
Vol.:(0123456789)1 3

Environmental Science and Pollution Research (2023) 30:76977–76991 
https://doi.org/10.1007/s11356-023-27805-5

RESEARCH ARTICLE

Modelling hydrogen production from biomass pyrolysis for energy 
systems using machine learning techniques

Paulino José García‑Nieto1 · Esperanza García‑Gonzalo1 · Beatriz María Paredes‑Sánchez2 · 
José Pablo Paredes‑Sánchez2

Received: 6 December 2022 / Accepted: 17 May 2023 / Published online: 30 May 2023 
© The Author(s) 2023

Abstract
In the context of Industry 4.0, hydrogen gas is becoming more significant to energy feedstocks in the world. The current 
work researches a novel artificial smart model for characterising hydrogen gas production (HGP) from biomass composi-
tion and the pyrolysis process based on an intriguing approach that uses support vector machines (SVMs) in conjunction 
with the artificial bee colony (ABC) optimiser. The main results are the significance of each physico-chemical parameter 
on the hydrogen gas production through innovative modelling and the foretelling of the HGP. Additionally, when this novel 
technique was employed on the observed dataset, a coefficient of determination and correlation coefficient equal to 0.9464 
and 0.9751 were reached for the HGP estimate, respectively. The correspondence between observed data and the ABC/
SVM-relied approximation showed the suitable effectiveness of this procedure.

Keywords  Bioenergy · Hydrogen gas production (HGP) · Multilayer perceptron (MLP) · Support vector regression (SVR) · 
Artificial bee colony (ABC)

Introduction

Industry 4.0 is defined as the fourth industrial revolution, 
which refers to the ongoing automation and digitisation of 
industrial processes and systems, incorporating technologies 
such as the Internet of Things (IoT), artificial intelligence 
(AI) (e.g. machine learning), cloud computing, and robot-
ics. As Industry 4.0 moves towards a cleaner environment, 
it advocates for increased use of sustainable energy and 
parametric characterisation of energy. To ensure improved 
energy resources, the world faces the challenge of promoting 
the use of renewable energy sources (Adekoya et al. 2021) 
and reducing carbon emissions (Qadir et al. 2021).

Bioenergy management can help reduce a portion of 
greenhouse gas (GHG) emissions and achieve sustainable 
goals in energy production systems (Paredes-Sánchez et al. 
2020). Biomass pyrolysis is considered a promising technol-
ogy for producing hydrogen because it allows for the direct 
conversion of energy resources from a solid to a gaseous 
state. Hydrogen is widely used as a primary energy car-
rier in sustainable energy applications. It can be obtained 
from both non-renewable sources, such as natural gas, and 
renewable resources, such as biomass, for energy conversion 
and management (Abe et al. 2019). Combusting hydrogen 
in energy systems is highly environmentally friendly since 
only water vapour is produced (Ni et al. 2006). Hydrogen 
has significant energy storage capacity, with an energy den-
sity of around 120 MJ/kg, more than double that of most 
conventional fuels (Sherif et al. 2014).

Pyrolysis involves heating organic material at or above 
500 °C in the absence of oxygen, using inert gas under con-
trolled operating conditions, including inert gas flow rate 
(FR), heating rate (HR), particle size (PS), and highest treat-
ment temperature (HTT). This process produces combusti-
ble gases (Ahrenfeldt 2012) and biochar (Rosillo-Calle and 
Woods 2012) by thermally decomposing biomass. However, 
the intrinsic characteristics of solid biomass, such as high 

Responsible Editor: Ta Yeong Wu

 *	 Paulino José García‑Nieto 
	 pjgarcia@uniovi.es

1	 Department of Mathematics, Faculty of Sciences, University 
of Oviedo, 33007 Oviedo, Spain

2	 Department of Energy, College of Mining, Energy 
and Materials Engineering, University of Oviedo, 
33004 Oviedo, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-023-27805-5&domain=pdf


