) + Ch−d/2∥yuh
− yh

uh
∥L2(Ω).

With (H1)(b) and (4.4) we have

∥rhyuh
− yuh

∥L2(Ω) ≤ Ch2∥yuh
∥H2(Ω),

∥yuh
− yh

uh
∥L2(Ω) ≤ Ch2∥yuh

∥H2(Ω).

Collecting together these estimates and the previous convergence result we have
proved that {yh

uh
}h converges to yu in L∞(Ω).

Theorem 4.11. Let us assume that (P) has a nonsingular local minimum (ū, ȳ).
Then there exists h2 > 0 such that, for all 0 < h < h2, (Ph) has at least one solution.
If, furthermore, (ū, ȳ) is a strict local minimum of (P), then (Ph) has a local minimum
(ūh, ȳh) in a neighborhood of (ū, ȳ) for all 0 < h < h2 and the following identities
hold:

lim
h→0

Jh(ūh) = J(ū), lim
h→0

∥ū− ūh∥L2(ω) = 0, and lim
h→0

∥ȳ − ȳh∥H1
0(Ω) = 0,

where Jh(ūh) = F (ūh, ȳh).

Proof. Let us start by proving that the set of feasible pairs (u,y) for problem
(Ph) is nonempty for h small enough. We prove it only in the case when Uad,h = Uh

ad.
The case when Uad,h = Uad is obvious.

Since (ū, ȳ) is a nonsingular local minimum, with the aid of Theorem 4.8 we
derive the existence of ρ ≤ ρ2 such that

(4.6) J(ū) ≤ J(u) ∀u ∈ Uad ∩Bρ(ū).

Let us define Πhū ∈ Uh by

(4.7) Πhū|T =
1

|T |

∫
T

ū(x)dx.
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It is clear that Πhū ∈ Uad,h. Let us prove that it belongs to Bρ(ū) if h is small enough.
Since ū is Lipschitz continuous (see Theorem 3.5), we can write∫

ω

(Πhūi(s)− ūi(s))
2ds =

∑
T⊂ω

∫
T

(
1

|T |

∫
T

ūi(x)dx− ūi(s)

)2

ds

=
∑
T⊂ω

∫
T

(ūi(xT )− ūi(s))
2ds ≤ |ω|∥ū∥2W 1,∞(ω;Rm)h

2.

Therefore if

h2 = min

{
h1,

ρ

∥ū∥W 1,∞(ω;Rm)|ω|1/2

}
,

then Πhū belongs to Uad,h ∩ Bρ(ū) for all h ≤ h2. Now setting uh = Πhū and
(yh

uh
, phuh

) = Gh(uh), we have that (uh,y
h
uh

, phuh
) satisfies (4.3) and (uh,y

h
uh

) is a
feasible pair for (Ph) for any h ≤ h2.

Since the set of feasible points of (Ph) is nonempty and closed, and Fh is contin-
uous, convex on Uad,h ×Xh, and coercive with respect to u ∈ Uad,h, then (Ph) has at
least one solution.

Now let us assume that (ū, ȳ) is a strict local solution of (P) in (Uad ∩Bρ(ū))×
Bρ(ȳ). We consider the problems

(Qh)

{
min Jh(u),
u ∈ Uad,h ∩Bρ(ū),

where Jh(u) = F (u,yh
u) with (yh

u, p
h
u) = Gh(u), Gh being defined in Remark 4.9.

Above we have proved that Uad,h ∩ Bρ(ū) is nonempty for h ≤ h2. Observe that
Uad,h ∩Bρ(ū) is convex, bounded, and closed in L2(ω;Rm), the mapping u 7→

∫
ω
|u|2

is lower semicontinuous for the weak topology of L2(ω;Rm), and from Remark 4.9 it
follows that the mapping u 7→

∫
Ω
|yh

u − yd|2 is continuous for the weak topology of
L2(ω;Rm). Therefore (Qh) has at least one solution ūh. From any subsequence of
{ūh}h, we can extract another subsequence, still indexed by h to simplify the notation,
converging weakly in L2(ω;Rm) to some ũ ∈ Bρ(ū). Let us check that ũ = ū. Let us
take again uh = Πhū ∈ Uad,h ∩Bρ(ū) for all h < h2. By passing to the limit when h
tends to zero, with the convergence result stated in Lemma 4.10, we can write

J(ũ) ≤ lim inf
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(Πhū) = J(ū).

