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Abstract: In this paper we collect some results about bound-
ary Dirichlet control problems governed by linear partial differential
equations. Some differences are found between problems posed on
polygonal domains or smooth domains. In polygonal domains some
difficulties arise in the corners, where the optimal control is forced
to take a value which is independent of the data of the problem.
The use of some Sobolev norm of the control in the cost functional,
as suggested in the specialized literature as an alternative to the L2

norm, allows to avoid this strange behavior. Here, we propose a new
method to avoid this undesirable behavior of the optimal control,
consisting in considering a discrete perturbation of the cost func-
tional by using a finite number of controls concentrated around the
corners. In curved domains, the numerical approximation of the
problem requires the approximation of the domain Ω typically by a
polygonal domain Ωh, this introduces some difficulties in comparing
the continuous and the discrete controls because of their definition
on different domains Γ and Γh, respectively. We complete the exist-
ing recent analysis of these problems by proving the error estimates
for a full discretization of the control problem. Finally, some numer-
ical results are provided to compare the different alternatives and to
confirm the theoretical predictions.
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1. Introduction

In this paper we will study the control problem

(P)



















min J(u) =
1

2

∫

Ω

(yu(x) − yΩ(x))
2 +

N

2

∫

Γ

u2(x) dσ(x)

subject to (yu, u) ∈ (L∞(Ω) ∩H1/2(Ω))× L∞(Γ),

u ∈ Uad = {u ∈ L∞(Γ) : α ≤ u(x) ≤ β for a.e. x ∈ Γ},

where yu is related to u by the equation

{

−∆y = f in Ω,
y = u on Γ,

(1.1)

the domain Ω ⊂ R2 is bounded and convex, Γ is its boundary, α < β and
N > 0 are real constants and f, yΩ : Ω → R are measurable functions satisfying
appropriate properties that will be described later.

In the last few years, several works have been devoted to the study of fi-
nite dimensional approximations of (P), the convergence of the solutions of the
approximated problems to solutions of (P) and the proof of error estimates of
these approximations in terms of some discretization parameter h.

The treatment of this topic is different when the boundary Γ is a polygonal
line or a smooth curve.

The main results for polygonal domains were introduced in Casas and Ray-
mond (2006) for problems governed by elliptic semilinear equations. A full dis-
cretization of (P) is performed: both the state and the control are discretized by
using continuous piecewise linear functions on a quasiuniform family of triangu-
lations of Ω. The state equation is replaced by its finite element approximation,
and the boundary conditions are imposed on every boundary node xj of the
triangulation:

yh(xj) = uh(xj) ∀xj boundary node. (1.2)

Theorem 7.1 in Casas and Raymond (2006) states that for local solutions ū of
(P) satisfying second order sufficient conditions, there is a sequence {ūh} of local
solutions of the approximated problems (Ph) such that the following estimate
holds:

‖ūh − ū‖L2(Γ) ≤ Ch1−1/p. (1.3)

Here p > 2 depends on ω, the biggest angle of Γ, and on the data of the
problem (see Theorem 3.1). May, Rannacher and Vexler (2008) consider a linear
quadratic problem without bound constraints. They provide error estimates for
the control in the norm of H−1/2(Γ) and the state in H−1(Ω) and are able to
improve the error estimate for the state in the norm of L2(Ω).
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One of the characteristics of the polygonal case is that on the vertices {xj}
of Γ, always

ū(xj) = Proj[α,β](0), (1.4)

independently of the rest of the data of (P). This well known property (see, for
instance, Casas, Günther and Mateos (2011) for an explanation) causes a loss of
efficiency of the optimal controls when we want to approximate a desired state
yΩ by taking the regularization parameter N > 0 small.

Some alternatives to the formulation of (P) are discussed in the literature
(see, e.g., Gunzburger, Hou and Svobodny, 1991, or Kunisch and Vexler, 2007),
which are mainly concerned with the change of the regularizing term ‖u‖2L2(Γ)

by some combination of this and |u|2
H1/2(Γ)

or |u|2H1(Γ). In Vexler (2007) the use

of finite dimensional controls is proposed.
We propose an alternative formulation of (P) by adding some discrete term.

This will avoid the use of gradient norms on the boundary and the undesirable
property (1.4). This is done in Section 3.

The case of smooth curved domains has been studied in two papers. In
both papers, the domain Ω is approximated by a sequence of domains Ωh with
a polygonal boundary Γh. To compare the controls defined on Γh with those
defined on Γ a natural one-to-one mapping gh : Γh → Γ is used. Casas and
Sokolowski (2010) study the continuous problem posed in Ωh. Let us denote
it by (Ph). In Theorem 9.1, they establish that for local solutions ū of (P)
satisfying second order sufficient conditions, there is a sequence {ûh} of local
solutions of the approximated problems (Ph) such that the following estimate
holds:

‖ûh ◦ g−1
h − ū‖L2(Γ) ≤ Ch. (1.5)

If we solve each of the continuous problems posed in Ωh by a full discretization,
as proposed in Casas and Raymond (2006), and we denote by ūh the solution
of the discrete approximation, a direct application of (1.3) and (1.5) leads to an
estimate of the form

‖ūh ◦ g−1
h − ū‖L2(Γ) ≤ Ch1/2 (1.6)

since the exponent ph > 2 depending on the biggest angle ωh of Γh, tends to 2
as h→ 0 (see Section 3).

Deckelnick, Günther and Hinze (2009) considered the numerical approxima-
tion of (P). In this reference a semidiscretization of the problem is studied on
each Ωh, where the state is discretized by continuous piecewise linear functions
on a triangulation Th of Ωh which is constructed in such a way that {Th}h>0 can
be seen as a quasiuniform family of triangulations of the original curved domain
Ω. The control is not discretized and the state equation is solved using its finite
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element approximation imposing the boundary conditions in the variational way

(yh, vh)L2(Γ) = (u, vh)L2(Γ) ∀vh ∈ Uh, (1.7)

where Uh is the space of continuous piecewise linear functions on the boundary
of Ωh (see Section 2). Although eventually the solution ũh of the semidiscrete
optimal control problem is a continuous piecewise linear function, in general it
is not the trace of its related discrete state due to the presence of the bound con-
straints. The order of convergence obtained in a first step (Deckelnick, Günther
and Hinze, 2009, Theorem 4.1) is O(h

√

| log h|), valid even for three-dimensional
domains. Nevertheless, it is shown in Deckelnick, Günther and Hinze (2009),
Theorem 5.4, that if the triangulation is piecewise O(h2) irregular, then

‖ũh ◦ g−1
h − ū‖L2(Γ) ≤ Ch3/2. (1.8)

This estimate may suggest that (1.5) is not optimal, since it seems rather para-
doxical that the continuous approximation leads to a worse estimate than the
semidiscrete one. Nevertheless, Casas, Günther and Mateos (2011) provide an
example that shows that indeed (1.5) is optimal.

In Section 2 we prove the error estimates for the full discretization of the
problem and obtain the same order of convergence as for the semidiscrete case.

We will develop all the results for convex two-dimensional domains. Let us
comment about the results in some other domains. In the case of smooth do-
mains, the estimate O(h

√

| log h|) was proved in Deckelnick, Günther and Hinze
(2009) for non-convex two- and three-dimensional domains. The estimate (1.8)
was proved for convex and plane domains, we think that it can be extended for
non-convex domains, but we do not know if it is still valid for three-dimensional
domains. The results proved in Casas and Sokolowski (2010) can be extended
to non-convex domains, but the three-dimensional case is open for the moment.
The reader is referred to the paper by Apel, Pfefferer and Rösch (2011) for
the study of a Neumann boundary control problem for non-convex polygonal or
polyhedral domains. The authors use weighted Sobolev norms to obtain error
estimates for approximations in graded meshes.