76978	 Environmental Science and Pollution Research (2023) 30:76977–76991

1 3

moisture content, hydrophilic nature, poor heating value, and 
low bulk density, make it necessary to characterise biomass 
parameters to determine its potential conversion to hydro-
gen by pyrolysis. Proximate analysis parameters, such as 
volatile material (VM), fixed carbon (FC), and ash (A), as 
well as ultimate analysis parameters, including carbon (C), 
hydrogen (H), nitrogen (N), and oxygen (O), are used to 
structure models to select raw materials more suitable for 
hydrogen production by pyrolysis. The basic equipment for 
biomass composition analysis includes a pyrolysis reactor 
with necessary additional automatic equipment for biomass 
composition analysis, such as thermobalances or ovens, to 
characterise proximate and ultimate analysis parameters 
(Ahrenfeldt 2012; García-Nieto et al. 2019) or a combina-
tion of both analyses (Yin 2011) (see Fig. 1).

To improve the experimental process, there is a rising need 
to forecast the hydrogen gas production (HGP) of biomass 
pyrolysis utilising data from proximal and ultimate studies 
employing algorithms relied on statistical machine learning 
techniques. Machine learning is a part of artificial intelligence 
and computer science whose aim is to build strategies that 
permit computers to acquire knowledge. Computers observe 
data, build models based on that data by machine learning 
techniques, using the model as a hypothesis about the ana-
lysed process, and implement it in software to find solutions 
to the problem. In the references, some research studies show 
the use of machine learning techniques for similar problems. 
In this sense, the previous study to evaluate the gasification 
of biomass for the production of hydrogen, and its model-
ling by means of supervised machine learning algorithms, is 
noteworthy (Ozbas et al. 2019). The analysis of pyrolytic gas 
yield and compositions with feature reduction methods by the 
machine learning prediction, considering the effects of bio-
mass characteristics and pyrolysis conditions, is an interesting 
study carried out in the same research way (Tang et al. 2021). 

In this regard, the research work that employs mathematical 
techniques relied on the machine learning for modelling the 
gasification and pyrolysis of biomass and waste is also note-
worthy (Ascher et al. 2022).

When the raw biomass is used in the pyrolysis process to 
feed into a reactor, it heats up. As the temperature increases, 
the particles eject product gases (e.g. H2). Product gases are 
mixed up with the flowing inert gas and are conducted to the 
reactor outlet, after a cooling step to avoid product degra-
dation (Lathouwers and Bellan 2001). In these conditions, 
hydrogen is produced together with other product gases.

The main reason for the present research is to imple-
ment support vector machines (SVMs) (Cristianini and 
Shawe-Taylor 2000; James et  al. 2021) in conjunction 
with the metaheuristic optimiser termed as artificial bee 
colony (ABC) (Eberhart et al. 2001; Chong and Zak 2013; 
Aggarwal 2020) and the multilayer perceptron (MLP) (Du 
and Swamy 2019; Kubat 2021) as well as M5 model tree 
(M5Tree) (Singh et al. 2016) to evaluate the hydrogen gas 
production (HGP) in the pyrolysis procedure from biomass 
for bioenergy. Based on measurable learning hypotheses, 
the SVM approach is another category of strategies that can 
be employed to foretell values ​​from very distinct domains 
(Hansen and Wang 2005; Steinwart and Christmann 2008).

The ABC optimiser has been implemented here with 
successful results to carry out the optimisation stage for the 
purpose of determining the optimal kernel hyperparameters 
during the SVM training. ABC is basically an analysation 
algorithm that allows a selection of the most optimal values 
for a problem optimisation from a metaheuristic point of view.

Accordingly, a novel approach that combines the ABC 
optimiser and SVM-relied regressor was evaluated as auto-
matic apprenticeship algorithms, training them to estimate 
the HGP based on raw biomass characteristics (e.g. proxi-
mate analysis, ultimate analysis) and pyrolysis conditions. In 

