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RESUMEN (en español) 

Tradicionalmente, los proyectos de software han utilizado exclusivamente BDs (bases de 

datos) relacionales. Sin embargo, recientemente la cantidad de datos a gestionar han 

aumentado exponencialmente, afectando negativamente al rendimiento de las BDs. Debido a 

esto, han surgido diferentes tecnologías especializadas para gestionar Big Data, siendo una de 

éstas las BDs NoSQL. Un tipo de estas BDs son las BDs orientadas a columnas, cuyo esquema 

contiene tablas sin relaciones entre sí y en las que cada tabla se diseña para que una consulta 

que se requiere ejecutar desde la aplicación pueda ser ejecutado, utilizando un modelo 

conceptual durante este diseño. Esto implica un esquema desnormalizado que fomenta la 

duplicación de datos, al poder consultarse el mismo dato en dos consultas diferentes. Esto 

conlleva problemas en cuanto a la consistencia lógica de los datos, que asegura que los mismos 

datos que se almacenan en dos tablas diferentes son realmente los mismos.  

En esta tesis abordamos dos problemas de las bases de datos orientadas a columnas: 1) el 

mantenimiento de la consistencia lógica o integridad de los datos ante cambios en los datos y 

2) el mantenimiento de la consistencia entre modelo conceptual y esquema cuando hay una

evolución de la BD. El primer problema se abordará desde dos enfoques diferentes: uno

preventivo denominado MDICA que evita la creación de inconsistencias al modificar los datos

en la BD y otro reactivo denominado CONCODA que detecta si se han creado inconsistencias

después de modificar los datos en la BD. El segundo problema se abordará a través de un

enfoque MDE (Model-driven Engineering) denominado CoDEvo que determinará cómo

evolucionar el esquema después de los cambios del modelo conceptual para mantener la

consistencia entre éste y el modelo conceptual, lo que denominamos consistencia inter-

modelo.

MDICA determina las sentencias de base de datos necesarias para ejecutar contra la base de 

datos una determinada modificación de datos, que consiste en una tupla para insertar, borrar 

o actualizar a nivel conceptual, manteniendo a su vez la consistencia lógica. MDICA ayuda a los

desarrolladores de dos maneras: generando las sentencias de BD necesarias para mantener la

consistencia lógica y generando mensajes para evitar problemas como la pérdida de

información, los datos repetidos redundantes o tablas vacías. Hemos realizado una



 
experimentación para validar MDICA, comprobando exhaustivamente las operaciones de BD 

que MDICA determinó para un conjunto de cambios en el nivel conceptual para su evaluación. 

El objetivo de CONCODA es determinar si una BD orientada a columnas mantiene la 

consistencia lógica después de que se hayan realizado una o varias modificaciones de datos 

contra la BD. Hemos ideado un oráculo utilizando una BD relacional que implementa el modelo 

conceptual debido a que las BDs relacionales conservan la consistencia lógica. Una vez 

realizadas las modificaciones de datos, tanto en la BD relacional como en la base de datos 

orientada a columnas, se ejecutarán consultas equivalentes en ambas BD. Si estas consultas 

devuelven los mismos datos, se garantiza la coherencia lógica. CONCODA también se ha usado 

en la experimentación para validar las sentencias de BDs determinadas por MDICA. 

El objetivo de CoDEvo es el de obtener los cambios específicos a aplicar sobre el esquema ante 

cambios en el modelo conceptual para mantener la consistencia entre ellos. Hemos analizado 

varios proyectos de código abierto para obtener patrones de cómo evoluciona el esquema 

para automatizar dicho proceso. Esta parte de la tesis se integrará en un framework que 

abordará otros problemas relacionados con la evolución de la base de datos, incluyendo el 

mantenimiento de la consistencia lógica.  

 

 
RESUMEN (en Inglés) 

 

Traditionally, software projects have exclusively used relational DBs (databases). However, in 

recent times the amount of data that these projects manage have exponentially increased, 

negatively affecting the DB performance. Due to this, different technologies specialized to 

manage big data have emerged, being one of these technologies the NoSQL DBs. One type of 

these DBs are the column-oriented DBs, whose schema contains tables without relationships 

between each other. Each one of these tables is designed specifically for satisfying the 

requirements of a query that will be executed by the client application, using a conceptual 

model during this design. This design strategy implies a denormalized schema that encourages 

data duplication, as the same data can be queried several times, thus storing the data in each 

of the tables that satisfy the queries. This brings problems regarding the logical consistency of 

the data, which ensures that the same data that are stored in two different tables are actually 

the same data.  

In this thesis we address two problems from column-oriented databases: 1) the maintenance 

of the logical consistency or data integrity when there are changes in the data and 2) the 

maintenance of the consistency between conceptual model and schema when there is an 

evolution of the DB. The first problem will be addressed from two different approaches: a 

preventive one named MDICA that prevents the creation of inconsistencies when modifying 

data in the DB and a reactive one named CONCODA that detects if inconsistencies have been 

created after modifying data in the DB. The second problem will be addressed through a MDE 

(model-driven engineering) approach named CoDEvo that will determine how to evolve the 

schema after the conceptual model changes in order to maintain the consistency between it 

and the conceptual model, which we name as inter-model consistency. 



 
MDICA determines the database statements required to perform against the database a given 

modification of data, which consists on a tuple to insert, delete, or update at the conceptual 

level, while maintaining the logical consistency. MDICA helps developers in two ways: 

generating the statements needed to maintain data integrity and producing messages to avoid 

problems such as loss of information, redundant repeated data, or gaps of information in 

tables. We have performed experimentation to validate MDICA, exhaustively checking the 

database operations that MDICA determined for a set of changes at the conceptual level for 

evaluation. 

CONCODA determines if a column-oriented DB maintains the logical consistency after one or 

more modifications of data have been performed against the DB. We have devised an oracle 

using a relational DB that implements the conceptual model, due to the fact that relational 

databases ensure logical consistency through the normalization of the schema and the 

implementation of integrity constraints. After the modifications of data are performed against 

both the relational DB and the column-oriented database, equivalent queries will be executed 

against both DBs. If these queries return the same data, then the logical consistency is ensured. 

CONCODA also serves as validation for MDICA to ensure that the database statements 

determined by MDICA actually maintain the logical consistency. 

The objective of CoDEvo is to obtain the changes that need to be applied to the schema 
when the conceptual model evolves in order to maintain consistency between the 
conceptual model and the schema. We have analysed several open-source projects to obtain 
patterns of how the schema evolves to automate this process. This part of the thesis will be 
integrated into a framework that will address other problems related to database evolution, 
including the maintenance of logical consistency. 
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ABSTRACT 

Traditionally, software projects have exclusively used relational DBs (databases). However, in 

recent times the amount of data that these projects manage have exponentially increased, 

negatively affecting the DB performance. Due to this, different technologies specialized to 

manage big data have emerged, being one of these technologies the NoSQL DBs. One type of 

these DBs are the column-oriented DBs, whose schema contains tables without relationships 

between each other. Each one of these tables is designed specifically for satisfying the 

requirements of a query that will be executed by the client application, using a conceptual model 

during this design. This design strategy implies a denormalized schema that encourages data 

duplication, as the same data can be queried several times, thus storing the data in each of the 

tables that satisfy the queries. This brings problems regarding the logical consistency of the data, 

which ensures that the same data that are stored in two different tables are actually the same 

data.  

In this thesis we address two problems from column-oriented databases: 1) the maintenance of 

the logical consistency or data integrity when there are changes in the data and 2) the 

maintenance of the consistency between conceptual model and schema when there is an 

evolution of the DB. The first problem will be addressed from two different approaches: a 

preventive one named MDICA that prevents the creation of inconsistencies when modifying 

data in the DB and a reactive one named CONCODA that detects if inconsistencies have been 

created after modifying data in the DB. The second problem will be addressed through a MDE 

(model-driven engineering) approach named CoDEvo that will determine how to evolve the 

schema after the conceptual model changes in order to maintain the consistency between it and 

the conceptual model, which we name as inter-model consistency. 

MDICA determines the database statements required to perform against the database a given 

modification of data, which consists on a tuple to insert, delete, or update at the conceptual 

level, while maintaining the logical consistency. MDICA helps developers in two ways: generating 

the statements needed to maintain data integrity and producing messages to avoid problems 

such as loss of information, redundant repeated data, or gaps of information in tables. We have 

performed experimentation to validate MDICA, exhaustively checking the database operations 

that MDICA determined for a set of changes at the conceptual level for evaluation. 

CONCODA determines if a column-oriented DB maintains the logical consistency after one or 

more modifications of data have been performed against the DB. We have devised an oracle 

using a relational DB that implements the conceptual model, due to the fact that relational 

databases ensure logical consistency through the normalization of the schema and the 

implementation of integrity constraints. After the modifications of data are performed against 

both the relational DB and the column-oriented database, equivalent queries will be executed 

against both DBs. If these queries return the same data, then the logical consistency is ensured. 

CONCODA also serves as validation for MDICA to ensure that the database statements 

determined by MDICA actually maintain the logical consistency. 

The objective of CoDEvo is to obtain the changes that need to be applied to the schema when 

the conceptual model evolves in order to maintain consistency between the conceptual model 

and the schema. We have analysed several open-source projects to obtain patterns of how the 

schema evolves to automate this process. This part of the thesis will be integrated into a 



 

framework that will address other problems related to database evolution, including the 

maintenance of logical consistency. 



 

RESUMEN 

Tradicionalmente, los proyectos de software han utilizado exclusivamente BDs (bases de datos) 

relacionales. Sin embargo, recientemente la cantidad de datos a gestionar han aumentado 

exponencialmente, afectando negativamente al rendimiento de las BDs. Debido a esto, han 

surgido diferentes tecnologías especializadas para gestionar Big Data, siendo una de éstas las 

BDs NoSQL. Un tipo de estas BDs son las BDs orientadas a columnas, cuyo esquema contiene 

tablas sin relaciones entre sí y en las que cada tabla se diseña para que una consulta que se 

requiere ejecutar desde la aplicación pueda ser ejecutado, utilizando un modelo conceptual 

durante este diseño. Esto implica un esquema desnormalizado que fomenta la duplicación de 

datos, al poder consultarse el mismo dato en dos consultas diferentes. Esto conlleva problemas 

en cuanto a la consistencia lógica de los datos, que asegura que los mismos datos que se 

almacenan en dos tablas diferentes son realmente los mismos.  

En esta tesis abordamos dos problemas de las bases de datos orientadas a columnas: 1) el 

mantenimiento de la consistencia lógica o integridad de los datos ante cambios en los datos y 2) 

el mantenimiento de la consistencia entre modelo conceptual y esquema cuando hay una 

evolución de la BD. El primer problema se abordará desde dos enfoques diferentes: uno 

preventivo denominado MDICA que evita la creación de inconsistencias al modificar los datos 

en la BD y otro reactivo denominado CONCODA que detecta si se han creado inconsistencias 

después de modificar los datos en la BD. El segundo problema se abordará a través de un 

enfoque MDE (Model-driven Engineering) denominado CoDEvo que determinará cómo 

evolucionar el esquema después de los cambios del modelo conceptual para mantener la 

consistencia entre éste y el modelo conceptual, lo que denominamos consistencia inter-modelo. 

MDICA determina las sentencias de base de datos necesarias para ejecutar contra la base de 

datos una determinada modificación de datos, que consiste en una tupla para insertar, borrar o 

actualizar a nivel conceptual, manteniendo a su vez la consistencia lógica. MDICA ayuda a los 

desarrolladores de dos maneras: generando las sentencias de BD necesarias para mantener la 

consistencia lógica y generando mensajes para evitar problemas como la pérdida de 

información, los datos repetidos redundantes o tablas vacías. Hemos realizado una 

experimentación para validar MDICA, comprobando exhaustivamente las operaciones de BD 

que MDICA determinó para un conjunto de cambios en el nivel conceptual para su evaluación. 

El objetivo de CONCODA es determinar si una BD orientada a columnas mantiene la consistencia 

lógica después de que se hayan realizado una o varias modificaciones de datos contra la BD. 

Hemos ideado un oráculo utilizando una BD relacional que implementa el modelo conceptual 

debido a que las BDs relacionales conservan la consistencia lógica. Una vez realizadas las 

modificaciones de datos, tanto en la BD relacional como en la base de datos orientada a 

columnas, se ejecutarán consultas equivalentes en ambas BD. Si estas consultas devuelven los 

mismos datos, se garantiza la coherencia lógica. CONCODA también se ha usado en la 

experimentación para validar las sentencias de BDs determinadas por MDICA. 

El objetivo de CoDEvo es el de obtener los cambios específicos a aplicar sobre el esquema ante 

cambios en el modelo conceptual para mantener la consistencia entre ellos. Hemos analizado 

varios proyectos de código abierto para obtener patrones de cómo evoluciona el esquema para 

automatizar dicho proceso. Esta parte de la tesis se integrará en un framework que abordará 

otros problemas relacionados con la evolución de la base de datos, incluyendo el mantenimiento 

de la consistencia lógica.  





I INTRODUCTION 

In this chapter we introduce the main information of the thesis, focusing on the main goals of 

thesis, how we achieved them, the contributions obtained and the publications that the doctoral 

candidate authored related to the thesis.  

In section I.1 we detail the research context of the thesis. In section I.2 we describe the research 

hypothesis. In section I.3 we describe the research goals of the thesis, whose contribution are 

detail in section I.4 and the methodologies that we used during the thesis are described in 

section I.5. The publications related to the thesis research are detailed in section I.6 alongside 

the research management. The chapter finishes by detailing the thesis manuscript organization 

in section I.7. 

I.1 RESEARCH CONTEXT 

Since the beginnings of software development, databases have been used to store and manage 

the data of software applications [1]. Since the 1970s and until now the databases that have 

been used the most in software projects are the relational databases [2]. In these databases, 

data are stored in tables with relationships between these tables, which allows the data of 

different tables to be joined between each other, allowing a normalized model where data is 

not repeated among the tables. However, as more data is stored in the database, the database 

operations performed against it, such as queries and data manipulation operations (insertions, 

deletions, and updates), become more costly [3]. This was not a major problem until the 

beginning of the current century, when the amount of data to manage started to increase 

exponentially, slowing the execution of the database operations [4].  

In order to improve the performance of the database, the database can be distributed in several 

physical nodes that together compose a cluster, each one storing a portion of the data, as well 

as replicating these data in more than one node. There have been new proposals regarding 

relational databases to distribute the data, although the scalability that they provide is still 

limited [5] due to the difficulties in distributing the data while assuring the ACID properties 

(atomicity, consistency, isolation, and durability).  

Due to the performance limitations of relational databases when managing big data, 

corporations such as Google and Facebook started in the 2000s their research on alternatives to 

relational databases when working with big data. One of these alternatives were a wide set of 

new databases, each one with a different approach, which were grouped together with the 

denomination NoSQL (“Not only SQL")[6]–[10]. 

NoSQL databases are specifically used when high performance to both insert and query large 

amounts of data is needed, and relational databases cannot achieve this performance [11]. This 

performance is achieved in part by allowing a distributed system as well as by replicating data, 

which is difficult to achieve in traditional relational databases. Note that distributing the data 

across physical nodes of a cluster makes more difficult to guarantee the ACID properties, which 

implies several issues such as: 

• The data integrity (also referred as logical consistency in the rest of this thesis [12]) is 

not guaranteed in the database, requiring it to be maintained in the application side 

[13]. 
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• It is more difficult to validate the transactions performed against the database [14].  

Despite not guaranteeing the ACID properties, NoSQL databases guarantee the BASE properties 

[15]:  

• Basic Availability: the database will at least answer even where there is a failure in part 

of the distributed system. 

• Soft state: the data stored can change without external intervention. 

• Eventual consistency: the nodes that store the same replicated data will eventually store 

the same values. 

Depending on their data model [6], NoSQL databases are classified in:  

• Key-value-oriented such as Redis, Riak or Dynamo. 

• Column-oriented such as Cassandra, HBase or BigTable. 

• Document-oriented such as MongoDB, Couchbase or CouchDB.  

• Graph-oriented such as Neo4J, JanusGraph or TigerGraph.  

In this thesis we focus on column-oriented databases, which are composed of tables with no 

relationships between each other, in contrast to relational databases. The contributions of this 

thesis aim to be useful for column-oriented databases in general, but we have particularized 

during the research in the most used NoSQL column-oriented databases Apache Cassandra, 

developed by the Apache Software Foundation [16]. There are significant differences between 

the data model of a Cassandra database and a relational database such as the aforementioned 

lack of relationships in Cassandra. Another difference is regarding the primary key, as the 

primary key from a Cassandra table is composed of two types:  

• Partition key: determines the physical node where the data is going to be stored. 

• Clustering key: determines how the data is ordered inside a physical node.  

By default, the results of a Cassandra query can only be filtered through a WHERE clause using 

only values from the primary key, being the partition key mandatory and the clustering key 

optional values (see section II.1.7). Secondary indexes, although available, are not 

recommended in Cassandra due to the deficient performance that they generate when they are 

used in a query [13]. Cassandra also allows a wider range of data to be stored in the database 

than relational databases, such as collections which allows to store more than one value in a 

table cell.  

Another significant difference is the creation of the database schema. In both relational 

databases and column-oriented databases it is recommended to design a conceptual model that 

represents a normalized version of the components of the system. In the case of a relational 

database, the logical model or schema is created based on this conceptual model, maintaining 

the normalization of the model. However, in column-oriented databases such as Cassandra the 

creation of the schema or logical model is different, as the tables are created following a query-

driven approach to retrieve data faster, in which each table satisfies a query to be executed by 

the client application [17]–[19]. This approach implies data duplication, as the same data can be 

queried in more than one way, thus creating more than one table to satisfy each query. This 

duplication of data and the absence of internal mechanisms such as integrity constraints makes 

more difficult to maintain of the logical consistency.  

This thesis addresses two research lines focused on problems related to column-oriented 

databases:  
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• The logical consistency maintenance for changes in the data by client applications 

(chapters III and IV of this thesis). 

• Database evolution, focusing on maintaining the consistency between conceptual 

model and the schema (chapter V of this thesis). 

Usually, the data of a database is modified through the execution of database statements 

embedded in a client application to insert, delete, and update data. The implementation of these 

modifications is usually organized following a normalized model such as the conceptual model 

by implementing a function for each modification. For instance, in a relational database with a 

normalized schema each modification of data involving a conceptual model entity is usually 

implemented in a function that performs the modification in only one table. Furthermore, when 

some data is repeated such as in foreign keys, integrity constraints are defined internally in the 

database to ensure the logical consistency. However, in column-oriented databases the 

denormalization and lack of integrity constrains makes difficult to ensure this consistency. When 

a modification of data is performed against the database, several tables are affected by the 

modification, creating inconsistencies if one of them is forgotten during the implementation of 

the database statements. For this purpose, we propose two approaches for the maintenance 

of the logical consistency, one preventive for new applications named MDICA and a reactive 

one for existing application named CONCODA, that will determine the following: 

• MDICA: the database statements required to perform a modification of data (insertion, 

deletion or update of a tuple at the conceptual level) in the column-oriented database 

while maintaining the logical consistency. 

• CONCODA: if the database maintains the logical consistency after one or more 

modifications of data have been performed against the column-oriented database. 

The other research line is related to changes in the structure of the schema of a column-oriented 

database. Both the conceptual model and the schema can change during the lifetime of a 

project, as new requirements can trigger their evolution. As data model design methodologies 

use an explicit conceptual model to design the schema, an inter-model consistency exists that 

ensures that the schema fulfils the conceptual restrictions specified in the conceptual model 

(relationships, primary keys…). A new requirement that changes either the conceptual model or 

the schema may jeopardize this inter-model consistency. For instance, if a conceptual model 

evolves by adding a new conceptual restriction and the schema is not properly updated, the 

schema might allow to store new data that contradicts this new restriction. This problem is even 

more critical in NoSQL column-oriented databases where repetition of data is common. We 

approach this problem in this thesis by proposing a MDE (model-driven engineering) approach 

named CoDEvo that determines how the schema must evolve when there is an evolution of the 

database that changes the conceptual model to maintain the inter-model consistency. 

I.2 RESEARCH HYPOTHESIS 

This thesis addresses problems related to column-oriented databases regarding the logical 

consistency and database evolution. The techniques developed for problems related to these 

topics in databases have been mostly focused on relational databases. However, for NoSQL 

column-oriented databases, these techniques cannot be applied due to the differences that 

exists with relational databases such as in the data model, where repetition of data is common. 

Therefore, innovative approaches focused on column-oriented databases are required to solve 

these specific problems. This general hypothesis is divided in the following three: 
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H1. When modifying data in a column-oriented database, the logical consistency is usually 

maintained in the client applications by implementing the appropriate database 

statements and related code to insert, update or delete data in the required tables. This 

might lead to mistakes during this implementation produced by developers that incur 

in the loss of this consistency. An approach that automatically provides these database 

statements or another one that determines if the database statements executed 

maintain the logical consistency, will help developers to avoid the production of 

inconsistencies. 

H2. The column-oriented database Apache Cassandra allows the use of the “materialized 

views” feature, which automatically maintains the logical consistency for modifications 

of data by creating a table-like structure based on a primary table. However, their use is 

limited to a set of possible table designs, as it is detailed in section II.2.1. An approach 

to maintain the logical consistency that is not limited will be a general solution that can 

be applied in all possible scenarios.  

H3. The data models of a database, such as the conceptual model and the schema, are 

designed after an initial set of project requirements. When these requirements change, 

the data models may be updated to keep fulfilling the project requirements. In column-

oriented databases where the schema is usually denormalized and techniques focused 

on relational databases cannot be applied to it, it is more difficult to maintain the 

consistency between the conceptual model and the schema. An approach that guides 

how to evolve the database when there are requirement changes will help developers 

to maintain this consistency between the conceptual model and the schema, avoiding 

mistakes in the definition of the schema. 

I.3 RESEARCH GOALS 

The main goal of this thesis is to maintain both the logical consistency and the inter-model 

consistency when there is an evolution of the database, which is divided in two research goals:  

1. Preserve the logical consistency of the data that is stored in a column-oriented database. 

We have approached this research goal in two ways: a preventive one to avoid the creation 

of inconsistencies and a reactive one that detects if inconsistencies were created after the 

data is modified by a client application. We defined the following subgoals for each of these 

approaches: 

1.1. Prevent the creation of inconsistencies when insertions, deletions, and updates at the 

conceptual level (tuples of data), that we name modifications of data, are performed 

against the column-oriented database through the execution of database statements. 

We divide this subgoal in the following ones: 

1.1.1. Determine the actions required to maintain logical consistency when a 

modification of data is performed against a column-oriented database.  

1.1.2. Automate the maintenance of the logical consistency to prevent the creation of 

inconsistencies by determining the database statements required to perform a 

modification of data against the database. 

1.1.3. Evaluate and validate the research goal 1.1.2 through case studies. 

1.2. Detect the inconsistencies that exist in a column-oriented database after performing 

one or more modifications of data. When inconsistencies are detected, identify the 

tables and the data stored in them that are inconsistent.  
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2. Maintain the inter-model consistency that exists between a conceptual model and a 

column-oriented database schema when there is an evolution of the database due to new 

requirements. This sub-goal is further divided in the following specific sub-goals: 

2.1. Determine the type of changes in the data models that occur in real open-source 

projects by analyzing them, focusing on how they affect the database schema regarding 

the consistency between the conceptual model and the schema. 

2.2. Determine the actions to perform in the column-oriented database schema to maintain 

the inter-model consistency for specific changes in the conceptual model in order to 

maintain the consistency between conceptual model and the schema. 

2.3. Evaluate the efficacy and efficiency of the approach established from sub-goal 2.2 using 

real projects that use column-oriented databases.  

Figure 1 displays the research goals hierarchically.  

RG 1 
MAINTENANCE OF THE 
LOGICAL CONSISTENCY

RG 2
DATABASE 

EVOLUTION

RG 1.1
INCONSISTENCY 

PREVENTION

RG 1.2
INCONSISTENCY 

DETECTION

RG 2.1
PROJECT ANALYSIS

RG 1.1.3 
VALIDATION

RG 2.3 
VALIDATION

RG 1.1.2 
AUTOMATION

RG 2.2
 APPROACH 

DEFINITION

RG 1.1.1 
APPROACH 
DEFINITION

 

Figure 1 Thesis Research Goals 

I.4 CONTRIBUTIONS 

The main contribution of the thesis is to maintain both the logical consistency and the inter-

model consistency of a column-oriented database, particularizing on Cassandra databases. 

Considering the thesis research goals defined in section I.3, we have made the following 

contributions for each research goal: 

I.4.1 Research goal 1 

C1. The definition of the conditions that tables must satisfy to guarantee a good design in a 

column-oriented databases according to a given conceptual data model. 
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C2. The determination of the database statements that are required to perform against the 

databases in order to perform a modification of data while maintaining the logical 

consistency through a novel approach named MDICA. 

C3. The generation of advises when there are issues during the modification of data that 

cannot be automatically solved. 

C4. Automation of MDICA in a tool named CONSISTE. 

C5. The evaluation of MDICA through its application to a set of case of studies obtained from 

the literature where each one contains a conceptual model and a schema. 

C6. The determination of whether a column-oriented database maintains the logical 

consistency after modifications of data have been performed against the database 

through a novel approach named CONCODA. 

C7. The determination of the tables where data inconsistencies have been detected 

regarding the logical consistency in a column-oriented database. 

C8. Am empirical validation of MDICA using CONCODA. 

I.4.2 Research goal 2 

C9. Establishment of a framework for the evolution of a column-oriented database when 

there are changes in the requirements. 

C10. An analysis of the conceptual model and schema changes that occur in open-source 

projects due to new requirements. 

C11. Definition of an MDE approach named CoDEvo for schema evolution to maintain the 

inter-model consistency when there is a change in the requirements that directly change 

the conceptual model. 

C12. Determination of the specific actions required to evolve a schema when there is a 

change that modified the conceptual model that was used to design the schema. 

C13. Automation of CoDEvo in a tool. 

C14. Validation of CoDEvo by comparing the schemas determined by it against the schemas 

determined by the developers of a set of open-source projects where there were 

requirement changes. 

I.5 RESEARCH METHODOLOGY 

In this section we first describe the methodologies that have been used in this thesis, and then 

map for each research goal the methodologies used to achieve them: 

• Literature survey: we analysed research work that address schema design, schema 

evolution and logical consistency maintenance. We also considered how these issues 

were solved in open-source projects. 

• Action research [20]: Class of methods that combine the theory and practice by 

considering the needs of real projects.  

• Empirical validation: we validated the results of the research using real case studies from 

open-source projects. This allowed us to check the validity of the approaches by 

comparing them against a real system. 
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• Incremental development: we used incremental processes based on agile development 

methodologies such as Scrum. The creation of tools using these processes allow to 

incrementally add the results of the research. 

These methodologies were applied in the corresponding research goals (RGs): 

• RG 1.1.1: We performed a literature survey to obtain information about the diverse 

types of modifications of data from both the literature and from open-source projects 

that use column-oriented databases. 

• RG 1.1.2: We applied the action research methodology using the knowledge obtained in 

RG 1.1.2 to develop MDICA to maintain the logical consistency. Then, using the 

incremental development, we implemented this approach in a tool. 

• RG 1.1.3: We validated  MDICA using the empirical validation methodology through its 

application in several case studies composed of a conceptual model and a database 

schema obtained from different projects from the literature. 

• RG 1.2: We applied the action research methodology to develop CONCODA, which 

checks if a set of database statements against a column-oriented database maintains 

the logical consistency. We validated CONCODA through the empirical validation 

methodology by applying it to the case studies used in RG 1.1.3. 

• RG 2.1:  We performed a literature survey from research works and open-source 

projects, obtaining information about the different changes that could modify the 

conceptual model and would require further actions in the schema to maintain the 

inter-model consistency.  

• RG 2.2: We applied the action research methodology to develop CoDEvo to maintain the 

inter-model consistency after a change in the conceptual model. This approach was 

implemented in a tool using the incremental development methodology. 

• RG 2.3: We validated CoDEvo using the empirical validation methodology through the 

application of the developed approach in several open-source projects with a schema 

evolution history. 

I.6 PUBLICATIONS AND RESEARCH MANAGEMENT 

In this section we enumerate and describe the different publications that we have authored 

during the thesis, mapping each publication with one or more of the contributions of this thesis 

that were enumerated in the previous section. Figure 2 displays a summary of these publications 

organized by research goals (RG 1.1, RG 1.2, and RG 2) and an additional line for publications 

that were a general dissemination of the research. Regarding the RG 1.1 and RG 1.2 we have 

published several works in national and international conferences as well as two JCR journals. 

Regarding the RG 2, we have also published several works in national and international 

conferences, and we have also submitted a work to the JCR journal “Journal of Systems and 

Software” whose detail is presented in the chapter V of this thesis. The Research Goal 2 was 

done in collaboration with the Rochester Institute of Technology (RIT) from New York, USA. This 

collaboration started in 2020, conducting a research visit in RIT of 3 months from January 2022 

to April 2022.  

In addition to the works published in journals and conferences, the doctoral candidate has also 

attended to several summer schools related to the topics of the thesis, as well as presented the 

advances of the thesis in several locally and internationally events. 
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In the next subsections we detail the publications for each research line as well as general 

divulgation publications, specifying which contribution is addressed in each work. 

Year 0
(Sept. 2017)

Year 1
(Sept. 2018)

Year 2
(Sept. 2019)

Year 3
(Sept. 2020)

Year 4
(Sept. 2021)

June
 2022

Journal JCR
Journal JCR (sent)

Doctoral Symposium
International workshop

National conference
Regional conference

Masther thesis
Book

14 publications, 
13 as first author
1 publication in 

review

2 publications

2 publication
3 publications
4 publications
1 publication
1 publication

2 tools 
developed

CoDEvo

CONSISTE

General divulgation 
of the thesis

4  posters

1 talk in RIT- RIR event

1 publication

Collaboration with Rochester 
Institute of Technology, RIT (USA) 

3 months of research 
internship in RIT (USA)

Research goal 1.1

Research goal 1.2

Research goal 2

TIN2013-46928-
C3-1-R

TIN2016-76956-C3-1-R
GRUPIN14-007

National and 
Regiona research 

projects

Research projects funded by:

TIN2013-46928-C3-1-R
TIN2016-76956-C3-1-RThe Spanish Ministry

The Principality of Asturias GRUPIN14-007

Participation in 3 
research projects

1 research grant

3 summer schools

1 publication

Formation and 
research visits

PID2019-105455GB-C32

BP20-184

PID2019-105455GB-C32 

 

Figure 2 Summary of the thesis research and divulgations 

I.6.1 Research goal 1.1: Maintenance of the logical consistency-Preventive approach 

The RG 1.1 addresses the maintenance of the logical consistency from a preventive point of view 

by providing the database statements required to perform a desired modification of data. For 

this research goal we published the following 6 publications, indicating at the end of each 

reference the contributions provided in it: 
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[21] Pablo Suárez-Otero. Advisor: Javier Tuya. Mantenimiento de la consistencia lógica en bases 

de datos NoSQL Cassandra ante modificaciones de datos a nivel de modelo conceptual de datos. 

2017. (Master thesis)-C2, C3 

[22] Pablo Suárez-Otero, Javier Gutiérrez, Claudio de la Riva and Javier Tuya. Mantenimiento de 

la Consistencia Lógica en Cassandra. Jornadas XXII Jornadas de Ingeniería del Software y Bases 

de Datos. 2017 (JISBD 2017)-C2 

[23] Pablo Suárez-Otero, María José Suárez-Cabal and Javier Tuya. Evaluación del 

mantenimiento de la consistencia lógica en Cassandra. Jornadas XXIII Jornadas de Ingeniería del 

Software y Bases de Datos. 2018 (JISBD 2018)-C2 

[24] Pablo Suárez-Otero, María José Suárez-Cabal and Javier Tuya. Leveraging conceptual data 

models for keeping Cassandra database integrity. WEBIST 2018-Proceedings of the 14th 

International Conference on Web Information Systems and Technology. V1. 2018 (APMDWE 

18)-C2 

[25] Pablo Suárez-Otero, María José Suárez-Cabal and Javier Tuya. Journal of Web Engineering. 

2019 (JWE)-C2, C3 

[26] María José Suárez-Cabal, Pablo Suárez-Otero, Claudio de la Riva and Javier Tuya. MDICA: 

Maintenance of data integrity in column-oriented database applications. Computer Standards 

& Interfaces. 2023 (CSI)-C1, C2, C3, C5 

We started addressing this research goal before the thesis began in a Master thesis by proposing 

an approach to maintain the logical consistency for insertions and deletions of data, although 

with room for improvement. This master thesis received a “Alan Turing” award as second-best 

master thesis focused on software engineering by the “Colegio Oficial de Ingenieros 

Informáticos del Principado de Asturias” in 2019. 

These first advances were also published among three conference articles [22]–[24]. First, we 

proposed an initial approach for maintaining the logical consistency [22], publishing its 

evaluation in a later work [23].A more refined approach, along with its evaluation, was published 

later in an international workshop [24]. 

In [25] we published our first work in a JCR journal, where we defined a preliminary approach to 

address the maintenance of the logical consistency, as well as our first empirical validation. This 

was completed in another JCR journal, formalizing it, and naming it as MDICA [26]. The detail of 

these works is presented in this thesis in Chapter III.  

As a result of this research, a tool named CONSISTE was developed: 

CONSISTE: A tool that automatically provides the database statements to be executed given a 

tuple to insert, delete or update. It additionally allows the automation of these database 

statements by executing them against the database. C4 

I.6.2 Research Goal 1.2: Maintenance of the logical consistency-Reactive approach 

The research goal 1.2 focuses on maintaining the logical consistency from a reactive point of 

view, by checking if the database currently has logical consistency. We have published 2 works 

regarding this research goal: 
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[27] Pablo Suárez-Otero, María José Suárez-Cabal and Javier Tuya. Verificación del 

mantenimiento de la consistencia lógica en bases de datos Cassandra. XXIV Jornadas de 

Ingeniería del Software y Bases de Datos. 2019 (JISBD 2019)-C6, C7, C8 

[25] Pablo Suárez-Otero, María José Suárez-Cabal y Javier Tuya. Journal of Web Engineering. 