2. Smooth domains

Let Ω be a convex domain with a boundary Γ of class C3. We will suppose
that yΩ ∈ W 1,r̄(Ω) for some r̄ > 2 and f ∈ L2(Ω). For any control u ∈ L∞(Γ),
its related state yu ∈ H1/2(Ω) ∩ L∞(Ω) is the solution of (1.1) and its related
adjoint state ϕu ∈ H2(Ω) ∩H1

0 (Ω) is the solution of

−∆ϕu = yu − yΩ in Ω, ϕu = 0 on Γ. (2.1)

The derivative of the state with respect to the control in a direction v ∈ L∞(Γ)
is the function zv ∈ L∞(Ω) ∩H1/2(Ω), solution of

−∆zv = 0 in Ω, zv = v on Γ.
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The derivative of the functional with respect to the control in a direction v ∈
L∞(Γ) can be expressed as

J ′(u)v =

∫

Ω

(yu − yΩ)zvdx+N

∫

Γ

uvdσ(x) =

∫

Γ

(Nu− ∂νϕu)vdσ(x).

The following result is standard; see Deckelnick, Günther and Hinze (2009), and
Casas and Raymond (2006) for details about regularity.

Theorem 2.1 Problem (P) has a unique solution ū ∈ C0,1(Γ) with related state

ȳ ∈ H3/2(Ω) and related adjoint state ϕ̄= ϕū ∈ W 3,r(Ω) for some 2 < r ≤ r̄.
Moreover

∫

Ω

(ȳ − yΩ)(yu − ȳ)dx+N

∫

Γ

ū(u − ū)dσ(x) ≥ 0 ∀u ∈ Uad, (2.2)

∫

Γ

(Nū− ∂νϕ̄)(u− ū)dσ(x) ≥ 0 ∀u ∈ Uad, (2.3)

ū(x) = Proj[α,β]

(

∂νϕ̄(x)

N

)

∀x ∈ Γ. (2.4)

Let Th be a quasi-uniform family of triangulations of Ω. For each h > 0 let
Ωh = int∪{Th : Th ∈ Th} and denote by Γh its boundary. Let n be the number
of vertices of Γh that will be denoted by {xj}nj=1, ordered counterclockwise, with
x0 = xn and xn+1 = x1. As usual, we assume that xj ∈ Γ for all j. Consider

Yh = {yh ∈ C(Ω̄h) : yh|T ∈ P1(T ) ∀T ∈ Th},

Uh = {uh ∈ C(Γh) : uh|[xj,xj+1] ∈ P1([xj , xj+1]) ∀j = 1, . . . , n}.

We also set Yh0 = Yh ∩H1
0 (Ωh). Let us note that Uh coincides with the space

of the restrictions of functions in Yh to Γh. For every u ∈ L∞(Γh) we denote
its projection onto Uh in the L2(Γh) sense by Πhu, the unique element in Uh

satisfying

(u, vh)L2(Γh) = (Πhu, vh)L2(Γh) ∀vh ∈ Uh

and its associated discrete state yh(u) ∈ Yh as the unique solution of






ah(yh(u), wh) =

∫

Ωh

f(x)wh(x) dx ∀wh ∈ Yh0,

yh(u) = Πhu on Γh,

where

ah(y, w) =

∫

Ωh

∇y · ∇w dx for every y, w ∈ H1(Ωh).

Notice that for uh ∈ Uh, yh(uh) ≡ uh on Γh.
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For every u ∈ C(Γ) we define its nodal interpolator Ihu ∈ Uh as the unique
element in Uh such that Ih(u)(xj) = u(xj) for all j = 1, . . . , n.

We approximate (P) by the finite dimensional control problems

(Ph)







min Jh(uh) =
1

2

∫

Ωh

(yh(uh)(x) − yΩ(x))
2dx+

N

2
‖uh‖

2
L2(Γh)

,

uh ∈ Uh,ad = {uh ∈ Uh : α ≤ uh(x) ≤ β ∀x ∈ Γh.}

The derivative of the discrete state with respect to the control in a direction
v ∈ L∞(Γh), denoted by zh(v) ∈ Yh, is the unique solution of

{

ah(zh(u), wh) = 0 ∀wh ∈ Yh0,

zh(v) = Πhv on Γh.

The derivative of Jh with respect to the control in a direction v ∈ L∞(Γh) is

J ′
h(u)v =

∫

Ωh

(yh(u)− yΩ)zh(v)dx+N

∫

Γh

uvdσh(x).

The solution of (Ph) satisfies the following first order necessary optimality
conditions.

Theorem 2.2 Let ūh ∈ Uh be the unique solution of (Ph) with related state ȳh,
then
∫

Ωh

(ȳh−yΩ)(yh(uh)−ȳh)dx+N

∫

Γh

ūh(uh−ūh)dσh(x) ≥ 0 ∀uh ∈ Uh,ad. (2.5)

To compare the solutions of the approximated problems to the solutions of
(P), we will use gh : Γh → Γ, the natural one-to-one mapping that to every
point x ∈ Γh associates the one in Γ that intersects the line {x+ λνh : λ ≥ 0},
where νh is the unit exterior normal vector to Γh. At the vertices xj of Γ we
set gh(xj) = xj .

The following relations will be useful for comparing integrals on Γ and on
Γh (see Casas and Sokolowski, 2010, Eq. (4.3))



















∣

∣

∣

∣

∫

Γ

v(x) dσ(x) −

∫

Γh

v(gh(x)) dσh(x)

∣

∣

∣

∣

≤ Ch2‖v‖L1(Γ)

∫

Γh

|v(gh(x))| dσh(x) ≤

∫

Γ

|v(x)| dσ(x)

∀ v ∈ L1(Γ). (2.6)

For every h > 0 there exists a linear extension operator Eh : H1(Ωh) →
H1(R2) such that ‖Ehyh‖H1(R2) ≤ C‖yh‖H1(Ωh) with C independent of h. The
operator Eh can be built using Mikolskij’s extension method (see Nečas, 1967,



Dirichlet control problems in convex plain domains 937

pp. 75–77) or Calderon’s method (see Nečas, 1967, pp. 77–80). Abusing nota-
tion, we will usually write yh instead of Ehyh.

An important set on Γ is the set of “landing” or “kink” points of the optimal
control on the bound constraints. It is the boundary, in the topology of Γ, of
the set

ΓS = {x ∈ Γ : ū(x) = α or ū(x) = β}.

This boundary will be denoted by ∂ΓS . The estimates for ū−ūh◦g
−1
h depend on

the properties of the set ∂ΓS as well as on the properties of the triangulations Th.
Let us indicate which are the good properties leading to better error estimates.
We consider the assumptions

(A1) The number of points in ∂ΓS , denoted by N , is finite.

(A2) The mesh is O(h2) irregular.

For a more general assumption (A1) see Mateos and Rösch (2011), Remark
4.1.

The proof of the next theorem follows the lines of the proof given in Deckel-
nick, Günther and Hinze (2009) with some necessary modifications to deal with
the full discretization of the control problem.

Theorem 2.3 Let ū be the solution of problem (P) and for all h > 0, let ūh be

the solution of problem (Ph),

‖ū− ūh ◦ g−1
h ‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω) ≤ Ch

√

| log h|. (2.7)

If, further, (A2) is satisfied, then there exists a sequence {εh}h>0 of positive

numbers converging to zero such that

‖ū− ūh ◦ g−1
h ‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω) ≤ εhh. (2.8)

If both (A1) and (A2) are satisfied, then there exists C > 0 such that

εh ≤ Ch1/2. (2.9)

We will split the argument of the proof into several lemmas.