Fig. 1   Scheme of the experimental procedure
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this sense, investigators have effectually employed the SVM 
method in research works of energy matters like photovol-
taic energy (de Leone et al. 2015), solar radiation (Chen et al. 
2013), or hydro-climatic factors (Shrestla and Shukla 2015). 
Additionally, a multilayer perceptron-like neural network 
(MLP approach) and M5 model tree were fitted to the experi-
mental biomass dataset for comparison objectives (Kisi 2015; 
Du and Swamy 2019; García-Nieto et al. 2019). MLP is a 
type of artificial neural network (ANN) formed by multiple 
layers, in such a way that it has the capacity to find solutions to 
problems that are not linearly separable. Furthermore, the M5 
model tree is a learning decision tree that performs regression 
work, which means that it is employed to foretell the values 
of an output numerical attribute. The approach based on M5 
employs the mean square error as an impurity function analo-
gously to the approximation based on the CART tree (Kuhn 
and Johnson 2018). The principal difference between CART 
tree and M5 model tree is that the first one assigns a constant 
to the leaf node, while the second one fits a multivariate linear 
regression function. Therefore, the M5 model tree consists of 
piecewise linear functions. Another additional benefit of the 
M5 model tree is that it can acquire knowledge effectively and 
can deal with works with a very elevated dimensionality (Kisi 
2015): up to hundreds of attributes.

Therefore, a SVM-relied approximation optimised with 
ABC (ABC/SVM) together with MLP-relied ANN and M5 
model tree was utilised as a statistical learning-relied tool 
for the purpose of training the data in order to estimate the 
HGP from the attributes of the proximate analysis, ultimate 
analysis, and operational conditions of the pyrolysis process.

Materials and methods

There are plenty of mathematical approaches, which were con-
structed based on experimental data from raw biomass and 
pyrolysis process to define energy conversion (Lee et al. 2021).

Materials

The main base of the employed dataset for this investiga-
tion is a group of experimental proximate and ultimate 
analyses and the conditions of the pyrolysis process with 
their corresponding hydrogen gas productions (HGPs) 
(dependent variable) based on the product yields (Demi-
ral and Ayan 2011) and main product characteristics (Beis 
et al. 2002; Bordoloi et al. 2016) from the pyrolysis pro-
cess. The total data processed was about 1272 values (106 
data per variable × 12 variables (11 independent variables 
and 1 dependent variable)) (Han et al. 2011; Frank et al. 
2016). These values were acquired from the proximate and 
ultimate analyses of biomass, and the next pyrolysis pro-
cess for hydrogen production obtained in earlier studies. 

Additionally, to make decisions in the energy conversion 
systems and energy carriers, decision-makers and investi-
gators require analysis models (Garg et al. 2016) to assess 
advanced energy efficiency (Paredes-Sánchez et al. 2019).

Concerning the input variables, the main ones have 
been obtained from the ultimate and proximate analyses 
of biomass, and taking into account the pyrolysis condi-
tions for an operational evaluation of hydrogen gas pro-
duction (HGP) (dependent variable). The dataset treated 
with the three kinds of approximations (ABC/SVM-relied 
approach, MLP-relied approximation, and M5 model tree) 
relies on some operational production parameters and vari-
ous physico-chemical attributes of the pyrolysis process 
(Morali and Şensöz 2015; Safdari et al. 2018).

The physical–chemical input variables and pyrolysis 
production parameters of the model are outlined below 
(Yuan et al. 2015):

–	 Proximate analysis:

•	 Ash refers to the inorganic matter impurities that 
remain after the combustion of the biomass.

•	 Fixed carbon (FC) refers to the inorganic matter impu-
rities that remain after the combustion of the biomass.

•	 Volatile matter (VM): Measured by determining the 
loss of weight of the raw material.

–	 Ultimate analysis (Encinar et al. 2000; Gong et al. 2020):

•	 Carbon (C): The carbon fraction in the elemental com-
position of the raw biomass.

•	 Hydrogen (H): The hydrogen content determined by 
elemental analysis of the raw biomass. It has a direct 
relationship with hydrogen production in pyrolysis gases.

•	 Nitrogen (N): The nitrogen fraction in the elemental com-
position of the raw biomass.

•	 Oxygen (O): The oxygen content of the raw biomass 
determined by elemental analysis.

–	 Operational production conditions of the pyrolysis process:

•	 Highest treatment temperature (HTT): The highest tem-
perature reached during the pyrolysis process for hydro-
gen production.

•	 Heating rate (HR): The rate of heat applied to convert the 
raw biomass into hydrogen through pyrolysis.

•	 Particle size (PS): The size of the particles used in the 
chemical reactor during the pyrolysis process.