2019 (JWE)-C8 

We first published the definition of the approach named “CONCODA” that addresses this 

research goal in [27]. In this work we also presented its application to validate MDICA in a 

preliminary evaluation. The complete evaluation of this approach was published in [25]. In 

Chapter IV we include part of these works, extending them in order to provide more detail to 

the process of CONCODA. 

I.6.3 Research Goal 2: Database evolution: Schema evolution 

The research goal 2 focuses on maintaining the consistency between the conceptual model and 

the schema of a column-oriented database such as Cassandra. This research goal was addressed 

in a collaboration with the assistant professor Michael J. Mior from the Rochester Institute of 

Technology. This research line has 3 publications and an article submitted to a JCR journal: 

[28] Pablo Suárez-Otero, Michael J. Mior, María José Suárez-Cabal and Javier Tuya. Maintaining 

NoSQL database quality during conceptual model evolution. 2020 IEEE International Conference 

on Big Data. 2020 (BigData 20)-C9, C10 

[29] Pablo Suárez-Otero, Michael J. Mior, María José Suárez-Cabal and Javier Tuya. An Integrated 

Approach for Column-Oriented Database Application Evolution Using Conceptual Models. 

International Conference on Conceptual Modeling. 2021. (CoMoNoS 21)-C9 

[30] Pablo Suárez-Otero, Michael J. Mior, María José Suárez-Cabal and Javier Tuya. Evolución en 

sistemas de bases de datos orientadas a columnas ante cambios conceptuales. XXV Jornadas de 

Ingeniería del Software y Bases de Datos. 2021 (JISBD 21)-C8 

[31] Pablo Suárez-Otero, Michael J. Mior, María José Suárez-Cabal and Javier Tuya. CoDEvo: 

Column family database evolution using model transformations. Sent to JCR Journal “Journal of 

Systems and Software”, under review. 2022. (CoDEvo)-C10, C11, C12, C14 

We first published a proposal of a framework for the evolution of the database when there is a 

change in the requirements that evolve the conceptual model and the schema in [28] and in 

[30]. In these works, we also analysed several open-source projects to obtain knowledge about 

the changes in the conceptual model that evolve the schema due to changes in the requirements 

that initially changed the conceptual model.  

The previous framework was extended in [29] by also considering direct changes to the schema 

as well as specifying how each part of the framework (inter-model consistency, logical 

consistency, and client application update) is going to be addressed. This framework description 

is included in Chapter V of this thesis. 

In [31] we approached in detail the evolution of the schema to maintain the consistency 

between it and the conceptual model. We created a MDE approach where, given a change in 

the conceptual model, it provides the changes to perform in the schema to maintain this 

consistency. Most of this work is included in Chapter V of the thesis. This approach was 

implemented in a tool also named CoDEvo that automates the process: 
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CoDEvo: A tool based on MDE that automatically provides the changes that are required to 

evolve the schema after a change in the conceptual model. This information is provided using 

model. C13 

I.6.4 General dissemination related to the Thesis 

We have published 3 articles in regional and international conferences where we presented the 

main objectives of this thesis.  

[32] Pablo Suárez-Otero. Analysis of the Logical Consistency in Cassandra. 2018 IEEE 11th 

International Conference on Software Testing, Verification and Validation. 2018. (ICST 18).  

[33] Pablo Suárez-Otero. Mantenimiento de la consistencia lógica en Cassandra. VIII Jornadas 

doctorales de la Universidad de Oviedo. 2019. (JD 19) 

[34] Pablo Suárez-Otero. Towards data integrity in Cassandra database applications using 

conceptual models. Proceedings of the ACM/IEEE 42nd International Conference on Software 

Engineering: Companion Proceedings. 2020. (ICSE 20) 

First, we presented a doctoral symposium at the top conference on software testing, ICST [32]. 

In this work we briefly described our objectives and research timeline. In [33] we did a similar 

work, presenting it in a regional conference where doctoral candidates presented their advances 

in their PhD. Lastly, we published a thesis divulgation in the doctoral symposium track of the 

most important conference on software engineering, ICSE [34], where we obtained useful 

feedback to our work from a panel of experts in software engineering. 

We also published several posters where we explained the advances of the thesis. Most of these 

posters were published during the doctoral symposiums organized by the doctoral committee 

of the University of Oviedo (JSD 18, JSD 19, JSD 20, JSD 21) and one was presented during the 

workshop A-TEST in 2018 (A-TEST 18). 

During this thesis, a book intended to be used by students of a Big Data Master in the Valencian 

International University was published in 2021 [35]. In this book, parts of the advances in 

maintenance of the logical consistency were included. 

[35] Pablo Suárez-Otero. “Sistemas de almacenamiento y gestión Big Data”. Valencia 

International University, 2021 (VIU) 

I.6.5 Projects and Research Management 

This thesis has been done under the supervision of the Software Engineering Research Group 

(GIIS) of the University of Oviedo, specially by Javier Tuya and María José Suárez-Cabal. The first 

two research lines were supervised entirely by them. As for the third research line, we started a 

collaboration with assistant professor Michael J. Mior from the Rochester Institute of 

Technology (RIT). 

During the collaboration with the assistant professor Mior, the doctoral candidate visited the 

Rochester Institute of Technology once from the 24th of January of 2022 to the 23rd of April of 

2022. During this stay, the work related to the third research line was finished.  

This thesis was funded by several national and regional projects, which were leaded by Javier 

Tuya and Claudio de la Riva: 
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PERTEST – Pruebas de la persistencia de datos y perspectiva de usuario bajo nuevos 

paradigmas - TIN2013-46928-C3-1-R: Research project funded by the Spanish ministry about 

software testing in Big Data. Main researcher: Javier Tuya 

TestEAMoS - Testing emergent technology applications: massive data processing and NoSQL 

databases - TIN2016-76956-C3-1-R: Research project funded by the Spanish ministry about 

software testing in both Big Data and mobile. Main researcher Javier Tuya 

GRUPIN - GRUPIN14-007: Research project funded by the Principality of Asturias about software 

testing. Main researcher Claudio de la Riva. 

TestBUS - Testing Beyond Unit and SQL -PID2019-105455GB-C32: Research project funded by 

MCIN/ AEI/10.13039/501100011033 about software testing in Big Data and gamification. Main 

researchers: Javier Tuya and Claudio de la Riva. 

During the thesis, the doctoral candidate was granted a pre-doctoral grant “Severo Ochoa” by 

the Principality of Asturias, starting in October 2021. The code of this grant is PA-21-PF-BP20-

184. 

I.7 THESIS ORGANIZATION 

The lines of research and organization of the chapters, are summarized as follows: 

Chapter I. Introduction. Details the research context, hypothesis, goals, 

methodologies, and contributions of the thesis. 

Chapter II. Background and related work. Contains the background and related works 

to our research, indicating the similarities and differences of our work with 

them. 

Chapter III. Logical consistency maintenance: MDICA. Details how the logical 

consistency is maintained when performing a modification of data (insert, 

update or deletion) at the conceptual level against a column-oriented 

database. It determines the database statements required to perform that 

modification of data at the database level while maintaining the logical 

consistency. 

Chapter IV. Logical consistency maintenance: CONCODA. Details how to determine if a 

column-oriented database maintains the logical consistency after one or 

more modifications of data have been performed against the database. It 

contains an empirical validation of MDICA. 

Chapter V. Database evolution: Schema evolution: CoDEvo. Details how the database 

schema must evolve after a change in the requirements that affects the 

conceptual model. It provides the actions to perform in the schema by means 

of a MDE approach, as well as an analysis of the most common changes in 

the conceptual model detected in open-source projects.  

Chapter VI. Final Remarks. Summarizes the conclusions of the thesis and the future work 

by means of new research lines focused on continuing working on the 
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framework for database evolution as well as new scenarios to cover in both 

the logical consistency maintenance and the evolution of the database. 

Appendices. Contains the appendices of the thesis 
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II BACKGROUND AND RELATED WORK 

This chapter describes the background and the related work of this thesis. In the background 

subsection we describe different concepts and technologies from databases and model driven 

engineering. In the related work subsection, we detail research work related to our work. 

The background will focus on databases and model-driven concepts. Regarding the databases, 

we first will describe general terminology applied to all types of databases to then focus on 

NoSQL databases, particularly in column-oriented ones, finishing with a description of concepts 

and technologies from Apache Cassandra, the most used column-oriented database. Regarding 

model-driven concepts, we will focus on different concepts, from the more general ones related 

to models to the more specific ones related to the model-driven engineering methodology. 

The related work will be focused on research works that strictly related to our research, either 

by similarity or due to them being used in our research. 

II.1 BACKGROUND 

In this section we focus on detailing concepts related to databases and model-driven 

engineering. We first introduce the history and description of the currently used databases in 

subsection II.1.1. In subsections II.1.2 and II.1.3 we detail several general concepts related to all 

types of databases. Starting from subsection II.1.4 we focus on NoSQL databases, particularizing 

in column-oriented databases in subsections II.1.6 and II.1.7. In subsection II.1.8 we detail the 

differences between the physical consistency and the logical consistency. In subsection II.1.9 we 

describe what model-driven engineering means, providing more specific detail in 

subsubsections II.1.9.1 and II.1.9.2 to model transformations and model abstraction levels. 

II.1.1 Databases: History and introduction 

Databases have been used alongside applications since the 60s, where the first types of 

databases were designed by Charles Bachman [36]. These databases followed a hierarchical 

model similar to a tree: starting from a root record, each piece of data in the database had a 

parent record. These databases had several problems such as being difficult to use, not having 

any theoretical foundation and there were difficulties differentiating the logical model and the 

physical model.  

Due to the aforementioned problems, these databases were replaced in the 70s by the relational 

databases [37]. These databases store the data in structured tables through rows and columns. 

Each column is assigned one data type such as text, integer or Boolean which determines the 

type of data that can be stored in that column. The main characteristic of a relational database 

is that the tables that compose the logical and physical model of the database have relationships 

between each other, which allows a normalized schema where there are no data duplications 

besides primary key values. These relationships are determined using foreign keys, which store 

in a second table the value of the primary key stored in another one. In order to maintain data 

integrity, these databases allow the implementation of integrity constraints in order to ensure 

that these foreign keys are storing values that are also stored in the table that they are 

referencing. The most popular DBMSs use the SQL language, existing differences between the 

operations supported in each DBMS. 
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The relational model was proposed in 1970 to model the data of a relational database [38]. This 

model allows to represent the data in terms of tables and relationships which could be 

implemented in a database. In 1976, a higher-level model was proposed: the entity-relationship 

model (ER model) [39]. In the entity-relationship model it is easier to know the relationships 

between entities as they are explicitly defined along with their cardinality. The relational model 

is mainly used for helping in the implementation of relational databases. On the other hand, the 

entity-relationship model is more widely used, being also used non-relational databases during 

the design of their data models as a way of representing a conceptual view of the system. 

During the 90s, IBM released the architecture of data warehouse [40]. Data warehouses were 

created due to the problems that users experienced when they needed to obtain useful 

information for business decisions from their data sources such as:  

• Databases designed for short and predictable-update transactions. 

• Legacy data that was obtained using several types of applications. 

• Heterogeneous data. 

• Complex queries against normalized databases. 

• New requirements to analyse more complex data. 

Data warehouses were able to offer users the required information to make decisions based on 

their needs, which we refer as data engineering [41]. Data warehouses offer several features 

such as organizing the data in specific subjects, integrating data from all databases of the 

organization, historical views of the data and no volatility, as they show operation data at a given 

moment.  

In the 2000s, relational databases experienced performance issues as they were not able to 

properly manage the exponential growth of data that occurred during this decade [11]. One of 

the alternatives that raised were new types of databases called NoSQL databases, which in 

addition to higher performance when managing this growth of data they allow horizontal 

scalability, improving their performance and assuring reliability. Compared to relational 

databases they have simpler data models and simpler query languages or APIs to query data. 

However, they lack mechanisms to manage data consistency of repeated data among the 

database as well as integrity constraints of the data. 

In the next subsections we describe general terminologies related to databases, focusing after 

that on NoSQL database, particularizing on column-oriented databases which are the main focus 

on this thesis. 

II.1.2 Data engineering 

The data that are stored in the database are usually analysed to obtain useful knowledge for the 

owners of the data. Data engineering is a concept that summarizes the methods that perform 

the actions required to provide data for business intelligence, data science analysis and machine 

learning algorithms. 

A systematic overview of several achievements reached by several data engineering methods is 

presented in [42]. These achievements are divided in four generations: two past ones, the 

current one and a future one. It is important to note that a generation does not replace the 

previous one, but instead adds more value to them. In the following list we briefly describe each 

generation: 

1. In the first generation the methods were focused on increasing the data quality or 

transforming the data into something that was required. Some of the tasks approached 
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in this generations were data exploration, schema extraction, elimination of duplication, 

data integration and datatype transformation. 

2. In the second generation, several methods were created to define data engineering 

pipelines that are continuously being executed. These pipelines allow the users to 

defined processes that combine different algorithms for pre-processing of the data. 

3. In the third generation, which is currently on-going, the objective is to choose the most 

suitable method for a task from the ones that already exist from the previous 

generations. Currently, it is up to the user to choose these methods, although there is 

on-going to research to help users in this regard.  

4. Regarding the future fourth generation, several problems are described to be solved in 

the future such as some tasks requiring the knowledge of domain experts to be solved. 

In [42] it is proposed that in the future, part of the tasks from previous generations, such 

as data curation, are done automatically through an intelligent toolset. 

II.1.3 Database properties and CAP theorem 

In this subsection, we describe different properties that exist for databases as well as the CAP 

theorem. 

II.1.3.1 ACID properties 

Relational databases ensure the ACID properties which are: Atomicity, Consistency, Isolation 

and Durability [43]. These properties ensure different concepts related to the transactions that 

are executed against a relational database: 

• Atomicity: When performing a transaction, either every data change from the 

transaction is executed against the database, or no data change is executed.  

• Consistency: The transaction always leaves the database in a consistent state, which is 

when it conforms to the integrity constraints that are implemented in the database. 

• Isolation: A transaction is not affected by other transactions that are executed at the 

same time. 

• Durability: A transaction that has been successfully executed against the database will 

persist even in the future there are failures in the database.  

These properties are not ensured in distributed systems such as NoSQL column-oriented 

databases, which, on the other hand, ensure the BASE properties. 

II.1.3.2 BASE properties 

Most NoSQL databases have difficulties assuring the ACID database due to the distribution of 

the database. On the other hand, they ensure the BASE properties [15] which are more flexible 

than the ACID properties: 

• Basic Availability: The database is going to answer even when there is an event of failure. 

• Soft State: The data of the database can change without intervention from a client 

application due to eventual consistency.  

• Eventual consistency: It ensures that eventually all nodes will store the same data. Note 

that this consistency is different from the one of ACID. The consistency from BASE refers 

to data stored across nodes of a physical cluster, while the consistency from ACID refers 

to the consistency of the data inside the database considering integrity constraints.  
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II.1.3.3 CAP theorem 

The CAP theorem [44] denotes that there is a trade-off between the consistency, availability, 

and partition tolerance. It claims that that a database can only ensure two of these three 

properties at once. These three properties ensure the following: 

• Consistency: It ensures that when requesting data to the database, the database will 

always return the correct answer.  

• Availability: It ensures that when requesting data, the database will always answer.  

• Partition tolerance: It ensures that the database can be partitioned in different nodes. 

Most NoSQL assure the partition tolerance property to allow distribution of the data. This means 

that each NoSQL database must choose between the consistency and the availability. For 

instance, in Cassandra the availability is guaranteed, while in MongoDB the consistency is 

guaranteed. On the other hand, relational databases do not usually ensure partition tolerance, 

guaranteeing both the availability and the consistency. 

II.1.4 NoSQL databases 

As described in the introduction, NoSQL databases are a group of databases that were created 

as alternatives to relational databases for scenarios where relational databases have 

performance problems [45]. It is important to note that NoSQL databases do not replace 

relational database, in fact they can work together in hybrid database systems [46]. 

Depending on the data model, they are classified in key-value oriented, document-oriented, 

graph-oriented, and column-oriented [3]. In the following paragraphs we briefly describe each 

of them: 

• Key-value oriented databases are schema-less databases where the data are stored in 

key-value associations. The simplicity of this database makes it a great option for 

retrievals of data required by applications working like a cache [45]. Examples of key-

value-oriented databases are Redis, Voldemort, Riak, or Dynamo. 

• Document-oriented databases use structured data files (XML, JSON or YAML) to store 

the data. The documents are schema free so each document can store properties that 

are not in other documents. Examples of document-oriented databases are MongoDB, 

Couchbase or CouchDB. 

• Graph-oriented databases are composed of nodes with relationships between each 

other. They have some similarities to relational databases as they store relationships. 

However, they improve the performance of relational databases as they find the most 

optimal path when querying data of relationships. They also lack a schema, as each node 

can have different properties from other nodes of the same set. Examples of graph-

oriented databases are Neo4J, JanusGraph or TigerGraph. 

• Column-oriented databases are composed of tables with columns and rows, like 

relational databases but without relationships between tables. As this type of database 

will be the main focus of the thesis, they will be described in detail in the following 

sections. 

Table 1 displays a summary of the most relevant properties of each database regarding the 

problems addressed in this thesis. 
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Database 
type 

Data stored Normalization ACID 
Distributed 

System 
Examples 

Relational 
database 

Tables with 
columns, rows 

and 
relationships 

Yes Yes No 
MySQL, PostgreSQL, 
Microsoft SQL Server 

NoSQL 
Column-
oriented 

Tables with 
columns and 

rows 
No No Yes 

Cassandra, HBase, 
BigTable 

NoSQL 
Document-

oriented 

Documents 
(JSON, XML or 

YAML) 
Possible No Yes 

MongoDB, Couchbase, 
CouchDB 

NoSQL Graph-
oriented 

Nodes and 
edges 

Possible Yes [47] Partially [48] 
Neo4J, JanusGraph, 

TigerGraph 

NoSQL Key-
value 

oriented 
Hash tables No No Yes 

Redis, Voldemort, Riak, 
Dynamo 

Table 1 Database comparison summary 

II.1.5 Query languages for databases 

Database systems provides languages to query and manipulate data stored in them. The most 

known of these languages is SQL [49], the query language used for most relational databases. 

The manipulation operations of SQL are mainly INSERT to insert rows, UPDATE to change data 

from a row and DELETE to delete rows. However, the most relevant feature in SQL is the wide 

range of queries that can be executed against the tables of the database through the statement 

SELECT. Using the JOIN operator, it can retrieve data from several related tables in a single 

SELECT statement. The operator GROUP BY allows to group data in order to apply them an 

aggregate function such as the average value. 

NoSQL databases do not share a common query language, even between databases of the same 

type. For this reason, we will only briefly describe the languages of the most used databases of 

each type [2]: MongoDB for document-oriented, Neo4J for graph-oriented, Redis for key-value-

oriented and Apache Cassandra for column-oriented: 

• In MongoDB, the most used document-oriented database, the queries, and 

manipulation operations are usually executed using applications through an API, 

existing different libraries for several program languages such as JAVA or C#. 

Nevertheless, they provide a shell language called MongoDB shell that allows to interact 

with a MongoDB database. Like SQL, it allows to insert, delete, and update data through 

several methods, being all operations atomic for a single document. 

• Neo4J provides the query language Cypher [50]. Although the syntax is vastly different 

from SQL, the developers of Cypher claim that it is remarkably similar in functionality as 

both databases are mainly composed of table and nodes with relationships. They use 

the keyword MATCH to query data, CREATE to insert nodes and relationships, SET to 

update them, and DELETE to delete them. 

• Redis provides the module RediSearch [51] where instead of operators like SELECT in 

SQL or MATCH in Neo4J, they employ expressions for complex queries. They also 

provide commands like GET which returns the value associated to a key. They use the 

command SET to insert and update data and GETDEL to delete data. 

• Apache Cassandra uses the query language CQL (Cassandra Query Language) whose 

syntax is remarkably similar to SQL in order to make easier the adaptation of developers 

from SQL to Cassandra. It shares with SQL the SELECT, INSERT, UPDATE and DELETE 

operations, although it does not contain operators such as JOIN and GROUP BY. To 
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execute a query (SELECT operation) against a Cassandra database, the query must meet 

certain requirements in its structure. The search criteria of the query (WHERE) must be 

exclusively composed of values assigned to key columns of the table. Specifically, if a 

search criterion is used in a query, all the columns that belong to the partition key of the 

table must contain a value in the search criteria. Additionally, the columns that are 

clustering key can also be part of the search criteria, although it is not required. On the 

other hand, non-key columns cannot be part of search criteria. 

II.1.6 NoSQL Column-oriented databases 

Column-oriented databases are composed of tables composed of columns and rows, being at 

least one column part of the primary key. In contrast to relational databases, in column-oriented 

databases there are no relationships. As well as other NoSQL databases, column-oriented 

databases allow a distributed system in which the data is distributed among several physical 

nodes that compound a cluster. Each of these nodes will store a part of the database, following 

the specifications of the developers. This distribution of the database also allows horizontal 

scaling, where new nodes can be added to the cluster at any time. 

The internal management of the data when executing database operations such as queries also 

differs to relational databases. Every time a query is executed against a relational database, all 

rows and columns are scanned regardless of the columns needed in the query. In column-

oriented databases such as Cassandra, this is avoided to improve performance through two 

means: 

• Columns: Only the columns that participate in the query will be searched [52]. 

• Rows: As the data is distributed among several physical nodes through the values of the 

primary key, only the nodes that contain the data to be queried are requested to return 

the data.  

In column-oriented databases, the queries can only be filtered through the values to the primary 

key. For this reason, each table must be specifically designed to satisfy queries that will be 

executed in the client application, following a query-driven approach. This is also different from 

relational databases, where all the columns can be used for filtering in a query. Therefore, the 

schema of a relational database is modelled after the specifications of the data that they are 

going to store, while the schema of a column-oriented databases is modelled after the 

requirements of the application that is going to query data from the database. This query-driven 

approach also implies that there are going to be repeated data among the database tables, as 

these data can be queried in several ways from the application. This repetition of data further 

implies a denormalized model, unlike the usually normalize relational data model. 

The most used databases are Apache Cassandra and HBase. Although both are column-oriented 

database, there are also several differences between them [53]. The most relevant ones are that 

Cassandra does not ensure consistency among the nodes, while HBase ensures it. On the other 

hand, HBase has a SPOF, as a primary node exists in the cluster. Regarding the primary key, in 

Cassandra multiple columns can be part of it, while in HBase only one column can be part of the 

primary key.[50] 

II.1.7 Apache Cassandra 

Apache Cassandra is a NoSQL column-oriented database that was initially released in 2008 by 

Avinash Lakshman and Prashant Malik [54]. Like other NoSQL databases it allows to distribute 

the data among several nodes, which guarantees both high availability and horizontal scalability.  
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The architecture of Cassandra is composed of a cluster that contains several physical nodes 

where the data is going to be stored [55]. Cassandra has a masterless architecture; therefore, 

the system will keep being available when a node fails. The nodes are interconnected through a 

ring that allows the data to be transmitted among them. The data stored in the system will be 

distributed along the ring of nodes, trying to achieve the most balanced share of data possible. 

In addition to the distribution of the data among the nodes, there is also replication of the same 

data. Even if a node does not have the data for which it is queried, it will be able to respond to 

the query and access the required information by requesting the data to the appropriate nodes. 

The developer chooses the number of servers on which the data will be replicated. These data 

will be automatically replicated among the different database nodes. If a node fails, the data 

stored on that node will be replicated to other nodes in the cluster to ensure availability. 

Cassandra does not ensure the consistency of the data among the nodes of the cluster. 

Nevertheless, Cassandra ensures that eventually all nodes will be consistent as it fulfils the BASE 

properties. Cassandra additionally extends this property by providing levels of consistency for 

its reads and writes through tunable consistency [56]. This tunable consistency allows to 

configure the numbers of nodes that shall be asked before returning the result to the end-user. 

This, however, comes at a cost, as higher the consistency level, higher response times.  

The tables of a Cassandra database are located in keyspaces [57], where different options such 

as the replication strategy can be applied to all tables. Each table has a primary key that is 

composed of the partition key and the clustering key. The partition key values determine in 

which node the data are stored. The clustering key values determine how data are ordered in 

the nodes. A table must have at least a column as partition key, being the clustering key optional. 

The rest of columns are non-key. Each column can store only data of a type specified at the 

creation of the column. 

As we described in section II.1.5 the search criteria of a query in Cassandra must be exclusively 

composed of values assigned to key columns of the table. Every column from the partition key 

must be in the search criteria, while the clustering key columns are optional. The operator for 

the partition key column can only be ‘=’ and ‘IN’. The clustering key columns additionally allow 

the operators ‘<’, ‘>’, ‘=<’ and ‘>=’. 

II.1.8  Physical consistency vs logical consistency 

When referring to consistency in a NoSQL database such as Cassandra, the most common 

interpretation is that this consistency refers to the consistency of the data that is stored among 

the nodes that compound the physical database [58], which is the one referred in the CAP 

theorem. Regarding the CAP theorem, Apache Cassandra ensures partition tolerance 

(distribution of the system) and availability. This means that the consistency of the data among 

the nodes of a Cassandra database is not ensured, meaning that in a specific moment the same 

data could be different in different nodes. On the other hand, as we described in the previous 

section, Cassandra ensured the eventual consistency from the BASE properties. In this thesis we 

refer to this consistency as physical consistency. 

In this thesis we do not address the problems that can occur of not assuring the physical 

consistency. Instead, we focus on the consistency of the data that is repeated among the tables 

of the database, usually referred as logical consistency or data integrity. In Cassandra there are 

no mechanisms that always ensure data integrity, [42] passing the responsibility of assuring the 

consistency of the data in the application side [59]. In addition, as denormalization is needed in 

the schema of Cassandra and other column-oriented databases due to the lack of relationships 
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between tables, this problem becomes more difficult to solve than in a database where 

normalization is the preferable choice as in relational databases. We will address the problems 

regarding the logical consistency maintenance on chapters III and IV of this thesis. 

II.1.9 Model-driven engineering 

Model-driven engineering (MDE) is a software development approach that proposes the use of 

models to improve the quality of software products [60]. MDE uses metamodels that define the 

different components of software architecture. The instances of these metamodels are models, 

which represents a possible scenario of this architecture. MDE technologies aim to combine the 

following: 

• Domain-specific modelling languages (DSML): They are used by developers to create 

models based on a metamodel. A DSML is defined using these metamodels. 

• Model transformations: They are used to create another model or textual information 

from one or more inputs, which can be models or textual information. 

In the next subsubsections we describe in detail the model-transformations as well as the 

abstraction level in which a model can be classified. 

II.1.9.1 Model transformations 

Model-transformation techniques are able to obtain target models or textual artifacts using as 

input other models or textual artifacts, although at least the input or the output must be a model 

[61]. Model-transformation therefore allows the transformations model-to text (M2T), text-to-

model (T2M) and model-to-model (M2M). In M2T transformations one or more source models 

are used to obtain target textual artifacts such as a set of database statements to execute a 

schema change. In T2M transformations, a target model can be created using textual artifacts 

as a source. In M2M transformations, a set of source models are used to create target models 

of another type. 

Different definitions for model transformation terms are specified in [62]. How each input 

component that is in the inputs can be transformed into an output component is defined 

through the transformation rules. A set of transformation rules can together define how to 

transform one input models to one target model. This set is called a transformation definition. 

However, this last definition is extended in [63] by proposing that multiple source and target 

models can participate in the transformations. 

Transformations can also be classified by the abstraction level of the models that participate: 

• Vertical transformations are those where the source models and the target models are 

from a different abstraction level.  

• Horizontal transformations are those where the source and target models are from the 

same abstraction level. 

II.1.9.2 Model abstraction levels 

According to [64] there are three abstraction level that you can classify a model: 

• Computation Independent Model (CIM): The models that are completely unconnected 

to a particular technology. For instance, a conceptual model of a database is classified 

in this level. 

• Platform independent model (PIM): The models that are related to a technology, but 

they are not specific of a platform. For instance, a logical model of a database is classified 

in this level. 
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• Platform Specific model (PSM): The models that are specific of a platform from a specific 

technology. For instance, a physical model of a database is classified in this level. 

II.2 RELATED WORK 

In this subsection we describe related research and technologies that address or are related to 

the problems approached in this thesis: maintenance of the logical consistency and the 

maintenance of the inter-model consistency. 

II.2.1 Materialized views 

As we describe in section II.1.7, the search criteria of Cassandra queries can only contain 

columns from the primary key of the table. Due to these restrictions, if the same information 

needs to be queried using different search criteria, multiple tables that store the same data may 

be created, implying duplication of data. This brings the aforementioned problems that are 

addressed in this thesis about the logical consistency. One alternative developed by the 

Cassandra developers to avoid the repetition of data is the materialized view feature [65]. 

Materialized views are table-like structures that can manage the maintenance of the logical 

consistency from the database-side, allowing to reduce the denormalization in the schema. A 

primary table is used to create a materialized view, which allows to query the data stored in this 

primary table in more ways than what the primary table directly does. Materialized views have 

the following restrictions [66]: 

• All the primary keys from the primary table must be part of the primary key of the 

materialized view. 

• Only one non-key column from the primary table can be added to the primary key of 

the materialized view. 

• If the primary table contains rows with null values in the non-key column that was added 

to the primary key of the materialized view, these rows are not included in the 

materialized view. 

• There can only be one primary table for each materialized view, thereby not allowing 

table joins. 

Whenever there is a new insertion of data in the primary table, Cassandra automatically updates 

the materialized view with the new data. This insertion of data is performed asynchronously, 

meaning that the actual insertion of data in the materialized view is delayed. After the insertion 

in the primary table is performed, Cassandra executes a read-repair to the materialized view to 

regain consistency of data between the materialized view and the primary table. The same 

process is executed when data is deleted in the primary table. On the other hand, there cannot 

be direct modifications of data in the materialized views.  

Regarding performance, materialized views are not appropriate to use when low cardinality data 

(too many repeated values) are inserted in the database. In these scenarios, even creating 

secondary indexes display a better performance.  

Materialized views are a good option regarding data model design when there are existing tables 

that contain in the primary key the columns that will be used in the search criteria of queries to 

be executed against the database. However, in most cases the tables of databases from real 

projects do not share enough columns [28], limiting the use of materialized views. The limitation 
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of only allowing a single primary table also prevents a normalized model of primary tables similar 

to a relational database. In this thesis we propose an approach that is not limited by these 

restrictions, allowing the maintenance of the logical consistency for all possible schema designs. 

II.2.2 Implementing the join operation in Cassandra 

One of the main reasons of why a normalized model cannot be used in Cassandra is because of 

the absence of join operators. Cassandra does not have foreign keys and relationships, making 

impossible to join the data of two different tables in the same query. However, there has been 

a work where this operation is implemented in Cassandra[67]. In this work the operation 

SELECTJOIN is implemented, which allows to relate information stored in different tables. 

The SELECTJOIN operation requires that all columns that participate in the JOIN are part of 

the primary key of any table. Alternatively, the columns can be indexed as secondary indexes. A 

SELECTJOIN statement has the following syntax: 

SELECTJOIN columns FROM nameTable1, nametable2 JOINON nametable1.pk = 
nametable2.fk; 

The rows returned to the user must match the criteria specified in the JOINON clause 

(nametable1.pk = nametable2.fk).  

In order to implement this operation, the code of Cassandra 2.0 was modified as much as 

required, which according to the author was mostly performed in the package cql3. This 

implementation consists of transforming the SELECTJOIN operation introduced by the user in 

several normal SELECT operations that extract the data from the Cassandra database. Then, 

internally, a Java application executes a Cartesian operation through a recursive method.  

The performance results of this implementation leave room for improvement, as the 

performance is worse than using joins in a standard MySQL database, being the Cassandra 

implementation twenty times worse than MySQL when querying one million rows.  

Although a potential interesting solution that could add an extremely useful operation in 

Cassandra, the current implementation results are not good enough to consider it a valid 

solution for the problem of the logical consistency in Cassandra. 

II.2.3 Schema design 

There are multiple schema design methodologies for Cassandra [18], [19], [68]. The general 

schema design recommendations advise to create a table for each query that is going to be 

executed against the database [59]. However, only using the queries for the design of the 

schema may lead to incorrect designs of the schema. For instance, the design of a table must 

ensure that a row cannot be overwritten by mistake in future insertions of data. This can happen 

if the primary key of the table is compound of values that can be repeated among the rows of 

the tables. Let use an example of a system that stores information about products that are sold 

in a shop: 

Suppose that there is a query requirement for obtaining information of the products by asking 

through the price of the product. If only this requirement is considered when designing the table, 

a possible design would be to create a table whose primary key is composed by only the price 

of the product, and the rest of information (id, name…) are stored as non-key columns. However, 

there could be more than one product that has the same price. Therefore, if two products are 

inserted with the same price, the data of the product that was inserted first would be 
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overwritten with the information of the second product. The solution would be to also include 

in the primary key of the table a column that uniquely identifies a product. However, this 

information is not provided by the schema of Cassandra, requiring additional information such 

as a conceptual model. 

In order to avoid the aforementioned scenario, the schema design methodologies referenced in 

this section recommend using an explicit conceptual model in addition to the queries. The use 

of this explicit model is especially important to avoid faulty designs such as the example 

described in this section, as when developers only have an implicit model in their minds, they 

are prone to committing mistakes [29].  

In the following subsections we describe in detail the following methodologies ordered by date 

of publication, highlighting their differences:  

1. KDM: Kashlev Data Modeller [18]: Determines a schema given a conceptual model and 

queries.  

2. NoSE: Schema design for NoSQL Applications [68]: Improves the previous methodology 

by optimizing the generation of the schema for a specific target application. 

3. Mortadelo: Automatic generation of NoSQL stores from platform-independent data 

models [19]: MDE approach that, in addition to column-oriented databases, it also 

provides a schema for document-oriented databases. 

II.2.3.1 KDM: Kashlev Data Modeller 

The first methodology was proposed in [18] which resulted in the tool KDM, which is currently 

unavailable to use. Their proposal is based on data modelling principles, mapping rules and 

mapping patterns. 

They specify four data modelling principles that serve as foundation for the mapping of the 

conceptual model to the schema (logical model): 

• DMP1 (Know Your Data): It consists of defining a normalized conceptual model. 