Lemma 2.1 There exist a constant C > 0 and a sequence of positive num-

bers {εh}h>0 converging to zero such that the following interpolation inequalities

hold:

‖ū− Ihū ◦ g−1
h ‖L2(Γ) ≤ εhh (2.10)

‖ū− Ihū ◦ g−1
h ‖L∞(Γ) ≤ Ch (2.11)

‖∂νϕ̄− Ih∂νϕ̄ ◦ g−1
h ‖L2(Γ) ≤ Ch3/2. (2.12)

If we further suppose that (A1) holds, then there exists C > 0 such that

εh ≤ Ch1/2. (2.13)
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Proof. Since ū ∈ C0,1(Γ) and ∂νϕ̄ ∈ H3/2(Γ), inequalities (2.10)–(2.12) are well
known in the literature (see, e.g., Brenner and Scott, 1994). We only have to
prove that (2.10) holds with εh satisfying (2.13). Let us denote

J1 = {j = 1, . . . , n : α < ū(x) < β ∀x ∈ x̂jxj+1},

J2 = {j = 1, . . . , n : ū(x) = α or ū(x) = β ∀x ∈ x̂jxj+1},

J3 = {1, . . . , n} \ (J1 ∪ J2),

where x̂jxj+1 denotes the arch of Γ going from xj to xj+1.
If j ∈ J1, (2.4) implies that ū(x) = 1

N ∂νϕ̄(x) for all x ∈ x̂jxj+1.

If j ∈ J2, then ū is constant in x̂jxj+1 and therefore ū(x) = Ihū(x) ◦ g
−1
h for

all x ∈ x̂jxj+1.
From the above observations, the fact that the number of elements in J3 is

N , |xj+1 − xj | ≤ h and using (2.11), we obtain
∫

Γ

(Ihū ◦ g−1
h − ū)2dσ(x) =

1

N2

∑

j∈J1

∫

x̂jxj+1

(Ih∂ν ϕ̄ ◦ g−1
h − ∂νϕ̄)

2dσ(x)

+
∑

j∈J3

∫

x̂jxj+1

(Ihū ◦ g−1
h − ū)2dσ(x)

≤
1

N2
‖Ih∂νϕ̄ ◦ g−1

h − ∂νϕ̄‖
2
L2(Γ) + CNh3‖ū‖2C0,1(Γ)

≤ Ch3

Lemma 2.2 Let ū be the solution of problem (P). Then there exists a sequence

of positive numbers {εh}h>0 converging to zero such that
∫

Γ

(Nū− ∂νϕ̄)(Ihū ◦ g−1
h − ū)dσ(x) ≤ εhh

2. (2.14)

If we further suppose that (A1) holds, then there exists C > 0 such that

εh ≤ Ch. (2.15)

Proof. Let us take J1, J2 and J3 as in the proof of Lemma 2.1 and let us denote
d̄(x) = Nū(x) − ∂ν ϕ̄(x). Notice that d̄ ∈ C0,1(Γ). If j ∈ J3, then there exists
some ξj ∈ x̂jxj+1 such that α < ū(ξj) < β and using once again (2.4), we get
d̄(ξj) = Nū(ξj)− ∂ν ϕ̄(ξj) = 0.

From the above observations, and using (2.10), we obtain (2.14) as follows:
∫

Γ

(Nū− ∂νϕ̄)(Ihū ◦ g−1
h − ū)dσ(x) =

∫

Γ

d̄(x)(Ihū ◦ g−1
h − ū)dσ(x)

=
∑

j∈J3

∫

x̂jxj+1

(d̄(x)− d̄(ξj))(Ihū ◦ g−1
h − ū)dσ(x)

≤
∑

j∈J3

∫

x̂jxj+1

|x− ξj |‖d̄‖C0,1(Γ)(Ihū ◦ g−1
h − ū)dσ(x)
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≤ ‖d̄‖C0,1(Γ)h
∑

j∈J3

∫

x̂jxj+1

(Ihū ◦ g−1
h − ū)dσ(x)

≤ Ch

∫

Γ

|Ihū ◦ g−1
h − ū)|dσ(x) ≤ εhh

2.

If we also use the fact that the number of elements in J3 is N and (2.11), then
we obtain (2.15) as follows:

∫

Γ

(Nū− ∂νϕ̄)(Ihū ◦ g
−1
h − ū)dσ(x)

≤
∑

j∈J3

∫

x̂jxj+1

|x− ξj |‖d̄‖C0,1(Γ)‖Ihū ◦ g−1
h − ū‖L∞(Γ)dσ(x)

≤ CN‖d̄‖C0,1(Γ)‖ū‖C0,1(Γ)h
3 ≤ Ch3.

Lemma 2.3 Let ū be the solution of Problem (P) and for all h > 0 let ūh be the

solution of problem (Ph). Then there exists C > 0 such that

‖Ihū− ūh‖L2(Γh) ≤ Ch+ ‖ū− ūh ◦ g−1
h ‖L2(Γ) (2.16)

and

‖Ihū ◦ g−1
h − ūh ◦ g−1

h ‖L2(Γ) = Ch+ ‖ū− ūh ◦ g−1
h ‖L2(Γ). (2.17)

Proof. Inequality (2.17) is an immediate consequence of (2.10) and (2.16) follows
from (2.17) and the second inequality of (2.6).

Lemma 2.4 Let ū be the solution of Problem (P) and for all h > 0 let ūh be

the solution of problem (Ph). Then there exists a sequence of positive numbers

{εh}h>0 converging to zero such that

∫

Γh

ūh(Ihū− ūh)dσh(x) ≤ ε2hh
2 + εhh‖ūh ◦ g−1

h − ū‖L2(Γ)

+

∫

Γ

ū(Ihū ◦ g−1
h − ū)dσ(x)

+

∫

Γ

ūh ◦ g−1
h (ū− ūh ◦ g−1

h )dσ(x). (2.18)

If assumption (A1) holds, then εh ≤ Ch1/2 for some constant C > 0.
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Proof. Let us prove (2.18). First we write
∫

Γh

ūh(Ihū− ūh)dσh(x) =

∫

Γh

ūh(ū ◦ gh − ūh)dσh(x)

+

∫

Γh

ūh(Ihū− ū ◦ gh)dσh(x)

=

∫

Γh

ūh(ū ◦ gh − ūh)dσh(x)

+

∫

Γh

(ūh − ū ◦ gh)(Ihū− ū ◦ gh)dσh(x)

+

∫

Γh

ū ◦ gh(Ihū− ū ◦ gh)dσh(x) = I + II + III.

Using relation (2.6), Cauchy’s inequality and the fact that {‖ūh ◦g
−1
h ‖L2(Γ)}h>0

is uniformly bounded, we deduce the existence of C > 0 independent of h such
that

I =

∫

Γh

ūh(ū ◦ gh − ūh)dσh(x) ≤

∫

Γ

ūh ◦ g−1
h (ū − ūh ◦ g−1

h )dσ(x)

+Ch2
∫

Γ

∣

∣ūh ◦ g−1
h (ū− ūh ◦ g−1

h )
∣

∣ dσ(x)

≤

∫

Γ

ūh ◦ g−1
h (ū − ūh ◦ g−1

h )dσ(x)

+Ch2‖ū− ūh ◦ g−1
h ‖L2(Γ).

Now, using the second inequality of (2.6) and (2.10) we obtain

II =

∫

Γh

(ūh − ū ◦ gh)(Ihū− ū ◦ gh)dσh(x)

≤

∫

Γ

|ūh ◦ g−1
h − ū||Ihū ◦ g−1

h − ū| dσ(x)

≤ εhh‖ūh ◦ g−1
h − ū‖L2(Γ).