Since ũ ∈ Bρ(ū) and the inequality in (4.6) is strict for u ̸= ū, the above inequality
implies that ũ = ū. Thus we have

lim
h→0

Jh(ūh) = J(ū),

and still with Lemma 4.10, we deduce that

lim
h→0

∫
ω

|ūh|2 =

∫
ω

|ū|2.

Therefore the subsequence {ūh}h converges to ū in L2(ω;Rm). Since ū is the only
cluster point for the weak topology of L2(ω;Rm) of the original sequence {ūh}h, it
is clear that the convergence properties stated in the theorem hold for the whole
sequence {ūh}h. The convergence of the corresponding states is a consequence of
Lemma 4.10. Finally, the strong convergence ūh → ū in L2(ω;Rm) implies that
ūh belongs to the interior of the ball Bh

ρ (ū), which implies that (ūh, ȳh) is a local
minimum of (Ph).
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4.3. Discrete adjoint equation. We define the discrete adjoint state (Φh
u, π

h
u)

∈ Xh ×Mh associated with a control u ∈ Bρ2
(ū) as the solution to the problem

(4.8)

a(Φh
u,wh) + b(yh

u,wh,Φ
h
u) + b(wh,y

h
u,Φ

h
u)− (πh

u,divwh)

= (yh
u − yd,wh) ∀wh ∈ Xh,

(λh,divΦ
h
u) = 0 ∀λh ∈ Mh.

Lemma 4.12. Let (ū, ȳ) be as in Theorem 4.7. There exist 0 < h3 ≤ h2 and
0 < ρ3 ≤ ρ2 such that, for all u ∈ Bρ3

(ū) and all 0 < h ≤ h3, the system (4.8) admits
a unique solution (Φh

u, π
h
u) ∈ Xh ×Mh.

Proof. (i) For y ∈ H1
0(Ω), consider the mapping Gy from H1

0(Ω) × L2
0(Ω) into

itself defined by
Gy(Φ, π) = (Φ, π) + T [B′(y)∗Φ].

As in Lemma 4.2, we can easily show that Gy is an automorphism in H1
0(Ω)× L2

0(Ω)
if and only if y is a nonsingular solution of (2.2). Thus Gȳ is an automorphism in
H1

0(Ω)× L2
0(Ω). We also introduce the mapping Gy,h from H1

0(Ω)× L2
0(Ω) into itself

defined by
Gy,h(Φ, π) = (Φ, π) + Th[B

′(y)∗Φ].

Arguing as in the proof of Theorem 4.7, we can assume that h0 is chosen so that,
for all 0 < h < h0 and all y ∈ Bρ0

(ȳ), Gy,h is an automorphism in H1
0(Ω) × L2

0(Ω).
In particular, according to estimate (4.5), there exist 0 < h3 ≤ h2 and 0 < ρ3 ≤ ρ2
such that, for all 0 < h ≤ h3 and all u ∈ Bρ3(ū), Gyh

u,h
is an automorphism in

H1
0(Ω)× L2

0(Ω) and

∥G−1
yh
u,h

∥L(H1
0(Ω)×L2

0(Ω)) ≤ 2∥G−1
ȳ ∥L(H1

0(Ω)×L2
0(Ω)).

Without loss of generality we can also assume that Gy(u) is an automorphism in
H1

0(Ω)× L2
0(Ω) for all u ∈ Bρ3

(ū).
(ii) Now we are going to show that (Φh

u, π
h
u) ∈ Xh ×Mh is a solution of (4.8) if

and only if

(4.9) Gyh
u,h

(Φh
u, π

h
u) = (zh, qh),

where (zh, qh) ∈ Xh ×Mh is the solution of the discrete Stokes problem,

(4.10)
a(zh,wh)− (qh,divwh) = (yh(u)− yd,wh) ∀wh ∈ Xh,

(λh,div zh) = 0 ∀λh ∈ Mh.