• DMP2 (Know Your Queries): It consists of identifying the queries that must be executed.  

• DMP3 (Data nesting): It consists of organizing multiple entities together in accordance 

with a certain criterion.  

• DMP4 (Data duplication): It consists on encouraging the duplication of the data, contrary 

to relational databases. 

The mapping rules are used to guide the design of the schema: 

• MR1 (Entities and Relationships): The entities and relationships design the tables, whose 

instances will be the table rows. The attributes are mapped to columns. 

• MR2 (Equality Search Attributes): The equality search criteria are used to compound the 

partition key and, optionally, part of the clustering keys. The fulfilment of this rule fulfils 

the query requirements. 

• MR3 (Inequality Search Attributes): The inequality search criteria will be part of the 

clustering key. 

• MR4 (Ordering attributes): They are used to define the order (ascending or descending) 

of the clustering keys.  

• MR5 (Key attributes): The key attributes of the entities are mapped to the primary keys. 

These are used to guarantee row uniqueness in the table in order to avoid scenarios like 

the one described at the beginning of subsection II.2.3. 
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The mapping patterns are used for the automation of the schema design. Given a query and a 

conceptual model, the mapping pattern is able to define a table design.  

They additionally propose a visualization technique called Chebotko Diagram to present the 

design of a database schema, combining the tables and the query-driven application workflow 

transitions.  

II.2.3.2 NoSE: Schema design for NoSQL Applications 

The second methodology was proposed in [68]. This work proposes an approach for schema 

design that recommends a schema that is optimized for a specific target application named 

NoSE. NoSE uses a cost-based approach that estimates the performance of the schema 

candidates in order to choose the one with a better result.  

The outputs of NoSE are 1) a recommend schema and 2) a set of plans. These set of plans 

recommend how the application should use the schema when implementing queries or data 

manipulation operations. 

NoSE employs a workload that contains the frequency of execution of the queries and updates 

to be executed against the database. With this workload, NoSE is able to provide high-level 

optimizations. The four steps for the advice of the schema are the following: 

1. Candidate Enumeration: A set of possible schemas are generated. These schemas must 

be able to satisfy the query requirements. 

2. Query Planning: Generation of a space of implementation plans for the queries that can 

be executed. 

3. Schema optimization: A BIP (binary integer program) is generated from the possible 

schemas and plan spaces. In this step several possible plans that minimize the cost of 

the execution of the queries are chosen. 

4. Plan recommendation: It chooses a single plan from the previous step set of plans 

chosen. 

II.2.3.3 Mortadelo: Automatic generation of NoSQL stores from platform-independent data 

models 

The third schema design methodology was proposed in [19]. This methodology, named 

Mortadelo, expands its scope to also consider document-oriented databases such as MongoDB. 

The main concept of Mortadelo is that through a MDE approach, it is able to provide with the 

same inputs a possible schema for both NoSQL document databases and NoSQL column 

databases.  

The inputs are similar to the previous two approaches: a conceptual model and a set of queries. 

The main difference is that these inputs are inserted as models and the output are also models 

that conform to metamodels for both types of NoSQL databases.  

They also made performance comparisons against the previous two methodologies, obtaining 

that the schemas designed by Mortadelo had better performance for readings than NoSE but 

worse than KDM. On the other hand, for write operation the schema of Mortadelo obtained 

better performance than KDM but worse than NoSE.  

II.2.4 Schema Inference 

The use of an explicit conceptual model when designing the schema of a NoSQL column-oriented 

database is strongly recommended, although not strictly required. Because of this, there are 
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developers who only think of a conceptual model without explicitly defining it. This can be a 

problem when either implementing new operations in the client application that modify data of 

the database or when evolving the schema, as the developer can forget the specific details of 

the implicit conceptual model. Additionally, if this implementation or evolution of the schema is 

done by other developers different from the ones that designed the database, it also makes 

more possible the commitment of mistakes. For this reason, there have been approaches that 

propose the creation of a normalized model from a denormalized schema of a column-oriented 

database.  

One of these approaches [69], based on MDE, proposed to infer a conceptual model from the 

schema of a NoSQL database, approaching column-oriented, key-value and document 

databases. The architecture of this approach is based in three stages: 

1. A Map-reduce operation that is used to obtain a version of an entity, creating a 

collection. 

2. The obtained collection is inserted into a model that conforms to a JSON metamodel.  

3. The schema is obtained using reverse-engineering and a model-to-model 

transformation that uses as input the JSON model and returns an output of a model that 

conforms to a NoSQL-Schema metamodel defined by the authors.  

The most notable contribution in this work and most important part of the approach is the 

reverse-engineering process that obtains the detail of the schema. This process is composed of 

three parts: 

1. Building the raw schema of an entity: The obtention of a JSON object that 

accomplishes the following rules:  

1.  It has the same structure as the entity including all attributes, nested 

entities, and arrays  

2. Each primitive value is substituted by its equivalent JSON type 

2. Obtaining the Version Collection: For each entity, only one version will be used, 

which is obtained using a Map-Reduce operation. The result is the Version 

Collection. 

3. Schema obtention: The different components of the schema are obtained: 

1. Entities 

2. Attributes of the entities 

3. Relationships 

Another approach [17] was created with a similar objective but focused on column-oriented 

databases. This approach, like in the previous one, obtains a renormalized model using a three-

step process: 

1. Generate a physical schema. 

2. Identify the dependencies that exist between the attributes of the physical schema. 

These dependencies can be either provided by a user with knowledge of the system 

or automatically. 

3. Renormalization of the physical schema using the depending. 

II.2.5 Schema Evolution 

Schema evolution work has traditionally focused on relational databases with approaches that 

address issues such as the evolution of the integrity constraints [70] and foreign keys [71], or 
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guidelines to evolve relational schemas [72]. Another topic addressed is how the database 

schema and the data of a relational database must evolve after an ontology change [73], similar 

to what we address in chapter V for column-oriented databases. However, these works are 

focused on relational databases, making their use for other systems such as NoSQL databases 

more difficult. For instance, column-oriented databases do not have relationships between 

tables, making the works about the evolution of the integrity constrains and foreign keys unfit 

for these kinds of databases. Another work focused on relational databases defined an ontology 

that details how the schema of a relational database must evolve from changes in the conceptual 

model [74]. 

In the following subsections we describe in more detail works related to database evolution and 

the schema which are focused on NoSQL, and more specifically column-oriented NoSQL 

databases. 

II.2.5.1 Migcast, Data migration strategies and Evobench: Database evolution on NoSQL 

databases 

Multiple works have been published in the last years focused on database evolution by the same 

research group [75]–[79]. They have covered a wide range of topics, focusing on NoSQL 

databases, especially column-oriented databases, and document-oriented databases. In this 

subsection we briefly describe some of their works that cover topics that are related with our 

work. 

They developed the tool Migcast [78] which advises the developers in the process of database 

evolution by recommending different data migration strategies focusing on the financial cost. 

These strategies can be determined as they are able to predict the financial cost, depending on 

the cloud provided that is chosen. Migcast is able to maintain an internal cost model by 

considering different characteristic of the data instance, the expected workload, evolution of 

the schema and the prices of the cloud providers.  

The specific data migration strategies were identified in another work [77],where they compare 

their benefits and disadvantages: 

• Eager migration: The migration is performed at the moment of the data change. It is the 

migration strategy with more financial cost as it even migrates data that is not going to 

be used in the future. 

• Lazy migration: The data is only migrated when there is a requirement to access these 

data. This strategy allows to have no migration cost when the schema evolves, although 

at the cost of never having the data up to date in the database.  

• Incremental migration: Similar to lazy migration, but it also migrates data at certain 

moments of the day, ideally when data accesses are less frequent.  

• Predictive migration strategy: It identifies the data that was accessed in the past and 

calculates how likely are certain data to be required again in the future. These data will 

be always kept up to date, performing as soon as possible the required data migrations. 

These migrations strategies are then recommended depending on the scenario presented by 

the developers.  

EvoBench is a conceptual framework to measure the performance of both schema evolution and 

data migration in document-oriented NoSQL databases [76]. This benchmark consists of the 

following components: 1) data model, 2) testing data, 3) schema modification to evolve it, 4) 

queries to execute for lazy migrations and 5) the metrics. EvoBench has three stages: 
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1. Benchmark Preflight: The user introduces the components described before. 

2. Benchmark Execution: The benchmark is executed, measuring the executing times. 

3. Benchmark post-execution: The results are analysed. 

II.2.5.2 U-Schema: A unified metamodel for NoSQL and relational databases 

A recent work [80] has addressed the need of using a metamodel to represent the schemas of 

NoSQL databases. Although column-oriented databases have an explicit schema, other NoSQL 

databases are schema-less, where the schema is implied in the data. To address this, they have 

defined the metamodel “U-Schema”, which is the first unique metamodel that can be used to 

define the model of all NoSQL database types. The main contributions of this work are the 

following: 

• The definition of a unified metamodel to represent database schemas for relational 

systems and NoSQL systems. This metamodel is mainly composed of collection of types, 

which are either entity types or relationship types. These types include structural 

variations, which can be eighter logical features (references and keys) or structural 

features (attributes and aggregations). The attributes can be of diverse types as well:  

primitive types, lists, tuples, sets or maps. 

• The identification of two types of mapping: forward mapping which maps an element 

from a NoSQL or relational model to U-Schema and reverse mapping which is a mapping 

in the opposite direction. Reverse mappings are required when the U-Schema has 

elements that are not unique for a particular data model. Through the definition of these 

two types of mappings, they have established the term canonical mapping, which 

ensures that each element of a data model corresponds to an element of U-Schema, 

assuring forward mappings. This also ensures that a U-schema generated from a data 

model can reproduce this original database, assuring bidirectionality. On the other 

hand, reverse mappings are not always ensured, requiring in some scenarios to define 

reverse mapping for specific data models, not being this part of the scope of the work.  

• A strategy to extract unified schemas from databases. They improve past works about 

schema extraction by also considering account scalability and performance. This is not 

applied to column-oriented databases, as they already have a defined physical schema. 

• Insights on how U-Schema can be used for several processes such as implementation of 

database utilities in environments with multiple databases: 

o Definition of a generic query language.  

o Database migrations. 

o Definition of a generic schema language. 

o Generation of datasets for testing purposes. 

o Schema visualization. 

This work provides a remarkably interesting contribution which we could have used in several 

parts of our work, especially regarding the schema evolution part. However, this work was 

published too recently, after we had already defined the approaches exposed in this thesis, not 

being to use their contributions. 

II.2.5.3 The Orion language: Towards a taxonomy of schema changes for NoSQL databases:  

A work addressed schema evolution for NoSQL databases [81], focusing on a general approach 

for both MongoDB and Apache Cassandra. They provide a taxonomy of several generic changes 

in the schema which can then be translated to the schema of the appropriate database. They 

use the advances of their previous work “U-schema” which was described in the previous 
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subsection to define these changes. The main purpose of this work is to support schema changes 

in a platform-independent way. This would allow developers to work in a multi-database 

environment, not requiring them to be specialised in a specific database.  

The main differences with our approach are that we focus on only column-oriented databases 

and the source of the change in the schema is a change of the requirements of the system that 

modify the conceptual model. We have also specifically addressed changes detected in open-

source projects, providing information about the recurrence of each change. We have also based 

our solutions on how the developers of these projects have addressed the evolution of the 

schema in order to provide a schema design similar to what a human developer would create.  
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III LOGICAL CONSISTENCY MAINTENANCE: MDICA 

This chapter details the preventive approach developed for the maintenance of the logical 

consistency in column-oriented databases when a modification of data is performed against the 

database that we named MDICA. MDICA was first introduced in a work published in Journal of 

Web Engineering [25] which was extended in another work published in Computer Standards & 

Interfaces [26], which is the main source of the content detailed in this chapter.  

Section III.1 introduces the problems regarding the maintenance of the logical consistency in 

column-oriented databases. Section III.2 describes several definitions that are going to be used 

in the rest of this chapter. Section III.3 introduces the general approach to maintain the logical 

consistency given a modification of data (insertion, deletion, or update). Section III.4 introduces 

the case study used for the examples of the application of MDICA for each type of modification 

of data. Section III.5, III.6 and III.7 detail how to maintain the logical consistency for each type of 

modification of data: inserting, deleting and updating data, respectively. Section III.8 contains 

the experimentation using MDICA. 

III.1 INTRODUCTION 

As we described in chapter I of this thesis, the design of a column-oriented database schema 

such as Cassandra follows a query-driven approach in which the data is organized based on 

queries. This means that, in general, each table from a column-oriented database is designed to 

satisfy a single query [59]. If a single datum is retrieved by more than one query, the tables that 

satisfy these queries must store this same datum. This implies a denormalized model, which 

contrasts with relational databases where the model is normalized. Due to this, any modification 

of data (insert, delete or update) requires the execution of several database statements in the 

tables where the data are stored in order to maintain the data integrity, which we refer in this 

thesis as logical consistency of the data. It is important to note that the logical consistency is 

different from the physical consistency, which is usually the “consistency” most referred in 

NoSQL column-oriented databases (see II.1.8). In this chapter and the following one, we only 

address problems regarding the logical consistency. 

NoSQL column-oriented databases do not have mechanisms to ensure the logical consistency in 

the database, unlike relational databases, so it needs to be maintained in the client application 

that works with the database [82]. This is prone to mistakes that could incur in the creation of 

inconsistencies of the data. As the number of tables with repeated data in a database increases, 

so too does the difficulty of maintaining the logical consistency. In this chapter we introduce an 

approach named MDICA for the maintenance of the logical consistency for an insertion, 

deletion, or update of a tuple at the conceptual level which is consequently performed at the 

database level through the execution of database statements. MDICA determines these 

database statements along with other necessary procedures to maintain the logical consistency. 

Both for the definition of the tuple to insert, delete or update at the conceptual level and for the 

identification of the tables, we use an explicit conceptual model that has a connection with the 

logical model or schema (model of the Cassandra tables) [18]. 

In the next subsections we define the specifications of MDICA for each type of modification of 

data: insertion, deletion, and update of tuples. Section III.2 contains the definition and 

description of the basic notation used in the chapter. Section III.3 contains the general 

specification of MDICA that is shared among the three types. Sections III.4, III.5, III.6 contain the 
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detail of how MDICA addresses the maintenance of the logical consistency for insertions, 

deletions, and updates of data. Section III.7 contains an evaluation of MDICA through its 

application to three case studies. 

III.2 DATA MODELS AND NOTATION 

A data model [1] is a type of data abstraction that is used to represent the actual world of a 

system to be developed. It uses concepts that organize elements of data, their properties, and 

relationships between them. According to the abstraction level represented in data models, they 

can be categorized from a high-level or conceptual data model, which describes the domain or 

ideas close to the way final users perceive data, to a low-level or physical data model, which 

provides details of how the information is stored. Between these two extremes, we can find 

other models depending on the level of detail or what they represent, such as a logical data 

model which describes the semantics represented by a particular technology.  

Here, we give some definitions and describe the basic notation that will be used in the remainder 

of this chapter. 

Conceptual data model. - A conceptual data model or conceptual model, denoted as M, which 

represents concepts of the system to be developed, is composed of entities, denoted as 

eEnts(M), and relationships between those entities, denoted as R{ei}Rels(M) where 

eiEnts(M). Entities and relationships may be characterized by their properties, named 

attributes, and denoted as Attrs(I), where I is an item that hereafter refers to entity or relation. 

The primary key of an item I, denoted as PK(I), is the set of attributes in I which uniquely 

identifies a concrete instance of the item. The rest of the attributes of I are non-key attributes. 

In a relationship R {ei, ej}, cardinality is the number of instances in the entity ei related to the entity 

ej, which can be 1:1, 1:n or n:m. Instances of an item (data at a conceptual model level) are 

represented by tuples. A tuple of an item I is defined as tp(I)=<(a1,v1), (a2,v2), …, (an,vn)> where 

aiAttrs(I) and vi is the value of ai in the instance. We represent graphically a conceptual model 

as an Entity-Relationship model (ER model) [39]. 

Schema. - A schema, logical data model or logical model, denoted as L, is composed of tables, 

denoted as Tabs(S), which represent how data is stored in a column-oriented database. A table 

in a schema S, denoted as t Tabs(S), is a collection of ordered columns, denoted as Cols(t). At 

the schema level, data are represented by rows instead of tuples (used in the conceptual model). 

A row of a column t is defined as column-data pairs r(t)=<(c1, d1), (c2, d2), …, (cn, dn)> where 

ciCols(t) and di is the data of ci in the row. In Cassandra databases, the primary key of a table t, 

denoted as Key(t), is the ordered list of key columns in t, composed of (1) partition key, pKey(t): 

columns that identify the uniqueness of a particular row as well as the location or node where 

it is held, and (2) clustering key, cKey(t): columns that determine the order of rows on a partition. 

In the rest of column-oriented databases, the primary key columns are of the same type, all 

denoted as Key(t). The remaining columns of t are non-key columns. 

Well-modelled table.- Well-modelled table denotes the table designed at a logical level following 

a given modelling process e.g. Chebotko et al. [18] or Mior et al. [68] These processes state that 

a logical data model is obtained using the conceptual model and the queries of the application, 

which ensures a correct logical data model, not losing data represented by the conceptual 

model, to support query requirements allowing them to execute properly and to return data in 

the correct order.  
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Conceptual-Logical data model mapping. - A conceptual-logical data model mapping, denoted 

as Map(M,S), is the association established between a conceptual model and a schema. Map(M,S)  

provides information about: 

(1) associations between attributes of entities or relationships, and columns of tables 

generated and vice versa. We say that an attribute generates a column when the association 

attribute-column exists where the attribute is mapped to the column,  

(2) tables generated from an item (entity or relation). We say that a table t is generated from 

item I when for each column of t, an association attribute-column exists with an attribute of 

I. 

There are several types of attribute-column associations in mappings depending on if attributes 

are key (ka) or non-key (na), and if columns are key (kc) or non-key (nc): 

• ka-kc: key attribute generates key column, 

• ka-nc: key attribute generates non-key column, 

• na-kc: non-key attribute generates key column, and 

• na-nc: non-key attribute generates non-key column. 

Figure 3 depicts the mapping between an item I and a Cassandra table t generated from it. The 

item has two key attributes and three non-key attributes. The table has two key columns (a 

partition key I_pk1 generated from the key attribute pk1 and a clustering key I_a1 generated from 

the non-key attribute a1) and two non-key columns (I_pk2 generated from the key attribute pk2 

and I_a2 generated from the non-key attribute a2). Note that attribute az does not generate any 

columns. The attribute-column associations are labelled according to each of the 

aforementioned types.  

 

Figure 3 Map(M,S) between an item I (entity or relation) and a table t generated from this item 

Modification of data. - A modification of data is an insertion, update, or deletion of tuples at the 

conceptual model level, which are consequently performed at the database level to target tables 

t through database statements. Therefore, from a tuple tp(I) to be inserted, deleted or updated, 

several column-data pairs r(t) to be inserted, deleted or updated in different target tables t are 

obtained from MDICA The generalization of this is detailed in section III.3, while the 

formalization of each type of modification of data is presented in sections III.5, III.6 and III.7. 

III.3 LOGICAL CONSISTENCY BASED ON CONCEPTUAL AND LOGICAL DATA MODELS 

This section addresses the problem of the logical consistency maintenance in a column-oriented 

database for modifications of data. In each of the following sections we will focus solely on one 

type of modification of data: insertions in section III.5, deletions in section III.6 and updates in 

section III.7. The logical consistency maintenance process leverages the schema s generated 
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from conceptual models and application queries through a set of mapping rules or patterns in 

the modelling process of column-oriented databases [18], [19], [68]. Figure 4 depicts the 

integration of the modelling process (on the left) and the data integrity maintenance process, 

MDICA, devised in this chapter (on the right).  

Cassandra schema
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Process

MDICA

Maintenance of Data 
Integrity in wide-Column 

store Applications
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data model

Data manipulation 
and data definition 
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Data 
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Cassandra 
schema

Messages about data 
integrity problems

 

Figure 4 Integration of Modelling and Data Integrity Maintenance processes 

In all types of modifications of data, the maintenance of the logical consistency will consist of 

(1) a tuple, which represents the data to insert, delete or update, (2) a conceptual model and (3) 

a schema. In addition, there could be more inputs specific of each type that are detailed in their 

specific section. MDICA will generate the list of ordered data manipulation statements to 

execute against the database by applying two concepts that will be defined in the following 

sections: 

• Data manipulation rules (DMR) to determine which tables are impacted by the operation 

considering mappings between the conceptual model and schema. 

• Data manipulation procedures (DMP) to determine which database statements must be 

executed against the database to preserve the logical consistency (data manipulation 

statements).  

Sometimes, the generated database statements will also retrieve data from tables in the 

database or even modify the logical data model (data definition statements). Moreover, MDICA 

will provide several types of messages to inform the users about potential data integrity 

problems. 

III.4 INTRODUCTORY CASE STUDY 

In order to illustrate how data integrity has to be maintained, we use a case study of a digital 

music store interacting with an information system in Cassandra, adapted from a Datastax 

tutorial [83], that we will also refer to throughout the remaining sections of this chapter.  
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The conceptual model (Figure 5.a) that represents users, playlists created by users, which are 

featured by tracks, tracks available in the system and artists who release tracks.  

The schema, (Figure 5.b), result of the modelling process, includes a table for each query in the 

application. In this case study, required information is about playlists created by a user (Q1), 

artists whose name starts with a certain letter (Q2), tracks ordered by their title that have been 

released by a given artist (Q3) or that are from a specific genre (Q4) and tracks of a playlist (Q5). 

In each table, columns are labelled as primary key (K), partition key (C) with ascending () or 

descending () order, or non-key columns (without a label). 

 

 

Figure 5 Illustrative case study: a digital music store 

Table 2 displays the mapping, Map(M,S), of items (entities and relations) in the conceptual model 

and tables generated from them in the logical data model with the associations between 

attributes and columns. 

 

 
 

a) Conceptual model b) Cassandra model 

 

nationality

Artist

artist_first_letter   K
artist_name            C  
artist_nationality

playlist_name         K
playlist_id                C  
track_title                C  
track_id                    C  
artist_name
track_duration
track_genre

user_username   K
playlist_id             C  
playlist_name      

artist_name            K
track_title             C  
track_id             C  
track_duration
track_genre
artist_nationality

track_genre        K
track_title           C  
track_id               C  
track_duration
artist_name
artist_nationality
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Table playlist_by_user (Q1) from relationship “creates” between Playlist and User 

user_username          ka-kc  

playlist_id        ka-kc    

playlist_name         na-nc   

Table artists_by_first_letter (Q2) from entity Artist 

45rtista_first_letter  na-kc          

45rtista_name ka-kc           

45rtista_nationality   na-nc         

Table tracks_by_artist (Q3) from relationship “releases” between Artist and Track 

45rtista_name ka-kc           

track_title     na-kc       

track_id    ka-kc        

track_duration       na-nc     

tranck_genre      na-nc      

45rtista_nationality   na-nc         

Table tracks_by_genre (Q4) from relationship “releases” between Artist and Track 

track_genre      na-kc      

track_title     na-kc       

track_id    ka-kc        

track_duration       na-nc     

45rtista_name ka-nc           

45rtista_nationality   na-nc         

Table tracks_in_playlist (Q5) from relationships “releases-features” between Artist, Track and Playlist 

playlist_name         na-kc   

playlist_id        ka-kc    

track_title     na-kc       

track_id    ka-kc        

45rtista_name ka-nc           

track_duration       na-nc     

track_genre      na-nc      

Table 2 Map(M,S) for conceptual and logical data models 

We consider below two situations in which there is an insert operation for the same relationship 

between two entities but with different attributes in the tuples to insert. For each situation, we 

illustrate how data in a schema should be updated, and we identify which problems may occur 

if data integrity is not maintained appropriately.  

Situation 1.- Consider a new track released by an artist. At the conceptual level, it implies 

inserting the artist (if it does not exist), the track and a new relationship (releases) between 

these entities. According to the mapping (Table 2), in the schema, tables to update are 

artists_by_first_letter, which stores data of the Artist, and tracks_by_artist and 

tracks_by_genre, which store data of “releases”. So, in order to maintain data integrity in the 

database, it is necessary (1) to check whether the artist already exists in the table 

artists_by_first_letter and insert it if not, and (2) add new rows into tracks_by_artist and 

tracks_by_genre. The rest of the tables (playlists_by_user and tracks_in_playlists) are not 

impacted by the insertion. 

Determining which tables must be updated is a challenging task if there are dozens of tables 

with data repeated and it is conducted manually. Omitting any of the tables will lead to potential 

integrity problems. For instance, if the table tracks_by_genre is forgotten, queries Q3 and Q4 
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will not retrieve the same tracks: the new track will be retrieved by Q3, which queries the table 

tracks_by_artist, but not by Q4, which queries the table tracks_by_genre. 

Situation 2.-. Consider that another new track is released by the same artist, but now only the 

artist’s name is known (neither first letter nor nationality are provided in the tuple). As the artist 

already exists in the database, tables to insert new data are tracks_by_artist and 

tracks_by_genre.  

Cassandra only requires values for key columns in insert operations, the rest of the columns may 

not be provided. Therefore, inserting a new track without the artist’s nationality in tables 

tracks_by_artist and tracks_by_genre is feasible although it would produce a situation of 

incompleteness of data: the nationality of that artist is known because it was previously inserted 

into artists_by_first_letter but now it will not be inserted for the new track. To avoid the 

incompleteness, it will be necessary (1) to determine data for column artist_first_letter from the 

artist’s name, (2) search the table artists_by_first_letter for the artist’s nationality and (3) 

complete the data to be inserted in tracks_by_artist and tracks_by_genre.  

However, it may be the case that the first letter cannot be determined and there is no table that 

retrieves the unknown information (first letter and nationality) for a given artist name. In this 

case, it will be necessary (1) to create a new table that relates artist names to first letters and 

nationalities, (2) populate it with data from artists_by_first_letter, and (3) query it to obtain the 

unknown information. 

In this work, we will provide appropriate solutions to the maintenance of data integrity by 

inserting, updating, or deleting data in each table impacted by the change and/or creating and 

populating new tables to obtain the information required.  

III.5 MAINTENANCE OF THE LOGICAL CONSISTENCY FOR DATA INSERTIONS 

In this section, we define the DMR (Data Manipulation Rules) and DMP (Data Manipulation 

Procedures) that correspond to all types of insertions. In subsequent subsections, these rules 

and procedures will  be particularized within the scope of inserting tuples: in an entity (III.5.1), 

in a relationship with cardinality 1:1, 1:n or n:m (III.5.2) and in combinations of relationships 

with a variety of cardinalities (III.5.3). 

The first step is to identify the tables in a schema that must be updated when something in the 

real world, represented by a conceptual model, is inserted. To achieve this aim, we define the 

concept of Data Manipulation Rule for Insertions (DMR-I): 

Definition 1 (Data Manipulation Rule for Insertions, DMR-I).- Given a conceptual model M, an 

insert operation on an item I (entity or relationship in M), a schema S. A DMR determines: 

1) the Map(M,S) between M and S through the naming of the columns (by convention, an 

attribute of an item referenced as item.attr generates columns called item_attr), 

2) according to Map(M,S), the set of target tables TT∈Tabs(S) which are impacted by the 

operation on the item I,  

3) the potential threats to the maintenance of the logical consistency if any target table is 

not well-modelled. 

Depending on the mapping between M and S, risky situations may exist that will generate: 
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• Error messages “Absence of target tables to update” (ATT) which inform that it is not 

possible to execute the insert operation against the schema because there is no target 

table. 

• Warning messages “Absence of a key column generated from a key attribute” (TNW-K) 

and “Column not generated from any attribute” (TNW-C). These inform about a possibly 

misshapen schema because a table is not well-modelled and may produce loss or 

unnecessary duplicity of data or try to store data not supported by the conceptual 

model. 

The second step is to generate the operations that must be executed against the database in 

order to properly update rows from values in a tuple. We define the Data Manipulation 

Procedure (DMP) to generate them:  

Definition 2 (Data Manipulation Procedure for Insertions, DMP-I).- Given a tuple tp (I) to insert, 

the conceptual-logical data model mapping Map(M,S) between M and S, and the set TT of target 

tables determined by DMR-I. DMP-I determines: 

1) according to Map(M,S), the suitability of tp(I) for the insert operation,  

2) for each column c of each target table tt ∈ TT, data taken from attribute a in tp(I) that 

generates c according to Map(M,S), or retrieved from the database, 

3) for each table tt ∈ TT, the ordered list of manipulation operations (insert, update or 

select) to maintain the logical consistency in TT,  

4) other additional messages, specific of the procedure, where applicable. 

Algorithm 1 describes this procedure (Definition 2): 

Algorithm DMP-I 
Input: a tuple tp(I) to insert, the conceptual-logical data model mapping between M and S Map(M,S), and a 

set TT of target tables 
Output: database statements and messages 
 
suitable = Analysis (tp(I), Map(M,S)) 

If (tp(I) is not suitable due to absence of value for any key attribute) 
  generateMessage (Error, AKA) 
  Abort 
Else If (tp(I) is not suitable due to attribute does not correspond with any column) 
          generateMessage (Warning,AWC) 
End If 
 

ForEach target table tt TT 

  ForEach c  Cols(tt) 
    data = FindData (c, tt, tp(I), Map(M,S)) 

    row = AddPair(c, data) 
  End ForEach 
  GenerateStatement (tt, row) 
End ForEach 

Algorithm 1 Data Manipulation Procedure for Insertions (DMP-I) 

First, it analyses the tuple tp(I) (function Analysis) to determine its suitability: 

• It contains an attribute-value pair for each key attribute of I. If this is not the case, DMP-

I raises (in the function GenerateMessage) the error message “Absence of value for a 

key attribute” (AKA) because there is no value for primary keys at a conceptual model 

level; the insert operation cannot be executed, aborting the process, and invalidating 

any previous operation on any table. 
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• Each attribute in tp (I) generated one or more columns in the database. Otherwise, the 

function GenerateMessage raises the warning message “Attribute does not correspond 

with any column” (AWC) to inform about a possible loss of information because values 

of those attributes will be not stored in the database. 

Then, it processes each column c of each target table tt, assigning data to it through the function 

FindData and adding column-data pairs to the row to insert into tt (function AddPair). FindData 

will be defined within each scope depending on the item (an entity, a relationship, or multiple 

relations) and the content of the tuple. After all columns are processed, the function 

GenerateStatement generates the statements to be executed against the database. 

III.5.1 Insertion of a tuple into an entity 

The simplest case of insert operations at a conceptual model level is to insert a tuple into an 

entity. Next, DMR and DMP are defined specifically for this. 

Definition 3 (Data Manipulation Rule for inserting a tuple into an entity, DMR-IE).- Definition 1 

is applied where item I is an entity eEnts(M). DMR-IE determines the set of target tables 

TTTables(S) generated from e. Each ttTT is well-modelled if pkPK(e), kKey(tt) / an 

association ka-kc in Map(M,S) exists between pk and k. 

Note: each key attribute of e corresponds with a key column of tt, and non-key attributes of e 

could correspond with key or non-key columns, or not be in tt. 

Definition 4 (Data Manipulation Procedure for inserting a tuple into an entity, DMP-IE).- 

Definition 2 is applied where item I is an entity eEnts(M). DMP-IE sets, for each column c of 

each target table ttTT, data taken exclusively from pairs (ai,vi) in tp(e).  

The general algorithm DMP (Section III.2) is applied here but FindData is specialized for inserting 

a tuple in an entity:  

Function FindData 
Input: a column c, a target table tt, a tuple tp(e) to insert, the conceptual-logical data model mapping between 
M and S Map(M,S) 

Output: data for c 

 
If tp(e) has value v for attribute a corresponding to c         case 1 
  Return v 

Else If cKey(tt)                                                                 case 2 
          GenerateMessage (Error,AKC) 
          Abort 
       Else                                                                            case 3 
         GenerateMessage (Warning,ADC) 
         Return null 
     End If 
End If 

Algorithm 2 FindData for insertions of an entity 

This function considers three situations: 

• A column c is generated from attribute a that is in the tuple tp(e) (case 1): FindData returns 

as data the value v of the pair (a,v) in tp(e).  

• A key column c is generated from attribute a that is not in the tuple tp(e) (case 2): 

GenerateMessage raises the error message “Absence of data for a key column” (AKC) 

because it is not possible to insert rows in the table without data for any key column. The 
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insert operation cannot be conducted, and the process will abort and any previous operation 

on any table will be invalidated. 

• A non-key column c is generated from attribute a that is not in the tuple tp(e) (case 3): 

FindData returns null because no data exists to be inserted for c. GenerateMessage raises 

the warning message “Absence of data for a non-key column” (ADC) to inform that the row 

will be inserted without this column. 
 

Example 1.- Consider the insertion of a tuple into entity Artist in the conceptual model in the 

introductory example (Section III.4).  

DMR-IE determines the mapping between conceptual and schemas (that can be seen in Table 

2) and the target table artists_by_first_letter (generated from entity Artist). The key attribute in 

Artist (name) is mapped to a key column (artist_name) of artists_by_first_letter, so this table is 

well-modelled.  

The following examples show different situations in which attribute-value pairs in the tuple 

change and what DMP-IE produces for each one. 