•	 Flow rate (FR): The rate at which inert gas is introduced 
into the pyrolysis reactor.
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Methods

Support vector regression (SVR) method

In this subsection, the use of support vector machines 
(SVM) to find solutions to regression problems is studied. 
In these cases, they are usually called support vector regres-
sion (SVR) (Cristianini and Shawe-Taylor 2000). Consider 
a collection of training examples +

{(
�1, y1

)
,… ,

(
�n, yn

)}
 , 

where �i ∈ ℜd and yi ∈ ℜ , assuming that the yi values of 
all examples of S can be fitted (or quasi-fitted) by a hyper-
plane; our goal is to find the parameters � =

(
w1,… ,wd

)
 

that allow us to define the regression hyperplane 
f (�) =

�
w1x1 + w2x2 +⋯ + wdxd

�
+ b = ⟨�, �⟩ + b.

The random noise or disturbance � ∼ N(0, �) is defined as 
the measurement’s error of the value y, that is, y = f (�) + � . 
To allow for some noise in the training examples, we can 
relax the error condition between the value foretold by this 
function and the real value. For this, the �− insensitive loss 
function is used, L� , given by (James et al. 2021)

It is a linear function with an insensitive zone of width 
2� , in which the loss function takes a null value. By choos-
ing this function, some flexibility in the solution function 
is allowed, so that all the examples that are confined to the 
tubular region will not be considered support vectors, since 
the cost associated with the loss function is 0. In practice, 
it is very difficult to achieve a linear regression model with 
zero prediction error, so the concept of soft margin will be 
introduced (Sugiyama 2015).

The slack variables are defined as the distance to the sam-
ple measured from the tubular zone of the regression hyper-
plane. The slack variables �+

i
 and �−

i
 will allow us to quantify 

the prediction error that is willing to admit for each training 
example and, with the sum of all of them, the cost associated 
with the examples with a non-zero prediction error. 𝜉+

i
> 0 

will be taken when the prediction of the example f
(
�i

)
 is 

greater than its actual value, yi , in an amount greater than 
� or equivalently f

(
�i

)
− yi > 𝜀 . Similarly 𝜉−

i
> 0 when the 

actual value of the example is greater than its prediction by 
an amount greater than � , that is, yi − f

(
�i

)
> 𝜀 . In any other 

case, the slack variables take a value of 0. Note that both 
variables cannot simultaneously take a value other than 0, 
since it happens whenever �+

i
⋅ �−

i
= 0 (see Fig. 2).

With all this, now the problem can be optimised. Our goal is to 
minimise the sum of the associated loss functions, each one to an 
example of the training set ∑n

i=1
L�
�
yi , f

�
�i

��
=
∑

i∈non−tubular zone

���yi − f
�
�i

���� − � . 
This is equivalent to maximising the tubular zone defined by the 
loss function, in which it takes a null value. Therefore, maximising 
� is equivalent to minimising ‖�‖ . All these together with the 

(1)L�(�) =

{
0 if |y − f (�)| ≤ �

|y − f (�)| − � otherwise

}

penalty imposed by the slack variables defines the following opti-
misation problem with soft margin, so that C is called the regu-
larisation constant (Li et al. 2008):

Next, the transformation to the dual problem with four 
families of Lagrange multipliers ( �+

i
, �−

i
, �+

i
, �−

i
 ) is carried 

out (Steinwart and Christmann 2008):

The obtained regressor is (Pal and Goel 2007)

The optimal value b∗ is obtained from the restric-
tions resulting from the application of the second 
Karush–Kuhn–Tucker (KKT) condition and the restrictions 
on the dual problem, so that (Zeng and Qiao 2013)

Note that to define the regression hyperplane, the exam-
ples with a non-zero loss function are considered, that is, 
those that are outside the tubular region. Viewed in terms of 
the parameters introduced above, for the support vectors it 
gathers from the Karush–Kuhn–Tucker (KKT) conditions 
that �+

i
⋅ �−

i
= 0 , so (Hansen and Wang 2005).