Finally, once again from (2.6) and (2.10) we get

III =

∫

Γh

ū ◦ gh(Ihū− ū ◦ gh)dσh(x) ≤

∫

Γ

ū(Ihū ◦ g−1
h − ū)dσ(x)

+Ch2
∫

Γ

|ū(Ihū ◦ g−1
h − ū)|dσ(x)

≤

∫

Γ

ū(Ihū ◦ g−1
h − ū)dσ(x) + ε2hh

2

and (2.18) follows from the above inequalities.
The last assertion follows directly from (2.13).
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Lemma 2.5 Let ū be the solution of Problem (P) and for all h > 0 let ūh be the

solution of problem (Ph). Then there exists C > 0
∫

Ωh

(ȳh − yΩ)(yh(Ihū)− ȳh)dx ≤ Ch2‖ū− ūh ◦ gh‖L2(Γ) + Ch3

+

∫

Ω

(ȳh − yΩ)(yh(Ihū)− ȳh)dx, (2.19)

where yh(Ihū) denotes the discrete state associated to Ihū.

Proof. Using Bramble and King (1994), (2.10), |Ω \ Ωh| ≤ Ch and (2.16), we
get
∣

∣

∣

∣

∣

∫

Ω\Ωh

(ȳh − yΩ)(yh(Ihū)− ȳh)dx

∣

∣

∣

∣

∣

≤ ‖ȳh − yΩ‖L2(Ω\Ωh)‖yh(Ihū)− ȳh‖L2(Ω\Ωh)

≤ C‖ȳh − yΩ‖L∞(Ω\Ωh)|Ω \ Ωh|
1/2

(

h‖yh(Ihū)− ȳh‖L2(Γh)

+ h2‖∇yh(Ihū)−∇ȳh‖L2(Ωh)

)

≤ C
(

h2‖Ihū− ūh‖L2(Γh) + h3
)

≤ C
(

h2‖ū− ūh ◦ gh
−1‖L2(Γ) + h3

)

, (2.20)

which implies (2.19).

Corollary 2.1 Let ū be the solution of Problem (P) and for all h > 0 let ūh be

the solution of problem (Ph). Then there exists a sequence of positive numbers

{εh}h>0 converging to zero such that
∫

Ω

(ȳh − yΩ)(yh(Ihū)− ȳh)dx+N

∫

Γ

ū(Ihū ◦ g−1
h − ū)dσ(x)

+N

∫

Γ

ūh ◦ g−1
h (ū− ūh ◦ g−1

h )dσ(x) + ε2hh
2 + εhh‖ūh ◦ g−1

h − ū‖L2(Γ) ≥ 0.

(2.21)

If (A1) holds, then εh ≤ Ch1/2 for some constant C > 0.

Proof. Taking uh = Ihu in (2.5), we obtain
∫

Ωh

(ȳh − yΩ)(yh(Ihū)− ȳh)dx+N

∫

Γh

ūh(Ihū− ūh)dσh(x) ≥ 0 ∀uh ∈ Uh,ad.

(2.22)

So (2.21) follows directly from (2.22), (2.18) and (2.19). The last assertion
follows directly from the corresponding one in Lemma 2.4.

Lemma 2.6 Let ū be the solution of Problem (P) and for all h > 0 let ūh be the

solution of problem (Ph). Then there exists C > 0 such that
∣

∣

∣

∣

∫

Γ

∂νϕ̄(Ihū ◦ g−1
h − ūh ◦ g−1

h )dσ(x) −

∫

Γh

∂νh ϕ̄(Ihū− ūh)dσh(x)

∣

∣

∣

∣

≤ C(h3 + h2‖ū− ūh ◦ g−1
h ‖L2(Γ)). (2.23)
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Proof. Using (2.6) and (2.17) we obtain

∣

∣

∣

∣

∫

Γ

∂νϕ̄(Ihū ◦ g−1
h − ūh ◦ g−1

h )dσ(x) −

∫

Γh

∂νh ϕ̄(Ihū− ūh)dσh(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Γ

(∂ν ϕ̄− ∂νh ϕ̄ ◦ g−1
h )(Ihū ◦ g−1

h − ūh ◦ g−1
h )dσ(x)

∣

∣

∣

∣

+C(h3 + h2‖ū− ūh ◦ g−1
h ‖L2(Γ))

≤ C‖∂νϕ̄− ∂νh ϕ̄ ◦ g−1
h ‖L2(Γ)(h+ ‖ū− ūh ◦ g−1

h ‖L2(Γ))

+C(h3 + h2‖ū− ūh ◦ g−1
h ‖L2(Γ)). (2.24)

Now we write

∂νϕ̄(x) − ∂νh ϕ̄(g
−1
h (x)) = ∇ϕ̄(x) · ν(x)−∇ϕ̄(g−1

h (x)) · νh(g
−1
h (x))

=
{

∇ϕ̄(x)−∇ϕ̄(g−1
h (x))

}

· νh(g
−1
h (x))

+∇ϕ̄(x) ·
{

ν(x)− νh(g
−1
h (x))

}

. (2.25)

On the one hand, using Bramble and King (1994), Eq. (2.12) and the regularity
ϕ̄ ∈ H3(Ω), we have that

‖∇ϕ̄−∇ϕ̄ ◦ g−1
h ‖L2(Γ) ≤ Ch2. (2.26)

On the other hand, for every x ∈ Γ, {ν(x), τ(x)}, where τ(x) is the unit tangent
vector to Γ at x, is an orthonormal basis of R2, and hence the vector ∇ϕ̄(x) can
be written as

∇ϕ̄(x) = α(x)ν(x) + β(x)τ(x).

Since ϕ̄ ≡ 0 on Γ, then the tangential component of the gradient is null (β(x) =
0), and the normal component is precisely α(x) = ∂νϕ̄(x). Using that both
|νh(g

−1
h (x))|2 = |ν(x)|2 = 1, we can write

∣

∣∇ϕ̄(x) ·
(

ν(x) − νh(g
−1
h (x))

)
∣

∣ =
∣

∣∂νϕ̄(x)ν(x) ·
(

ν(x) − νh(g
−1
h (x))

)
∣

∣

=

∣

∣

∣

∣

−
1

2
∂νϕ̄(x)|ν(x) − νh(g

−1
h (x))|2

∣

∣

∣

∣

≤ Ch2, (2.27)

where we have used the fact that |ν(x)− νh(g
−1
h (x))| ≤ Ch because Γ is of class

C2; see Casas and Sokolowski (2010), (4.1).
From (2.25)–(2.27) we have that

‖∂νϕ̄− ∂νh ϕ̄ ◦ g−1
h ‖L2(Γ) ≤ Ch2

and (2.23) follows from this last inequality and (2.24).
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Lemma 2.7 Let ū be the solution of Problem (P) and for all h > 0 let ūh be the

solution of problem (Ph). Then for every µ > 0 there exists Cµ > 0 such that

∫

Ωh

∇ϕ̄(∇yh(Ihū)−∇ȳh)dx ≤ Cµh
2| log h|+ µ‖ū− ūh ◦ g

−1
h ‖2L2(Γ). (2.28)

Suppose further that (A2) holds. Then there exists C > 0 such that

∫

Ωh

∇ϕ̄(∇yh(Ihū)−∇ȳh)dx ≤ Ch3 + Ch3/2‖ū− ūh ◦ g−1
h ‖L2(Γ). (2.29)

Proof. We introduce the nodal interpolator in Ω, which we also denote Ih :
C(Ω̄) → Yh. Using Ihϕ̄ as test function in the discrete state equation, Deckel-
nick, Günther and Hinze (2009), Eq. (4.10) and (2.16), we obtain