Example 1.1.- Consider the tuple to insert has an attribute-value pair for each attribute of Artist: 

<(artist.name, “author11”), (artist.first_letter, “a”), (artist.nationality, “nation11”)> 

DMP-IE determines that the tuple is suitable and calls FindData for each column of table 

artists_by_first_letter that finds all the data from the tuple (case 1). The result is the row: 

<(artist_first_letter, “a”),(artist_name, “author11”), (artist_nationality, “nation11”)> 

Finally, DMP-IE generates the statement that inserts that row: 

INSERT INTO artists_by_first_letter (artist_first_letter, artist_name, artist_nationality) VALUES (“a”, 
“author11”, “nation11”) 

 

Example 1.2.- Consider the tuple to insert does not have an attribute-value pair for the non-key 

attribute first_letter of Artist that generated the key column artist_first_letter: 

<(artist.name, “author12”), (artist.nationality, “nation12”)> 

DMP-IE determines that the tuple is suitable, but FindData is not able to set data to the key 

column artist_first_letter (case 2). The result is the next row that has a placeholder ‘$’ to 

represent the absence of data for this column: 

<(artist_first_letter, $),(artist_name, “author12”), (artist_nationality,“nation12”)> 

Although an artist can be inserted into a relational database without the first letter, the table 

artists_by_first_letter requires this data (because it is a key column), so it is not possible to 

conduct the insertion. DMP-IE generates an error message: 

Error (AKC): Absence of data for key column artist_first_letter. No insertion is possible 

 

Example1.3.- Consider the tuple to insert does not have an attribute-value pair for the non-key 

attribute nationality of Artist that generated the non-key column artist_nationality: 

<(artist.name, “author13”), (artist.first_letter, “a”)> 
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Now, FindData is not able to obtain data for the non-key column artist_nationality (case 3). The 

result is the next row, with a placeholder ‘$’ for the data of this column: 

<(artist_first_letter, “a”),(artist_name, “author13”), (artist_nationality, $)> 

In this situation, the algorithm shows a warning message (absence of data for column 

artist_nationality) and generates an insert statement: 

Warning(ADC): Absence of data for non-key column artist_nationality. Column is not inserted. Possible 
incomplete data stored in table artists_by_first_letter 
 
INSERT INTO artists_by_first_letter (artist_first_letter, artist_name) VALUES (“a”, “author13”) 

III.5.2 Insertion of a tuple into a relation 

Next, we will deal with inserting a tuple into a relationship at a conceptual model level. In 

definitions of specific DMR and DMP, we will consider different cardinalities of binary 

relationships (1:1, 1:n and n:m) and illustrate them with an example. 

Definition 5 (Data Manipulation Rule for inserting a tuple into a binary relationship, DMR-IR).- 

Definition 1 is applied where item I is a relationship between entities e1 and e2, R{e1,e2}Rels(M). 

DMR-IR consists of two complementary rules to determine the set of target tables 

TT=TTEntsTTRTables(S):  

DMR-IR.1 determines the set of target tables TTEnts  Tables(S), generated from e1 and e2. 

DMR-IE (Definition 3) is applied to these entities. 

DMR-IR.2 determines the set of target tables TTR  Tables(S), generated from R{e1,e2}. 

Depending on the cardinality of R{e1,e2}, each ttRTTR is well-modelled, if: 

1:1 relation: pke1PK(e1) pke2PK(e2), kKey(ttR) / an association ka-kc in 

Map(M,S) exists between pke1 and k or pke2 and k. 

1:n relation:  pke2PK(e2) kKey(ttR) / an association ka-kc in Map(M,S) exists 

between pke2 (key attribute of detail entity) and k.  

n:m relation:  pkPK(e1)PK(e2) kKey(ttR) / an association ka-kc in Map(M,S) exists 

between pk and k. 

Note: The rest of the attributes not included (from any entity or relation) may correspond with 

key or non-key columns, or not be in a ttTT.  

If there is no target table determined by DMR-IE.1 for any of the entities, MDICA generates a 

warning message which informs about a possible loss of data: absence of target tables for some 

items in the tuple (ATA). 

Definition 6 (Data Manipulation Procedure for inserting a tuple into a binary relationship, DMP-

IR).- Definition 2 is applied where item I is a relationship between entities e1 and e2, 

R{e1,e2}Rels(M). DMP-IR sets, for each column c of each target table ttTT, data taken from pairs 

(ai,vi) in tp(R{e1,e2}) or retrieved from a table lookupTableTabs(S).  

The general algorithm DMP (Section III.5) is now applied with the specialized FindData for 

inserting a tuple in a relation. 
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Function FindData 
Input: a column c, a target table tt, a tuple tp(R{e1,e2}) to insert, the conceptual-logical data model mapping 
between M and S Map(M,S) 

Output: data for c 

 
If tp(R{e1,e2}) has value v for attribute a corresponding to c    case 1 
  Return v 
Else 
  lookupQuery = CreateQuery (c, tp(R{e1,e2}), Map(M,S)) 

  If (lookupQuery is executable)                                           case 4 
    GenerateMessage (Information,ADC-S) 
    Return data=lookupQuery 
  Else 
    lookupQuery = RecreateQuery (c, tp(R{e1,e2}), Map(M,S)) 

    If (lookupQuery is executable)                                         case 5 
      GenerateMessage (Information,ADC-C) 
      Return data=lookupQuery 
    Else 

      If cKey(tt)                                                                      case 2 
        GenerateMessage (Error,AKC) 
        Exit  
      Else                                                                                 case 3 
        GenerateMessage (Warning,ADC) 
        Return null 
      End If 
    End If 
  End If 
End If 

Algorithm 3 FindData for insertions of a relationships 

FindData will build a query named LookupQuery, defined below, which will retrieve data from a 

table for a column c when the data is not present in the tuple but already exists in the database 

(cases 4 and 5).  

Definition 7 (LookupQuery).- Given a tuple tp(R{e1,e2}) and a row of a target table tt r(tt)=<(c1,d1),…, 

(ci,$i),…(cn,dn)> where data for column ci is unknown, represented by a placeholder $i. 

lookupQuery is an statement in the form SELECT ci FROM lookupTable WHERE , where 

lookupTableTabs(S) has the column ci, and  is a proposition, which holds for lookupTable, 

with columns and data retrieved from attribute-value pairs in tp(R{e1,e2}) or from column-data 

pairs in r(tt). 

This function FindData contemplates cases 1, 2 and 3 as inserting a tuple into an entity. 

Moreover, it considers two more situations when a column c is generated from attribute a that 

is not in tp(R{e1,e2}), for which lookupquery is prepared to be executed against the database, 

obtains data for the column, and replaces the placeholder in the row: 

• Data for the column c can be retrieved from the database with lookupQuery (case 4). The 

function CreateQuery: (1) searches L and finds a lookupTable for which the proposition  

holds, and (2) prepares and returns lookupQuery. GenerateMessage raises the information 

message “Absence of data for a column, data might be retrieved from lookupTable 

executing lookupQuery” (ADC-S) to notify the need of a query to find unknown data, 

otherwise the logical consistency cannot be ensured because of the absence of data in some 

columns that already exists in others. 

• Data for the column c can be retrieved from the database but CreateQuery is not able to 

prepare lookupQuery (case5). The function RecreateQuery: (1) searches Q looking for a 

table, named sourceTable, that stores data for ci (column with unknown data), (2) generates 

a new table, named remadeTable, from sourceTable, with suitable keys so that the 
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proposition  holds, and (3) prepares and returns lookupQuery that retrieves data from 

remadeTable. In this case, GenerateMessage raises the information message “Absence of 

data for a column, an auxiliary table (remadeTable) might be created and populated from 

sourceTable, and data would be retrieved from remadeTable executing lookupQuery” (ADC-

C) to notify the need to create, populate and query a new table to find unknown data. 

In case 5, once remadeTable is created, it becomes part of L, so in subsequent insert operations, 

the process will be as in case 4. 

Example 2.- Consider the insertion of a tuple into the relationship “releases” between entities 

Artist and Track in the conceptual model in the introductory example (Section III.4).  

DMR-IR determines a set of target tables considering two complementary rules: 

• DMR-IR.1 implies the application of DMR-IE to both entities Artist and Track. No table is 

generated from entity Track. Therefore, table artists_by_letter, generated from entity Artist, 

is the only target table. 

• DMR-IR.2 determines as target tables tracks_by_artist and tracks_by_genre, generated 

from the relationship “releases”. Both tables are well-modelled provided that the 

relationship cardinality is 1:n and the primary key of entity Track (detail entity) is part of the 

key in both of them. 

Different situations with a variety of attribute-value pairs in tuples to insert are shown below. 

Example 2.1.- Consider the tuple to insert does not have an attribute-value pair for the non-key 

attribute nationality of Artist (which generated non-key columns artist_nationality in the target 

tables): 

<(artist.name, “author21”), (artist.first_letter, “a”), (track.id, “id021”), (track.title, “title21”), (track.genre, 

“genre21”), (track.duration, 21)> 

In this situation, FindData is not able to obtain data from the tuple for columns 

artist_nationality. If the artist has been previously inserted, it can retrieve the nationality from 

a table: CreateQuery generates a lookupQuery to retrieve data for the column artist_nationality 

from the table artists_by_first_letter (case 4). lookupQuery is “SELECT artist_nationality from 

artists_by_first_letter where artist_name="author21" and artist_first_letter="a"”. When executing this 

lookupQuery, data retrieved will replace placeholders $ in rows: 

artists_by_first_letter: <(artist_first_letter, “a”), (artist_name, “author21”),(artist_nationality,$)> 

tracks_by_artist: <(artist_name, “author21”), (track_id, “id21”), (track_title, “title21”), (track_genre, 

“genre21”), (track_duration, 21), (artist_nationality, $)> 

tracks_by_genre: <(track_genre, “genre21”), (track_id, “id21”), (track_title, “title21”), (track_duration, 21), 

(artist_name, “author21”), (artist_nationality, $)> 

Finally, the algorithm shows a warning message due to the absence of tables generated from 

the entity Track and an information message indicating the need to retrieve data from the 

database, and it generates statements that ensure the logical consistency: 
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Warning(ATA): Absence of target tables for entity Track 
Information(ADC-S): Absence of data for column artist_nationality. 
  Select artist_nationality from table artists_by_first_letter 
 
$ = SELECT artist_nationality FROM artists_by_first_letter WHERE artist_name= “author21” and 
artist_first_letter=“a” 
 
INSERT INTO artists_by_first_letter (first_letter, artist_name, artist_nationality) VALUES (“a”, “author21”,$) 
 
INSERT INTO tracks_by_artist (artist_name, track_title, track_id, track_genre, track_duration, 
artist_nationality) VALUES (“author21”, “title21”, “id21”, “genre21”, 21, $) 
 
INSERT INTO tracks_by_genre (track_genre, track_title, track_id, track_duration, artist_name, 
artist_nationality) VALUES (“genre21”, “title21”, “id21”, 21, “author21”, $) 

Example 2.2.- Consider the tuple to insert has attribute-value pairs for all attributes of the entity 

Track but only one pair for the primary key (attribute name) of Artist: 

<(artist.name, “author22”), (track.id, “id22”), (track.title, “title22”), (track.genre, “genre22”), (track.duration, 

22)> 

Now, FindData does not find data from the tuple for the key column artist_first_letter in table 

artists_by_first_letter or for non-key column artist_nationality in every target table. 

CreateQuery does not find any lookupTable from which the queries in the form “SELECT 

artist_first_letter/artist_nationality FROM lookuptable WHERE artist_name="author33"”, were executable, 

although these columns exist in the table artists_by_first_letter. RecreateQuery creates and 

populates a new table, rm_artists_by_first_letter, which can retrieve the unknown values (case 

5). The retrieved data will replace the placeholders $i in rows: 

artists_by_first_letter: <(artist_first_letter, $1), (artist_name, “author22”), (artist_nationality, $2)> 

tracks_by_artist: <(artist_name, “author22”), (track_id, “id22”), (track_title, “title22”), (track_genre, 

“genre22”), (track_duration, 22), (artist_nationality, $2)> 

tracks_by_genre: <(track_genre, “genre22”), (track_id, “id22”), (track_title, “title22”), (track_duration, 22), 

(artist_name, “author22”), (artist_nationality, $2)> 

For this situation, together with database statements, the algorithm shows a warning message 

due to the absence of target tables generated from Track and an information message to notify 

the need to create, populate and query a new table to maintain the logical consistency: 
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Warning(ATA): Absence of target tables for entity Track 
Information(ADC-C): Absence of data for column artist_first_letter 
  Create and populate table rm_artists_by_first_letter from artists_by_first_letter 
  Select artist_first_letter from table rm_artists_by_first_letter 
Information(ADC-S): Absence of data for column artist_nationality 
  Select artist_nationality from table rm_artists_by_first_letter 
 
CREATE TABLE rm_artists_by_first_letter (artist_name PRIMARY KEY, artist_first_letter, artist_nationality) 
 
COPY rm_artists_by_first_letter (artist_name, artist_first_letter, artist_nationality) FROM 
artists_by_first_letter (artist_name, artist_first_letter, artist_nationality) 
 
$1 = SELECT artist_first_letter FROM rm_artists_by_first_letter WHERE artist_name=‘author22’ 
 
$2 = SELECT artist_nationality FROM rm_artists_by_first_letter WHERE artist_name=‘author22’ 
 
INSERT INTO artists_by_first_letter (artist_first_letter, artist_name, artist_nationality) VALUES ($1, 
“author22”, $2) 
 
INSERT INTO tracks_by_artist (artist_name, track_title, track_id, track_genre, track_duration, 
artist_nationality) VALUES (“author22”, “title22”, “id22”, “genre22”, 22, $2) 
 
INSERT INTO tracks_by_genre (track_genre, track_title, track_id, track_duration, artist_name, 
artist_nationality) VALUES (“genre22”, “title22”, “id22”, 22, “author22”, $2) 

 

III.5.3 Insertion of a tuple into multiple relations 

Tuples to insert at a conceptual model level can include attributes of entities related through 

more than one relationship. This section includes the definition of the specific DMR considering 

tuples whose attributes belong to entities related by multiple relationships and an example.  

Definition 8 (Data Manipulation Rule for inserting a tuple into two or more relationships, DMR-

IRR).- Definition 1 is applied where item I is a set of two or more relationships RRRels(M) 

between a set of entities EEEnts(M). DMR-IRR consists of two complementary rules to 

determine the set of target tables TT= TTbR TTRR Tables(S): 

DMR-IRR.1 determines the set of target tables TTbR Tables(S), generated from each binary 

relationship R{ei,ej}∈RR. DMR-IR (Definition 5) is applied to each R{ei,ej}. 

DMP-IRR.2 determines the set of target tables TTRRTables(S), generated from 

combinations of chained relationships in RR with cardinality 1:1, 1:n and n:m. Depending 

on combinations of the cardinality of relationships, each table ttRR∈TTRR is well-modelled 

if: 

Combination of 1:1 relations: eiEE, pkeiPK(ei) kKey(ttRR) / an association ka-kc 

in Map(M,S) exists between pkei and k. 

Combination of 1:n relations: enEE, pkenPK(en) kKey(ttRR) / an association ka-kc 

in Map(M,S) exists between pken and k. Next, cases are distinguished 

depending on the position of the detail entity in the chained relations: 

• Case 1:n - 1:n: the detail entity en is at the end of the chained relations. 

• Case 1:n - n:1: the detail entity en is in the middle of the chained 

relations.  

• Case n:1 - 1:n: two detail entities exist, at the beginning e1 and at the 

end en of the chained relationships and both must fulfil the 

proposition. 

Combination of n:m relations: eiEE, pk PK(ei) kKey(ttRR) / an association ka-

kc in Map(M,S) exists between pk and k.  
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Combination of 1:1, 1:n and n:m relations: an association ka-kc in Map(M,S) exists 

between a key column of ttRR and every key attribute of: any entity in 1:1 

relationships, detail entities in 1:n relationships and every entity in n:m 

relations. 

Note: The rest of the attributes not included (from any entity or relation) may correspond with 

key or non-key columns, or not be in any target table ttTT. 

Moreover, when inserting a tuple into a set of relations: 

• MDICA generates warning messages informing about a possible loss of data if there is no 

target table determined by DMR-IRR.1 for any of the binary relations: absence of target 

tables for some items in the tuple (ATA). 

• DMP-IR (Definition 6) is applied where item I is a set of two or more relations. 

Example 3.- Consider the insertion of a tuple into the relationships (“releases” and “features”) 

between entities Artist, Track and Playlist at the conceptual model level in the introductory 

example (Section III.4).  

DMR-IRR determines target tables considering two complementary rules: 

• DMR-IRR.1 implies the application of DMR-IR to relationships “release” and “features” that, 

recursively, implies the application of DMR-IE to entities Artist, Track and Playlist. No table 

is generated from entities Track or Playlist or from the relationship “features”. Table 

artists_by_first_letter (generated from entity Artist) and tables tracks_by_artist and 

tracks_by_genre (generated from relationship “releases”) are determined as target tables.  

• DMR-IRR2 determines as a target table tracks_in_playlist, generated from the relationships 

chained “releases” and “features”, a combination of a 1:n relationship (Artist R Track) and 

an n:m relationship (Track R Playlist), respectively. The table is well-modelled because the 

key column track_id was generated from the primary key of Track (detail entity in the 1:n 

relation) and playlist_id was generated from the primary key of Playlist (Track and Playlist 

entities in the n:m relation). 

III.6 MAINTENANCE OF THE LOGICAL CONSISTENCY DATA DELETIONS 

The inputs for the maintenance of the logical consistency when deleting data will consist on (1) 

the entity or relationship whose instances are to be deleted, (2) a conceptual model, (3) a 

schema and (4) the criteria used to determine whether the instance of an entity or relationship 

is deleted from the database or not, which we name deletion criteria. MDICA will generate the 

list of ordered data manipulation statements to execute against the database by applying data 

manipulation rules for deletion of tuples (DMR-D) and data manipulation procedures for 

deletion of tuples (DMP-D) that we define later in this section.  

Like in the insertions of data, the generated databases statements may retrieve data from the 

database or modify the schema in order to preserve the logical consistency and execute the 

intended deletion of data.  

In this section, we define the rules and procedures in general terms and in a subsequent section, 

they will be particularized within the scope of deleting data that either belongs to an entity 

(Section III.6.1) or to a relationship with cardinality 1:1, 1:n or n:m (Section III.6.2). 
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The first task to perform is to identify the tables where data must be deleted in accordance with 

the deletion criteria. As like for the insertions, we define the concept of Data Deletion Rule (DDR) 

for this: 

Definition 9 (Data Manipulation Rule for Deleting a tuple, DMR-D). – Given a conceptual model 

M, a delete operation on an item del (entity or relationship in M), a schema S. A DMR-D 

determines: 

1) the Map(M,S) between M and S through the naming of the columns (by convention, an 

attribute of an item referenced as item.attr generates columns called item_attr), 

2) according to Map(M,S), the set of target tables TT∈Tabs(S) which are impacted by the 

deletion on the item I,  

3) the potential threats to the maintenance of the logical consistency if any target table is 

not well-modelled. 

Depending on the mapping between M and S, risky situations may exist that will generate: 

• Error messages “Absence of target tables to update” (ATT) which inform that it is not 

possible to execute the delete operation against the schema because there is no target 

table. 

• Warning messages “Absence of a key column generated from a key attribute” (TNW-K) 

and “Column not generated from any attribute” (TNW-C). These inform about a possibly 

misshapen schema because a table is not well-modelled and may produce loss or 

unnecessary duplicity of data or try to store data not supported by the conceptual 

model. 

The second step is to generate the operations that must be executed against the database 

in order to properly delete the rows that fulfil the deletion criteria. We define the Data 

Manipulation Procedure for Deletions (DMP-D) to generate them:  

Definition 10 (Data Manipulation Procedure for Deletions, DMP-D).- Given a deletion criteria w, 

the entity or relationship whose instances need to be deleted del,  the conceptual-logical data 

model mapping Map(M,S) between M and S, and the set TT of target tables determined by DMR-

D. DMP-D determines: 

1) for each target table tt ∈TT, the necessary data taken from the deletion criteria or 

retrieved from the database to execute the correct DELETE operation in the table, 

2) for each table tt, the ordered list of manipulation operations (SELECT or DELETE)  to 

maintain the logical consistency in TT,  

3) other additional messages, specific of the procedure, where applicable. 

The algorithm DMP-D, included below, describes this procedure (Definition 10): 
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Algorithm DMP-D 
Input: an entity or relationship del with a where W clause, the conceptual-logical data model mapping 
between M and S Map(M,S), and a set TT of target tables 
Output: database statements and messages 
 
ForEach target table tt ∈ TT 

  ForEach c ∈ Key(tt) 
          value = findData (c, W, Map (M, L)) 
          tableWhere = AddPair(c, value) 
  End ForEach 
  ListPairValues = keyValues (tableWhere) 
  Statements = {} 
  ForEach pair (a, v) ∈ ListPairValues 
    Statements <- GenerateAllStatements (pair (a,v) , ListPairValues, tableWhere, tt)  
    RemovePair (pair(a,v), ListPairValues) 
  End ForEach 
  Return Statements 

Algorithm 4 Data Manipulation Procedure for Deletions (DMP-D) 

For each table that belongs to the target tables (tt TT), DMP-D analyses each key column c and 

creates a pair of the column and either a single value or a set of pair of values (AddPair): 

• When it is a single value, it means that for all statements that will be executed against 

the target table, this value will always be assigned to c.  

• When it is a set of pair of values, the pair is composed of 1) a value to assign to c and 2) 

a pair composed of a key column and a value. This key column is mapped to a key 

attribute of an entity from the conceptual model, which is either the item del (entity or 

relationship) or related to it through relationships in the conceptual model. When 

generating the required delete statements (GenerateAllStatements), the value 1) will 

only be assigned to statements where the value in the pair 2) is assigned to the key 

column. Previously, all the 2) pairs are inserted in a list (keyValues). 

The created pairs for each column are stored in the list tableWhere. Right after tableWhere 

contains all pair values for tt, function keyValues inserts in the list ListPairValue unique pairs of 

a key column and a value. Then, for each pair all the possible statements that will contain that 

pair generated (GenerateAllStatements) using the appropriate values for the rest of the 

columns that are obtained from ListPairValues and tableWhere. For instance, if there are two 

attribute keys a and b from two different entities, with each one having two different values 

assigned to them, there would be 4 statements in order to cover all possible combinations. 

III.6.1 Deletion of a tuple from an entity 

For the deletion of instances of entities, deletion procedures must be executed in each table 

that contains information of the entity (c  tt, cEntity). That is that a table is assigned as a target 

table if just one column of it is mapped to an attribute of the entity. 

The general algorithm DMP-D is applied but FindData is specialized for deleting an entity. Inside 

this function there are calls to several sub-functions that do the following: 

• correspondingAttribute (c: Column, Map (Cm, Lm)): Obtains the attribute associated to 

the column c. 

• entity (a: Attribute): Obtains the entity associated to the attribute a. 

• CreateQuery (c: Column, w: Tuple, Map (Cm, Lm)): Creates a query to execute against 

the database to obtain the value required for c, using as criteria the values inside tuple 

w. 
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• CreateQuery (a: Attribute, w: Tuple, Map (Cm, Lm)): Creates a query to execute against 

the database to obtain the value required for a, using as criteria the values inside tuple 

w. 

• RecreateQuery (c: Column, a: Attribute, w: Value, Map (Cm, Lm)): Creates an 

appropriate table to execute a query against the database to obtain the value required 

for c, using as criteria the value w applied to the attribute a. Then, it executes  the query 

against the created table.  

• AssignKeyPair (key: Value, pkValue: Pair): Creates an association of a value key to be 

assigned to the column c of the function FindData. The pkValue pair consists of an 

association between a primary key of an entity and a value of that key, which we name 

as keyValue. This will be used in the DMP algorithm to associate the value key in the 

DELETE statement when the value keyValue is also used.  

• AssignValues (v : Value): Assigns the value v to a list that calls this function. 

Function FindData 
Input: a column c, a target table tt, a deletion criteria W  that contains values v associated to attributes from 
entity e, the conceptual-logical data model mapping between M and S Map(M,S) 
Output: value for c (cases, 1, 2) or set of values (cases 3 and 4) 
a = correspondingAttribute (c, Map (M,L)) 
ec = entity (a) 
keyEc = key (ac)  
If W  has value v for attribute a corresponding to c                     case D1 
   Return v 
 
Else If w has values v  for attributes key of ec                                              case D2 
        lookupQuery = CreateQuery (c, w, Map(M,S)) 

If (lookupQuery is executable)                                                      case D2-1 
      GenerateMessage(Information,ADC-S) 
      Return data=lookupQuery 
         Else 
          lookupQuery = RecreateQuery (key(ec), w, Map(M,S)) 
          If (lookupQuery is executable)                                                     case D2-2 
          GenerateMessage(Information,ADC-C) 
          Return data=lookupQuery 
        Else                  case D5 
  GenerateMessage(Error,AKC) 
          Exit  
        End If 
Else if w has not value v for attribute key of ec and ec == e                  case D3               
         lookupQueryKey = CreateQuery (key(e), w, Map(M,S))  
         If (lookupQueryKey is not executable) 
  lookupQueryKey = RecreateQuery (key(e), w, Map(M,S)) 
          If (lookupQuery is not executable)                                          case D5 
   GenerateMessage(Error,AKC) 
           Exit  
         End If 
        End If 
        listValues = {} 
        ForEach value in lookupQueryKey 
          lookupQuery = CreateQuery (c, value, Map(M,S)) 
          If (lookupQuery is executable)                                                case D3-1 
       GenerateMessage(Information,ADC-S) 
   listValues <- AssignKeyPair (lookupQuery, {key(ec), value}) 
          Else 
           lookupQuery = RecreateQuery (c, value, Map(M,S)) 
           If (lookupQuery is executable)                                      case D3-2 
           GenerateMessage(Information,ADC-C) 
    listValues <- AssignKeyPair (lookupQuery, {key(ec), value}) 
          Else 
    GenerateMessage(Error,AKC) 
            Exit  
          End If 
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  End If 
        End ForEach 
        Return {data} = listValues 
 
Else          case D4 
   If w  has not value v for attribute key of e: 
          lookupQueryKey = CreateQuery (key(e), w, Map(M,S))  
          If (lookupQueryKey is not executable) 
   lookupQuery = RecreateQuery (key(e), w, Map(M,S)) 
           If (lookupQuery is not executable)                               case D5 
    GenerateMessage(Error,AKC) 
           Exit  
          End If 
         End If 
           listValuesKey <- AssignValues (lookupQueryKey) 
   Else 
          listValuesKey <- AssignValues (w.getValue (e)) 
     ForEach value in listValuesKey 
     lookupQuery = CreateQuery (key(ec), value, Map(M,S)) 

     listValues = {} 
     If (lookupQuery is executable)                   case D4-1 

                                          ForEach valueFK in lookupQuery 
     {Values} = FindData (c, valueFK, Map (M, L)) 
    ForEach valueColumn in Values 
     listValues <- AssignKeyPair (valueColumn, {key(e), value}) 
    End  ForEach 
      Else 
            lookupQuery = RecreateQuery (key(ec), value, Map(M,S)) 
            If (lookupQuery is executable)                      case D4-2 

                                                         ForEach valueFK in lookupQuery 
      {Values} = FindData (c, valueFK, Map (M, L)) 
     ForEach valueColumn in Values 
      listValues <- AssignKeyPair (valueColumn, {key(e), 
value}) 
     End  ForEach 
           Else     case D5 
     GenerateMessage(Error,AKC) 
             Exit  
           End If 
         End If 

End If 
Return {data} = listValues 

 
End If 

Algorithm 5 FindData for deletions of tuples from an entity 

FindData considers four main situations: 

• The clause where w contains a value for column c (case D1): FindData returns as data 

the value v of the pair (a, v) in w. 

• The clause where w does not contain a value for column c (cases D2, D3 and D4). There 

are several situations for this: 

o w contains a value for the key of the entity ec, a (case D2). In this case, a query 

lookupquery is prepared by function CreateQuery to execute against the 

database data to obtain the required value for column c. This lookupquery 

requires that the schema contains a table where the value can be retrieved 

using the proposition  (key value of ec). There are two ways of achieving this: 

▪ If the lookupquery can be executed directly over a lookupTable for 

which the proposition  holds, the value is retrieved and returned as 

data (case D2-1). GenerateMessage raises the information message 

“Absence of data for a column, data might be retrieved from 
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lookupTable executing lookupQuery” (ADC-S) to notify the need of a 

query to find unknown data, otherwise the logical consistency cannot 

be ensured because of the impossibility of executing the deletion of 

data. 

▪ Data for the column c can be retrieved from the database but 

CreateQuery is not able to fully prepare lookupQuery (case D4-2) as 

there is no existing table where proposition  holds. The function 

RecreateQuery: (1) searches Q looking for a table, named sourceTable, 

that stores data for ci (column with unknown data) and the key value of 

ec, (2) generates a new table, named remadeTable, from sourceTable, 

with suitable keys so that the proposition  holds, and (3) prepares and 

returns lookupQuery that retrieves data from remadeTable. 

o w does not contain a value for the key of entity ec but attribute a belongs to the 

entity whose instance is to be deleted (case D3). In this case a query 

lookupQueryKey is prepared to execute against the data in order to retrieve the 

key values associated to rows that store the same values that are contained in 

w.  

▪ If the lookupQueryKey can be executed directly over a lookupTable for 

which the proposition  holds, the key values are retrieved (case D3-1). 

Then, for each key value retrieved, the same process as for cases 4 and 

5 is applied, returning FindData a list of pairs, where the first value is 

the value to associate with c in a deletion statement and the second 

value is a pair that associates the key with the according value.  

▪ Values for the key of ec can be retrieved from the database but 

CreateQuery is not able to prepare lookupQuery (case DE3-2). The 

function RecreateQuery: (1) searches Q looking for a table, named 

sourceTable, that stores data for ki (key attribute with unknown data), 

(2) generates a new table, named remadeTable, from sourceTable, with 

suitable keys so that the proposition  holds, and (3) continues the 

process described in case 7, executing the lookupQuery over the 

remadeTable. 

o Attribute a belongs to an entity ec that is different from entity e (cases D4-1 and 

D4-2). In this scenario, the objective is to obtain the instances of ec that are 

associated to the instances of e that fulfil the deletion criteria specified in w. 

These values are obtained through the lookupQuery. After obtaining the 

primary key values of the instances of ec associated to e, the function FindData 

is executed recursively to obtain the necessary values required to be associated 

to c.  

• If no value could be obtained, then the algorithm returns an AKC error (case D5) 

In order to further explain this algorithm, let consider the following examples: 

Example 3: 

Consider the deletion of the instances of the Entity user that accomplish the deletion criteria 

‘username’ = ‘juan’: 

DMR-D determines the mapping between conceptual model and schemas (that can be seen in 

Table 2) and the target table playlist_by_user. The table contains columns mapped to attributes 

from user, therefore it is detected as a target table. 
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Then, DMP-D calls FindData to build the appropriate DELETE statement. As the partition key of 

the table is mapped to the attribute ‘username’ from ‘User’, FindsData returns the value ‘juan’ 

obtained from the deletion criteria (case D1). 

Finally, DMP-D generates the statement that deletes the row: 

DELETE FROM playlist_by_user WHERE username = ‘juan’; 

Example 4: 

Consider the deletion of the instances of the Entity playlist that accomplish the deletion criteria 

‘name = ‘pl1’: 

DMR-D determines the mapping between conceptual model and schemas (that can be seen in 

Table 2) and the following target tables where columns mapped to attributes from playlist are 

detected: playlist_by_name and  playlist_by_user: 

Example 4.1: Table playlist_by_name 

DMP-D calls FindData to build the appropriate DELETE statement. As the partition key of the 

table is mapped to the attribute ‘name from ‘playlist’, FindsData returns the value ‘pl1’ obtained 

from the deletion criteria (case D1). 

Finally, DMP-D generates the statement that deletes the row: 

DELETE FROM playlist_by_name WHERE playlist_name = ‘p1’; 

Example 4.2: Table playlist_by_user: 

DMP-D calls FindData to build the appropriate DELETE statement. In this situation, FindData is 

not able to obtain the required values from the deletion criteria for the columns user_usersame 

and playlist_id.  

To obtain the correct values, CreateQuery generates a lookupQuery to retrieve data for the 

column user_usersame (case D4), which is mapped to the key attribute of the entity ‘user’. As 

the deletion criteria does not contain a value for the key of Entity playlist in order to obtain the 

instances of ‘user’ related to the playlists that fulfil the deletion criteria, first the key values of 

these instances must be retrieved. For this, CreateQuery generates a lookupQuery to obtain the 

values using as the selection criteria the name of the playlist from the table tracks_by_playlist. 

LookupQuery is “SELECT playlist_id from tracks_by_playlist where playlist_name=”pl21”. 

After obtaining the key values of playlist, a lookupQuery is created to obtain the instances of 

user associated to these key values of playlist. However, there is no lookupTable where the 

lookupQuery “SELECT user_username  from lookupTable where playlist_id=”pl21”, although these 

columns exist in the table playlist_by_user. RecreateQuery creates and populates a new table, 

rm_playlist_by_user,  which can retrieve the unknown values.  

The retrieved data for both playlist_id and user_username will replace the placeholders $i in 

rows: 

DELETE FROM playlist_by_user WHERE user_username = $2 AND playlist_id = $1 
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Note that the value that replaces $2 has a functional dependency with the value that replaces 

$1, as the values for column “user_username” where obtained searching for a specific value of 

“playlist_id”.  

III.6.2 Deletion of a tuple from a relationship 

Next, we will address deleting relationships between entities. In definitions of specific DMR-D 

and DMP-D for relationships, we will consider different cardinalities of binary relationships (1:1, 

1:n and n:m) and illustrate them with an example. The determination of the target tables is the 

same as for the insertions of tuples in relationships. 

Definition 11 Data Manipulation Rule for deleting a relationship between instances of two 

entities, DMR-DR).- Definition 9 is applied where item del is a relationship between entities e1 

and e2, R{e1,e2}Rels(M). DMR-DR determines the set of target tables TTR  Tables(S), generated 

from R{e1,e2}. Depending on the cardinality of R{e1,e2}, each ttRTTR is well-modelled, if: 

1:1 relation: pke1PK(e1) pke2PK(e2), kKey(ttR) / an association ka-kc in 

Map(M,S) exists between pke1 and k or pke2 and k. 

1:n relation:  pke2PK(e2) kKey(ttR) / an association ka-kc in Map(M,S) exists 

between pke2 (key attribute of detail entity) and k. Additionally, it must also 

accomplish that there is at least one attribute of e1 mapped to a column of 

ttR. 

n:m relation:  pkPK(e1)PK(e2) kKey(ttR) / an association ka-kc in Map(M,S) exists 

between pk and k. 

Definition 12 (Data Manipulation Procedure for deleting instances of a binary relationship, DMP-

DR).- Definition 10 is applied where item del is a relationship between entities e1 and e2, 

R{e1,e2}Rels(M). DMP-DR sets, for each column c of each target table ttTT, data taken from 

deletion criteria or retrieved from a table lookupTableTabs(S).  