•	 for the examples that are outside the tubular zone, it 
will be fulfilled �+

i
⋅ �−

i
= 0 , if �−

i
= 0 and 𝜉+

i
> 0 , then 

�+
i
= C and �−

i
= 0 ; and if 𝜉−

i
> 0 and �+

i
= 0 , then 

�−
i
= C and �+

i
= 0;

•	 the support vectors that are just into the border of the sensitiv-
ity zone verify that if 0 < 𝛼+

i
< C , then �−

i
= 0 . In that case, 

it must be �+
i
= 0 and �−

i
= 0 . Similarly for the other case.

The examples which �+
i
= �−

i
= 0 (are not considered 

support vectors) are found within the tubular region.
When the examples cannot be fitted by a linear func-

tion (nonlinear problems), the use of kernel functions is 

(2)

min
w,b,�+,�−

1

2
⇑ � ⇑

2 + C

n�
i=1

�
�+
i
+ �−

i

�

subject to

⎧
⎪⎨⎪⎩

�⟨�, �i⟩ + b
�
− yi − � − �+

i
≤ 0 i = 1,… , n

yi −
�⟨�, �i⟩ + b

�
− � − �−

i
≤ 0 i = 1,… , n

�+
i
, �−

i
≥ 0 i = 1,… , n

⎫
⎪⎬⎪⎭

(3)

max

�
+ ,�−

n∑
i=1

�
�−
i
− �+

i

�
yi − �

n∑
i=1

�
�−
i
+ �+

i

�
−

1

2

n∑
i,j=1

�
�−
i
− �+

i

��
�−
j
− �+

j

�
⟨�i, �i⟩

subject to

⎧⎪⎨⎪⎩

n∑
i=1

�
�+
i
− �−

i

�
= 0 with

0 ≤ �+
i
, �−

i
≤ C i = 1,… , n

⎫⎪⎬⎪⎭

(4)f (�) =

n�
i=1

�
�−
i
− �+

i

�⟨�, �i⟩ + b∗

(5)
�

b∗ = yi − ⟨�∗, �i⟩ + 𝜀 if 0 < 𝛼+
i
< C

b∗ = yi − ⟨�∗, �i⟩ − 𝜀 if 0 < 𝛼−
i
< C

�
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mandatory. Through a suitable kernel, a Hilbert space is 
induced, also called a feature space, in this it is possible to 
adjust the transformed examples using a linear regressor, 
which has the following expression (García-Nieto et al. 2020):

Now the coefficients are obtained solving the dual prob-
lem that results from Eq. (3) with dot products substituted 
for kernel functions (Nikoo and Mahjouri 2013).

To solve regression problems using SVRs, a suitable ker-
nel and a C parameter must be chosen as well as the selection 
of a suitable � . The value of the parameter C expresses the 
balance between the flatness of the objective function and the 
decrease of the model complexity (Schölkopf et al. 2000). 
In the case of noisy regression problems, the parameter � 
should be selected to express the variance of the noise in the 
data, since in most practical cases, it is possible to obtain an 
approximate measure of the noise variance from the train-
ing data. The methodology employed to choose the optimal 
values of C and the rest of the kernel parameters is normally 
based on cross-validation techniques (Chen et al. 2022).

Several frequent functions used as kernels in the research 
publications are given by the following (Ziani et al. 2017):

•	 Polynomial kernel:

•	 Sigmoid kernel:

(6)f (�) =

n∑
i=1

(
�−
i
− �+

i

)
K
(
�, �i

)

(7)

max

�
+,�−

n∑
i=1

�
�−
i
− �+

i

�
yi − �

n∑
i=1

�
�−
i
+ �+

i

�
−

1

2

n∑
i,j=1

�
�−
i
− �+

i

��
�−
j
− �+

j

�
K
�
�i, �j

�

subject to

⎧⎪⎨⎪⎩

n∑
i=1

�
�+
i
− �−

i

�
= 0 with

0 ≤ �+
i
, �−

i
≤ C i = 1,… , n

⎫⎪⎬⎪⎭

(8)K
(
�i, �j

)
=
(
��i ⋅ �j + �

)b

(9)K
(
�i, �j

)
= tanh(��i ⋅ �j + a)

•	 RBF (radial basis function) kernel:

where a, b, and � are the kernel hyperparameters.
Hence, to find the solution of a complicated regression 

problem like this, the SVM technique with data that is not 
linearly separable is used here. To this end, it is mandatory 
to select a kernel type along with its optimal parameters so 
that these data become linearly separable in a higher dimen-
sional space (or feature space) (Ortiz-García et al. 2010).