To prove this result, we notice that (4.9) is satisfied if and only if

(Φh
u − zh, π

h
u − qh) = −Th[B

′(yh
u)

∗Φh
u],

which is equivalent to

(4.11)
a(Φh

u − zh,wh)− (πh
u − qh,divwh) = (B′(yh

u)
∗Φh

u,wh) ∀wh ∈ Xh,

(λh,divΦ
h
u − div zh) = 0 ∀λh ∈ Mh.

Now using equation (4.10), we see that (4.11) is equivalent to (4.8). This completes
the proof.
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We are going to prove error estimates for the discrete adjoint state. Set

Vh =
{
Φh ∈ Xh | (λh,divΦh) = 0 ∀λh ∈ Mh

}
.

Lemma 4.13. Let (ū, ȳ) be as in Theorem 4.7. There exists a constant C > 0
such that, for all u, û ∈ Bρ3

(ū) and all 0 < h < h3, the solution (Φu, πu) to (3.8)
and the solutions (Φh

u, π
h
u) and (Φh

û, π
h
û) to (4.8) obey the following estimates:

∥Φu −Φh
u∥L2(Ω) ≤ Ch2,(4.12)

∥Φu −Φh
u∥H1

0(Ω) + ∥πu − πh
u∥L2

0(Ω) ≤ Ch,(4.13)

∥Φu −Φh
û∥H1

0(Ω) + ∥πu − πh
û∥L2

0(Ω) ≤ C(h+ ∥u− û∥L2(ω;Rm)).(4.14)

Moreover, if uh ∈ Bρ3
(ū) and uh ⇀ u weakly in L2(ω;Rm), then Φh

u → Φu strongly
in C(Ω̄;Rd).

Proof. (i) We first show (4.13). From the proof of Lemma 4.12 it follows that
Gyu is an automorphism in H1

0(Ω) × L2
0(Ω), and that, for all u ∈ Bρ3(ū) and all

0 < h < h3, Gyh
u
is an automorphism in H1

0(Ω)× L2
0(Ω) and

∥G−1
yh
u,h

∥L(H1
0(Ω)×L2

0(Ω)) ≤ 2∥G−1
ȳ ∥L(H1

0(Ω)×L2
0(Ω)).

Let us recall that (Φu, πu) is the solution of the equation

Gyu(Φu, πu) = T (yu − yd),

and that (Φh
u, π

h
u) is the solution of

Gyh
u,h

(Φh
u, π

h
u) = Th(y

h
u − yd).

Thus we have

Gyh
u,h

(Φu −Φh
u, πu − πh

u)

= (Φu, πu) + Th(B
′(yh

u)
∗Φu)− Gyh

u,h
(Φh

u, π
h
u)

= Th[B
′(yh

u)
∗Φu]− T [B′(yu)

∗Φu] + T (yu − yd)− Th(y
h
u − yd)

= (T − Th)[y
h
u −B′(yh

u)
∗Φu − yd]

+T [B′(yh
u)

∗Φu −B′(yu)
∗Φu] + T [yu − yh

u],

which yields

(Φu −Φh
u, πu − πh

u)

=
(
Gyh

u,h

)−1(
(T − Th)[y

h
u −B′(yh

u)
∗Φu − yd]

+ T [B′(yh
u)

∗Φu −B′(yu)
∗Φu] + T [yu − yh

u]
)
.

With estimate (4.5) and assumption (S2), we obtain

∥Φu −Φh
u∥H1

0(Ω) + ∥πu − πh
u∥L2

0(Ω) ≤ Ch.
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(ii) To prove (4.12) we proceed as in [12, Chapter 2, Theorems 1.2 and 1.9]. The
solution (Φu, πu) to (3.8) and the solution (Φh

u, π
h
u) to (4.8) satisfy

(4.15)

a(Φu −Φh
u,wh) + b(yu,wh,Φu −Φh

u) + b(wh,yu,Φu −Φh
u)

− (πu − πh
u,divwh) = (yu − yh

u,wh) + b(yu − yh
u,wh,Φ

h
u)

+ b(wh,yu − yh
u,Φ

h
u) ∀ wh ∈ Xh,

(λh,divΦu − divΦh
u) = 0 ∀λh ∈ Mh.