The general algorithm DMP-D (Section III.6) is now applied with the specialized FindData for 

deleting an instance of a relationship 

Function FindData 
Input: a column c, a target table tt, a deletion criteria W  that contains values v associated to attributes from 
entities e1 and e2, the conceptual-logical data model mapping between M and S Map(M,S) 
Output: data: value for c (cases, DR1, DR2) or set of values (DR3, DR4) 
If W  has value v for attribute a corresponding to c                   case DR1 
  Return v 
Else  
a = correspondingAttribute (c, Map (M,L)) 
ec = entity (a) 
if w has values v for attributes that belong to ec 
 If w has value v  for attributes key of ec                                             case DR2 
          lookupQuery = CreateQuery (c, w, Map(M,S)) 
          If (lookupQuery is executable)                                             case DR2.1 
       GenerateMessage(Information,ADC-S) 
       Return data=lookupQuery 
         Else 
          lookupQuery = RecreateQuery (c, w, Map(M,S)) 
          If (lookupQuery is executable)                                            case DR2.2 
          GenerateMessage(Information,ADC-C) 
          Return data=lookupQuery 
         Else              case DR5 
   GenerateMessage(Error,AKC) 
           Exit  
         End If 

End If 
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Else if w has not value v for attribute key of ec, a is key of ec and w contains values for any attribute of  ec 
case DR3             
       lookupQueryKey = CreateQuery (key(ec), w, Map(M,S))  
         If (lookupQueryKey is not executable) 
  lookupQueryKey = RecreateQuery (key(e), w, Map(M,S)) 
         End If 

If (lookupQuery is not executable)                                       case DR5 
  GenerateMessage(Error,AKC) 
          Exit  
        End If 
         
         listValues = {} 
        ForEach value in lookupQueryKey 
          lookupQuery = CreateQuery (c, value, Map(M,S)) 
          If (lookupQuery is executable)                             case DR3.1 
       GenerateMessage(Information,ADC-S) 
   listValues <- AssignKeyPair (lookupQuery, {key(e), value}) 
          Else 
           lookupQuery = RecreateQuery (c, w, Map(M,S)) 
           If (lookupQuery is executable)               case DR3.2 
           GenerateMessage(Information,ADC-C) 
    listValues <- AssignKeyPair (lookupQuery, {key(e), value}) 
          Else 
    GenerateMessage(Error,AKC)  case DR5 
    Exit 
           EndIf  
         End If 
        End ForEach 
         Return {data} = listValues 
Else if w does not have values for ec but it does for attributes of the other entity of the relationship
         case DR4 

e2 = otherEntity (r, ec) 
         lookupQueryKey = CreateQuery (key(ec), w, Map(M,S))  
         If (lookupQueryKey is not executable) 
  lookupQueryKey = RecreateQuery (key(ec), w, Map(M,S))     case DR4.2 
         End If 

 If (lookupQueryKey is not executable)                                                 case DR5 
  GenerateMessage(Error,AKC) 
          Exit  
         
        Else        case DR4.1 
          listValues = {} 
         ForEach value in lookupQueryKey 
   Values <- FindData (c, value, Map (M, L))  
   ForEach valueFK in values 
    listValues <- AssignKeyPair (valueFK, {key(e), value}) 
         End ForEach 
          Return {data} = listValues 
 End If 
 
Else                   case DR5 
   GenerateMessage(Error,AKC)  
         Exit  
       End If 
     End If 
    Return {data} = listValues 
 
End If 

Algorithm 6 FindData for deletions of tuples from a relationship 

Similar to previous functions, FindData will build a query named LookupQuery (see Definition 7), 

defined below, which will retrieve data from a table for a column c when the data is not present 

in the tuple but already exists in the database (cases 4 and 5).  



Section III.6 - Maintenance of the logical consistency data deletions 64 

 

This function FindData contemplates cases DR1, DR2, DR3 and DR5 as the same as deleting an 

instance of an entity (D1, D2, D3 and D5). Moreover, it considers one more situation, DR4, when 

a column c is mapped to an attribute a that belongs to an attribute of one of the related entities, 

e1, but W only contains values associated to attributes of the other entity of the relationship, 

e2. In this case, all instances between e2 that meet the deletion criteria and their related 

instances of e1 must be deleted. This situation is divided in two subscenarios: 

• Scenario D4.1: Function CreateQuery searches for the key values of instances of entity 

ec that are related to e2 (1). After getting these key values, each of these values is used 

iteratively to invoke recursively FindData, where W is replaced with the key value (2). 

Inside the invoked FindData, scenarios DR1 or DR2 are executed if a value exists or 

DR5 if there is no value. If a value is returned by FindData, the pair of this value and 

the key value used for invoking FindData is added to the list listValues (3). After all 

these pairs are obtained, FindData returns listValues (4). 

• Scenario D4.2: Function CreateQuery searches for the key values of instances of entity 

ec that are related to e, but it cannot be executed. The function RecreateQuery (1) 

searches Q looking for a table, named sourceTable, that stores data for c (column with 

unknown data), (2) generates a new table, named remadeTable, from sourceTable, 

with suitable keys so that the proposition  holds, and (3) prepares and returns 

lookupQuery that retrieves data from remadeTable. After this point, it continues from 

step 2 of Scenario D4.1. 

Example 5: 

Consider the deletion of the instances of the relationship features that accomplish the deletion 

criteria ‘playlist.id = ‘1’ and ‘track.id = 1’: 

DMR-D determines the mapping between conceptual model and schema (that can be seen in 

Table 2) and the target table tracks_in_playlist. The table contains key columns mapped to 

attributes from both playlist and track, therefore it is detected as a target table. 

DMP-D calls FindData to build the appropriate DELETE statement. In this situation, FindData is 

not able to obtain the required values from the deletion criteria for the columns playlist_name 

and track_title.  

To obtain the correct values CreateQuery generates a lookupQuery to retrieve data for the 

column playlist_name (case DR2). A lookupQuery is created to obtain the value of playlist_name 

associated to the key value of playlist.id ‘1’. However, there is no lookupTable where the 

lookupQuery “SELECT playlist_name FROM lookupTable WHERE playlist_id="1", although these 

columns exist in the table tracks_in_playlist. RecreateQuery creates and populates a new table, 

rm_playlist_by_id, which can retrieve the unknown values. 

The same occurs for track_title (case DR2)., needing to create first a lookupQuery to get the 

track_title associated to the key value of track.id ‘1’, and then a RecreateQuery rm_tracks_by_id 

that can retrieve the unknown values.  

The retrieved data for both playlist_name and track_title will replace the placeholders $i in rows: 

DELETE FROM tracks_in_playlist WHERE playlist_name= $1 AND playlist_id = ‘1’ AND 

track_title = $2 AND track_id = ‘1’ 
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Example 6: 

Consider the deletion of the instances of the relationship features that accomplish the deletion 

criteria ‘track.id = 1’: 

Similar to the previous example, track_title is obtained in the same way. 

However, for column playlist_id, all the playlist_id associated to track_id ‘1’ must be obtained. 

A lookupQuery is created to obtain the value of playlist_id associated to the key value of track.id 

‘1’. However, there is no lookupTable where the lookupQuery “SELECT playlist_id from 

lookupTable where track_id="1", although these columns exist in the table tracks_in_playlist. 

RecreateQuery creates and populates a new table, rm_playlist_by_id, which can retrieve the 

unknown values. 

Then, for each value in playlist_id, the associated playlist_name is searched as in Example 1.  

The retrieved data for columns playlist_id, playlist_name and track_title will replace the 

placeholders $i in rows: 

DELETE FROM tracks_in_playlist WHERE playlist_name= $3 AND playlist_id = $2 AND 

track_title = $1 AND track_id = ‘1’ 

Note that there is a functional dependency between $2 and $3, so each value of $3 must be 

used in the same statement as the value of $2 used to obtain it. 

III.7 MAINTENANCE OF THE LOGICAL CONSISTENCY FOR DATA UPDATES 

The inputs for the maintenance of the logical consistency for updating tuples will consist on (1) 

a tuple that contains the values that need to be updated, (2) a conceptual model, (3) a schema 

and (4) a selection criterion that will determine which instances of an entity need to be updated. 

Like for the insertions and deletions, MDICA will generate the list of ordered data manipulation 

statements to execute against the database. Similar to previous operations, retrievals of data 

from tables of the database may be required to maintain the logical consistency.  

In this section, we define the rules and procedures that will generate the database statements 

and messages required to maintain the logical consistency for the update of data of a tuple. As 

updates can only be associated to attributes of entities or relationships, the algorithm will be 

the same for both cases. Regarding attributes from entities, we will require to obtain the value 

of the primary key of the entity in order to properly specify what instances of the entity need to 

be updated. Regarding attributes from relationships, we will require to obtain the value of the 

primary key of the entities related in order to properly specify what instances of the relationship 

need to be updated. 

The first step is to identify the target tables where updates of data need to be performed. These 

target tables will be those where there are columns mapped to the attributes whose values are 

going to be updated. Similar to the insertions error “Absence of target tables to update” (ATT) 

can be displayed, as well as the warnings “Absence of a key column generated from a key 

attribute” (TNW-K) and “Column not generated from any attribute” (TNW-C), which are related 

to the design of the schema. 
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The second step is to generate the database statements that must be executed against the 

database to update the rows. We define the Data Manipulation Procedure (DMP-U) to generate 

them: 

Definition 13 (Data Manipulation Procedure for Updates-DMP-U): Given a tuple tp (U) with 

values to update, the conceptual-logical data model mapping Map(M,S) between M and S, the 

criteria W that determines the rows to update, an item I (entity or relationship in M) 

corresponding to the conceptual structure of tp (U), and the set TT of target tables determined 

by DMR. DMP-U determines: 

1) for each column c of each target table tt  TT, data taken W that generate the following 

depending on the database operation: 

a. UPDATE statement: an appropriate “WHERE” criteria for the table or retrieved 

from the database 

b. DELETE+INSERT: for the DELETE, an appropriate “WHERE” criteria to delete the 

row to be updated. For the INSERT, data to be inserted in each column of the 

table. This data must be the one deleted with the DELETE with the value 

updated. 

2) for each table tt, the ordered list of manipulation operations (INSERT, UPDATE or 

SELECT) to maintain the logical consistency in tt,  

3) other additional messages, specific of the procedure, where applicable. 

The algorithm DMP-U detailed in Algorithm 7, describes this procedure (Definition 13): 

Algorithm DMP-U 

Input: a tuple tp(U) to update, the conceptual-logical data model mapping between M and S Map(M,S), a W 
criteria of instances to update, an item I (entity or relationship in M) corresponding to the conceptual structure 
of tp (U) and a set TT of target tables 
Output: database statements and messages 
 
suitable = Analysis (tp(U), W, Map(M,S)) 
If (W is not suitable due to absence of values) 
  generateMessage(Error, AC) 
  Abort 
Else If (tp(U) is not suitable due to attribute does not correspond with any column) 
          generateMessage(Warning,AWC) 
End If 
 
ForEach target table tt ∈ TT 

   If (tp(U) ∈ key(tt)) then 
 dataWhere = FindDataWhere (tt, W, tp, I, Map(M,S)) 
  ForEach where ∈ dataWhere 
   dataUpdate = ExtractData (tt, where) 
   GenerateDelete (where, tt) 
   GenerateInsert (dataUpdate, tt) 
  Else then 
 dataWhere = FindDataWhere (tt,w,  tp (U), Map(M,S)) 
  ForEach where ∈ dataWhere 
   GenerateUpdate (dataWhere, tt) 

              End ForEach 
  End If 
End ForEach 

Algorithm 7 Data Manipulation Procedure for Updates (DMP-U) 

First, DMP-U analyses the tuple tp(U) and W (function Analysis) to determine their suitability: 

• It contains values assigned to at least one attribute of the entity or to the primary keys 

of the relationship. If this is not the case, DMP-U raises (in the function 
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GenerateMessage) the error message “Absence of value for criteria” (AC) because there 

is no value to filter the rows to. 

• Each attribute in tp(U) generated one or more columns in the database. Otherwise, the 

function GenerateMessage raises the warning message “Attribute does not correspond 

with any column” (AWC) to inform about a possible loss of information because values 

of those attributes will be not stored in the database. 

Then, DMP-U processes each target table tt to determine the database operations required to 

perform in them to update the data. There are two possible variants depending on if the 

columns from tp (U) to be updated are part of the primary key of tt or not: 

• Part of the PK: the values cannot be updated directly with an UPDATE statement. 

Instead, the row to be updated needs first to be deleted and then inserted again with 

the value updated.  

• Non-key: the values are updated with an UPDATE statement.  

In both cases a certain WHERE criteria for each tt needs to be determined using the function 

FindDataWhere. Note that there could be several rows that need to be updated. In that case, 

there would be several WHERE criteria returned by FindDataWhere. For each WHERE criteria, 

an UPDATE statement (GenerateUpdate function) or a DELETE-INSERT (GenerateDelete and 

GenerateInsert functions) statement combination is generated by the appropriate functions. 

The following algorithm contains the specification of the function FindDataWhere, which returns 

the data to be used in the criteria of the modification of data statements that are required. Most 

of the functions used in FindDataWhere were already explained in the description of FindData 

for the deletions of data. The ones that were not used before have the following purpose: 

AddPair (Column: c, v: Value): Assigns to the column c the value v to use in the deletion criteria 

(WHERE) of the DELETE statement. 

keyValues (List <Pair {v: Value, pair {k: Attribute, kv: Value}}: Creates a list of unique pair of 

key attributes k of an entity assigned to kv values. The parameter v is not used in the function. 

GenerateAllStatements (pair (k: Attribute, kv: Value) , ListPairValues, tt): Generates a list of all 

possible criteria for key attribute k with the assigned value kv.  

RemovePair (p: Pair(a: Attribute, av: Value), l: List <Pair {v: Value, pair {k: Attribute, kv: 

Value}): Removes from the list l all the entries that contain for the parameter “pair {k: Attribute, 

kv: Value}” the same pair as p.  
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Function FindDataWhere 
Input: a target table tt, an item i (entity or relationship) to be updated, a criteria W  that contains the criteria 
that a row must meet to be updated, the conceptual-logical data model mapping between M and S Map(M,S) 
Output: a list whereValues that contains several sets of associations column-value for the key columns 
 
a = correspondingAttribute (c, Map (M,L)) 
keyEc = key (i)  
attributeValueKey = {} 
ForEach c ∈ key (tt) 
If W  has value v for attribute a corresponding to c             case U1 
  attributeValueKey <- AssignKeyPair (“all”, {c, v}) 
Else  
 
If w has value v  for attributes key of ec                                                     case U2 
        lookupQuery = CreateQuery (c, key(i), w, Map(M,S)) 
        If (lookupQuery is executable)                                               case U2-1 
     GenerateMessage(Information,ADC-S) 
     attributeValueKey <- AssignKeyPair (lookupQuery, {key(ec), v }) 
        Else 
        lookupQuery = RecreateQuery (c, key(i), w, Map(M,S)) 
        If (lookupQuery is executable)                                              case U2-2 
        GenerateMessage(Information,ADC-C) 
     attributeValueKey <- AssignKeyPair (lookupQuery, {key(ec), v }) 
       Else         case U5 
 GenerateMessage(Error,AKC) 
         Exit  
       End If 
Else if w has not value v for attribute key of i and a ∈ i                                                  case U3               
        lookupQueryKey = CreateQuery (key(i), w, Map(M,S))       
        If (lookupQueryKey is not executable)       case U3-2 
 lookupQueryKey = RecreateQuery (c, key(i), w, Map(M,S)) 
         If (lookupQueryKey is not executable)                                            case U3-1 
  GenerateMessage(Error,AKC) 
          Exit  
        End If 
       End If 
       ForEach value in lookupQueryKey 
         lookupQuery = CreateQuery (c, {lookupQueryKey}, w, Map(M,S)) 
         If (lookupQuery is executable)                                               case U3-3 
      GenerateMessage(Information,ADC-S) 
      attributeValueKey <- AssignKeyPair (lookupQuery, {key(i), value}) 
 
         Else 
         lookupQuery = RecreateQuery (c, {lookupQueryKey}, w, Map(M,S)) 
         If (lookupQuery is executable)                                             case U3-4 
         GenerateMessage(Information,ADC-C) 
      attributeValueKey <- AssignKeyPair (lookupQuery, {key(i), value})  
        Else         case U5 
  GenerateMessage(Error,AKC) 
          Exit  
        End If 
        End ForEach 
        Return {data} = attributeValueKey 
 
Else           case U4 

e2 = entity (c) 
lookupQueryKey = CreateQuery (key(i), w, Map(M,S))  
If (lookupQueryKey is not executable) 

  lookupQueryKey = RecreateQuery (c, key(i), w, Map(M,S)) 
          If (lookupQuery is not executable)                                           case U4-1 
   GenerateMessage(Error,AKC) 
           Exit  
         End If 
        End If 
   ForEach keyValue ∈ lookupQueryKey 
  lookupQueryKeyE2 = CreateQuery (key(i), keyValue, Map(M,S))  
          If (lookupQueryKeyE2 is not executable) 
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   lookupQueryKeyE2 = RecreateQuery (c, key(i), w, Map(M,S)) 
           If (lookupQueryKeyE2 is not executable)                                   case U5 
    GenerateMessage(Error,AKC) 
            Exit  
          End If 
         End If 
  ForEach keyValueE2 ∈ lookupQueryKeyE2 
     listValues = FindDataWhere (c, keyValueE2, Map (M, L)) 
   ForEach value in listValues 
      attributeValueKey <- AssignKeyPair (value, {key(i), keyValue }) 
   End ForEach 
 End ForEach 
 
   ListPairValues = keyValues (attributeValueKey) 
  Statements = {} 

  ForEach pair (a, v) ∈ ListPairValues 
      Statements <- GenerateAllStatements (pair (a,v) , ListPairValues, tt)  
      RemovePair (pair(a,v), ListPairValues) 
   End ForEach 
 

Return Statements 
 

End If 
End ForEach 

Algorithm 8 FindDataWhere for updates of data 

FindDataWhere considers four main situations: 

• The clause where w contains a value for column c (case U1): FindDataWhere returns as 

data the value v, indicating that for all UPDATE statements that are going to be 

executed, v will always be the value assigned for c. 

• The clause where w does not contain a value for column c (cases U2, U3 and U4). There 

are several situations for this: 

o w contains a value v for the key of the entity ec of a (case U2). In this case, a 

query lookupquery is prepared by function CreateQuery to execute against the 

database data to obtain the required value for column c. This lookupquery 

requires that the schema contains a table where the value can be retrieved 

using the proposition  (key value of ec). There are two ways of achieving this: 

▪ If the lookupquery can be executed directly over a lookupTable for 

which the proposition  holds, the value is retrieved and returned as a 

pair of data (case U2-2). This pair indicates that the value to assign to c 

is always used in the UPDATE statements alongside the value v. 

GenerateMessage raises the information message “Absence of data for 

a column, data might be retrieved from lookupTable executing 

lookupQuery” (ADC-S) to notify the need of a query to find unknown 

data, otherwise the logical consistency cannot be ensured because of 

the impossibility of executing the deletion of data. 

▪ Data for the column c can be retrieved from the database but 

CreateQuery is not able to fully prepare lookupQuery (case U2-1) as 

there is no existing table where proposition  holds. The function 

RecreateQuery: (1) searches Q looking for a table, named sourceTable, 

that stores data for ci (column with unknown data) and the key value of 

ec, (2) generates a new table, named remadeTable, from sourceTable, 

with suitable keys so that the proposition  holds, and (3) prepares and 

returns lookupQuery that retrieves data from remadeTable. The next 

steps are the ones from the case U2-1. 
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o w does not contain a value for the key of entity ec but attribute a belongs to the 

entity whose instance are to be updated (case U3). In this case a query 

lookupQueryKey is prepared to execute against the data in order to retrieve the 

key values associated to rows that store the same values that are contained in 

w.  

▪ If the lookupQueryKey can be executed directly over a lookupTable for 

which the proposition  holds, the key values are retrieved (case U3-1). 

Then, for each key value retrieved, the same process as for cases in U-2 

are applied, assigning to the returned pair of values the association that 

each value for a must be in the same statement as the value of the 

primary key that was used in the lookupQuery.  

▪ Values for the key of ec can be retrieved from the database but 

CreateQuery is not able to prepare lookupQuery (case U3-2). The 

function RecreateQuery: (1) searches Q looking for a table, named 

sourceTable, that stores data for ki (key attribute with unknown data), 

(2) generates a new table, named remadeTable, from sourceTable, with 

suitable keys so that the proposition  holds, and (3) continues the 

process described in case 7, executing the lookupQuery over the 

remadeTable. 

o Attribute a belongs to an entity ec that is not the same as entity e (case U4). In 

this scenario, the objective is to obtain the instances of ec that are associated 

to the instances of e that fulfil the deletion criteria specified in w. These values 

are obtained through the lookupQuery. After obtaining the primary key values 

of the instances of ec associated to e, the function FindDataWhere is executed 

recursively to obtain the necessary values required to be associated to c. These 

values are always associated to the value of the primary key of e that was used 

to obtain the values of the primary key of ec. 

• If no value could be obtained, then the algorithm returns an AKC error (case U5) 

After all possible criteria values are obtained, the algorithm finishes with the generation of a list 

where each element is a list of values assigned to attributes to be used in a single statement in 

DMP-U. 

In order to further explain these algorithms, let consider the following examples: 

Example 7: 

Consider the update of the nationality of an “Artist” to “French” according to the following 

criteria ‘artist.name = ‘John’. 

DMR determines the mapping between conceptual model and schema, determining that the 

update operation must be applied against the target table tracks_by_artist, 

artists_by_first_letter and tracks_inplayst (see Figure 5). These tables contain the name of the 

artist, therefore are detected for the update of data. We describe the approach for each table 

in different subexamples: 

Example 7.1: Table tracks_by_artist 

DMP-U calls FindData to build the appropriate UPDATE statement. In this case the table contains 

the partition key artist_name, therefore it is able to build the appropriate UPDATE statement 

following case U1.  
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UPDATE tracks_by_artist SET nationality = “French” FROM WHERE artist_name= ‘John’ 

Example 7.2: Table artists_by_first_letter 

DMP-U calls FindData to build the appropriate UPDATE statement. In this situation, FindData is 

not able to obtain the required values from the deletion criteria for the column 

artist_first_letter.  

To obtain the correct values CreateQuery generates a lookupQuery to retrieve data for the 

column artist_first_letter (case U2). A lookupQuery is created to obtain the value of 

artist_first_letter associated to the key value of artist.name ‘John’. However, there is no 

lookupTable where the lookupQuery “SELECT artist_first_letter from lookupTable where 

artist_name="1", although these columns exist in the table artist_first_letter. RecreateQuery 

creates and populates a new table, rm_ artist_first_letter, that can retrieve the unknown values 

(case U2-1). These values are used to replace the placeholders $i in rows: 

UPDATE artist_by_first_letter SET artist_nationality = “French” FROM WHERE artist_first_letter 

= $i  AND artist_name= ‘John’ 

Example 7.3: Table tracks_by_genre 

DMP-U calls FindData to build the appropriate UPDATE statement. In this situation, FindData is 

not able to obtain the required values from the deletion criteria for the columns track_genre, 

track_title and track_id.  

To obtain the correct values all the tracks associated to the author with the name ‘John’ must 

be obtained. A lookupQuery is created to obtain the value of track_id associated to the key value 

of artist.name ‘John’. However, there is no lookupTable where the lookupQuery “SELECT track_id 

from lookupTable where artist_name="John", although these columns exist in the table 

tracks_by_genre. RecreateQuery creates and populates a new table, rm_tracks_by_genre, 

which can retrieve the unknown values (case U-4). 

In the case of the values for the columns track_genre and track_title, a lookupQuery is created 

to obtain the value of them associated to the key values of track.id that were obtained in the 

previous step. However, there is no lookupTable where the lookupQuery “SELECT track_id from 

lookupTable where artist_name="John", although these columns exist in the table 

tracks_by_genre. RecreateQuery creates and populates a new table, rm_tracks_by_genre2, that 

can retrieve the unknown values (case U-4). 

The retrieved data for the three columns will replace the placeholders $i in rows 

UPDATE tracks_by_genre SET artist_nationality = “French” FROM WHERE track_genre = $2 

track_title= $3 AND track_id= $1 

Note that there is a functional dependency between $2 and $3 with $1, so each value of $3 and 

$2 must be used in the same statement as the value of $1 used to obtain it. 

III.8 EVALUATION 

In this section we evaluate MDICA. In this evaluation we have focused on insertions of data as 

other typical operations (delete and update) in transactional systems, although considered in 

MDICA, are not efficiently supported by some of the NoSQL databases or are of little significance 
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in terms of volume [27]. Thus, we will mainly focus on data insertions which are the most 

frequent in this paradigm designed for large volume data. We have established the following 

research questions for this evaluation:  

• RQ1: Given an insert operation at a conceptual model level, is it always possible to insert 

data at schema level? If not, what are the causes of this situation?  

• RQ2: What is the impact of an insert operation at a conceptual model level on the 

schema in terms of the number of tables affected to maintain the logical consistency? 

• RQ3: How many database statements must be executed for each insert operation at the 

conceptual model level in order to maintain the logical consistency in the database?  

• RQ4: Is it always possible to ensure that the logical consistency is maintained? If this is 

not the case, what are the situations identified that can endanger it? 

• RQ5: Do the database statements determined by MDICA maintain the logical 

consistency? 

The research questions RQ1, RQ2, RQ3 and RQ4 are answered in the following subsections. RQ5 

is answered in the section IV.4 from chapter IV, where an approach for checking the 

maintenance of the logical consistency in a column-oriented database is defined. 

III.8.1 Experimental subjects  

To answer the research questions, we have considered two options to select the experimental 

subjects: (1) standard benchmarks and (2) applications publicly available with a conceptual 

model.  

Yahoo Cloud Serving Benchmark (YCSB) [84] has become the de-facto benchmark, designed by 

[85] to compare the performance of data stores and used for measuring performance, 

scalability, elastic speedup, throughput and latency [85]–[87] of different NoSQL databases. 

Since the schema of YCSB only contains one table on which operations such as read or insert are 

executed, it is not suitable for the goals of the MDICA experimentation.  

Therefore, we have searched for other case studies used in different works related to the design 

of Cassandra databases and with a variety of tables generated from items in the conceptual 

models (one entity, one or more relationships, and relationships with different cardinality). The 

selected case studies are: 

• Digital Library Portal, used by Chebotko et al. [18] to illustrate the data modelling 

methodology. It is an application that features a collection of digital artifacts (papers, 

posters…) which appeared in various venues. Registered users can leave their feedback for 

venues and artifacts in the form of reviews, likes or ratings. 

• Hotel reservations is used by Carpenter and Hewitt [13] to show how to design data models 

for Cassandra. It is a sample application that includes hotels, guests, the rates and availability 

of rooms, and reservations booked for guests. It also maintains a collection of “points of 

interest” near hotels.  

• Digital music store (the introductory case study in subsection III.4) is used as a tutorial 

intended for programmers interested in learning about Cassandra [83] and it covers the 

techniques used to create databases and tables. It is a Java web application that manages a 

collection of music files.  

Each case study provides both the conceptual model and the schema. Table 3 displays 

information about the models: 
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• Conceptual models: items (entity or relationship with its cardinality 1:n or n:m), their name 

and the number of key and non-key attributes (columns “#PK” and “#nPK”). 

• Schemas: tables, the items that generate them, their name (columns “From Item/s” and 

“From Name”) and their number of key and non-key columns (columns “#Key” and “#nKey”). 

If a table is generated from more than one relationship, column “From Item/s” is “multiple”. 

In short, the total number of items and tables are, respectively, 10 and 9 for Digital Library, 13 

and 9 for Hotel Reservations, and 7 and 5 for Music Store. 

 

 Conceptual data model Logical data model 

Case 
Study Item Name 

# 
PK 

# 
nPK Table 

From 
Item/s 

From 
Name 

# 
Key 

# 
nKey 

D
ig

it
al

Li
b

ra
ry

 

entity artifact 1 3 artifacts 1:n featuresDA 1 5 
 review 1 3 artifacts_by_author 1:n featuresDA 3 4 
 user 1 3 artifacts_by_venue 1:n featuresDA 3 3 
 venue 2 3 ratings_by_artifact 1:n featuresR 1 2 
1:n featuresDA 3 6 experts_by_artifact n:m likes 3 3 
 featuresR 2 6 users_by_artifact n:m likes 2 3 
 posts 2 7 venues_by_user n:m likesV 3 3 
n:m likes 2 6 artifacts_by_user multiple likes-featuresDA 3 3 
 likesR 2 6 reviews_by_user multiple post-featuresR 3 5 
 likesV 3 6      

H
o

te
lR

e
se

rv
at

io
n

 

entity amenity 1 1 guests entity guest 1 5 
 guest 1 3 hotels entity hotel 1 3 
 hotel 1 3 hotels_by_poi n:m is_near 2 3 
 poi 1 2 pois_by_hotel n:m is_near 1 2 
 reservation 1 3 amenities_by_room multiple has-offers 3 1 
 room 1 1 available_rooms_by_hotel_date multiple has-is_available 3 1 
 room_availability 1 1 reservations_by_confirmation multiple has-holds-is_for 2 4 
1:n has 2 4 reservations_by_guest multiple has-holds-is_for 3 4 
 holds 2 4 reservations_by_hotel_date multiple has-holds-is_for 3 3 
 is_for 2 6      
n:m is_available 2 2      
 is_near 2 5      
 offers 2 2      

M
u

si
cS

to
re

 

entity artist 1 2 artists_by_first_letter entity artist 2 1 

 playlist 1 1 playlists_by_user 1:n creates 2 1 

 track 1 3 tracks_by_artist 1:n releases 3 3 

 user 1 1 tracks_by_genre 1:n releases 3 3 

1:n creates 2 2 tracks_in_playlist multiple releases-features 4 3 

 releases 2 5      

n:m features 2 4      

Table 3 Conceptual and logical models used in the evaluation 

III.8.2 Test cases design 

For the evaluation of MDICA, we have generated for each case study a set of insert operations. 

Each operation will be a test case. The test cases have been systematically designed applying 

the classification-tree method [88]. We have regarded MDICA under two relevant aspects, 

named classifications: where it inserts (classification based on the item to insert) and what it 

inserts (classification based on the attribute-value pairs in the tuple to insert). For each 

classification, we have identified different classes: 

• Where it inserts (item at a conceptual model level):  

o Relation: insertion in a relationship, which is subdivided into three classes 

depending on the cardinality: 1:1, 1:n and n:m. 
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o Multiple relations: insertion of a tuple of two or more adjacent relations. In order to 

avoid a combinatorial explosion, there will only be one class for each group of 

relationships which generated a table in the schema. 

• What it inserts (attribute-value pairs in the tuple): 

o *: Every attribute of the item to insert has a value in the tuple.  

o PK: Only key attributes have a value; the rest of the attributes are not in the tuple. 

o -attr: A non-key attribute of the item has no value in the tuple. There will be a class 

for each non-key attribute. 

o -PK: A key attribute of the item has no value. There will be a class for each key 

attribute. 

We have combined each item in the conceptual model (in the first classification) with each class 

in the second classification, resulting in 289 test cases in total (118 for Digital Library, 118 for 

Hotel Reservations, and 53 for Music Store). For each case study and item, Table 4 displays the 

number of test cases for each of the combinations. 
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Case 
Study 

Item Name Attribute-value Pairs Target Tables 
* PK -attr -PK Total  

D
ig

it
al

 L
ib

ra
ry

 
entity artifact 1 1 3 1 6 - 
 review 1 1 3 1 6 - 
 user 1 1 3 1 6 - 
 venue 1 1 3 2 7 - 

1:n featuresDA 1 1 6 3 11 artifacts_by_venue, 
artifacts_by_author, artifacts 

 featuresR 1 1 6 2 10 ratings_by_artifact 
 posts 1 1 7 2 11 - 

n:m likes 1 1 6 2 10 users_by_artifact, experts_by_artifact 
 likesR 1 1 6 2 10 - 
 likesV 1 1 6 3 11 venues_by_user 

multiple likes-featuresDA 1 1 9 4 15 artifacts_by_user artifacts_by_venue, 
artifacts_by_author, artifacts, 
users_by_artifact, experts_by_artifact 

 posts-featuresR 1 1 10 3 15 ratings_by_artifact, reviews_by_user 

Total Digital Library  12 12 68 26 118 n/a 

H
o

te
l R

e
se

rv
at

io
n

s 

entity amenity 1 1 1 1 4 - 
 guest 1 1 3 1 6 guests 
 hotel 1 1 3 1 6 hotels 
 poi 1 1 2 1 5 - 
 reservation 1 1 3 1 6 - 
 room 1 1 1 1 4 - 
 room_availability 1 1 1 1 4 - 

1:n has 1 1 4 2 8 hotels 
 holds 1 1 4 2 8 - 
 is_for 1 1 6 2 10 guests 

n:m is_available 1 1 2 2 6 - 
 is_near 1 1 5 2 9 hotels, hotels_by_poi, pois_by_hotel 
 offers 1 1 2 2 6 - 

multiple has-holds-is_for 1 1 10 4 16 guests, hotels, 
reservations_by_confirmation, 
reservations_by_guest, 
reservations_by_hotel_date 

 has-is_available 1 1 5 3 10 available_rooms_by_hotel_date, 
hotels 

 has-offers 1 1 5 3 10 amenities_by_room, hotels 

Total Hotel Reservations 16 16 57 29 118 n/a 

M
u

si
c 

St
o

re
 

entity artist 1 1 2 1 5 artists_by_first_letter 
 playlist 1 1 1 1 4 - 
 track 1 1 3 1 6 - 
 user 1 1 1 1 4 - 

1:n creates 1 1 2 2 6 playlists_by_user 
 releases 1 1 5 2 9 artists_by_first_letter, 

tracks_by_artist, tracks_by_genre 

n:m features 1 1 4 2 8 - 

multiple releases-features 1 1 6 3 11 artists_by_first_letter, 
tracks_by_artist, tracks_by_genre, 
tracks_in_playlist 

Total Music Store  8 8 24 13 53 n/a 

Total  36 36 149 68 289 n/a 

Table 4 Test cases to evaluate MDICA and target tables impacted by each test case 

Once we have generated the test cases, we apply the rules and procedures defined in Section 

III.5 to each one. As previously described, after obtaining the mapping between conceptual 

model and schema, MDICA identifies the target tables (listed in Table 4, column “Target Tables”), 

generated from the items of the tuple to insert, and determines the database statements that 

should be executed against the database to maintain the logical consistency and the messages 
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shown to users. The analysis of the results of these executions is detailed in the following 

sections.  