Artificial neural network: multilayer perceptron (MLP)

Minsky and Papert showed in 1969 that the simple percep-
tron and ADALINE (adaptative linear element) cannot solve 
nonlinear problems (for example, XOR). The combination 
of several simple perceptrons could solve certain nonlin-
ear problems, but there was no automatic mechanism to 
adapt the weights of the hidden layer. Rumelhart and other 
authors, in 1986, presented the generalised delta rule (GDL) 
to adapt the weights by propagating the errors backwards, 
that is, propagating the errors towards the lower hidden lay-
ers (Aggarwal 2018). In this way, it is possible to work with 
multiple layers and with nonlinear activation functions. It 
can be shown that this multilayer perceptron (MLP) is a 
universal approximator. A multilayer perceptron can approx-
imate nonlinear relationships present between input and out-
put data. This ANN has become one of the most common 
architectures.

The MLP is an artificial neural network (ANN) made up 
of multiple layers, in such a way that it can find solutions to 
problems that are not linearly separable. This matter is the 
principal limitation of the simple perceptron. However, MLP 
can be fully or locally connected. To be fully connected, all 
the neurons of a layer must be connected with all the neu-
rons of the next layer, while this condition is not present in 
a locally connected MPL.

The layers of an MLP can be classified into three types 
(see Fig. 3) (Du and Swamy 2019).

(10)K
�
�i, �j

�
= e−�‖�i−�j‖

2

Fig. 2   An illustration of the �− 
insensitive tube in the event of 
regression
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•	 Input layer: the information of the independent variables 
enters through this layer and there is no process here.

•	 Output layer: the connection with the dependent variables 
is made here.

•	 Hidden layers are layers located between the input and 
output layers that pass and process the information from 
the input to the output layers.

Backpropagation (also known as error backpropagation or 
generalised delta rule) is the mathematical rule to train this 
type of neural networks. In this sense, MLP is also termed 
as a backpropagation artificial neural network (BP-ANN). 
Additionally, the main quality of this kind of networks is that 
the transfer functions of the processing elements (neurons) 
must be derivable.

Learning occurs in the multilayer perceptron (MLP) by 
changing the weights of the connections considering the dif-
ference between the expected and the obtained output val-
ues. This change is performed using backpropagation which 
is a generalisation of the lowest mean square (LMS) used 
on the linear perceptron. For data point n the error at node j 
is ej(n) = dj(n) − yi(n) , being d the observed value and y the 
value predicted by the multilayer perceptron. The total error 
to correct is (Aggarwal 2018)

Using the gradient descent method, the change of the 
weights is given by (Kuhn and Johnson 2018)

where

•	 � is the learning rate. It must be chosen carefully: a small 
value produces a slow convergence, while a big value can 

(11)�(n) =
1

2

∑
j

e2
j
(n)

(12)Δwji(n) = −�
��(n)

�vj(n)
yi(n)

hamper the convergence of the optimisation. Adequate 
values range from 0.2 to 0.8; and

•	 yi is the output obtained from the neuron in the previous 
layer.

•	 vj is the local induced field. It can be proved that for a 
given output node,

being �′ the derivative of the activation function. The varia-
tion of the weights for the nodes of the hidden layer is given 
by (Aggarwal 2018)

k is the subscript of the nodes from the output layer and 
these nodes affect the change of the weights of the hidden 
layer. It starts by changing the weights of the output layer 
taking into account the derivative of the activation function 
and then this process backpropagates modifying the weights 
of the previous layers.

Artificial bee colony (ABC) algorithm

This technique was first proposed by Karaboga (Karaboga 
2005; Simon 2013) and is relied on the foraging behaviour 
of honey bees. Therefore, it belongs to the type of algorithms 
with a behaviour based on the exchange of information 
between entities that form a group (Karaboga and Basturk 
2007; Karaboga and Akay 2009). It is a flexible algorithm 
able to solve real-world problems where an optimisation 
process is required. Although the initial applications of 
ABC were in numerical optimisation, current research top-
ics extend ABC to the optimisation of hybrid functions, 
engineering design problems, multi-objective optimisation 
problems, neural network training, and image processing 
problems, among others.