For all g ∈ L2(Ω), let us consider the solution (zg, qg) ∈ H1
0(Ω)× L2

0(Ω) to

(4.16)
a(zg,w) + b(yu, zg,w) + b(zg,yu,w)− (qg,divw) = (g,w) ∀w ∈ H1

0(Ω),

(λ, div zg) = 0 ∀λ ∈ L2
0(Ω),

and the solution (zhg, q
h
g) ∈ H1

0(Ω)× L2
0(Ω) to

a(zhg,wh) + b(yu, z
h
g,wh) + b(zhg,yu,wh)− (qhg ,divwh) = (g,wh) ∀w ∈ Xh,

(λ,div zhg) = 0 ∀λ ∈ Mh.

Choosing wh = zhg in (4.15) and w = Φu −Φh
u in (4.16) and combining the two

identities, we obtain

(g,Φu −Φh
u) = a(Φu −Φh

u, zg − zhg) + b(yu, zg − zhg,Φu −Φh
u)

+ b(zg − zhg,yu,Φu −Φh
u) + (πu − πh

u,div z
h
g)− (qg,divΦu − divΦh

u)

+ (yu − yh
u, z

h
g) + b(yu − yh

u, z
h
g,Φ

h
u) + b(zhg,yu − yh

u,Φ
h
u)

= a(Φu −Φh
u, zg − zhg)− b(yu,Φu −Φh

u, zg − zhg)− b(zg − zhg,Φu −Φh
u,yu)

+ (yu − yh
u, z

h
g)− b(yu − yh

u,Φ
h
u, z

h
g)− b(zhg,Φ

h
u,yu − yh

u)

+ (πu − πh
u,div z

h
g − div zg)− (qg − qhg ,divΦu − divΦh

u).

Thus we have

(4.17)

∥Φu −Φh
u∥L2(Ω) = sup

∥g∥L2(Ω)=1

(g,Φu −Φh
u)

≤ C sup
∥g∥L2(Ω)=1

{
∥Φu −Φh

u∥H1
0(Ω)∥zg − zhg∥H1

0(Ω)

+ ∥Φu −Φh
u∥H1

0(Ω)∥zg − zhg∥L2(Ω)∥yu∥L∞(Ω)

+ ∥yu − yh
u∥L2(Ω)∥zhg∥L2(Ω) + ∥yu − yh

u∥L2(Ω)∥zhg∥L∞(Ω)∥Φh
u∥H1

0(Ω)

+ ∥πu − πh
u∥L2

0(Ω)∥zg − zhg∥H1
0(Ω) + ∥qg − qhg∥L2

0(Ω)∥Φu −Φh
u∥H1

0(Ω)

}
.

To complete estimate (4.12), we are going to use (4.13) and a similar error estimate
for (zg, qg):

(4.18) ∥zg − zhg∥H1
0(Ω) + ∥qg − qhg∥L2

0(Ω) ≤ Ch(∥zg∥H2(Ω) + ∥qg∥H1(Ω)).

With (4.17), (4.13), (4.18), and (4.4), we obtain

∥Φu −Φh
u∥L2(Ω) ≤ Ch2.

The proof of (4.12) is complete. Estimate (4.14) and the last statement in the lemma
can now be proved in the same way as we did it for the state.
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Let (ū, ȳ) be a nonsingular strict local minimum of (P) and {(ūh, ȳh)}h≤h3
be a

sequence of local minima of problems (Ph) converging to (ū, ȳ) in L2(ω;Rm)×H1
0(Ω),

with ūh ∈ Bρ3
(ū), where h3 and ρ3 are given by Lemma 4.12. Then every element

ūh from a sequence {ūh}h≤h3 is a local solution of the problem

(̂Ph)

{
min Jh(u) = F (u,yh

u),
u ∈ Uad,h,

where (yh
u, p

h
u) = Gh(u), Gh being defined in Remark 4.9.

Lemma 4.14. Let ūh be a solution to problem (̂Ph), and let (ȳh, p̄h) ∈ Xh ×Mh

be the corresponding state and pressure. Then ūh satisfies∫
ω

(C∗Φ̄h +N ūh) · (uh − ūh) dx ≥ 0 ∀uh ∈ Uad,h,

where (Φ̄h, π̄h) = (Φh
ūh

, πh
ūh

) ∈ Xh ×Mh is the discrete adjoint state associated with
ūh, that is, the solution to the system (4.8) where u is replaced by ūh.