III.8.3 Analysis of the insertion operations at a conceptual model level (RQ1) 

To answer RQ1, we ran the test cases and inspected for each one if insertions were generated 

at a schema level. We found that 45.0% of the test cases produced insertions into databases, 

and the remaining 55.0% did not. 

Table 5 displays the number of test cases (289 in total) divided into those that inserted data into 

the database without generating error messages (130 test cases) and those that generated an 

error message without inserting rows into the databases (159 test cases).  

The high number of the latter is due to the strategy for their design: in 86 test cases, the insert 

operation did not impact on any target tables (columns “ATT”, Absence of Target Tables); in 68 

test cases, tuples did not have values for key attributes (columns “AKA”, Absence of value for a 

Key Attribute); and in 5 test cases, tuples did not have values for any key column and they could 

not be retrieved from the database either (columns “AKC”, Absence of data for a Key Column). 

For each of these test cases, MDICA generated the appropriate error message, described in 

Sections III.5, depending on the reason they did not insert any rows.  

 

 Insertions 
without error 

messages 

Insertions with error messages Total 
 

ATT  AKA  AKC  

Case Study # % # % # % # % # 

Digital Library 54 45.8 37 31.4 26 22.0 1 0.8 118 

Hotel Reservations 55 46,6 32 27.1 29 24.6 2 1.7 118 

Music Store 21 39.6 17 32.1 13 24.5 2 3.8 53 

Total 130 45.0 86 29.8 68 23.5 5 1.7 289 

Table 5 Test cases that produced insertions in databases and test cases that generated error messages 

Answering RQ1, some situations do not enable data insertions into the conceptual model or the 

database due to a lack of data for key attributes or for key columns or an absence of tables 

where to insert. MDICA is a first help for developers since it can detect these situations and 

provide information (to add new tables or modify the tuple with additional attribute-value pairs) 

so that the insertion in both models is feasible. 

III.8.4 Analysis of target tables impacted by an insertion (RQ2) 

To answer RQ2, we analyse the target tables in each test case that did not generate an error 

message.  

All tables in the schemas (listed in Table 3) are impacted by some test case as Table 4 displays. 

For those test cases that did not impact on any table, for which an ATT error message was 

generated, target tables were labelled as ‘-’. For relationships, more than half of the insert 

operations impacted on more than one table. Moreover, the maximum number of target tables 

was reached when inserting a tuple of multiple relationships (6 for Digital Library, 5 for Hotel 

Reservations and 4 for Music Store), accounting for more than 50% of the tables in each case 

study. 

Answering RQ2, to insert a tuple at a conceptual model level impacts on more or less tables, 

depending on those generated from items in the tuple. The more complex the tuple, in terms of 
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the number of items it contains, the greater the number of target tables and the more error-

prone, by forgetting to insert some of them. MDICA identifies the target tables regardless of the 

complexity of the tuple and decreases the probability of making mistakes in their selection. 

III.8.5 Analysis of database statements (RQ3) 

To answer RQ3, we analyse the database statements generated by DMPs to ensure the logical 

consistency in a database for test cases that did not generate error messages. 

Table 6 displays information about test cases, the number of tables impacted and CQL 

statements generated for each test case. Database statements are split into INSERT, SELECT and 

CREATE&COPY and, for each one, columns “#”, “%” and “Avg” display the number of statements, 

percentage of the total and average per test case, respectively.  
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 1:n featuresDA 3 8 24 80.0 3.0 6 20.0 0.8 0 0.0 0.0 30 3.8 

 featuresR 1 8 8 100.0 1.0 0 0.0 0.0 0 0.0 0.0 8 1.0 

n:m likes 2 8 16 61.5 2.0 6 23.1 0.8 4 15.4 0.5 26 3.3 

 likesV 1 8 8 44.4 1.0 6 33.3 0.8 4 22.2 0.5 18 2.3 

multiple likes-featuresDA 6 11 66 76.7 6.0 16 18.6 1.5 4 4.7 0.4 86 7.8 

 posts-featuresR 2 11 22 91.7 2.0 2 8.3 0.2 0 0.0 0.0 24 2.2 

Total Digital Library  54 144 75.0 2.7 36 18.8 0.7 12 6.3 0.2 192 3.6 

H
o

te
l R

e
se

rv
at

io
n

 entity guest 1 5 5 100.0 1.0 0 0.0 0.0 0 0.0 0.0 5 1.0 

 hotel 1 5 5 100.0 1.0 0 0.0 0.0 0 0.0 0.0 5 1.0 

1:n has 1 6 6 50.0 1.0 6 50.0 1.0 0 0.0 0.0 12 2.0 

 is_for 1 8 8 57.1 1.0 6 42.9 0.8 0 0.0 0.0 14 1.8 

n:m is_near 3 7 21 63.6 3.0 10 30.3 1.4 2 6.1 0.3 33 4.7 

multiple has-holds-is_for 5 12 60 76.9 5.0 18 23.1 1.5 0 0.0 0.0 78 6.5 

 has-is_available 2 5 10 76.9 2.0 3 23.1 0.6 0 0.0 0.0 13 2.6 

 has-offers 2 7 14 63.6 2.0 8 36.4 1.1 0 0.0 0.0 22 3.1 

Total Hotel Reservation  55 129 70.9 2.4 51 28.0 0.9 2 1.1 0.0 182 3.3 

M
u

si
c 

St
o

re
 entity artist 1 2 2 100.0 1.0 0 0.0 0.0 0 0.0 0.0 2 1.0 

1:n creates 1 4 4 50.0 1.0 2 25.0 0.5 2 25.0 0.5 8 2.0 

 releases 3 7 21 60.0 3.0 10 28.6 1.4 4 11.4 0.6 35 5.0 

multiple releases-features 4 8 32 64.0 4.0 12 24.0 1.5 6 12.0 0.8 50 6.3 

Total Music Store  21 59 62.1 2.2 24 25.3 1.1 12 12.6 0.6 95 4.5 

Total   130 332 70.8 2.6 111 23.7 0.9 26 5.5 0.2 469 3.6 

Table 6 Database statements generated by DMPs 

For 130 test cases, MDICA generated 469 CQL statements in total (an average of 3.6 CQLs per 

test case) that included mostly INSERT statements (332, 70.8% of the total) but also SELECT (111, 

23.7%) and CREATE&COPY (26, 5.5%). 

An insert operation at a conceptual level may imply several INSERT statements at a logical level, 

as many as the number of target tables impacted, with an average of 2.6 necessary for each test 

case.  

Inserting into an entity does not generate SELECT or CREATE&COPY because it implies the 

creation of a new instance that does not exist in the database. For inserting into relationships, 

SELECT (average 0.9 per test case) and CREATE&COPY (average 0.2) statements were produced 

when it was necessary to retrieve data from tables to complete the rows to insert. In the 
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evaluation, the same CREATE&COPY statement was generated for different test cases, however, 

in a real situation, once a new table is created, it becomes part of the database so it can be 

queried without repeating its creation. Therefore, the execution of CREATE&COPY statements 

will be occasional, less frequent than in the case studies. 

Answering RQ3, MDICA automatically generates the set of database statements that ensures 

the logical consistency in databases, which will require an INSERT statement for each target table 

generated from the items in the tuple, plus the appropriate SELECT statements for retrieving 

data of columns that the tuple does not have but that were inserted in other tables previously. 

Although less frequently than the other statements, there may be situations that will also 

require CREATE&COPY statements to add new tables to query data when it cannot be directly 

retrieved from the existent tables. Manually building the suitable set of statements for an insert 

operation may become tedious and error-prone for developers, therefore the use of MDICA is a 

considerable benefit in maintaining the logical consistency.  

III.8.6 Analysis of messages (RQ4) 

To answer RQ4, we analyse messages (error, warning, and information) generated by MDICA for 

test cases.  

To answer RQ1, we analysed test cases and identified those that made the insert operation 

impossible and for which error messages were generated. They indicated the need to create 

new tables to store the values or add other attribute-value pairs in the tuple to insert. 

Table 7 displays the generated messages divided into information and warning messages. 

Columns “#” are the number of messages and “Avg” are the average number of messages for 

each test case. 

 

Case Study #Test 
Cases 

Information Messages Warning Messages 
ADC-S ADC-C Total AWC ATA TNW-C TNW-K ADC Total 

 # Avg # Avg # Avg # Avg # Avg # Avg # Avg # Avg # Avg 

Digital Library 54 60 1.1 12 0.2 72 1.3 306 5.7 141 2.6 6 0.1 0 0.0 7 0.1 460 8.5 

Hotel Reservation 55 71 1.3 2 0.0 73 1.3 32 0.6 154 2.8 53 1.0 55 1.0 13 0.2 307 5.6 

Music Store 21 38 1.8 12 0.6 50 2.4 25 1.2 39 1.9 0 0.0 0 0.0 1 0.0 65 3.1 

Total 130 169 1.3 26 0.2 195 1.5 363 2.8 334 2.6 59 0.5 55 0.4 21 0.2 832 6.4 

Table 7 Information and Warning Messages generated by MDICA 

Information messages (195 in total, average 1.5 messages per test case), reported the absence 

of values in the tuple for some columns but data could be extracted from tables using SELECT 

statements (ADC-S: 169 messages, average 1.3) and CREATE&COPY statements (ADC-C: 26 

messages, average 0.2). 

The most important messages are warnings (832 in total, average 6.4), because they give 

additional information about the insert operation that may endanger the logical consistency, 

although it can be conducted.  

AWC (attribute does not correspond with any column) (363 messages, average 2.8) and ATA 

(absence of target tables for some items in the tuple), (334, average 2.6) warns the developer 

the inability of the schema to store values of the tuple which could cause a potential loss of 

information. The developer should analyse the schema and decide whether or not to add new 

tables or columns.  
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Other warning messages showed discrepancies between the expected and the actual design of 

databases: TNW-C (table not well-modelled because a column was not generated from any 

attribute) (59, average 0.5) and TNW-K (table not well-modelled because of the absence of a key 

column generated from a key attribute) (55, average 0.4). They could provoke that columns 

never store data, unnecessary repeated data, or incorrect outputs of queries. The developer 

could avoid them changing columns or keys in tables. 

ADC (absence of data for a non-key column) (21, average 0.2) alerted the user to the generation 

of gaps of data in columns. To avoid them, the developer should add attribute-value pairs to the 

tuple to store data in those columns.  

Answering RQ4, in addition to error messages and information messages, warnings provide 

particularly valuable knowledge for the maintenance of the logical consistency. MDICA identifies 

situations that can endanger it and generates the right messages. Using these messages, where 

appropriate, developers will be able to fix faults to ensure the logical consistency by including 

more values in the tuples, creating new tables, adding new columns, or making other changes 

in the databases. 

III.8.7 Threats to validity 

We evaluated MDICA with three case studies generating, systematically, a set of test cases for 

which it identified the impacted target tables, generated database statements to ensure the 

logical consistency and produced messages informing of those situations that could endanger 

the consistency. However, there are several threats to the validity of our experiments that may 

limit the ability to generalize the results. In this section we discuss threats to external, internal, 

construct and conclusion validity. 

Threats to external validity.- The experimental subjects were drawn from a research paper, a 

tutorial, and a book where the design of Cassandra databases was illustrated. These threats 

include the degree to which the subjects represent other case studies or real applications 

because they may appear rather limited. However, we consider them representative of partial 

or entire applications as they are examples in guidelines for many developers. Another threat is 

whether test cases are representative of real practice. They were systematically generated, 

based on the item to insert and the content of the tuple, and represent a large variety of 

insertions at a conceptual level that impacted on all the tables of each case study. These threats 

could be reduced by considering more experiments concerning other subjects and real insert 

operations, for which both the number of test cases that do not produce insertions and 

messages would probably be reduced. However, we consider the approach as appropriate for a 

complete evaluation of the method. 

Threats to internal validity.- MDICA generates database statements to maintain the logical 

consistency in databases. We inspected them carefully and found that they maintain the logical 

consistency and are coherent in all case studies. As part of an ongoing research [39], an oracle 

is being developed to automatically determine if, starting from a consistent state of a database, 

the resultant state after executing database statements maintains the logical consistency.  

Threats to construct validity.- In two of the three case studies, the schemas were designed 

following the modelling process that MDICA leverages. Therefore, a threat is that the 

experimental subjects contain the features that MDICA expects. To mitigate this threat, we 

included the third case study, “Hotel Reservations”, designed according to a query-driven 

modelling process without considering the conceptual model. 
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Threats to conclusion validity.- We used as metrics the number of target tables, database 

statements and messages generated. Regarding the target tables, all tables in each case study 

were impacted by some test case. There is an INSERT statement for each target table and, when 

necessary, SELECT and CREATE&COPY statements. In our opinion, the messages generated seem 

to be sufficient, clear, and appropriate to warn about potential the logical consistency faults 

although we do not have feedback from professional users. To mitigate this threat, messages 

should be validated by developers with diverse levels of experience. 
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IV MAINTAINANCE OF THE LOGICAL CONSISTENCY: 

CONCODA 

In this chapter we detail how to check if a column-oriented database maintains the logical 

consistency after a set of database statements to perform a modification of data haven been 

executed against the database. This is done through an approach that we named CONCODA, 

which was first presented in [27]. We also used CONCODA in two experimentations, one 

published in [27] where multiple initial states of the database were checked and another one 

published in [25] where all possible combinations of possible tuples for a case study were 

inserted in a database with the same initial state. Section IV.1 introduces the problem of 

determining if the database maintain the logical consistency after a modification of data. Section 

IV.2 contains the description of the case study used in the rest of the section, both for explaining 

the proposition and for the experimentation. Section IV.3 contains the detail of the process of 

CONCODA. Section IV.4 details the experimentation performed using CONCODA. 

IV.1 INTRODUCTION 

In the previous chapter of the thesis, we proposed a preventive approach named MDICA that 

provided the database statements required to perform a modification of data (insertion, 

deletion or update of a tuple) in a column-oriented database. MDICA is intended to help 

developers to avoid the commitment of mistakes during the implementation of database 

statements and other related code procedures required to perform a modification of data. 

However, for existing applications that already have database statements and code procedures 

implemented, MDICA is not as helpful, being more helpful a reactive approach.  

In order to address the problems related to the maintenance of the logical consistency in existing 

projects, we propose a reactive approach named CONCODA. CONCODA aims to determine if the 

database statements that are executed to perform a modification of data incur in the creation 

of inconsistencies by checking if the column-oriented database maintains the logical consistency 

after the modification is performed. If the consistency is not maintained, it identifies the tables 

where there are inconsistencies, allowing the identification of the database statements that 

incurred in the creation of inconsistencies. This will be helpful for developers so they can detect 

defects in their applications that are producing inconsistencies in the data during the execution 

of the application. 

In the next sections of this chapter, we describe in section IV.2 the case study used during the 

description of CONCODA and in the experimentation. Section IV.3 contains the description of 

CONCODA, specifying and detailing its phases. Section IV.4 contains the experimentation using 

CONCODA. 

IV.2 CASE STUDY 

In this section we detail and explain the case study that will be used both during the explanation 

of CONCODA through examples and for the experimentation. The case study is named “Data 

Library Portal” [18] which is composed of a conceptual model and a schema designed after this 

conceptual model. The conceptual model is illustrated in Figure 6, containing 4 entities and 5 

relationships. Its column-oriented database schema is composed of 9 tables, and it is illustrated 
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in Figure 7. Partition keys are labelled as K, clustering keys are labelled as C and Counter columns 

are labelled as ++.  

 

Figure 6 Conceptual model of Data Library Portal case study 
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Figure 7 Schema of Data Library Portal case study  

IV.3  VERIFICATION OF THE LOGICAL CONSISTENCY IN A COLUMN-ORIENTED DATABASE 

In this section we detail CONCODA, a reactive approach to check if a column-oriented database 

maintains the logical consistency after one or more modifications of data have been performed 

against the database. This will help to detect defects in the database statements that are 

executed to perform the modification of data. 
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In order to check if the database maintains the logical consistency, we will use a relational 

database that ensures logical consistency, which serves as an oracle. This relational database 

will implement in its schema a normalized model of the column-oriented schema, which is 

obtained from the conceptual model. The entities of the conceptual model are implemented in 

this schema as table and the relationships through the appropriate foreign keys or additional 

tables.  

The basis of using a relational database as an oracle is that relational databases ensure the 

logical consistency through model normalization and the definition of integrity constraints. 

Therefore, when the relational database and the column-oriented database initially store 

equivalent data, if the same modification of data is performed in both databases, they should 

still store equivalent data after the modification is performed. In order to perform in the 

relational database the same modification of data, CONCODA will determine the SQL database 

statements required for it.  

In the rest of this section, we will refer to the relational database as OracleDB and to the column-

oriented database as TargetDB. 

CONCODA consists of two phases: 

1. Database statements determination and execution: The database statements required 

to perform a modification of data in both TargetDB and OracleDB are first determined 

and then executed. 

2. Logical consistency check: CONCODA created and execute the queries to check if the 

logical consistency is maintained in the column-oriented database. 

In the following subsection we detail each of these phases: 

IV.3.1 Database statements determination and execution.  

In this phase of CONCODA, the modifications of data are performed against both TargetDB and 

OracleDB. In Algorithm 9 the process of performing the modification of data in each database is 

detailed.  

Inputs: TargetDB tdb, OracleDB odb, modification of data md, conceptual model cm 

TargetDB OracleDB 
applicationToTest (md, db) 
 

SQLStatements <- convertSQL (md, cm) 
For each statement in SQLStatement: 
       ExecuteSQL (odb, md) 

Algorithm 9 Determination and execution of database statements for a modification of data 

Both TargetDB and OracleDB must start with equivalent data. Otherwise, CONCODA would not 

be able to determine if the logical consistency is maintained at the end of the process. In 

TargetDB the modification is performed through the application whose database statements are 

to be tested (applicationToTest). On the other hand, in OracleDB, CONCODA must first 

determine the SQL statements required to perform the modification of data (convertSQL). Note 

that a modification of data is an insertion, update, or deletion of a tuple. As the model of the 

OracleDB is normalized, CONCODA determines a single SQL statement for each entity and many-

to-many relationship that participates in the modification of data. For instance, in an insertion 

of a tuple that contains data of an entity, one SQL INSERT statement is created to insert the data 

in the table that stores the data of the entity. After the SQL statements are determined, they 

are executed against OracleDB (ExecuteSQL). 
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Let consider an example to illustrate this phase by inserting a relationship between the entities 

User and Artifact. 

The tuple that contains the data that relates one User, and one Artifact is inserted in both the 

TargetDB and the OracleDB. To simplify the example, the tuple contain data for all attributes of 

the User and the Artifact. This means that in OracleDB, three SQL statements will be created and 

executed to insert the required data into the tables that store data of the entities (tables “User” 

and “Artifact”) and the relationship (table “User_Artifact”). Likewise, in the TargetDB the 

required data will be inserted in “Users_by_artifact” and “Experts_by_artifact” through 

database statements determined by the application to verify. This insertion is illustrated in 

Figure 8. 

 

Figure 8 Insertion of tuple in the relational database (OracleDB) and the column-oriented database (TargetDB) 

IV.3.2  Check if the database maintains the logical consistency 

In this phase of CONCODA, the databases are compared to check if the logical consistency was 

maintained in TargetDB. Algorithm 10 describes the process of checking this consistency is 

performed. 

Inputs: TargetDB tdb, OracleDB odb, schema of TargetDB, sdb, conceptual model cm 
Output: InconsistenciesDetected 
InconsistenciesDetected <- [] 
For each table in sdb: 
       dataTDB <-extractAllData (table, tdb) 
       dataODB <-extractEquivalentData (table, odb, cm) 
       For each rowTDB in dataTDB and rowODB in dataODB: 
                 If (rowTDB != rowODB): 
                             InconsistenciesDetected<-Inconsistency (table, rowTDB) 
Return InconsistenciesDetected 

Algorithm 10 Determination and execution of database statements for a modification of data 

CONCODA will create and execute for each table of TargetDB one query against both databases: 

• TargetDB: a query (extractAllData) that retrieves all the data stored in the table 

(dataTDB) 
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• OracleDB: an equivalent SQL query (extractEquivalentData) to the table from the 

TargetDB to extract the same data (dataODB) 

Then, it will compare the results obtained of both queries, row by row. If the results are not the 

same (rowTDB and rowODB), the inconsistency is noted (InconsistenciesDetected). After all 

tables are checked, the developer is given the information of the inconsistencies detected. If no 

inconsistency was detected, it means that the logical consistency was maintained when 

performing the modification of data. Let use an example to illustrate this phase by continuing 

the example from subsection IV.3.1, where, to simplify the example, only the tables 

“Users_by_artifact” and “Experts_by_artifact” are analysed. In this example we first detail the 

creation of the queries and then the comparison of their execution result. 

1. Creation of queries for both the target DB and the oracle. For TargetDB, CONCODA creates 

the queries that retrieve all the data from these two tables. Likewise, CONCODA creates the 

equivalent SQL queries are the same data stored in those tables from OracleDB, requiring 

two INNER JOIN operators in both queries to relate the data between Users and Artifacts. 

This is illustrated in Figure 9.  

  

 

Figure 9 Comparison of queries against a Relational DB (OracleDB) and the Column-oriented DBs (TargetDB) 

2. Queries execution and result comparison. The data stored in each column-oriented table is 

compared with the data returned by its equivalent query in the relational database. If they 

return the same data, the logical consistency is maintained. Otherwise, the data operation 

in step 1 inquires the creation of inconsistencies in that particular table. This is illustrated in 

Figure 10. 
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Figure 10 Check of the logical consistency maintenance 

IV.4 EXPERIMENTATION 

In this section we detail the experimentation performed using CONCODA to validate MDICA, 

which answers the research question RQ5 “Do the database statements determined by MDICA 

maintain the logical consistency?” that was established in section III.8 from chapter III of this 

thesis.  

We detail two experimentations that use the case study from Section IV.2: one in Section IV.4.1 

that was first published in [27] where a set of tuples are inserted in a database with different 

start data and another one in Section IV.4.2 that was first published in [25] where all the possible 

tuples of the case study are inserted in a database that starts empty. 

IV.4.1 First experimentation: different database initial state 

In this subsection we describe the first experimentation that we performed to verify if MDICA 

maintains the logical consistency, which was first published on [27]. We designed several test 

cases in which in each one we perform a modification of data through MDICA that inserts a tuple 

in a database whose schema is detailed in section IV.2. In each test case we consider both the 

tuple to insert and the initial state of the database. Each tuple is a collection of attribute-value 

pairs from entities or relationships which were obtained through a systematic combination 

detailed in the next subsubsection. 

IV.4.1.1 Test case design 

The tuples to be inserted have been systematically obtained by combining all possible attribute-

value pairs of the entities or relationships (attributes of the two related entities or more if there 

are several relationships) that can be determined of the following tuple types: 

1. Complete: One tuple that that contains an attribute-value pair for each attribute of the 

entity or related entities. 

2. Partial: Several tuples (as much as non-key attributes of the entity or related entities) in 

which in each one of them there is an attribute without a value assigned to it. 

3. Incomplete: One tuple with only values assigned to the key values of the entity or 

related entities. 
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4. IncompleteRel: Only when the tuple contains relationships: several tuples (as much as 

entities related) in which, in each one of them, there is an entity from the relationships 

that only has attribute-value pairs for its key attributes. 

In the case of the relationships, if any of the related entities is a secondary entity (cardinality 

“many” in a “one to many” relationship), the relationships between this secondary entity and 

the primary entity (cardinality “many” in a “one to many” relationship) are included as well by 

assigning values to the keys of the primary entity.  

For example, in the case of the relationship between Venue and User we used the following 

tuples: 

Complete Type tuple:  

{Venue: {Name: “JISBD”, Year: 2022, Country: “Spain”, Topics: “Software Engineering, Testing, 

Databases”, Homepage: www.sistedes.es} 

User: {Id:1, Area_expert: “Testing”, Name: “John”, Email: “john@gmail.com”}} 

 

Partial Type tuples: 

{Venue: {Name: “JISBD”, Year: 2022, Topics: “Software Engineering, Testing, Databases”, 

Homepage: www.sistedes.es} 

User: {Id:1 Area_expert: “Testing”, Name: “John”, Email: “john@gmail.com”}} 

{Venue: {Name: “JISBD”, Year: 2022, Country: “Spain”, Testing, Databases”, Homepage: 

www.sistedes.es} 

User: {Id:1 Area_expert: “Testing”, Name: “John”, Email: “john@gmail.com”}} 

{Venue: {Name: “JISBD”, Year: 2022, Country: “Spain”, Topics: “Software Engineering, Testing, 

Databases”} 

User: {Id:1 Area_expert: “Testing”, Name: “John”, Email: “john@gmail.com”}} 

{Venue: {Name: “JISBD”, Year: 2022, Country: “Spain”, Topics: “Software Engineering, Testing, 

Databases”, Homepage: www.sistedes.es} 

User: {Id:1, Name: “John”, Email: “john@gmail.com”}} 

{Venue: {Name: “JISBD”, Year: 2022, Country: “Spain”, Topics: “Software Engineering, Testing, 

Databases”, Homepage: www.sistedes.es} 

User: {Id:1, Area_expert: “Testing”, Email: “john@gmail.com”}} 

{Venue: {Name: “JISBD”, Year: 2022, Country: “Spain”, Topics: “Software Engineering, Testing, 

Databases”, Homepage: www.sistedes.es} 

User: {Id:1 Area_expert: “Testing”, Name: “John”}} 

 

Incomplete Type tuple: 

{Venue: {Name: “JISBD”, Year: 2022} 

User: {Id:1}} 

 

IncompleteRel Type tuples: 

{Venue: {Name: “JISBD”, Year: 2022} 

User: {Id:1, Area_expert: “Testing”, Name: “John”, Email: “john@gmail.com”}} 

{Venue: {Name: “JISBD”, Year: 2022, Country: “Spain”, Topics: “Software Engineering, Testing, 

Databases”, Homepage: www.sistedes.es} 

User: {Id:1}} 

http://www.sistedes.es/
mailto:john@gmail.com
http://www.sistedes.es/
mailto:john@gmail.com
http://www.sistedes.es/
mailto:john@gmail.com
mailto:john@gmail.com
http://www.sistedes.es/
mailto:john@gmail.com
http://www.sistedes.es/
mailto:john@gmail.com
http://www.sistedes.es/
mailto:john@gmail.com
http://www.sistedes.es/
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Each of the determined tuples is inserted by two test cases, each one with a different initial state 

of the database:  

1. The DB starts empty. 

2. The DB starts with data that will be queried in order to maintain the logical consistency 

(SELECT). These data have been determined by us by analysing the SELECT statements 

determined by MDICA in the test case 1 where the DB starts empty.  

When the tuple is of the type “Complete” the only test case executed is the first one, as no 

SELECT statements were determined by MDICA in the test cases where the DB started empty. 

IV.4.1.2 Test cases results 

Table 8 displays the test cases that were designed and executed along with a summary of the 

execution result. The information of what is displayed in each column is the following: 

• Entity/Relationship: indicates the entities or relationships whose attributes contain 

associated values in the tuple.  

• Test cases: total of test cases where a tuple with information of that entity or 

relationships were inserted. 

• Success: total of successful test cases. 

• Blocked: total of blocked test cases. These blocked test cases are those where MDICA 

detected that it is impossible to insert the tuple in a required table due to not having 

values to insert in key columns. 

• INSERT: Number of INSERT statements required in the test cases. 

• SELECT: Number of SELECT statements required in the test cases. 

For each of these columns there is a division depending on the state of the database for the test 

case executed (Empty or with Data). 

Entity/Relationship 
Test cases Success Blocked INSERT SELECT 

Empty Data Empty Data Empty Data Empty Data Empty Data 

Review 5 4 5 4 0 0 0 0 0 0 
User 5 4 5 4 0 0 0 0 0 0 

Venue 5 4 5 4 0 0 0 0 0 0 
Artifact 5 4 5 4 0 0 5 4 6 6 

Features 10 9 7 9 3 0 21 27 6 27 
Posts-Rates 14 13 9 13 5 0 36 37 9 9 

LikesV 10 9 10 9 0 0 10 9 6 5 
LikesA-Features 14 13 9 13 5 0 63 63 26 45 

Total 68 60 57 60 11 0 135 140 53 92 

Table 8 Summary of first experimentation 

In total, we executed 128 test cases which all were successful for our objective of validating 

MDICA. In 117 of them, the test case passed, verifying that the logical consistency was 

maintained by MDICA. In the remaining 11 test cases, the test result was blocked, as MDICA 

issued an AKC error as an absence of values for a key column was detected. All these blocked 

test cases occurred when the database started empty. This was because during the process, the 

tuple did not contain values for a key column and when MDICA executed SELECT statements to 

obtain those missing values, the return was empty.  

Although these blocked test cases cannot be considered as passes test cases as the tuple was 

not inserted, they were still considered successful results for validating MDICA, as the logical 

consistency was preserved, and it was the expected outcome from MDICA. 
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IV.4.2 Second experimentation: exhaustive insertion of tuples 

In this subsection we detail a more exhaustive experimentation than the one detailed in the 

previous section regarding the tuples to insert, although only considering the empty initial state 

of the database. In this second experimentation, we executed several test cases where all 

possible types of tuples of entities and relationships that could be obtained in the case study 

were inserted. In the following subsubsections, we first describe how the test cases were 

designed and the classification of the tuples to insert. After this, we describe the results of the 

test cases, splitting the explanations of the results of the test for tuples of entities and tuples of 

relationship. 

IV.4.2.1 Test cases design 

In order to test all possible combination of tuples for each entity and relationship, we define the 

following classification to indicate how many attributes of an entity have an assigned value in 

the tuple to insert in the test case: 

• Complete (C): every attribute of the entity has an assigned value.  

• Partial (P1 or P2): the primary key and two (P2) or one (P1) non-key attributes have assigned 

values. 

• Incomplete (I): only the primary key has an assigned value. 

Note that this classification is different from the one in the subsection IV.4.1.1. The tuple type 

Partial has been divided in P1 and P2 in order to be more specific when displaying the results. 

The tuple type IncompleteRel is not defined as these tuples are already considered when a tuple 

of a relationship contains values for each non-key attribute of an entity (C) and no values for the 

non-key attributes of the other entity (I).  

Using this classification, we have made an exhaustive combination of tuples to be inserted in 

each entity, generating a total of 8 tuples for each: 1 complete tuple, 1 incomplete tuple, 3 

partial tuples with 2 attributes with assigned values and 3 partial tuples with one attribute with 

an assigned value.  

In the case of the relationship, we have followed the same approach, combining the different 

combinations of the two related entities. As the number of possible tuples for an entity is 8, the 

number of tuples we have inserted per relationship is 64 (8 multiplied by 8).  

In this experimentation, the database always started empty. 

IV.4.2.2 Test cases results: Entities 

Table 9 displays the results of executing the test cases that inserted tuples of entities through 

MDICA.32 test cases were executed, 8 for each entity from.  
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Entity Test cases represented Blocked INSERT UPDATE SELECT Total 

Venue (C) 1 0 0 0 0 0 
Venue (P2) 3 0 0 0 0 0 
Venue (P1) 3 0 0 0 0 0 
Venue (I) 1 0 0 0 0 0 
User (C) 1 0 0 0 0 0 
User (P2) 3 0 0 0 0 0 
User (P1) 3 0 0 0 0 0 
User (I) 1 0 0 0 0 0 
Review (C)  1 0 0 0 0 0 
Review (P2) 3 0 0 0 0 0 
Review (P1) 3 0 0 0 0 0 
Review (C) 1 0 0 0 0 0 
Artifact (C) 1 0 1 2 0 3 
Artifact (P2) 3 0 1 2 1 4 
Artifact (P1) 3 0 1 2 2 5 
Artifact (I) 1 0 1 2 3 6 

Table 9 Summary of second experimentation: Entities 

Column Entity displays in which entity the tuple is inserted and a tag that indicates the type of 

tuple inserted: Complete (C), Partial 1 (P1), Partial 2 (P2), Incomplete (I). The number of test 

cases that each row represents is displayed in column Test cases represented. Blocked displays 

the test cases whose results was blocked, similar to the first experimentation. The database 

statements required by average in the test cases are displayed in columns INSERT, UPDATE and 

SELECT, with the number of statements for each of these operations and in column Total with 

the sum of all of these operations by average. 

Similar to what was observed in the first experimentation, none of the tuples that contain values 

for attributes of the entities Venue, User and Review were inserted in any table as no table met 

the requirements to do so. In the rest of insertions, we were able to check that the logical 

consistency was maintained by MDICA, and no test case was blocked. 

IV.4.2.3 Test cases results: Relationships 

Table 10 displays the results of applying MDICA to determine the CQL statements needed to 

maintain the logical consistency over 320 insertions of tuples of relationships through MDICA. 

The information of these tuples is displayed in different columns: 

• Relationship: relationship of the entities whose attributes have assigned values in the tuple. 

• Entity I and Entity II: entities related along the tag that indicates how many attributes of the 

entity have assigned values (C, P2, P1, I).  

• Primary Relationship: if any related entities are a detail of other entities whose attributes 

were not initially in the tuple (many to one relationship), we include these relationships in 

the tuple by assigning values to the primary keys of the primary entities and indicate these 

relationships in this column.  