An ABC swarm is a set of bees able to collaborate and com-
municate among themselves to perform the task of collecting. 
ABC uses bees with three different roles: (a) employed; (b) 
onlooker; and (c) scout bees (Tereshko and Loengarov 2005; 
Karaboga et al. 2014). Employed bees are related to the source 
of food. They share information such as distance and direction 
from the hive with the onlooker bees (Tereshko and Loengarov 
2005). They select sources of food using the knowledge shared 
by employed bees. Onlooker bees choose high-quality food 
sources with more probability than low-quality food sources. 
The scouts search for new sources of food around the hive 
(Blum et al. 2008).

In ABC, the hive is made up of the same number of the 
onlooker and employed bees. The swarm’s food sources, 
or tentative solutions, depend on the number of onlooker 

(13)−
��(n)

�vj(n)
= ej(n) ⋅ �

�(
vj(n)

)

(14)−
��(n)

�vj(n)
= �

�(
vj(n)

)∑
k

−
��(n)

�vk(n)
wkj(n)

Fig. 3   Artificial neural network of multilayer perceptron type with n 
input neurons, one output neuron, and its hidden layer made up of m 
neurons
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and employed bees. Initially, ABC creates a random popula-
tion of SN food sources or solutions. Given the food source 
(Karaboga et al. 2014),

a Vi is generated by every employed bee in the proximity of 
its position following the equation (Tereshko and Loengarov 
2005; Karaboga et al. 2014)

where Xj is a solution (i ≠ j) that is selected randomly, k is an 
index randomly selected from the set {1, 2,… , n} that indicates 
the chosen dimension, and Φik is a random number in [−1, 1] . 
Once the Vi candidate solution is obtained, if the new value Vi 
improves that of its father Xi , then Xi is updated with Vi . Other-
wise, the value of Xi is kept unchanged. Once the search process 
ends, the employed bees give the position of their food sources 
to the onlooker bees through their dances. Then, the onlooker 
bee assesses the information on the collected nectar and picks 
up a food source, taking into account a probability that is related 
to the amount of nectar in it. The probabilistic selection consti-
tutes a mechanism of selection of roulette which is described 
in the following equation (Blum et al. 2008):

where the fitness for a food source i is fiti . Therefore, the better 
the food source i, the higher the probability it remains in the 
set of tentative solutions. If one of the food sources does not 
increase its fitness after some iterations, it is discarded. The 
scout bee is responsible for finding a replacement for the dis-
carded source, following the equation (Karaboga et al. 2014)

where ran(0, 1)  is a random number from [0, 1] relied 
on a uniform distribution being lb and ub the lower and 
upper boundaries that correspond to the i-th dimension, 
respectively.

M5 model tree

This machine learning technique has employed the follow-
ing idea (Kisi 2015; Kubat 2021): the parameter space is 
split up into subspaces and then a linear regression model is 
constructed in each of them. The consequential model would 
be considered a modular model, in which the linear models 
specialise in the specific subsets of the input space.

The mathematical technique termed algorithm M5 is 
employed to force a model tree (James et al. 2021; Kisi 2015). 

(15)Xi =
{
xi1, xi2,… , xin

}

(16)Vik = Xik + Φik ⋅

(
Xik − Xjk

)

(17)Pi =
fiti∑
j

fitj

(18)Xik = lbj + ran(0, 1) ×
(
ubj − lbj

)

Indeed, a group of T training data is considered here. Each 
instance is depicted by the values of a not variable collection 
of input attributes as well as a related goal output value. The 
principal goal is to build a method that connects an objective 
value of the training data with their input attribute values. 
The model excellence will usually be assessed if it foretells 
the objective values of the unknown cases accurately.