Proof. The lemma is a consequence of the following identity:

J ′
h(ūh)(uh − ūh) =

∫
ω

(C∗Φ̄h +N ūh) · (uh − ūh) dx.

Now we can establish uniform convergence for the controls.

Lemma 4.15. Let ūh be as in Lemma 4.14; then limh→0∥ūh − ū∥L∞(ω;Rm) = 0.

Proof. Let us start with the case where Uad,h = Uh
ad. Since the components of

the elements of Uh are constant on every triangle, for all T ∈ Th and 1 ≤ i ≤ m, we
have

ūi,h|T = Proj[αi,βi]

(
− 1

N |T |

∫
T

(C∗Φ̄h)i(x)dx

)
.

For all x ∈ T , using (3.9), the integral mean value theorem, and the Lipschitz conti-
nuity of Φ̄, we can write

|ūi,h(x)− ūi(x)| ≤
∣∣∣∣ 1

N |T |

∫
T

(C∗Φ̄h)i(s)ds−
1

N
(C∗Φ̄)i(x)

∣∣∣∣
=

1

N
|(C∗Φ̄h)i(xT )− (C∗Φ̄)i(x)|

≤ 1

N
|(C∗Φ̄h)i(xT )− (C∗Φ̄)i(xT )|+

1

N
|(C∗Φ̄)i(xT )− (C∗Φ̄)i(x)|

≤ C∥Φ̄h − Φ̄∥L∞(Ω) + C|xT − x| ≤ C(∥Φ̄h − Φ̄∥L∞(Ω) + h)

for some xT ∈ T . The uniform convergence of the adjoint states allows us to complete
the proof in the case when Uad,h = Uh

ad.
In the case when Uad,h = Uad we have

ūi,h(x) = Proj[αi,βi]

(
− 1

N |T |
(C∗Φ̄h)i(x)

)
.

The convergence of ūh follows from Lemma 4.13.
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4.4. Error estimates. Let (ū, ȳ) be a nonsingular local solution of (P) satisfy-
ing the sufficient second order optimality conditions (3.15) or, equivalently, (3.25). As
a consequence of these conditions, we know that (ū, ȳ) is a strict local minimum of
(P). Let {(ūh, ȳh)}h be a sequence of local solutions of problems (Ph) converging to
(ū, ȳ); see Theorem 4.11 and Lemma 4.15. We assume that h ≤ h3 and ūh ∈ Bρ3(ū),

so that ūh is a local minimum of (̂Ph). The goal of this section is to estimate the
order of convergence of this sequence.

Lemma 4.16. Let δ > 0 be the constant defined in Corollary 3.11. There exists
0 < h4 ≤ h3 such that

δ

2
∥ū− ūh∥2L2(ω;Rm) ≤ (J ′(ūh)− J ′(ū))(ūh − ū) ∀ 0 < h < h4.

Proof. First, let us check that for h > 0 small enough, ūh − ū belongs to Cτ
ū.

The sign condition (3.21)–(3.22) is trivial since ūh ∈ Uad. We have to check condition
(3.20). Let us set

d̄h(x) = (C∗Φ̄h)(x) +N ūh(x).

Take h4 small enough to have

∥d̄− d̄h∥L∞(ω) <
τ

4
, and ∥d̄(x1)− d̄(x2)∥Rm <

τ

4
if ∥x1 − x2∥Rd < h,

for all 0 < h ≤ h4. First consider the case where Uad,h = Uad. In that case, if d̄i(ξ) > τ
(respectively, d̄i(ξ) < −τ), we have d̄i,h(ξ) > 3τ/4 (respectively, d̄i,h(ξ) < −3τ/4),
and ūi(ξ) = αi and ūi,h(ξ) = αi > −∞ (respectively, ūi(ξ) = βi and ūi,h(ξ) = βi <
∞). Thus ui,h(ξ) = ui(ξ) if |d̄i(ξ)| > τ , and condition (3.20) is satisfied.

Now consider the case where Uad,h = Uh
ad. For all T ∈ Th and all 1 ≤ i ≤ m let

us set

Ii,T =

∫
T

d̄i,h(x)dx.