∫

Ωh

∇ϕ̄(∇yh(Ihū)−∇ȳh)dx

=

∫

Ωh

(∇ϕ̄ −∇Ihϕ̄)(∇yh(Ihū)−∇ȳh)dx

≤ Cµh
2| log h|+ µ‖ū− ūh ◦ g−1

h ‖2L2(Γ).

and (2.28) follows.
If we suppose (A2), using Ihϕ̄ as test function in the discrete state equa-

tion and the superconvergence property, Deckelnick, Günther and Hinze (2009),
Lemma 5.2, we can write:

∫

Ωh

∇ϕ̄(∇yh(Ihū)−∇ȳh)dx

=

∫

Ωh

(∇ϕ̄ −∇Ihϕ̄)(∇yh(Ihū)−∇ȳh)dx

≤ C(h2‖yh(Ihū)− ȳh‖H1(Ωh) + h3/2‖Ihū− ūh‖L2(Γh).) (2.30)

Using the inequality

‖zh‖H1(Ωh) ≤ C‖zh‖H1/2(Γh) ∀h > 0,

for any zh ∈ Yh such that a(zh, ψh) = 0 for all ψh ∈ Yh and zh = Πhu on Γh, see
Bramble, Pasciak and Schatz (1986), Lemma 3.2, and the well known inverse
inequality

‖uh‖H1/2(Γh) ≤ Ch−1/2‖uh‖L2(Γh) ∀uh ∈ Uh,

we have that

‖yh(Ihū)− ȳh‖H1(Ωh) ≤ Ch−1/2‖Ihū− ūh‖L2(Γh).

From this inequality, (2.16), (2.17) and (2.30) we infer (2.29).
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Proof of Theorem 2.3. Taking u = ūh ◦ g−1
h in (2.2) we get

∫

Ω

(ȳ − yΩ)(yūh◦g
−1

h
− ȳ)dx +N

∫

Γ

ū(ūh ◦ g−1
h − ū)dσ(x) ≥ 0. (2.31)

Adding up inequalities (2.31) and (2.21) we obtain

N

∫

Γ

(ūh ◦ g−1
h − ū)2dσ(x) ≤

∫

Ω

(ȳ − yΩ)(yūh◦g
−1

h
− ȳ)dx

+

∫

Ω

(ȳh − yΩ)(yh(Ihū)− ȳh)dx

+N

∫

Γ

ū(Ihū ◦ g−1
h − ū)dσ(x)

+ε2hh
2 + εhh‖ūh ◦ g−1

h − ū‖L2(Γ). (2.32)

First we write
∫

Ω

(ȳ − yΩ)(yūh◦g
−1

h
− ȳ)dx+

∫

Ω

(ȳh − yΩ)(yh(Ihū)− ȳh)dx

= −

∫

Ω

(ȳ − ȳh)
2dx+

∫

Ω

(ȳ − ȳh)(ȳ − yh(Ihū))dx

−

∫

Ω

(ȳ − yΩ)
{

(ȳ − yūh◦g
−1

h
)− (yh(Ihū)− ȳh)

}

dx.

≤ −
1

2

∫

Ω

(ȳ − ȳh)
2dx+

1

2

∫

Ω

(ȳ − yh(Ihū))
2dx

−

∫

Ω

(ȳ − yΩ)
{

(ȳ − yūh◦g
−1

h
)− (yh(Ihū)− ȳh)

}

dx. (2.33)

Let us bound the second addend:

‖ȳ − yh(Ihū)‖L2(Ω) ≤ ‖ȳ − yIhū◦g−1

h
‖L2(Ω) + ‖ȳIhū◦g−1

h
− yh(Ihū)‖L2(Ω)

≤ C
{

‖ū− Ihū ◦ g−1
h ‖L2(Γ) + h3/2

}

≤ εhh, (2.34)

where we have used the fact that −∆(ȳ − yIhū◦g−1

h
) = 0 in Ω, ȳ − yIhū◦g−1

h
=

ū − Ihū ◦ g−1
h on Γ along with Casas and Raymond (2006), Lemma 2.1, the

superconvergence property, Deckelnick, Günther and Hinze (2009), (5.10) and
(2.10).

Inserting (2.33) into (2.32), and taking into account (2.34), we obtain that

N

2
‖ūh ◦ g−1

h − ū‖2L2(Γ) +
1

2
‖ȳ − ȳh‖

2
L2(Ω)

≤ −

∫

Ω

(ȳ − yΩ)
{

(ȳ − yūh◦g
−1

h
)− (yh(Ihū)− ȳh)

}

dx

+N

∫

Γ

ū(Ihū ◦ g−1
h − ū)dσ(x) + ε2hh

2. (2.35)
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Next we use ϕ̄, the adjoint state related to ū. We apply Green’s formula and
obtain

−

∫

Ω

(ȳ − yΩ)
{

(ȳ − yūh◦g
−1

h
)− (yh(Ihū)− ȳh)

}

dx

=

∫

Ω

∆ϕ̄(ȳ − yūh◦g
−1

h
)dx −

∫

Ωh

∆ϕ̄(yh(Ihū)− ȳh)dx

+

∫

Ω\Ωh

(ȳ − yΩ)(yh(Ihū)− ȳh)dx

= −

∫

Ω

∇ϕ̄(∇ȳ −∇yūh◦g
−1

h
)dx+

∫

Γ

∂νϕ̄(ū− ūh ◦ g−1
h )dσ(x)

+

∫

Ωh

∇ϕ̄(∇yh(Ihū)−∇ȳh)dx−

∫

Γh

∂νh ϕ̄(Ihū− ūh)dσh(x)

+

∫

Ω\Ωh

(ȳ − yΩ)(yh(Ihū)− ȳh)dx

≤ −

∫

Γ

∂νϕ̄(Ihū ◦ g−1
h − ū)dσ(x) +

∫

Γ

∂νϕ̄(Ihū ◦ g−1
h − ūh ◦ g−1

h )dσ(x)

+

∫

Ωh

∇ϕ̄(∇yh(Ihū)−∇ȳh)dx−

∫

Γh

∂νh ϕ̄(Ihū− ūh)dσh(x)

+C
(

h2‖ū− ūh ◦ gh
−1‖L2(Γ) + h3

)

, (2.36)

where we we have used again Green’s formula and the equalities

−∆(ȳ − yIhū◦g−1

h
) = 0

in Ω and ϕ̄ = 0 on Γ to state that
∫

Ω

∇ϕ̄(∇ȳ −∇yūh◦g
−1

h
)dx =−

∫

Ω

ϕ̄∆(ȳ − yūh◦g
−1

h
)dx

+

∫

Γ

ϕ̄∂ν(ȳ − yūh◦g
−1

h
)dσ(x) = 0,

and the same argument as in (2.20) to write
∣

∣

∣

∣

∣

∫

Ω\Ωh

(ȳ − yΩ)(yh(Ihū)− ȳh)dx

∣

∣

∣

∣

∣

≤ C
(

h2‖ū− ūh ◦ gh‖L2(Γ) + h3
)

.