The columns Test cases represented, Blocked, INSERT, UPDATE and SELECT display the same 

information as in the previous section for test cases where tuples of entities were inserted.  
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Relationship Entity I Entity II Primary Relationships 
Insertions 

represented 
INSERT UPDATE SELECT Blocked Total 

Features Venue(C) Artifact (C) - 1 3 2 0 0 5 
Features Venue(P2) Artifact (C) - 3 3 2 0 0 5 
Features Venue(P1) Artifact (C) - 3 3 2 0 0 5 
Features Venue(I) Artifact (C) - 1 3 2 0 0 5 
Features Venue(C) Artifact (P2) - 3 3 2 3 1 8 
Features Venue(P2) Artifact (P2) - 9 3 2 3 1 8 
Features Venue(P1) Artifact (P2) - 9 3 2 3 1 8 
Features Venue(I) Artifact (P2) - 3 3 2 3 1 8 
Features Venue(C) Artifact (P1) - 3 3 2 6 2 11 
Features Venue(P2) Artifact (P1) - 9 3 2 6 6 11 
Features Venue(P1) Artifact (P1) - 9 3 2 6 6 11 
Features Venue(I) Artifact (P1) - 3 3 2 6 2 11 
Features Venue(C) Artifact (I) - 1 3 2 9 1 14 
Features Venue(P2) Artifact (I) - 3 3 2 9 3 14 
Features Venue(P1) Artifact (I) - 3 3 2 9 3 14 
Features Venue(I) Artifact (I) - 1 3 2 9 1 14 
Posts Review (C) User (C) Rates 1 1 2 0 0 3 
Posts Review (C) User (P2) Rates 3 1 2 0 0 3 
Posts Review (C) User (P1) Rates 3 1 2 0 0 3 
Posts Review (C) User (I) Rates 1 1 2 0 0 3 
Posts Review (P2) User (C) Rates 3 1 2 1 1 4 
Posts Review (P2) User (P2) Rates 9 1 2 1 1 4 
Posts Review (P2) User (P1) Rates 9 1 2 1 1 4 
Posts Review (P2) User (I) Rates 3 1 2 1 1 4 
Posts Review (P1) User (C) Rates 3 1 2 2 2 5 
Posts Review (P1) User (P2) Rates 9 1 2 2 6 5 
Posts Review (P1) User (P1) Rates 9 1 2 2 6 5 
Posts Review (P1) User (I) Rates 3 1 2 2 2 5 
Posts Review (I) User (C) Rates 1 1 2 3 1 6 
Posts Review (I) User (P2) Rates 3 1 2 3 3 6 
Posts Review (I) User (P1) Rates 3 1 2 3 3 6 
Posts Review (I) User (I) Rates 1 1 2 3 1 6 
Rates Review (C) Artifact (C) Posts & Features 1 4 2 0 0 6 
Rates Review (C) Artifact (P2) Posts & Features 3 4 2 3 0 9 
Rates Review (C) Artifact (P1) Posts & Features 3 4 2 6 0 12 
Rates Review (C) Artifact (I) Posts & Features 1 4 2 9 0 15 
Rates Review (P2) Artifact (C) Posts & Features 3 4 2 1 1 7 
Rates Review (P2) Artifact (P2) Posts & Features 9 4 2 4 1 10 
Rates Review (P2) Artifact (P1) Posts & Features 9 4 2 7 1 13 
Rates Review (P2) Artifact (I) Posts & Features 3 4 2 10 1 16 
Rates Review (P1) Artifact (C) Posts & Features 3 4 2 2 2 8 
Rates Review (P1) Artifact (P2) Posts & Features 9 4 2 5 6 11 
Rates Review (P1) Artifact (P1) Posts & Features 9 4 2 8 6 14 
Rates Review (P1) Artifact (I) Posts & Features 3 4 2 11 2 17 
Rates Review (I) Artifact (C) Posts & Features 1 4 2 3 1 9 
Rates Review (I) Artifact (P2) Posts & Features 3 4 2 6 3 12 
Rates Review (I) Artifact (P1) Posts & Features 3 4 2 9 3 15 
Rates Review (I) Artifact (I) Posts & Features 1 4 2 12 1 18 
LikesV User (C) Venue (C) - 1 1 0 0 0 1 
LikesV User (P2) Venue (C) - 3 1 0 0 0 1 
LikesV User (P1) Venue (C) - 3 1 0 0 0 1 
LikesV User (I) Venue (C) - 1 1 0 0 0 1 
LikesV User (C) Venue (P2) - 3 1 0 1 0 2 
LikesV User (P2) Venue (P2) - 9 1 0 1 0 2 
LikesV User (P1) Venue (P2) - 9 1 0 1 0 2 
LikesV User (I) Venue (P2) - 3 1 0 1 0 2 
LikesV User (C) Venue (P1) - 3 1 0 2 0 3 
LikesV User (P2) Venue (P1) - 9 1 0 2 0 3 
LikesV User (P1) Venue (P1) - 9 1 0 2 0 3 
LikesV User (I) Venue (P1) - 3 1 0 2 0 3 
LikesV User (C) Venue (I) - 1 1 0 3 0 4 
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Relationship Entity I Entity II Primary Relationships 
Insertions 

represented 
INSERT UPDATE SELECT Blocked Total 

LikesV User (P2) Venue (I) - 3 1 0 3 0 4 
LikesV User (P1) Venue (I) - 3 1 0 3 0 4 
LikesV User (I) Venue (I) - 1 1 0 3 0 4 
LikesA Artifact (C) User (C) Features 1 6 2 0 0 8 
LikesA Artifact (C) User (P2) Features 3 6 2 2 0 10 
LikesA Artifact (C) User (P1) Features 3 6 2 4 0 12 
LikesA Artifact (C) User (I) Features 1 6 2 6 0 14 
LikesA Artifact (P2) User (C) Features 3 6 2 8 1 16 
LikesA Artifact (P2) User (P2) Features 9 6 2 10 1 18 
LikesA Artifact (P2) User (P1) Features 9 6 2 12 1 20 
LikesA Artifact (P2) User (I) Features 3 6 2 14 1 22 
LikesA Artifact (P1) User (C) Features 3 6 2 16 2 24 
LikesA Artifact (P1) User (P2) Features 9 6 2 10 6 18 
LikesA Artifact (P1) User (P1) Features 9 6 2 12 6 20 
LikesA Artifact (P1) User (I) Features 3 6 2 14 2 22 
LikesA Artifact (I) User (C) Features 1 6 2 16 1 24 
LikesA Artifact (I) User (P2) Features 3 6 2 18 3 26 
LikesA Artifact (I) User (P1) Features 3 6 2 20 3 28 
LikesA Artifact (I) User (I) Features 1 6 2 22 1 30 

TOTAL - - - 320 240 128 400 112 768 

Table 10 Summary of second experimentation: Relationships 

The results show that 208 test cases passed, verifying that MDICA maintains the logical 

consistency. However, in the remaining 112 test cases, the result was blocked the insertion was 

blocked by MDICA for the same reasons as the first experimentation. Whenever an attribute 

that has an associated key column in a target table lacked a value in the tuple, MDICA issued an 

AKC error. However, as in the first experimentation, we considered the blocked test cases as 

successful results as they were expected results. 

 



V DATABASE EVOLUTION: SCHEMA EVOLUTION: CODEVO 

This chapter details our approach for schema evolution in a column-oriented database when 

there are changes in the project requirements that change the conceptual model, which we 

named CoDEvo. The idea of a framework for database evolution has been presented in an 

international conference [29], focusing in this chapter on the schema evolution part from this 

framework. The detail of CoDEvo that is presented in this section is to be sent to the JCR journal 

“Journal of Systems and Software” after having received a first review from the reviewers. 

Section V.1 introduces the problem of database evolution, particularizing in schema evolution. 

Section V.2 describes the general framework for database evolution. Section V.3 contains the 

description of CoDEvo, which focuses on the schema evolution part of the framework. Section 

V.4 details the experimentation performed using CoDEvo, comparing its results against the 

schema of open-source projects in order to validate it. 

V.1 INTRODUCTION 

In the previous two chapters of this thesis, we have addressed the problem of the maintenance 

of the logical consistency when the data stored in the database is modified through 

modifications of data at the conceptual level. In this chapter, we address the problems related 

to database evolution in column-oriented databases, particularizing in schema evolution. When 

the database schema is designed after a conceptual model (see section II.2.3) we say that there 

is a consistency between them that we name inter-model consistency, whose maintenance we 

approach in this chapter. 

Typical evolution of a database comes from requirements change that directly changes the 

schema or the conceptual model. If either the conceptual model or the schema evolves without 

considering the other, inconsistencies can be created between the conceptual model and the 

schema. Several problems can happen because of these inconsistencies, such as a schema that 

allows future storage of data that contradicts the conceptual model constraints [29]. This last 

problem is significantly more difficult to approach in NoSQL column-oriented databases, as the 

same data is usually duplicated in several tables (see section II.1.6). 

In addition to the maintenance of the inter-model consistency, the logical consistency must be 

maintained as well. The application queries are also affected by the evolution of the schema, as 

they must consider the latest version of the schema. Inconsistencies also increase the probability 

of mistakes in the schema design, such as allowing future storage of data that contradicts 

constraints specified in the conceptual model [29]. 

The main objective of this chapter is to determine how the schema must evolve after a change 

of requirements that evolved the conceptual model in order to maintain the inter-model 

consistency. This will be achieved through a MDE approach named CoDEvo that will determine 

these actions using model transformation. The contributions of this chapter are: 

1. The definition of a framework for database evolution that covers the maintenance 

of the inter-model consistency, the logical consistency, and the client application 

update. 

2. The determination of how the database schema must evolve to maintain the inter-

model consistency with the conceptual model through model transformations. We 
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additionally determine a model that contains the detail of the evolved schema by 

applying the aforementioned transformations to the source schema. 

3. A set of experiments to validate CoDEvo, where we apply CoDEvo to several changes 

in the conceptual models of real projects. We then compare the schemas that are 

in the repository of the projects with the schema generated by CoDEvo to determine 

if this schema satisfy the project requirements. 

The remainder of this chapter is structured as follows. Section V.2 contains the description of 

the proposed framework for evolution of the database. Section V.3 details the design of the 

approach CoDEvo. Section V.4 contains the experimentation details and the threats to validity. 

V.2 COLUMN-ORIENTED DATABASE EVOLUTION FRAMEWORK 

We propose a framework to evolve the schema that starts with an evolution of the database 

structures of the schema due to a change in the project requirements. The framework requires 

models of the current conceptual model, the current schema, a mapping between conceptual 

model and schema and the change in the schema that triggers this procedure. This framework 

is composed of four stages that are illustrated in Figure 11 along with their interactions with 

each other: 

 

Figure 11 Full framework for column-oriented database evolution, from a requirement change to the update of the 
application 

In the following paragraphs we describe each stage, detailing their objective and the how we 

intend to approach them.  

Stage 1: Inter-model Consistency: Schema to CM: aims to maintain inter-model consistency after 

a change to the schema by performing the required updates to the conceptual model to reflect 

the change in the schema. We propose to use a MDE (model-driven engineering) approach that 

provides the actions to perform in the conceptual model. 

Stage 2 Inter-model Consistency: CM to Schema: aims to maintain inter-model consistency by 

applying in the required changes to schema in order to adapt it to the conceptual model 

generated in stage 1. For this stage we have developed the MDE approach CoDEvo that 
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determines how the schema must evolve. We detail this stage in the following sections of this 

chapter. 

Stage 3: Logical consistency maintenance: aims to maintain the logical consistency of the 

database after the schema evolves. To address this problem, we propose to use a MDE approach 

to determine the data migrations that are required to maintain the logical consistency. In order 

to determine these migrations, we will employ in future work the knowledge obtained in our 

previous works related to logical consistency maintenance that are detailed in the chapters III 

and IV of this thesis. 

Stage 4: Update application: aims to update the client application by adapting it to the new 

schema. Although there is no existing work that studies this specific problem, program repair 

approaches are an interesting option [89]. These approaches aim to fix a bug or solve an 

inconsistency in software. We propose using a similar approach that updates the application in 

both the database statements that are embedded in the application and the application code 

that prepares the database statements and process the result of the execution of these database 

statements. 

In the rest of this chapter, we focus on Stage 2. The remaining stages will be addressed in future 

work following this thesis. 

V.3 CODEVO DESCRIPTION  

In this chapter of the thesis, we focus on the stage 2 of the framework for database evolution 

described in the previous section by proposing CoDEvo, a model-driven engineering approach 

that addresses the evolution of the database schema using model transformations [90]. It uses 

higher-order transformations (HOTs) for this [91], managing the changes in the conceptual 

model, the database schema, and the data as models, which are named transformation models. 

In addition to these transformation models, CoDEvo provides output models with the 

transformations applied.  

The section is divided in several subsections. Subsection V.3.1 defines several terms used during 

the chapter. Subsection V.3.2 contains the description of the metamodels and the general 

process of CoDEvo. Subsections V.3.3 and V.3.4 contain the detail of each model that is used in 

CoDEvo. Subsection V.3.5 contains the detail of how, given a conceptual model change, CoDEvo 

determines the actions to evolve the schema in order to maintain the inter-model consistency. 

Subsection V.3.6 describe how the database code to perform the required changes in the 

schema is obtained. 

V.3.1 Related Terms definitions 

In this section, we define several terms related to model transformation and NoSQL databases 

that we will use during the description of CoDEvo. 

Inter-model consistency: A guarantee that the database schema conforms to the constraints 

defined in the conceptual model. Any evolution of either the conceptual model or the database 

schema may affect the other.  

Metaclass: A class of a metamodel. The instances of these metaclasses are named elements. 

These elements are contained in the models that conform to the metamodels.  
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Evolution: One or more changes in either the conceptual model or the database schema that 

are required to maintain the inter-model consistency. A change is a single insertion, removal, or 

update of a single element from either the conceptual model or the schema.  

Transformation: Generation of a target model or textual artifacts given one or more source 

models [63]. A transformation is executed based on a trigger condition and performs a set of 

actions to generate a specific target model, which together comprise a transformation rule. A 

transformation definition is composed of several transformation rules that together describe 

how the target models or texts are generated. 

Transformation model: A model that contains the changes that are going to be applied in a 

transformation. Higher-order model transformations (HOTs) use this type of model, with several 

types depending on the amount of source models and target models [91]. In this work we will 

use the (de)composition transformation type, which requires having at least one transformation 

as an input model and one transformation as an output model. 

V.3.2 General process of CoDEvo and metamodels used during the process 

The metamodels, models that conform to them, database procedures and transformation 

definitions that compose CoDEvo are illustrated in Figure 12 with the following notation: 

Metamodels as rounded corner rectangles, models as blue (input) or green (output) rectangles, 

database procedures as magenta rectangles and transformation definitions as ellipses.  The 

models conform to metamodels with the same name, except for the Source schema and Target 

schema, that both conform to the metamodel DB schema. This is displayed with dashed arrows 

that connect the model with the metamodel that they conform to. The models are connected 

through properties that are defined in the following subsection (e.g., a column is associated with 

the attribute mapped to it through the identifier of the attribute). These metamodels, models, 

database procedures are organized [64] in three layers:  

1. Computationally Independent Models (CIM): Models independent of the data 

model of the database schema and the technology: Conceptual Model, Queries and 

Conceptual Model Evolution.  

2. Platform Independent Models (PIM): Models that depend on the data model of the 

database schema, but not on a specific technology:  Source schema, Schema 

evolution, and Target schema. These models will be either inputs or outputs in the 

following M2M (Model to Model) transformation definitions: 

a. EvolveSchema: Receives as inputs all the models from CIM and Source schema 

and generates the model Schema evolution that specifies all the changes of the 

DB schema required to reflect the conceptual model change. 

b. ApplyEvo: Receives as inputs the Source schema and the Schema evolution and 

generates the Target schema which contains the schema structure detail after 

the changes defined in Schema evolution are applied to the schema. 

3. Platform Specific Models (PSM): Models that depend on the database technology. 

This layer contains the M2T (Model to Text) transformation definition SchemaGen, 

that generate database procedures specific to a particular database technology 

(Schema statements). These database procedures contain the database statements 

and instructions required to perform the changes specified in the models Schema 

evolution.  
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Figure 12 General process of CoDEvo. Solid arrows display the inputs and outputs of Model-To-Model and Model-To-
Text transformations. Doted arrows display the metamodel that a model conforms to. 

In the following subsections of this section, we describe these metamodels and transformation 

definitions. Each metamodel will be explained and illustrated separately in following 

subsections, although the relationships of a class with a class of another metamodel are 

illustrated through reference objects. All these metamodels are joined together in a full 

metamodel where the relationships between classes of the different individual metamodels are 

established. This full metamodel is illustrated in the appendix in Figure 22.  

V.3.3 Input models 

The input models of CoDEvo are the conceptual model, queries, source schema and conceptual 

model evolution. The metamodels of these four models are based on the metamodels defined 

by de la Vega et al. [19] which they based on the work of Chebotko et al. [18]. In each of the 

following subsubsection, we detail the components of each model: 

V.3.3.1 Conceptual model metamodel 

The conceptual model metamodel is composed of the metaclasses Entity, Weak entity, 

Attribute and Relationship. The entities and weak entities are associated with one or more 

attributes. The property ‘isUnique’ from an attribute specifies if it is part of the primary key. A 

relationship associates two entities (can be weak) with a specific cardinality: 1:1 (one to one), 

1:n (one to many) or n:m (many to many), established by the attributes cardinality1 and 

cardinality2. This metamodel is illustrated in Figure 13. 
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Figure 13 Conceptual Model metamodel 

V.3.3.2 Queries metamodel 

The metaclasses of the queries metamodel are Requirement Query, Selection and Filter. Note 

that these requirement queries are the conceptual queries used for designing a table of the 

database and they do not have a direct relationship with the application queries (SELECT, 

INSERT, DELETE, UPDATE). Thus, a requirement query element is associated to a table element 

from the model source schema. A requirement query element is also associated through 

composition to a selection element and a filter element. Each selection element is associated 

with several attributes from the model conceptual model, which specifies the attributes that are 

requested by the query. Each filter element is also associated to several attributes, which are 

used to define restrictions in a query, similar to the WHERE clause of a SQL query. This 

metamodel is illustrated in Figure 14. 

 

Figure 14 Queries metamodel 
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V.3.3.3 Schema metamodel 

Source schema conforms to the metamodel DB schema, which contains the design details of a 

NoSQL column-oriented database schema with the metaclasses TableFamily, Table, Type (also 

named custom type) and Column. All the tables compound a TableFamily. A table or a custom 

type of element is associated to one or more column elements. Additionally, a column contains 

a property names ‘isKey’ to indicate if it is part of the primary key as well as an association with 

an attribute from the conceptual model, which we refer as mapping. A table element contains 

the reference “query” that associates it to the queries that it satisfies from the queries model. A 

custom type can be associated with multiple columns from a table. This metamodel is illustrated 

in Figure 15. 

 

Figure 15 Column family database schema metamodel 

V.3.3.4 Conceptual model evolution metamodel 

The last input is the conceptual model evolution that contains the detail of changes performed 

in the conceptual model. The scenarios that we consider for changes in the conceptual model 

are obtained from two types of sources: from research works that address the evolution of 

different databases and empirically from detection of cases in real case projects, which are 

detailed in section V.4. In Table 11, we classify the conceptual model changes by the conceptual 

model structure directly affected by the change. We also specify if the conceptual model change 

was detected in a project (P) or/and in a research work (RW): 
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Structure Change Description P RW 

Entity AddEntity Creation of a new entity along with the attributes 
associated to it. 

X X 

Entity AddWeakEntity Creation of a new weak entity and its relationship 
with the owner entity. 

X X 

Entity DeleteEntity Removal of an entity, including all relationships 
the entity had. 

X X 

Entity MergeEntity Merge of two exiting entities into a resulting one  X 

Entity SplitEntity Split one existing entity into one.  X 

Entity AddPK Change of a non-key attribute of an entity into a 
key attribute. 

X X 

Entity RemovePK Change of a key attribute of an entity into a non-
key attribute. 

X X 

Attribute AddAttribute Creation of a new attribute and association to an 
existing entity. 

X X 

Attribute RemoveAttribute Removal of an attribute from an entity X X 

Attribute SplitAttribute Split an existing attribute from an entity into two 
or more attributes. 

X  

Relalationship AddRel Establishment of a new relationship between two 
entities. It also defines the cardinality of the 
relationship (1:1, 1:n or n:m). 

X X 

Relalationship UpdateCardinality Change of the cardinality of an existing 
relationship. 

X  

Relalationship RemoveRelationship Removal of an existing relationship  X 
Table 11 Conceptual Model changes detected in projects and research work 

The metamodel is illustrated in Figure 16. 

 

Figure 16 Conceptual Model Evolution metamodel 
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V.3.4 Output models 

The M2M transformation definition EvolveSchema uses the inputs described in the previous 

subsection to obtain the output model SchemaEvolution. SchemaEvolution contains classes 

that describe how the source schema must evolve through associations with elements from 

other metamodels:  

• Add which details the tables, types and columns that need to be added to the schema.  

• Remove that details the tables and columns that need to be removed from the 

schema. 

• AddPK that details the columns that need to be added to the primary key of a table. 

• RemovePK that details the columns that need to be removed from the primary key of 

the table. 

The M2M transformation definition ApplyEvol conform to the metamodel “Schema” which 

was detailed in the previous subsection. These classes are illustrated in Figure 17. 

 

Figure 17 Schema Evolution metamodel 

V.3.5 M2M EvolveSchema transformation definition and ApplyEvo description 

EvolveSchema contains the transformation rules that specify the transformations of the schema 

required to maintain the inter-model consistency after a specific change in the conceptual 

model. These transformations are displayed in the output model schema evolution. The inputs 

of these transformation are the four models described in the previous subsection.  
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Each transformation rule is composed of several predicates, functions, and atomic 

transformations. A predicate is an expression that provides a Boolean value given specific 

properties of one or more elements. A function receives one or two elements as inputs and 

returns either a property of this element (e.g., name, cardinality) or one or more elements 

associated to the input elements. An atomic transformation is an operation that, given one or 

more elements, generates or removes a single element from source schema or creates an 

association between two elements of source schema. To differentiate between functions, 

predicates and transformations, the names of functions and predicates start with lowercase and 

the names of transformations start with uppercase. 

We denote each element (entity, attribute, table…) as follows:  

• Conceptual Model: 
o e: An entity.  
o a: An attribute. It is associated with one entity. 
o r: A relationship. It is associated with two entities, establishing a certain 

cardinality: 1:1, 1:n or n:m. 

• Schema: 
o t: A table. When in uppercase (‘T’), it represents all the tables that are in the 

model. 
o ct: A type or custom type. It can be associated with several tables in an 

aggregation. 
o c: A column. It is associated with either a table or a custom type in a 

composition. Each column is also associated with an attribute (mapping). At 
least one of the columns associated to a particular table must be part of the 
primary key. 

• Query: 
o rq: A requirement query. It is associated with one table that fits it. 
o f: A filter. It is associated with a query and a set of attributes.  
o s: A selection. It is associated with a query and a set of attributes.  

 

V.3.5.1 Predicates and functions 

The predicates used in the definition of the transformations are as follows:  

• isIn (a, q): if attribute a appears anywhere (select or filter) in the requirement query q.  

• isKey (c): if c is part of the primary key of the table where it belongs.  

• isKey (a): if attribute a is part of the primary key of the entity that is associated.  

• isKey (a, t): if the attribute a is mapped to a column that is part of the primary key in 

entity e. 

• isMapped (a, c): if the attribute a is mapped to the column c. 

• mapped (e, t): if entity e has at least one attribute mapped with one column associated 

with table t.  

• mappedPK (e, t): if the attributes that are primary key of entity e are mapped to columns 

associated with table t that are key.  

• mapped (a, t): if the attribute a is mapped with any column associated to table t. 

The functions used in the transformations, which either return information about the 

association of an element with another or properties of an element, are the following: 

• attribute (c): returns the attribute that the column c is mapped to. 
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• cardinality (e1, e2): returns the cardinality of the relationship between the entities e1 

and e2: ‘1:1’, ‘1:n’ or ‘n:m’. 

• column (a, t): returns the column from t that is mapped to a. 

• top (r): in a relationship r with cardinality “1:n”, returns the entity on the side of the 

cardinality value “1”. 

• bottom (r): in a relationship r with cardinality “1:n”, returns the entity on the side of the 

cardinality value “n”. 

• query (t): returns the set of queries that are associated to the table t.  

• left (r): in a relationship r with cardinality “1:1” or “n:m”, returns the entity on the left 

side. 

• right (r): in a relationship r with cardinality “1:1” or “n:m”, returns the entity on the right 

side. 

V.3.5.2 Transformations 

The actions required to evolve the schema while maintaining the inter-model consistency are 

obtained using transformations of models. These actions are ultimately used in transformations, 

which we classify in atomic transformations and transformations rules. Atomic transformations 

perform at most two actions that can either be creation of elements or association of existing 

elements. In the case of transformation rules, each one is triggered by a specific conceptual 

model change and their objective is to maintain inter-model consistency to evolve the schema 

considering the conceptual model change. We formally define the transformation rules, using 

atomic transformations, predicates, and functions. 

V.3.5.2.1 Atomic Transformations 

The atomic transformations that we use in the transformation rules are the following:  

• Associate (t, c): associates the column c with the table t. 

• Associate (t, ct): associates the custom type ct with the table t. 

• CopyAddPK (t, c): creates a copy of table t with the column c added to the primary key. 

• CopyRemPK (t, c): creates a copy of table t that does not contain c in the primary key. 

In order to perform this atomic transformation, there must be other columns that are 

part of the primary key.  

• CreateCol (a): creates a column based on attribute a, naming this new column with the 

same name as a. 

• CreateColPK (a): creates a column based on attribute a, naming this new column with 

the same name of a and sets this column as key. 

• CreateTable (e, {c1, c2...cN}): creates a table with the name of the entity e, and 

associates to this new table the set of columns c1, c2...cN. Note that the symbols ‘{}’ 

denote a set of elements. 

• CreateTable (r, {c1, c2...cN}): creates a table with the name of the relationship r, and 

associates to this new table the set of columns c1, c2...cN.  

• CreateType (e, {c1, c2...cN}): creates a custom type with name e and associates to it the 

set of columns c1, c2...cN. 

• Remove (c): removes column c and its associations (tables and attributes). If c is part of 

the primary key of a table, there must be other columns that are part of the primary key 

in the associated table to perform this operation. 

• Remove (t): removes table t from the model as well as its associated columns.  



Section V.3 - CoDEvo description 104 

 

V.3.5.2.2 Transformation rules 

For each of the transformation rules, there is a formal definition of how the database schema 

must evolve using the functions, predicates, and atomic transformation previously defined. In 

certain transformation rules we use additional predicates that are only used in these rules. For 

each of these additional predicates there are both an informal explanation of its purpose as well 

as a formal definition. 

In the formal definition of some rules, we use the symbol ‘|’, which in a notation such as “action 

| condition”, represents that the action is performed for each time that the condition is met. 

The transformation rules that we have defined are the following: 

 

Rule 1. AddEntity (e): Add an entity e, composed of several attributes a, to the conceptual 

model: 

AddEntity(e) := CreateTable (e, {CreateCol(a) |  a ∈ e)}) 

 

Rule 2. AddWeakEntity (we): Add a weak entity we, composed of attributes a to the conceptual 

model. This weak entity also contains a relationship with a primary entity pe: 

AddWeakEntity (we) :=   let ct = CreateType (we, {CreateCol(a) | a ∈ we}) 

  ∀ t ∈ T, mapped (we, t): Associate(t, ct) 

The first step of the transformation is the creation of the custom type, which is assigned to a 

variable ct. This custom type is then associated to tables that store the primary entity of the 

relationship. This association is only required in one of the selected tables, being the developer 

the responsible of choosing in which of the selected tables the association is performed.  

 

Rule 3. AddPK (a, e): Add the attribute a to the primary key of an entity e. Let P (t, a) be the 

predicate that checks if there is a key column mapped to the attribute a in a given table t. 

P(t, a):=∃c∈t, (attribute(c) == a ∧ isKey (c)):  

AddPK (a, e) :=∀ t∈T, mappedPK (e, t) ∧ ¬P(t, a):CopyAddPK(t, Create (a)),Remove (t) 

The new columns associated to a are inserted as PK in every table that contains e to guarantee 

that each row inserted in the table is not overwritten by mistake.  

 

Rule 4. RemovePK (a, e): Remove the attribute a from the primary key of an entity e. Let PQ (t, 

a, c) be the predicate that checks if a column c is mapped to an attribute a and this attribute a 

is not in any of the queries that table t is associated to.  

PQ (t, a, c) := attribute(c) == a ∧ ¬isIn (a, query (t)) 

RemovePK (a, e) := ∀ t ∈ T, mapped (a, t) ∧ ∃c∈t, PQ (t, a, c): CopyRemPK (t, c), Remove (t) 
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Rule 5. AddAttribute (a, e): Add a new attribute a to e: 

AddAttribute (a, e) := ∀ t∈T, mapped (e, t): Associate(t, CreateCol(a)) 

From all the tables t that satisfy the selection criterion, it is only required to associate the new 

column to one of them. This decision is up to the developer. 

 

Rule 6. RemoveAttribute (a, e) (Case 1): Remove an attribute a from e. The target tables 

affected by the transformation must not contain any column that is to be removed in the 

primary key . Let P (a, c) be a predicate that checks if the column c is non-key as well as mapped 

to a. 

P(a,c)= attribute (c) == a ∧¬isKey (c): 

RemoveAttribute (a, e):= ∀ t ∈ T, mapped (e, t) ∧  ∃c∈t, P (c, a): Remove (c) 

Rule 7. RemoveAttribute (a, e) (Case 2): Remove an attribute a from e. The target tables 

affected by the transformation must contain any column that is to be removed in the primary 

key. Let P(a, c) be a predicate that checks if there is a column c mapped to an attribute a and 

that c is part of the primary key. 

P(a, c) := attribute(c)== a ∧ isKey (c) 

RemoveAttribute (a, e) := ∀ t ∈ T, mapped (e, t) ∧ ∃c∈t, P (c):  CopyRemPK(t, c), Remove (t) 

 

Rule 8. SplitAttribute (a, {a1, a2... an}): Split an attribute a to several attributes a1, a2, … an.  

SplitAttribute (a, {a1, a2... an}) := ∀t∈T, mapped (a, t):  

{Associate(t, CreateCol (a1, a2... an ))} , Remove(column(a, t)) 

 

Rule 9. AddRelationship (r) (Case 1):   Add a new relationship r between two entities with a 

cardinality of either 1:1 or n:m. 

AddRelationship (r) := let e1 = left(r), e2 = right(r) 

 CreateTable(r, {CreateColPK(a) | a ∈ e1 ∨ e2, isKey(a)} ∪  {CreateCol (a) | a ∈ e1 ∨ e2, ¬ IsKey(a)}) 

 

Rule 10: AddRelationship (r) (Case 2): Add a new relationship r between two entities with a 

cardinality of 1:n. 

AddRelationship (r) := let e1 = top(r), e2 = bottom(r) 

CreateTable(r, {CreateColPK(a) | a ∈ e2, IsKey(a)} ∪ {CreateCol (a) | a ∈ e1 ∨ e2, ¬IsKey(a) ∨ a 

∉ e2)}) 
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Rule 11: UpdateCardinality (r) (Case 1): Update the cardinality of a relationship r with a new 

cardinality of 1:n. Let P (t, e) be a predicate that checks if all the key attributes of an entity e 

have columns mapped to the primary key of a table t. 

P (t, e) :=∀a∈ e, isKey(a) ∧ isKey(a, t) 

UpdateCardinality (r) := let e1 = top (r), e2 = bottom (r) 

∀t∈T, mapped (e1, t) ∧ mapped (e2,t) ∧ ¬P (t, e2):  CopyAddPK(t, CreateCol(pk(e2))), Remove(t) 

 

Rule 12. UpdateCardinality (r) (Case 2): Update the cardinality of a relationship r to a new 

cardinality n:m. Let P be a predicate that checks if a table t contains key columns for all attributes 

that are part of the primary key of the entities e1 and e2. 

P (t, e1, e2) := ∀a∈ e1 ∨ e2 , isKey(a) ∧ isKey(a, t) 

UpdateCardinality (r) := let e1 = left (r), e2 = right (r) 

∀t∈T, mapped (e1, t) ∧ mapped (e2,t) ∧ P (t, e1, e2):  

CopyAddPK(t, CreateCol(pk(e2)) ∪ CreateCol(pk(e1))), Remove(t) 

 

Rule 13. RemoveEntity (e): Remove an entity e from the conceptual model. We consider three 

scenarios (1, 2.a and 2.b), depending on the characteristics of the table from the schema where 

transformations need to be performed.  

RemoveEntity (e) := 

∀t∈T, mapped (e, t) ∧ (∀ c ∈ pk(t), attribute(c)): RemoveTable(t) 

∀t∈T, mapped (e, t) ∧ ¬(∀ c∈t, attribute(c)∈e): 

∀c∈t attribute(c)∈e ∧ ¬isKey (c): Remove(c) 

∀c∈t attribute(c)∈e ∧ isKey (c): CopyRemPK(t, c) , Remove (t) 

In scenario 2.b, the creation of a copy table without the columns selected is only done once 

 

Rule 14. MergeEntity (e1, e2): Merge two entities e1 and e2 into one entity e, We consider two 

scenarios (1 and 2) depending on the cardinality of the relationship between e1 and e1. 

MergeEntity (e1, e2) :=  

let a1pk = pk (e1), a2pk = pk(e2), car =cardinality (e1, e2) 

1. ∀t∈T, mapped (e1, t) ⊻ mapped (e2, t): 

    CopyAddPK (t, {CreateCol (a1pk) ∪ CreateCol (a2pk)}, Remove (t) 

2. ∀t∈T, mapped (e1, t) ∧ mapped (e2, t) ∧ car ≠”n:m”: 

    CopyAddPK (t, {CreateCol (a1pk) ∪ CreateCol (a2pk)}, Remove (t) 
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Rule 15. RemoveRelationship (r) Remove a relationship r from the conceptual model. We 

consider two scenarios depending on whether the table contains only information of the 

relationship (scenario 1), or it also contains information from other entities (scenario 2). 

RemoveRelationship (r):=   

let e1 = left(r), e2 = right(r) 

1. ∀t∈T, mapped (r, t) ∧ (∀c∈t, attribute(c)∈e1 ∨ attribute(c)∈e2):RemoveTable(t) 

2. ∀t∈T, mapped (r, t) ∧ (∀c∈t, attribute(c)∈e1 ∨ ¬attribute(c)∈e2): 

SplitTable (t, e1, e2) 

 

Case for the conceptual model change “Split Entity”: There are no changes in the schema. 