Take ξ ∈ ω such that d̄i(ξ) > τ . In this case ūi(ξ) = αi > −∞. Choose x in the same
triangle T as ξ. Then

d̄i,h(x) = d̄i,h(x)− d̄i(x) + d̄i(x)− d̄i(ξ) + d̄i(ξ) > −τ

4
− τ

4
+ τ =

τ

2
.

Therefore Ii,T > 0 and ūi,h|T = αi. In particular ūi,h(ξ) = αi and ūi,h(ξ)− ūi(ξ) = 0.
Similarly if d̄i(ξ) < −τ , we have ūi,h(ξ) = βi < ∞ and ūi,h(ξ) − ūi(ξ) = 0, and
condition (3.20) is still satisfied in that case.

Thus second order sufficient conditions stated in Corollary 3.11 can be applied,
and we have

J ′′(ū)(ūh − ū)2 ≥ δ∥ūh − ū∥2L2(ω;Rm).

On the other hand, with the mean value theorem, we obtain

(J ′(ūh)− J ′(ū))(ūh − ū) = J ′′(ū+ θh(ū− ūh))(ūh − ū)2

for some 0 < θh < 1. Due to the uniform convergence properties stated for the control
and the adjoint state and the explicit form of the second derivative of J , it is clear
that we can choose h4 small enough to have

J ′′(ū+ θh(ū− ūh))(ūh − ū)2 ≥ δ

2
∥ūh − ū∥2L2(ω;Rm)

for all 0 < h ≤ h4. The proof is complete.
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Lemma 4.17. Assume that Uad,h = Uh
ad. There exists 0 < h5 ≤ h4 such that for

every 0 < h ≤ h5 there exist u∗
h ∈ Uh and a constant C > 0 independent of h such

that

(1) u∗
h ∈ Uad,h,

(2) J ′(ū)ū = J ′(ū)u∗
h,

(3) ∥ū− u∗
h∥L∞(ω;Rm) ≤ Ch.

Proof. For every triangle T ∈ Th and 1 ≤ i ≤ m, define

Ii,T =

∫
T

d̄i(x)dx

and

u∗
i,h|T =


1

Ii,T

∫
T

di(x)ūi(x)dx if Ii,T ̸= 0,

1

|T |

∫
T

ūi(x)dx if Ii,T = 0.

Due to the Lipschitz continuity of ū, there exists 0 < h5 ≤ h4 such that, for 0 <
h ≤ h5, each component ūi cannot achieve both values α and β in the same triangle.
Hence, for each T ∈ Th, either d̄i(x) is nonnegative for all x ∈ T or d̄i(x) is nonpositive
for all x ∈ T . Therefore, Ii,T = 0 if and only if d̄i(x) = 0 for all x ∈ T . Moreover,
if Ii,T ̸= 0, then d̄i(x)/Ii,T ≥ 0 for all x ∈ T . So applying the integral mean value
theorem if Ii,T = 0 or the generalized mean value theorem if Ii,T ̸= 0, we have
u∗
i,h|T = ūi(xT ) for some xT ∈ T . As a first consequence, u∗

h ∈ Uad,h. Moreover, due
to the Lipschitz continuity of ū, we have that for x ∈ ω, if we fix the triangle T such
that x ∈ T ,

|ūi(x)− u∗
i,h(x)| = |ūi(x)− ūi(x

i
T )| ≤ C∥x− xi

T ∥Rd ≤ Ch,

and we have proved statement 3.
Since Ii,T = 0 if and only if d̄i(x) = 0 for all x ∈ T , we can claim that

Ii,Tu
∗
i,h|T =

∫
T

d̄i(x)ūi(x)dx

for all T ∈ Th and all 1 ≤ i ≤ m. A straightforward calculation yields statement 2:

J ′(ū)u∗
h =

∫
ω

d̄(x) · ū∗
h(x)dx =

m∑
i=1

∑
T∈Th

∫
T

d̄i(x)u
∗
i,h(x)dx

=

m∑
i=1

∑
T∈Th

Ii,Tu
∗
i,h|T =

m∑
i=1

∑
T∈Th

∫
T

d̄i(x)ūi(x)dx = J ′(ū)ū.