Inserting (2.36) in (2.35), we get

N

4
‖ūh ◦ g−1

h − ū‖2L2(Γ) +
1

2
‖ȳ − ȳh‖

2
L2(Ω)

≤

∫

Γ

(Nū− ∂ν ϕ̄)(Ihū ◦ g−1
h − ū)dσ(x)+

∫

Γ

∂νϕ̄(Ihū ◦ g−1
h − ūh ◦ g−1

h )dσ(x)

+

∫

Ωh

∇ϕ̄(∇yh(Ihū)−∇ȳh)dx−

∫

Γh

∂νh ϕ̄(Ihū− ūh)dσh(x) + Ch3. (2.37)
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Using now (2.14), (2.23) and (2.28) in (2.37), we have that

N

4
‖ūh ◦ g−1

h − ū‖2L2(Γ)+
1

2
‖ȳ− ȳh‖

2
L2(Ω) ≤ C(hεh)

2 + Chεh‖ūh ◦ g−1
h − ū‖L2(Γ)

+Cµh
2| log h|+ µ‖ūh ◦ g−1

h − ū‖2L2(Γ)

and (2.7) follows by taking µ = N/8.
If (A2) is satisfied, we use (2.14), (2.23) and (2.29) in (2.37), and we obtain

N

4
‖ūh ◦ g−1

h − ū‖2L2(Γ) +
1

2
‖ȳ − ȳh‖

2
L2(Ω) ≤ ε2hh

2 + εhh‖ūh ◦ g−1
h − ū‖L2(Γ)

and (2.8) follows trivially from this.
Again, if we further suppose (A1), then Lemmas 2.1, 2.2 and 2.4 and Corol-

lary 2.1 imply that εh ≤ Ch1/2.

The following result is a direct consequence of Theorem 2.3:

Corollary 2.2 Let ū be the solution of problem (P) and for all h > 0, let ūh
be the solution of problem (Ph). Then there exists a constant C > 0 such that

‖ū− ūh ◦ g−1
h ‖L∞(Γ) ≤ Ch1/2

√

| log h|. (2.38)

If, further, (A2) is satisfied then there exists a sequence of positive numbers

{εh}h>0 converging to zero such that lim
h→0

εh = 0 and

‖ū− ūh ◦ g−1
h ‖L∞(Γ) ≤ εhh

1/2. (2.39)

If both (A1) and (A2) are satisfied then there exists C > 0 such that

‖ū− ūh ◦ g−1
h ‖L∞(Γ) ≤ Ch. (2.40)

Proof. We will use the following inverse inequality (see, e.g., Brenner and Scott,
1994, Theorem 4.5.11): There exists a constant C > 0 independent of h such
that for every uh ∈ Uh

‖uh‖L∞(Γh) ≤ Ch−1/2‖uh‖L2(Γh).

Using the second inequality in (2.6) we have that

‖ūh ◦ g−1
h ‖L∞(Γ) = ‖ūh‖L∞(Γh) ≤ Ch−1/2‖ūh‖L2(Γh) ≤ Ch−1/2‖ūh ◦ g−1

h ‖L2(Γ).

(2.41)

With the triangular inequality, (2.11), (2.41) and (2.12) we get

‖ū− ūh ◦ g−1
h ‖L∞(Γ) ≤ ‖ū− Ihū ◦ g−1

h ‖L∞(Γ)

+‖Ihū ◦ g−1
h − ūh ◦ g−1

h ‖L∞(Γ)

≤ Ch+ Ch−1/2‖Ihū ◦ g−1
h − ūh ◦ g−1

h ‖L2(Γ)

≤ Ch+ Ch−1/2‖Ihū ◦ g−1
h − ū‖L2(Γ)

+Ch−1/2‖ū− ūh ◦ g−1
h ‖L2(Γ)

≤ Ch+ Ch1/2εh + Ch−1/2‖ū− ūh ◦ g−1
h ‖L2(Γ).
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So, (2.38) follows from (2.7). If we suppose (A2), (2.8) implies (2.39). If we
suppose (A1) and (A2), then (2.13) and (2.9) imply (2.40).

Numerical experiment. In Example 1 of Deckelnick, Günther and Hinze
(2009), the following problem is solved. The domain is Ω = B1(0, 0) ⊂ R2,
α = 0, β = 1 and N = 1. Let r, φ be the usual polar coordinates. The functions
involved in the problem are defined by

yΩ = (7r2 cos2 φ+ 6r2 − 6r) cosφ+ r3 max(0, cos3 φ),

f = −6rmax(0, cosφ)

and the solution is

ū = max{0, cos3 φ},

ȳ = r3 max(0, cos3 φ),

ϕ̄ = r3(r − 1) cos3 φ.

We have that ∂Γs = {(0, 1), (1, 0), (0,−1)}. The family of triangulations is made
in Deckelnick, Günther and Hinze (2009) by congruent refinement of an initial
grid formed by 8 triangles of vertices

(0, 0), (cos(2πj/8), sin(2πj/8)),

(cos(2π(j + 1)/8), sin(2π(j + 1)/8)), for j = 0 : 7

and the “landing” points are nodes of all the meshes, so the semidiscrete and
the full discretization approach coincide.

We have solved the same problem rotating the mesh by 0.5 radians so that
the points in ∂Γs are no longer mesh points. Both assumptions (A1) and (A2)
are satisfied.

We summarize our results in Table 2. Mesh data are shown in Table 1. For
the reader’s convenience, we have followed the same conventions of notation
in the tables as in Deckelnick, Günther and Hinze (2009): i is the number
of refinements from the initial mesh, n is the number of sides of the polygon
approximating the boundary of the domain (and also the dimension of Uh),
h = |xj − xj−1|, nt is the number of elements of Th, np is the number of nodes
of the triangulation (and also the dimension of Yh), E0

u(h) = ‖ū− ūh◦g
−1
h ‖L2(Γ),

E∞
u (h) = ‖ū − ūh ◦ g−1

h ‖L∞(Γ) and E0
y(h) = ‖ȳ − ȳh‖L2(Ωh). As usual, EOC

denotes the experimental order of convergence

EOC(h1, h2) =
log(E(h1))− log(E(h2))

log(h1)− log(h2)
.

Both theoretical predictions (2.9) and (2.40) about the errors in the approxima-
tion of the control are confirmed in our experiment. The order of convergence
of the error in the approximation of the state is, nevertheless, bigger than what
could be expected. The same unexplained phenomenon appears in the semidis-
crete approach in Deckelnick, Günther and Hinze (2009), Table 4.
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Table 1. Mesh parameters for a sequence of O(h2) irregular meshes

i n h nt np

1 8 0.765367 8 9

2 16 0.390181 32 25

3 32 0.196034 128 81

4 64 0.098135 512 289

5 128 0.049082 2048 1089

6 256 0.024543 8192 4225

7 512 0.012272 32768 16641

8 1024 0.006136 131072 66049

9 2048 0.003068 524288 263169

Table 2. Order of convergence for a perturbation of Example 1 in Deckelnick,
Günther and Hinze (2009)

i E0
u(hi) EOC0

u E∞
u (hi) EOC∞

u E0
y(hi) EOC0

y

1 0.2874809 0.324129 0.316139

2 0.1349552 1.122 0.204850 0.681 0.111547 1.546

3 0.0889099 0.606 0.135616 0.599 0.039778 1.498

4 0.0454429 0.970 0.134135 0.016 0.012942 1.623

5 0.0194054 1.228 0.086700 0.630 0.003740 1.792

6 0.0075206 1.368 0.048723 0.832 0.001020 1.875

7 0.0027959 1.428 0.025933 0.910 0.000271 1.914

8 0.0010164 1.460 0.013411 0.951 0.000071 1.928

9 0.0003649 1.478 0.006828 0.974 0.000019 1.940

3. Polygonal domains

Let Ω be a polygonal domain of boundary Γ. Let us denote by n the number of
its sides and {xj}

n
j=1 the vertexes of Γ, ordered counterclockwise. Denote also

x0 = xn and xn+1 = x1. Through this section we will suppose that yΩ ∈ Lr(Ω)
for some r > 2.