Therefore, no transformation rule is created for this conceptual model change. 

After the transformations are executed, the model schema evolution is generated, containing 

the changes that need to be performed. After this, the transformation definition ApplyEvo 

begins, which generates the final schema with the changes determined in schema evolution 

applied to it. 

V.3.6 M2T SchemaGen and M2T DataModifier descriptions 

SchemaGen and DataGen generate the database statements and actions required to perform 

in an Apache Cassandra database, the operations specified in models Schema evolution and Data 

modification. SchemaGen generates the database statements that evolve the database schema 

in its correct sequence. DataGen generates a code-like text that details how to migrate the data.  

V.4 EXPERIMENTATION AND VALIDATION 

In this section, we validate CoDEvo through its application to nine case studies of projects stored 

in public repositories that use the column-oriented database Apache Cassandra. These 

repositories contain the information of the changes in the schema that have been performed 

since the creation of the projects, which are recorded through commits in the repository. We 

considered that each commit where the schema is changed generates a new version of the 

schema, which may contain one or more conceptual model changes. During the 

experimentation, for each version, we compared the schema of the repository with the schema 

generated by CoDEvo. In this section, we refer to these schemas as ‘repository schema’ and 

‘CoDEvo schema’, respectively.  

CoDEvo has been automated by implementing the transformation rules defined in section V.3.5 

in an Eclipse project using ATL. CoDEvo receives as inputs the models that contain necessary 

information for the evolution of the schema and generates as outputs the models that define 

how the schema must be evolved. The detail of these inputs and outputs and how they are 

obtained is displayed in the following table. 
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Component How it was obtained 

Input: Conceptual 
model ATL file 

Manually through reverse engineering analyzing the database 
schema (tables, columns, primary key of the tables).  

Input: Source schema 
ATL file 

Automatically by reading the CQL script of the repository schema 
from a particular version. It also contains a semi-automatically 
obtained mapping between attributes of the conceptual model and 
columns of the schema. 

Input: Queries ATL file Automatically by using the information provided in the mapping. 
Each one of the queries contains an association of attributes from 
the conceptual model that define how each table of the schema is 
defined.  

Input: Conceptual 
model evolution ATL 
file 

Manually by defining the conceptual model changes, which are 
obtained by analyzing the differences that exist between the 
conceptual model of this version and the previous one. 

Output: Schema 
evolution ATL file 
(CoDEvo schema) 

Automatically executing M2M transformation EvolveSchema. 

Output: Database 
schema statements to 
execute the changes to 
perform in the schema 

Automatically executing M2T transformation SchemaGen. 

Output: Target 
Schema after the 
changes are applied 

Automatically executing the M2M transformation ApplyEvo. 

Table 12 Components of evaluation of how they were obtained 

The projects that we use for this validation are the following: 

• Minds (https://gitlab.com/minds), a social network  

• PowSyBl (https://github.com/powsybl), a framework for the implementation of power 

system simulations and analysis software  

• Thingsboard (https://github.com/thingsboard/thingsboard): IoT platform for data 

collection  

• Wireapp (https://github.com/wireapp/wire-server): Encrypted communication app  

• Blobkeeper (https://github.com/sherman/blobkeeper): Distributed file-storage service  

• Reviews-service (https://github.com/bon-app-etit/reviews-service): Module for 

restaurants  

• Sunbirds (https://github.com/ekstep-sp/sunbird-devops): A project for learning and 

human development  

• Doudouchat (https://github.com/doudouchat): No description provided  

• Sop (https://github.com/SharedCode/sop): A database engine within a code library.  

All conceptual model changes detected in these projects are displayed in Table 13. 
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AddEntity 15 6 0 8 2 0 9 2 2 44 

SplitAttribute 1 0 0 0 0 0 0 0 0 1 

AddAttribute 21 35 4 30 2 0 27 11 4 134 

AddRelationship 17 11 0 7 0 0 6 0 0 41 

RemovePK 2 0 0 0 0 0 0 2 0 4 

RemoveAttribute 2 5 0 2 0 0 11 1 1 22 

AddPK 2 0 1 0 0 0 0 2 0 5 

UpdateCardinality 0 0 0 0 0 1 0 0 0 1 

AddWeakEntity 0 14 0 0 0 0 0 0 0 14 

RemoveEntity 0 0 0 1 0 0 0 1 0 2 

TOTAL 60 71 5 48 4 1 53 19 7 268 
Table 13. Conceptual Model changes detected 

V.4.1 Research questions 

In order to validate CoDEvo, we have defined the following research questions: 

RQ6. How much difference is there between the CoDEvo schemas and the repository 
schemas? 

RQ7. Are the CoDEvo schemas valid considering the project requirements? 
 
To answer RQ6 and RQ7, we used the conceptual model changes introduced in each project 

version as inputs for CoDEvo along with the schema from the previous version. Then, we 

compared the schema from the repository with the schema generated by CoDEvo for each 

version to obtain their differences.  

In the following subsections we answer each RQ separately and the threats to validity. 

V.4.1.1 RQ6: How much difference is there between the CoDEvo schemas and the repository 

schemas? 

To respond this research question, we compared the schema in the project repository with the 

schema generated by CoDEvo to obtain the differences between them for each project version. 

We categorized these differences in one of three types based on the following: 

1. Type I, Same results: When both the repository schema and the CoDEvo schema are 

the same. 

2. Type II, More database structures: When the schema generated by CoDEvo 

contains more database structures than the ones in the schema from the project 

repository. These differences were detected when adding both a new entity 

(conceptual model change “AddEntity”) and a new relationship of this entity with 

another one (conceptual model change “AddRelationship) in the same version.  

3. Type III, Different database structures: When new database structures in the 

repository schema and the CoDEvo schema are different. There are three possible 

Type III subtypes depending on the conceptual model change that triggers the 

difference: 

a. Type III-A: New non-boolean attribute (conceptual model change 

“AddAttribute”) 

b. Type III-B: New boolean attribute (conceptual model change “AddAttribute”) 
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c. Type III-C: New relationship (conceptual model change “AddRelationship”). 

Table 14 displays the number of repository versions in accordance with the aforementioned 

types. 

Project 

I II III TOTAL 

   III-A  III-B III-C  

Minds 10 9 4 0 2 25 

PowSybl 14 0 0 0 2 16 

Thingsboard 4 0 0 0 0 4 

Wireapp 8 5 3 1 0 17 

Blobkeeper 4 0 0 0 0 4 

Review-service 1 0 0 0 0 1 

Sunbirds 13 1 0 0 0 14 

Doudouchat 8 1 0 0 0 9 

Sop 3 0 0 0 0 3 

TOTAL 65 16 7 1 4 93 
Percentage 69.9 17.20 7.5 1.1 4.3 100 

       
Table 14 Types of versions per project  

In the following subsections we analyse the differences detected between the CoDEvo schema 

and the repository schema of each version, excluding Type I where both schemas are the same 

(69.9% of the total). 

V.4.1.1.1 Analysis of Type II schema differences 

Type II results were detected when the CoDEvo schema contained more database structures 

than the repository schema. These results were only detected when both an entity and a 

relationship of this entity with another one are added in the same version. Both the CoDEvo 

schema and the repository schema contained a table for the relationship (Rules 9 and 10). 

However, CoDEvo additionally created a table to store only information of the entity (Rule 1). 

Figure 18 depicts the insertion of a new entity ‘Hashtags’ and its relationship with entity ‘User’, 

highlighting the differences between the schemas from the repository and CoDEvo. Both the 

repository schema and the CoDEvo schema contain the table “User_Hashtags” for the new 

relationship. However, as described before, CoDEvo additionally added a table “Hashtags” for 

the new entity. 
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Figure 18 CoDEvo schema vs repository schema version for the insertion of an entity and a relationship 

V.4.1.1.2 Analysis of Type III schema differences 

There are three variants of Type III results: two for the addition of a new attribute that depends 

on the data type of the attribute: a non-Boolean attribute (Type III-A) or a Boolean attribute 

(Type III-B). The third variant is the addition of a new relationship (Type III-C). Table 15 displays 

the comparison of the number of these conceptual model changes that were detected in Type 

III results against Type I and Type II results. 

Conceptual Model Changes Type III Type I or Type II All 

AddAttribute 9 95 104 

AddRelationship 3 38 41 

TOTAL Changes 12 133 145 

Percentage 8.28 91.72 100 

Table 15. Type III vs Type I or Type II for the same conceptual model change 

It is important to note that in most additions of attributes or relationships the CoDEvo schema 

either was the same as the repository schema or contained more database structures. Only in 

8.28% of these changes in the conceptual model both schemas were different. In the following 

subsections we describe these differences depending on the Type III variant. 

V.4.1.1.3 Analysis of Type III-A and Type III-B schema differences  

Type III-A and III-B results were detected when adding a new attribute. In them, CoDEvo added 

a column mapped to the new attributes to the tables that store information about the entity of 

the attribute. However, the repository schema evolved by creating a new table to store this new 

attribute. There are two variants of this new table depending on the data type of the attribute: 

a non-Boolean attribute (Type III-A) or a Boolean attribute (Type III-B). 

V.4.1.1.3.1 Type III-A schema differences: New non-Boolean attribute 

Type III-A results were detected when, for the addition of a non-Boolean attribute, the 

repository schema contained a table with the following columns: 1) key columns mapped to the 

primary key of the new attribute’s entity and 2) a non-key column mapped to this attribute. 

Figure 19  depicts the differences of the schemas of CoDEvo and the repository from a version 

CoDEvo Repository Previous  

version 

(No tables from 

previous version 

involved in this 

evolution of the 

schema) 

Database 
schema 

Conceptual 
Model 
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of the project ‘Minds’ where the attributes “last_retry” and “retries” were added to the entity 

“Entities”. To address this addition, the project developers added to the repository schema the 

table “search_dispatcher_queue”, which contained column mapped to the primary key of entity 

“Entities” as well as two columns for the new attributes. On the other hand, in the CoDEvo 

schema two columns with the same as the new attributes were added to the table “entities”.  

 

Figure 19 Comparison between the CoDEvo schema and the repository schema for the addition of two attributes 
“last_retry” and “retries” to entity ‘Entities’ 

V.4.1.1.3.2 Type III-B schema differences: New Boolean attribute  

Only one Type III-B result was detected, specifically in a version of the project WireApp, where 

the Boolean attribute “whitelist” was added to the entity ‘Team’. Figure 20 depicts the 

differences between the schemas of CoDEvo and the repository in this version. In the repository 

schema, a table that only contains a column mapped to the primary key of entity ‘Team’ was 

added. If the key value of a ‘Team’ is added to the table, it means that ‘whitelist’ is True for that 

particular ‘Team’. On the other hand, CoDEvo added a column named ‘Whitelist’ to the table 

‘team’, which stores information about the entity of the same name, in order to store the value 

of ’Whitelist’ alongside the rest of the information of a particular ’team’. 
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Figure 20 Comparison between the CoDEvo schema and repository schema from the project Wireapp for the addition 
of a Boolean attribute “whitelist” to entity Team 

V.4.1.1.4 Analysis of Type III-C schema differences: ‘New relationship’  

For the addition of a new relationship, CoDEvo proposed the creation of a new table to store 

the information of the relationship. However, in two versions from project ‘PowSybl’ and one 

from project ‘Minds’ the repository schema evolved by altering a table that initially stored 

information of one of the entities. After it was altered, the table stored information of the 

relationship. This alteration consisted of additions to the table columns which were mapped to 

the primary key of the other entity of the relationship.  

Figure 21 displays the differences between the schemas of CoDEvo and the repository from a 

version PowSybl for the addition of a relationship “one to many” between entities ‘BusBreaker’ 

and ‘IccConverterStation’. CoDEvo created a new table (‘Bus_IccConverterStation’) to store 

information of this relationship. On the other hand, in the version the schema evolved by adding 

the columns “Bus” and “ConnectableBus” to the table “IccConverterStation”. 
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Figure 21 CoDEvo schema vs repository schema of Type III version from project PowSyBl for inserting a new relationship 
between entities BusBreaker and IccConverterStation 

V.4.1.1.5 Conclusion for RQ6 

From the results obtained by comparing the schemas of the repository and CoDEvo for each 

version (see Table 14), we were able to determine that 69.9% were the same schema (Type I). 

Another 17.2% of the total were Type II results, where CoDEvo added more database structures 

in addition to the ones that were in the repository schema. Altogether, Type I and Type II results 

were 87.1% of the total of versions. This shows how CoDEvo was able to generate for these 

versions the same database structures as the human developers.  

The remaining results where the modifications of the schema were different (12.9%) were 

classified as Type III. In RQ7, we analyse if the schemas of CoDEvo that differ from the repository 

one are still valid regarding the project requirements, and, in that case, whether they are better 

or worse than the repository schema. 

V.4.1.2 RQ7: Are the CoDEvo schemas valid considering the project requirements? 

In this section we discuss at what extent the differences of database structures between the 

schema of CoDEvo and the repository affect the following:   

1. Fulfilling of the project query requirements: We determine if the CoDEvo schemas 

fulfil the projects requirements of a version when the CoDEvo schema allows to 

query same data that can be queried from the repository schema. This is done by 

determining the possible ways of querying data from the repository schema and 

checking if the CoDEvo schema allows them 

2. Maintenance of Logical Consistency: We compare the database operations (INSERT, 

DELETE, UPDATE) that developers must implement in the client application to 

maintain the logical consistency of the database when the data stored in the 

database is modified. 

V.4.1.2.1 Differences regarding requirements of the queries 

In this section we determine if the CoDEvo schema satisfies query requirements of a project 

version when it differs from the repository schema. In the comparison performed for RQ1, Type 
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I results were obtained when both schemas were the same, not requiring to be analysed. Type 

II results meant that the database structures from the repository were also in the CoDEvo 

schema, therefore CoDEvo was able to satisfy the requirements as well and they do not require 

to be analysed as well. However, Type III results showed that the schemas of CoDEvo and the 

repository contained different database structures. In the following paragraphs we analyse if in 

each of the Type III subtypes the schema of CoDEvo still satisfies the project requirements. 

Type III-A and Type III-B results are obtained when adding a new attribute. In both subtypes, 

CoDEvo added a new column to a table that stored information of the attribute’s entity, while 

in the repository schema a new table was created. A new column for storing data of the attribute 

fulfils the requirements of considering the new attribute, as it associates this data to the instance 

of the entity that it belongs. On the other hand, if a table is designed by the developers with a 

different primary key in order to query data in a different way, the CoDEvo schema would not 

allow the same queries as the repository schema. However, this scenario was not detected in 

any of the researched projects. 

Type III-C results were obtained for some of the versions that added a new relationship. CoDEvo 

added a new table to store information of the new relationship. Note that this option was also 

chosen by the repository schema in 38 out of the 41 new relationships inserted in the projects. 

In the other 3 versions where the schema from CoDEvo and the repository are different, the 

schema provided by CoDEvo did not have all the possible queries that could be executed against 

the repository schema. For instance, in the repository schema you could filter the data using 

values for columns “Id” and “properties”, while in the CoDEvo schema only values for “Id” could 

be used, as “properties” was not in the new table.  

In conclusion, CoDEvo schemas were able to satisfy the requirements regarding storage of the 

new attribute or relationship. The only scenario where CoDEvo might provide an unsatisfactory 

schema is when there is a specific requirement of how data must be queried, which CoDEvo 

does not consider at this moment. This can be fixed by allowing developers to incorporate to 

the CoDEvo process the requirements regarding querying of data. It is also noteworthy that in 

most versions the CoDEvo schema and the repository schema are the same. Of the remaining 

versions, only a minority show the CoDEvo schema as less suitable for possible queries than the 

repository schema. 

V.4.1.2.2 Differences regarding data logical consistency maintenance 

When there is an update of data implemented in a client application, it may require additional 

database statements to maintain the logical consistency in the database. These statements 

depend on the characteristics of the schema, such as the duplication of data among the table. 

In this section we describe the differences between the schemas of CoDEvo and the repository 

regarding the database statements that must be implemented in the client applications for 

updates of data. As Type I results show that both schemas are the same, we only analyse the 

differences when there was a Type II or Type III result.  

V.4.1.2.2.1 Versions with Type II results 

Type II results were detected for the addition of both an entity and a relationship in the same 

version. In these versions, the repository schema contained a table to store the relationship, 

while, in addition to this table, the CoDEvo schema also contained a table to only store data of 

the new entity. This additional table increases the development cost, as a new table must be 

considered when implementing changes in the data, making the CoDEvo schema more costly 

than the repository one. On the other hand, an additional table does not negatively affect the 
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execution time of data update operations, as only a few database statements are required for 

updating data in this additional table. 

This means that the only cost increase of a new table for storing data of the entity is during the 

development of the application. On the other hand, this addition table has the advantage of 

expanding the ways of querying data in the database. As future work, for users who do not want 

this additional table, we could incorporate interactivity by asking if users prefer a table to store 

information of the entity or a table that stores the relationship. 

V.4.1.2.2.2 Versions with Type III-A and Type III-B results  

Type III results for adding an attribute showed that, while CoDEvo altered an existing table by 

adding a column for the new attribute, in the repository schema a new table was added. If we 

compare them regarding development cost, performance, and query possibilities we obtain the 

following: 

Development cost: The CoDEvo schema is less costly than the ones from the repositories as it 

avoids the consideration of a new table. The only changes required in the client application for 

the CoDEvo schema are those of adding the new attributes in the existing queries of the new 

tables. On the other hand, for the repository schema all the code related to the new table must 

be created from scratch.  

Performance: Both schemas are similar, although the CoDEvo schema has the better 

performance. The CoDEvo schema should be similar in performance to the previous version 

schema, as it only requires the consideration of new columns in data operations that already 

existed in the client application. On the other hand, the repository schema is marginally more 

time consuming due to requiring execution of new database statements for the new table 

Regarding logical consistency maintenance the CoDEvo schema is better in both development 

cost and performance than the repository schemas. Developers would require less time to 

update the client application and this application would also have better performance when 

executing operations against the database.  

V.4.1.2.2.3 Versions with Type III-C results  

Type III-C results were detected when adding a new relationship, generating CoDEvo a new 

table, while the version altered an existing table. If we compare the development cost, 

performance, and query possibilities we obtain the following: 

Development cost: The repository schema avoids the creation of a new table, which might make 

it less costly than the CoDEvo schema. However, in this case we also need to consider that in 

repository schema the purpose of the altered table is modified from querying information of 

one entity to querying information of a relationship. This means that all the code related to that 

table must be modified in order to include information of the other entity of the relationship. 

Therefore, the development costs for the repository schema might be higher than for the 

CoDEvo schema depending on the amount of code that needs to be modified. 

Performance: The repository schema would have better performance due to not requiring a 

new table to consider when executing data operations. It is the opposite scenarios that was 

described in section V.4.1.2.2.2 where the CoDEvo schema had best performance for the same 

reasons. 



Section V.4 - Experimentation and validation 117 

 

V.4.2 Threats to validity 

We evaluated CoDEvo with several case studies, comparing the database structures proposed 

by CoDEvo with the database structures that are actually implemented in the repository 

schemas. However, there are several threats to validity of this experimentation. In this 

subsection we discuss threats to external and internal validity. 

Threats to external validity: Some of the case studies that we used for the experimentation 

were also used to define the transformation rules of CoDEvo. These projects were named in 

prior work where we proposed the main idea of CoDEvo [28]. This is a threat to the validity of 

the experimentation, as the CoDEvo schemas might always be the same as the repository 

schemas, artificially increasing the effectiveness of CoDEvo generating appropriate schemas 

artificially. To mitigate this threat, we added more projects to be used in the analysis: Sunbirds, 

Doudouchat and Sop. The results that we obtained in these three projects were successful, 

although we are searching for more projects to analyse in order to further mitigate this threat. 

Threats to internal validity: The projects that we used for the experimentation do not provide 

an explicit conceptual model. We needed to infer the conceptual model from these projects by 

analyzing the database structures of the repository schema. The same was required to obtain 

the conceptual model changes, which were obtained by analyzing the evolution of the schema 

in each eversion. This manual determination is a threat as we could have defined these 

conceptual models and conceptual model changes to perfectly fit into the transformation rules 

defined in CoDEvo. In order to avoid this, we carefully analysed each version to obtain the 

equivalent conceptual model. Then, we compared one version with the previous one to obtain 

what was changed, identifying the conceptual model changes applied in the version. There are 

also techniques that can be used to obtain the conceptual model from a column-oriented 

database schema [17], [92]. Using these external techniques, we could also ensure that the 

conceptual models that we use in the experimentation are not biased towards the 

transformations defined in CoDEvo. Note that these techniques can obtain different conceptual 

models as they have different ways of obtaining them. 





VI FINAL REMARKS 

This thesis has two main research goals that address the following problems in column-oriented 

databases: maintain the logical consistency for modifications of data and maintain the inter-

model consistency for the evolution of the database. The first research goal is approached from 

two different point of views: a preventive approach named MDICA, and a reactive approach 

named CONCODA. The second research goal is addressed through a MDE approach named 

CoDEvo. 

In the following subsections we first detail the conclusions for each research goal along with the 

contributions achieved in each one and then we detail the general conclusion of the thesis. We 

finish with the description of the research lines to address in future work. 

VI.1 CONCLUSIONS FOR EACH RESEARCH GOAL 

In this section we describe the conclusions of the two research goals of the thesis. As each 

research goal is further divided in subgoals, we will detail the conclusion for all the bottom-level 

subgoal. 

Research goal 1: Maintenance of the logical consistency 

The first research goal was approached with two different approaches: a preventive one named 

MDICA to determine the database statements required to perform modification of data and a 

reactive one named CONCODA to determine if the execution of a set of database statements to 

perform a modification of data maintained the consistency. For each of these approaches we 

defined the consequent research goals whose conclusion we detail in the following paragraphs. 

Research goal 1.1: MDICA 

As mentioned before, we devised MDICA to prevent the creation of inconsistencies when 

performing modifications of data, which included insertions, deletions, and updates of tuples. 

MDICA. We were able to successfully achieve this research goal with MDICA, providing not only 

the database statements and data procedures but also advising of issues during the process, 

such as lack of values for an insertion in a key column, and about the validity of the schema 

tables and the tuples of the modification. This subgoal was further divided in three subgoals: 

Research goal 1.1.1: Determine actions for the modification of data 

For each type of modification of data (insertion, deletion, and update) we defined a general 

algorithm that determined and generated the database statements needed to perform a given 

modification of data. In addition to the general algorithm, we addressed particular scenarios in 

each type of modification of data to differentiate the modifications involving only an entity and 

the ones involving more than one entity through relationships. In this determination, we 

provided the contributions C1, C2 and C3.  

Research goal 1.1.2: Automation of MDICA 

MDICA was also automated in a tool named CONSISTE, addressing the research goal 1.2.2. With 

this tool we were able to automate the experimentation that was detailed in chapter III which 

evaluated MDICA. This tool provided the contribution C4. 
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Research goal 1.1.3: Evaluation of MDICA 

For the evaluation of MDICA, we defined four research questions that were addressed in chapter 

III. The conclusions that we obtained answering these research questions were the following: 

RQ1: We detected that it was not always possible to insert data due to two factors: the tuple to 

insert did not have values to key attributes or the tuple lacked values for key columns of tables 

where the data must be inserted. MDICA can help to detect these situations and provide the 

information required to fix the insertions so they can be performed against the database. 

RQ2: The number of tables depends on the complexity of the tuple to insert. As more entities 

and relationships participate in the insertion, more tables are detected as target tables. 

Nevertheless, MDICA identified all target tables regardless of the complexity of the tuple. 

RQ3: We detected that in addition to the expected INSERT statements to insert the data, it was 

also common to require SELECT statements for retrieving data required for the maintenance of 

the logical consistency. In addition to this, we also detected less frequent scenarios where we 

required to CREATE and populate new tables in order to properly query these data. Although 

this creation of table is only performed the first execution, as in following executions the table 

will already exist. 

RQ4: We detected scenarios where although logical consistency is not ensured to be lost, it is in 

danger such a value of a tuple not being inserted in any table. To address these scenarios, MDICA 

identified them and provided developer warning messages that can fix these scenarios. 

The evaluation provided the contribution C5. 

Research goal 1.2: CONCODA 

The objective of the research goal 1.2 was to detect if a column-oriented database maintains 

the logical consistency after one or more modifications of data have been performed against 

the database. To address this research goal, we devised a reactive approach named CONCODA, 

which used a relational database that implements the conceptual model as an oracle to 

determine the logical consistency maintenance. 

CONCODA also provides the information of the table where inconsistencies were detected, in 

order to help developer to fix the mistakes in the database statements that modify data in these 

tables. Then, if inconsistencies are detected, MDICA can be used to fix them, which was also 

evaluated using this reactive approach, obtaining successful results. 

CONCODA was also used to answer the following research question first defined in chapter III 

where MDICA was devised: 

RQ5: We performed two experimentations using CONCODA by executing test cases where 

tuples were inserted using MDICA, verifying through CONCODA that MDICA provided database 

statements that maintained the logical consistency. There were test cases in which the insertion 

was blocked due to MDICA not being able to guarantee the logical consistency, which further 

demonstrated how MDICA prioritizes maintaining the logical consistency over inserting data.  

CONCODA provided the contributions C6 and C7, while its application provided the contribution 

C8. 
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Research goal 2: Database evolution: Schema evolution 

The second research goal aims to maintain the inter-model consistency when the database 

evolves. For this purpose, we devised the MDE approach CoDEvo that determines the action to 

perform in the schema when the conceptual model evolves to maintain the inter-model 

consistency (consistency between schema and conceptual model). We divided this research 

goals in the following subgoals: 

Research goal 2.1: Schema evolution analysis in open-source projects 

We researched in several open-source projects in order to address the research goal 2.1. We 

identified several changes in the conceptual model in these projects as well as how the schema 

evolved in accordance with these conceptual model changes. We noted that the most common 

changes were those regarding creations of entities, attributes, or relationships. Updates or 

deletions of other structures, although detected, were less common to happen.  

The analysis of the open-source projects provided the contribution C10. 

Research goal 2.2: Schema evolution to maintain inter-model consistency 

Using the information obtained in the aforementioned analysis, we devised CoDEvo, a MDE 

approach that, through transformations, provide a model that contains the information of how 

the schema must evolve. In addition to models, we were also able to transform the actions 

specific in the model into the database statements required to execute these actions.  

CoDEvo provided the contributions C11 and C12, while its automation in a tool provided the 

contribution C13. CoDEvo is also part of the framework for database evolution described in 

section V.2, whose definition provided contribution C9. 

Research goal 2.3: CoDEvo experimentation and validation 

The research goal 2.3 was addressed through an experimentation, using open-source projects, 

that was based on two research questions: 

RQ6: 69.9% of the schemas obtained by CoDEvo were the same as the ones determined by the 

developers of the projects used in the experimentation. 17.2% of schema had additional 

database structures (tables or columns) than the schema from the developers. These additional 

structures were created by the approach to widen the possible queries that can be executed 

against the database. Their absence in the schema from the developers was caused to not being 

a requirement to execute these queries. In the remaining 12.9% schemas the database 

structures were different, which we analysed in the following research question.  

RQ7: We studied if the schemas from CoDEvo were still valid to obtain the same data as in the 

schema from the developers.  We were able to verify this in all scenarios from the 

experimentation, although we acknowledged potential scenarios related to particular 

requirements regarding queries where CoDEvo might provide a schema that is not adapted to 

these particular requirements.  

The evaluation of CoDEvo provided the contribution C14. 
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VI.2 GENERAL CONCLUSIONS 

The main objective of this thesis was to address problems that were specific to column-oriented 

databases and where the techniques or approaches for relational databases could not be 

applied. Two of these problems were the maintenance of the logical consistency for 

modifications of data and the maintenance of the inter-model consistency for schema evolution. 

In this thesis we proposed approaches for them, two for the maintenance of the logical 

consistency and one for the database evolution. We were able to accomplish the hypothesis of 

the thesis by defining these novel approaches that specifically address these problems for 

column-oriented databases, validating them with real open-source projects.  

These approaches can help developers to avoid mistakes when evolving the database or when 

implementing the database statements and procedures for modifications of data. For instance, 

MDICA can be used to generate the database statements to include in the application source 

code that are required for performing a modification of data. This helps developers to not forget 

target table, retrieve the adequate data from other tables to complete the database statements, 

and avoid making mistakes that endanger the logical consistency. For previously developed 

applications, CONCODA may be applied to determine if any client application maintains the 

logical consistency when performing modifications of data. It is important to note, that both 

MDICA and CONCODA. 

Regarding the evolution of the database CoDEvo helps developers to avoid mistakes when 

evolving the database as the requirements change. It guarantees the inter-model consistency, 

which assures that they database will not allow to store data inconsistent with the conceptual 

view of the system. We have obtained through experimentation that CoDEvo is able to obtain 

the same schema as human developers in 87% of the schema evolution cases that were part of 

the experimentation performed for the validation. In the remaining 13% schemas, although 

different, the CoDEvo schemas was still valid to satisfy the requirements of the projects used in 

the experimentation. 

Nevertheless, there are still other problems that have been not addressed in this thesis, which 

we intent to approach in the future and are described in the next subsection. 

VI.3 FUTURE WORK 

In this subsection we briefly describe the different problems that we want to address in the 

future, starting from the advances obtained in this thesis. 

VI.3.1 Database evolution: Maintenance of the logical consistency after the evolution of the 

schema 

In section V.2 we described that the logical consistency may be affected when the schema 

evolves. We have so far identified two causes:  

1. Creation of new database structures (tables or columns) that must store data that is 

already stored in other databases. 

2. The conceptual model now specifies constraints that contradict some of the data that 

was previously stored in the database, such as the change of the cardinality of a 

relationship. 
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We plan to approach this problem in the following works by continuing to use a MDE approach 

that will create models that specify the data to migrate, identifying the source tables and the 

target tables. As the schema evolution problem addressed in this thesis also uses a MDE 

approach, we plan to join both approaches together to achieve an automation of the process 

that covers both the evolution of the schema addressed in this thesis with the maintenance of 

the logical consistency.  

VI.3.2 Database evolution: Program update after the evolution of the schema 

The client applications contain code and embedded database statements for a specific version 

of a database schema. If the database schema changes, the client application must be changed 

as well as we described in section V.2. We propose to automatically update the application using 

the information provided by the models obtained through CoDEvo. We plan to do this through 

a program-repair approach that does the following: 

1. Identify the code related to the schema, both embedded statements and source code 

that depends on the schema such as classes for the conceptual model entities. 

2. Update the identified code considering the information provided by the models 

obtained from CoDEvo. 

After we finish this program-repair approach, we will have developed all the necessary 

approaches for database evolution when there is a change of the requirements that change the 

conceptual model (components or constraints). 

VI.3.3 Database evolution: Changes directly applied to the schema 

In the research line 3 we have started from new requirements that change the conceptual 

model. However, there can also be new requirements that directly change the schema as we 

described in [29] and in section V.2 for the general framework for database evolution. We plan 

to propose a MDE approach similar to CoDEvo, which given a change in the schema, determines 

how the conceptual model must evolve in order to guarantee the inter-model consistency. 

Afterwards, CoDEvo will be applied in order to determine the rest of changes to apply in the 

schema if they were needed to maintain the inter-model consistency. 

VI.3.4 Modifications of data directly to the database side 

Regarding the problem of maintaining the logical consistency when there are modifications of 

data which was addressed in the research lines 1 and 2, we plan to extend it to also cover 

modifications of data that are directly executed to the database.  

Given a modification of data in the schema (insertion, update or deletion of a row), we plan to 

identify determine the modifications of data in the conceptual model (insertion, update or 

deletion of tuples) equivalent to the given modification of data in the schema. Afterwards, we 

will apply MDICA in order to maintain the logical consistency by performing the modification of 

data in the rest of the database. 
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CONCLUSIONES 

El principal objetivo de esta tesis era abordar problemas específicos de las bases de datos 

orientadas a columnas en los que no se podían aplicar las técnicas o enfoques destinados a las 

bases de datos relacionales. Dos de estos problemas eran el mantenimiento de la consistencia 

lógica para las modificaciones de los datos y el mantenimiento de la consistencia inter-modelo 

durante la evolución de la base de datos ante un cambio de los requisitos. En esta tesis hemos 

propuesto enfoques para abordar ambos problemas, MDICA y CONCOSA para abordar el 

mantenimiento de la consistencia lógica y CoDEvo para la evolución de la base de datos. Hemos 

podido cumplir la hipótesis de la tesis definiendo a través de estos enfoques específicamente 

diseñados para las bases de datos orientadas a columnas. A su vez, han sido validados utilizando 

proyectos de software obtenidos de artículos de investigación y repositorios públicos. 

Estos enfoques pueden ayudar a los desarrolladores a evitar errores tanto en la evolución de la 

base de datos como en la implementan de las operaciones y procedimientos de la base de datos 

necesarios para ejecutar modificaciones de datos. Específicamente, MDICA puede utilizarse para 

generar las sentencias de la base de datos que deben incluirse en el código fuente de la 

aplicación y que son necesarias para realizar una modificación de los datos. Esto ayuda a los 

desarrolladores a evitar errores comunes en modelos de datos desnormalizados como olvidar 

tablas sobre las que se deben ejecutar las modificaciones de datos y otros errores comunes que 

pongan en peligro la consistencia lógica de los datos. En el caso de las aplicaciones desarrolladas 

previamente, CONCODA sirve para determinar si la aplicación cliente mantiene la consistencia 

lógica al realizar una determinada modificación de datos.  

En cuanto a la evolución de la base de datos, CoDEvo ayuda a los desarrolladores a evitar errores 

al evolucionar la base de datos a medida que cambian los requisitos. Al garantizar la consistencia 

inter-modelo, se asegura que la base de datos no permitirá almacenar datos inconsistentes con 

la visión conceptual del sistema. A través de la experimentación con proyectos software de 

open-source en los que ha existido una evolución del esquema, hemos obtenido que CoDEvo es 

capaz de obtener el mismo esquema que los desarrolladores en el 87% de los casos de evolución 

del esquema de estos proyectos. En el 13% de casos restante, los esquemas proporcionados por 

CoDEvo, aunque diferentes, seguían siendo válidos para satisfacer los requisitos de los proyectos 

utilizados en la experimentación. 
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Figure 22 Metamodel union for CoDEvo 
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