Theorem 4.18. There exists a constant C > 0 such that, for all 0 < h ≤ h5, we
have

∥ū− ūh∥L2(ω;Rm) ≤ Ch2 if Uad,h = Uad,

while

∥ū− ūh∥L2(ω;Rm) ≤ Ch if Uad,h = Uh
ad.
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Proof. (i) Let us start with the case where Uad,h = Uh
ad. For 0 < h ≤ h5, we have

(4.19)

δ

2
∥ū− ūh∥2L2(ω;Rm) ≤ (J ′(ū)− J ′(ūh))(ū− ūh)

= (J ′(ū)− J ′
h(ūh))(ū− ūh) + (J ′

h(ūh)− J ′(ūh))(ū− ūh).

With (4.12) in Lemma 4.13, we can estimate the last term as follows:

(4.20)

(J ′
h(ūh)− J ′(ūh))(ū− ūh)

=

∫
ω

(C∗(Φ̄h −Φūh
) +N(ūh − ūh)) · (ū− ūh)dx

≤ C∥Φ̄h −Φūh
∥L2(Ω)∥ū− ūh∥L2(ω;Rm)

≤ Ch2∥ū− ūh∥L2(ω;Rm).

Let us check what happens with the first term. From first order optimality conditions
for problems (P) and (Ph) we have

J ′(ū)(ūh − ū) ≥ 0,

J ′
h(ūh)(u

∗
h − ūh) = J ′

h(ūh)(u
∗
h − ū) + J ′

h(ūh)(ū− ūh) ≥ 0.

Making the sum of these two expressions and using Lemma 4.17(2)–(3), we have

(4.21)

J ′(ū)(ū− ūh)− J ′
h(ūh)(ū− ūh) ≤ J ′

h(ūh)(u
∗
h − ū)

= J ′
h(ūh)(u

∗
h − ū)− J ′(ū)(u∗

h − ū)

=

∫
ω

(C(Φ̄h − Φ̄) +N(ūh − ū)) · (u∗
h − ū)dx

≤ C(∥Φ̄h − Φ̄∥L2(Ω) + ∥ūh − ū∥L2(ω;Rm))∥u∗
h − ū∥L2(ω;Rm)

≤ Ch(∥Φ̄h −Φūh
∥L2(Ω) + ∥Φūh

− Φ̄∥L2(Ω) + ∥ūh − ū∥L2(ω;Rm))

≤ Ch(h2 + ∥ūh − ū∥L2(ω;Rm)).

From (4.19), (4.20), and (4.21), we deduce that therefore there exists a constant
C > 0, independent of h, such that

δ

2
∥ū− ūh∥2L2(ω;Rm) ≤ Ch3 + Ch∥ūh − ū∥L2(ω;Rm).

We conclude with Young’s inequality.
(ii) Now let us consider the case where Uad,h = Uad. We rewrite the previous

steps by introducing the simplifications corresponding to this case. For 0 < h ≤ h5,
we have

δ

2
∥ū− ūh∥2L2(ω;Rm) ≤ (J ′(ū)− J ′(ūh))(ū− ūh)

= (J ′(ū)− J ′
h(ūh))(ū− ūh) + (J ′

h(ūh)− J ′(ūh))(ū− ūh).

Since Uad,h = Uad, from the first order optimality conditions satisfied by ū and ūh

we have
(J ′(ū)− J ′

h(ūh))(ū− ūh) ≤ 0.
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We have already seen that

(J ′
h(ūh)− J ′(ūh))(ū− ūh) ≤ Ch2∥ū− ūh∥L2(ω;Rm).

Therefore there exists a constant C > 0 independent of h such that

δ

2
∥ū− ūh∥2L2(ω;Rm) ≤ Ch2∥ūh − ū∥L2(ω;Rm).

The proof is complete.

From the previous theorem and Lemmas 4.10 and 4.13 we deduce

∥ȳ − ȳh∥H1
0(Ω) + ∥p̄− p̄h∥L2

0(Ω) ≤ Ch,

∥Φ̄− Φ̄h∥H1
0(Ω) + ∥π̄ − π̄h∥L2

0(Ω) ≤ Ch.
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