Let 0 < ω < π be the biggest interior angle of Ω. The Sobolev exponent
giving the maximum regularity is (see Grisvard, 1985)

qΩ =
2ω

2ω − π
if ω > π/2. (3.1)

If 0 < ω ≤ π/2, then we can choose any qΩ < +∞. In any case, notice that
qΩ > 2. This roughly means that the solutions of the Poisson equation belong
to any space W 2,r(Ω) with r < qΩ.
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Let us formulate a modification of the control problem (P). We choose
{ej}nj=1, functions in C0,1(Γ) such that ei(xj) = δij for 1 ≤ i, j ≤ n and
0 ≤ ej(x) ≤ 1 for 1 ≤ j ≤ n. Typically, the support of each function ej is small
and they are disjoint. For any v = (vj)

n
j=1 ∈ Rn, we will denote v =

∑n
j=1 vjej.

We also choose two regularization parameters 0 < N and 0 < M . Then we
formulate the following problem

(P̃)























min J̃(u,v) =
1

2

∫

Ω

(yu,v(x) − yΩ(x))
2dx+

N

2
‖u‖2L2(Γ) +

M

2
|v|2

subject to −∆yu,v = f in Ω, yu,v = u+ v on Γ,

α ≤ u(x) ≤ β for a.e. x ∈ Γ, α ≤ vi ≤ β for all i = 1, . . . , n,

where |v|2 =
∑n

j=1 v
2
j . We will denote

Wad = {(u,v) ∈ L∞(Γ)×R
n : α ≤ u(x) ≤ β, α ≤ vi ≤ β for all i = 1, . . . , n}.

For any control pair (u,v), we define its related adjoint state ϕu,v as the solution
of the homogeneous Dirichlet problem

−∆ϕ = yu,v − yΩ in Ω, ϕ = 0 on Γ.

The derivative of the functional at a point (ū, v̄) in a direction (u,v) ∈ L2(Γ)×
Rn is

J̃ ′(ū, v̄)(u,v) =

∫

Γ

(Nū− ∂ν ϕ̄)udσ(x) +

n
∑

j=1

(

Mv̄j −

∫

Γ

∂ν ϕ̄ejdσ(x)
)

vj .

where ϕ̄ = ϕū,v̄. The derivative of the state at a point (ū, v̄) in a direction
(u,v) ∈ L∞(Γ)× Rn is given by z̄u,v, solution of

−∆z̄u,v = 0 in Ω, z̄u,v = u+ v on Γ.

Theorem 3.1 Problem (P̃) has a unique solution (ū, v̄) ∈ L∞(Γ) × Rn with

related state ȳ = yū,v̄ ∈ H1/2(Ω) ∩ L∞(Ω) and related adjoint state ϕ̄ = ϕū,v̄.

ū ∈ W 1−1/p,p(Γ), ȳ ∈ W 1,p(Ω) and ϕ̄ ∈ W 2,p(Ω) for p = r if r < qΩ and

all 2 < p < qΩ if r ≥ qΩ. Moreover, the optimal pair satisfies the variational

inequality
∫

Γ

(Nū− ∂νϕ̄)(u− ū)dσ(x) +

n
∑

j=1

(

Mv̄j −

∫

Γ

∂ν ϕ̄ejdσ(x)
)

(vj − v̄j) ≥ 0

∀ (u,v) ∈ Wad (3.2)

and the projection formulae:

ū(x) = Proj[α,β]

(

∂νϕ̄(x)

N

)

for a.e. x ∈ Γ,

v̄i = Proj[α,β]

(

1

M

∫

Γ

∂ν ϕ̄(x)ei(x)dσ(x)

)

∀i = 1 . . . , n.
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Proof. A direct computation of the derivatives of J̃ and first order necessary
optimality conditions for (P̃) lead to the projection formulae in a standard way.
Next, the regularity of the state, the control and the adjoint state can be deduced
as in Casas and Raymond (2006), Theorems 2.2 and 3.4.

Remark 3.1 If α < 0 < β, we have still that ū(xj) = 0, but now v(xj) need

not be zero and hence the optimal state is not forced to take a prescribed value at

the corners independent of the data of the problem. Notice also that the original

bound constraints can be overshot by ū + v̄. Nevertheless, since ū(xj) = 0, this

effect should be small in general.

For a fixed pair (ū, v̄), we will define (d̄, d̄) ∈ L2(Γ)× Rn as

d̄(x) = Nū(x)−∂ν ϕ̄(x), x ∈ Γ, and d̄j =Mv̄j−

∫

Γ

∂νϕ̄ejdσ(x), j = 1, . . . , n.

The discretization is made formally as in Section 2. Notice that now Ωh = Ω
and Γh = Γ for all h > 0. Of course, gh is the identity mapping and disappears
in this section. We take

Wh = Uh × R
n and Wh,ad =Wad ∩Wh.

For every (u,v) ∈ L∞(Γ)× Rn we define yh(u,v) ∈ Yh, the unique solution of







∫

Ω

∇yh(u,v)(x) · ∇wh(x)dx) =

∫

Ω

f(x)wh(x)dx ∀wh ∈ Yh0

yh(u,v) = Πh(u + v) on Γ.

Notice that for uh ∈ Uh, the discrete state on the boundary satisfies yh =
uh +

∑n
j=1 vjΠhej . We approximate (P̃) by the finite dimensional problem

(P̃h)







min J̃h(uh,v) =
1

2

∫

Ω

(yh(u,v) − yΩ)
2dx +

N

2
‖uh‖

2
L2(Γ) +

M

2
|v|2

(uh,v) ∈Wh,ad

.

The discrete adjoint state associated to a control (u,v) is the unique solution
ϕh(u,v) ∈ Yh0 of

∫

Ω

∇wh(x) · ∇ϕh(u,v)(x)dx =

∫

Ω

(yh(u,v)− yΩ(x))whdx ∀wh ∈ Yh0.

The variational normal derivative ∂hνϕh(u,v) ∈ Uh is defined through the
variational equality

∫

Γ

∂hνϕh(u,v)whdσ(x) =

∫

Ω

∇wh(x) · ∇ϕh(u,v)(x)dx

−

∫

Ω

(yh(u,v) − yΩ(x))whdx ∀wh ∈ Yh.
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Theorem 3.2 Problem (P̃h) has a unique solution (ūh, v̄h) with associated dis-

crete state and adjoint state ȳh and ϕ̄h, respectively. The following variational

inequality is satisfied:

∫

Γ

(Nūh − ∂hν ϕ̄h)(uh − ūh)dσ(x)

+
n
∑

j=1

(

Mv̄hj −

∫

Γ

∂hν ϕ̄hejdσ(x)
)

(vj − v̄hj)≥0 (3.3)

for all (uh,vh) ∈Wad,h.

We define (d̄h, d̄h) ∈Wh by

d̄h(x) = Nūh(x)− ∂hν ϕ̄h(x) and d̄hj =Mv̄hj −

∫

Γ

∂hν ϕ̄hejdσ(x).

First order necessary condition (3.3) can be written as
∫

Γ

d̄h(x)(uh(x)− ūh(x))dσ(x) ≥ 0 ∀uh ∈ Uh,ad, (3.4)

d̄hj(t− v̄hj) ≥ 0 ∀ t ∈ [α, β]. (3.5)

We will obtain now estimates for ‖ūh − ū‖L2(Γ) and |v̄ − v̄h| in terms of
the discretization parameter h. We obtain the same order of convergence as in
Casas and Raymond (2006).

Theorem 3.3 Let (ū, v̄) be the solution of (P̃) and for h > 0 let (ūh, v̄h) be the

solution of (P̃h). Then there exist h0 > 0 and C > 0 such that for all 0 < h < h0

√

‖ūh − ū‖2L2(Γ) + |v̄ − v̄h|2 ≤ Ch1−1/p

where p is given in Theorem 3.1.

Proof. We have the following error estimate (see Casas and Raymond, 2006,
Theorem 5.7): for u ∈ H1/2(Γ) and v ∈ Rn with (u,v) ∈Wad

‖∂νϕ(u,v) − ∂hνϕh(u,v)‖L2(Γ) ≤ C(‖u+ v‖H1/2(Γ) + 1)h1−1/p. (3.6)

According to Casas and Raymond (2006), Eq. (7.9) and Lemma 7.5, there
exists a control u∗h ∈ Uad,h such that

J̃ ′(ū, v̄)(u∗h, v̄) = J̃ ′(ū, v̄)(ū, v̄) (3.7)

and

‖ū− u∗h‖L2(Γ) ≤ Ch1−1/p. (3.8)
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Since the problem is linear-quadratic we have that

N‖ū− ūh‖
2
L2(Γ)+M |v̄− v̄h|

2 ≤ (J̃ ′(ū, v̄)− J̃ ′(ūh, v̄h))(ū− ūh, v̄− v̄h). (3.9)

Next we take (u,v) = (ūh, v̄h) in (3.2) and (uh,vh) = (u∗h, v̄) in (3.3) and
we get

J̃ ′(ū, v̄)(ū − ūh, v̄ − v̄h)≤ 0 ≤J̃ ′
h(ūh, v̄h)(u

∗
h − ūh, v̄ − v̄h).

We add at the right hand side ±J̃ ′
h(ūh, v̄h)(ū,0) to get

J̃ ′(ū, v̄)(ū− ūh, v̄ − v̄h) ≤ J̃ ′
h(ūh, v̄h)(u

∗
h − ū,0) + J̃ ′

h(ūh, v̄h)(ū − ūh, v̄ − v̄h).

We subtract at both sides J̃ ′(ūh, v̄h)(ū− ūh, v̄− v̄h) and add at the right hand
side −J̃ ′(ū, v̄)(u∗h − ū,0) which is equal to 0 due to (3.7),

(J̃ ′(ū, v̄)− J ′(ūh, v̄h))(ū − ūh, v̄ − v̄h)

≤ (J̃ ′
h(ūh, v̄h)− J̃ ′(ū, v̄))(u∗h − ū,0)

+(J̃ ′
h(ūh, v̄h)− J̃ ′(ūh, v̄h))(ū − ūh, v̄ − v̄h). (3.10)

To estimate the first summand we write directly the expressions for the deriva-
tives and use (3.6) and (3.8) to get

(J̃ ′
h(ūh, v̄h)− J̃ ′(ū, v̄))(u∗h − ū,0) ≤ Ch2(1−1/p). (3.11)

To estimate the second term we use (3.6) to obtain

(J̃ ′
h(ūh, v̄h)− J̃ ′(ūh, v̄h))(ū − ūh, v̄ − v̄h)

=

∫

Γ

(∂νϕūh,v̄h
− ∂hν ϕ̄h)(ū− ūh)dσ(x)

+
n
∑

j=1

∫

Γ

(∂νϕūh,v̄h
− ∂hν ϕ̄h)ejdσ(x)(v̄j − v̄hj)

≤ Ch1−1/p
√

‖ū− ūh‖2L2(Γ) + |v̄ − v̄h|2. (3.12)

And the result follows from relations (3.9)–(3.12).

Numerical experiments. Let Ω be a polygonal domain in R2, yΩ ∈ Lr(Ω)
for some r > 2, f(x) = 0, A = −∆, α = −2 and β = 2. We want to check if our
perturbation technique leads to a better approximation of yΩ. In the numerical
tests we fix N = 1 and the parameter M decreases from 1 to 0.001. We have
chosen the functions ej such that

supp ej = {xj + t(xj−1 − xj) : 0 ≤ t ≤ 1/8} ∪ {xj + t(xj+1 − xj) : 0 ≤ t ≤ 1/8}

and ej(xj) = 1, and ej is linear in the segments {xj+t(xj−1−xj) : 0 ≤ t ≤ 1/8}
and {xj + t(xj+1 − xj) : 0 ≤ t ≤ 1/8}.
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We have tested three examples:

1. Set Ω = (0, 1)2 and yΩ = 1/|x|2/3. This problem was studied in Casas and
Raymond (2006).

2. Ω is taken as the regular octagon inscribed in the unit circle with x1 =
(1, 0). Here we take yΩ = 1.

3. Ω is the same regular octagon, but yΩ = 3 (in this case yΩ > β).

The results of the tests are summarized in Tables 3, 4 and 5. We have included
the quantity of interest ‖ȳ − yΩ‖L2(Ω) and the cost 1

2N‖ū‖2L2(Γ) +
1
2M |v̄|2. It

can be observed that our perturbation technique increases the quality of the
approximation of the desired state as M tends to 0.

Table 3. Results for yΩ = 1/|x|2/3 in Ω = (0, 1)2.

Test 1 J(u) J̃(u,v)

M = 1 M = 0.1 M = 0.01 M = 0.001

‖ȳ − yΩ‖L2(Ω) 1.3195 1.3181 1.3057 1.2495 1.2353

Cost 0.1733 0.1741 0.1813 0.1916 0.1650

ūh(x1) 4.22× 10−2 4.22 × 10−2 4.22× 10−2 4.25 × 10−2 4.25 × 10−2

CG iterations 10 15 13 23 21

Table 4. Results for yΩ = 1 in an octagon.

Test 2 J(u) J̃(u,v)

M = 1 M = 0.1 M = 0.01 M = 0.001

‖ȳ − yΩ‖L2(Ω) 1.1375 1.1357 1.1206 1.0141 0.9756

Cost 0.3093 0.3099 0.3144 0.3313 0.2401

ūh(x1) 6.73× 10−3 6.69 × 10−3 6.35× 10−3 3.73 × 10−3 2.63 × 10−3

CG iterations 10 16 15 10 20

Table 5. Results for yΩ = 3 in an octagon.

Test 3 J(u) J̃(u,v)

M = 1 M = 0.1 M = 0.01 M = 0.001

‖ȳ − yΩ‖L2(Ω) 3.4125 3.4072 3.3618 3.2341 3.2341

Cost 2.7834 2.7885 2.8295 2.6740 2.5300

ūh(x1) 2.02× 10−2 2.01 × 10−2 1.90× 10−2 1.61 × 10−2 1.61× 10−2

CG iterations 10 16 15 21 22

We have solved the problems numerically with a regular mesh having 256
boundary edges on each side (this means 2.6 × 105 and 5.1 × 105 triangles,
respectively, on the square and the octagon). We have used a primal-dual active
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set strategy (as described in Casas, Mateos and Tröltzsch, 2005, and based on
the algorithm developed by Bergounioux, Ito and Kunisch, 1999) to solve the
constrained optimization problem. To deal with the unconstrained optimization
problems that come up in the procedure, we have used the conjugate gradient
method. As an indicator of the conditioning of the problem, we have included
in a row of the table the total number of conjugate gradient iterations. It can
be seen that this number increases very slowly as M decreases.

One of the difficulties in the resolution of the numerical problems is that
the convergence of uh(xj) → 0 may be very slow. Applying the same technique
of Corollary 2.2 we can expect that |ūh(xj)| ≤ Ch1/2−1/p. In the first case
yΩ ∈ Lr(Ω) for all r < 3. Since ω = π/2, we have that p < 3. In the other
cases, r = +∞, but for an octagon, qΩ = 3. So again p < 3. Therefore, we have
that the convergence rate at the corners is very slow:

|ūh(xj)| ≤ Chθ, with θ < 1/6.

For a polygon with 16 sides we have that qΩ = 7/3 and hence 1/2− 1/p < 1/14
and in the numerical solution the results at the corners are not reliable at all.
That is the reason we have not included polygons with more sides in our tests.
We have included the data on ūh(x1) in the tables to stress this fact.
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