The method used to build tree-based machine learning 
models is divide-and-conquer (Rahimikhoob et al. 2013; 
Singh et al. 2016). The set T is linked to a leaf or several 
tests are selected to divide T into subsets. This splitting algo-
rithm is applied recursively. The division criterion used by 
the M5 model tree algorithm makes use of the value of the 
standard deviation of the class values arriving at a node as a 
measure of the error at that node and then the calculation of 
the expected reduction of this error to check every attribute 
in that node. Indeed, the standard deviation reduction (SDR) 
can be determined by using the following expression (Pal 
and Deswal 2009; Behnood et al. 2015):

where T indicates the number of examples arriving at the 
node, Ti signifies the subset of cases that have the ith out-
come of the potential collection, and sd is the standard devi-
ation (Rahimikhoob et al. 2013; Seghier et al. 2018).

After a thorough examination of all potential splits, the 
M5 model tree selects the element that fully improves the 
expected error reduction (Pal 2006). This M5 model tree 
splitting mechanism ends when the class values of all 
instances arriving at a node differ by only a very small toler-
ance (stopping criterion), or else when only a few instances 
remain. This persistent splitting process often gives place to 
much elaborated structures that must be pruned, i.e. substi-
tuting a subtree by a leaf. With time, it is necessary to carry 
out a smoothing process to counterbalance for the abrupt 
discontinuities that will inevitably happen among adjacent 
linear models at the leaves of the pruned tree, in particular 
for several models built from a lower number of training 
data. During this procedure, the adjacent linear equations 
are upgraded so that the foretold outputs for the contiguous 
input vectors related to the distinct equations are transformed 
very close in their expressions (Khorrami et al. 2020).

Goodness of fit

The main goodness-of-fit statistics for the regression prob-
lem posed in this paper is the coefficient of determination R2 
(Agresti and Kateri 2021). If the experimental and predicted 
values are ti and yi , respectively, the following expressions 
(Freedman et al. 2007) are considered:

(19)SDR = sd(T) −
∑ ||Ti||

|T| sd
(
Ti
)
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•	 SSreg =
n∑
i=1

�
yi − t

�2
 : the explained sum of squares.

•	 SStot =
n∑
i=1

�
ti − t

�2
 : this addition is directly related to the vari-

ance of the sample.
•	 SSerr =

n∑
i=1

�
ti − yi

�2
 : the residual sum of squares. t is the mean 

value of the experimental data given by

	   The coefficient of determination is then defined by the 
expression (Agresti and Kateri 2021)

The closer the R2 value to 1, the better the agreement 
between the observed and foretold values. Additionally, root 
mean square error (RMSE) and mean absolute error (MAE) 
(Agresti and Kateri 2021) are defined as

The lower the MAE and RMSE for the model, the closer 
the actual and predicted values.

Finally, if paired data 
{(

x1, yi
)
,… ,

(
xn, yn

)}
 are con-

sidered, the correlation coefficient r can be described by 
(Agresti and Kateri 2021)

(20)t =
1

n

n∑
i=1

ti

(21)R2
≡ 1 −

SSerr

SStot

(22)RMSE =

√√√√1

n

n∑
i=1

(
ti − yi

)2

(23)MAE =
1

n

n∑
i=1

||ti − yi
||

where

•	 n is the number of samples;
•	 xi, yi are the samples; and
•	 x =

1

n

∑n

i=1
xi is the sample average for variable x; and 

similarly, for y.

Results and discussion

Table 1 shows the independent variables of the ABC/SVM, 
MLP, and M5 models. The dependent variable is the biomass 
HGP obtained from diverse types of biomass raw samples.

The dataset is divided into two sets: 80% is used in the 
training set and the rest of the data, 20%, is for the testing 
set. In this sense, the training collection is employed to con-
struct the SVR model. For this purpose, the parameters of 
the SVR model are calibrated employing the ABC optimiser 
with a fivefold cross-validation process (Chen et al. 2022). 
When the optimum parameters have been found, the model 
is built with the whole training dataset. Then, predictions are 
obtained with this model for the elements of the testing set. 
These predictions are compared with the actual values and 
the goodness of fit of the model evaluated.

In addition, the SVM hyperparameters are C, termed 
regularisation constant; ε, which defines the width of the 
insensitive tube and finally, the parameters that are specific 
to the kernel like a, b, and σ. A common way of tuning 
the hyperparameters is grid search that, as its name indi-
cates, creates a grid of parameters, tries each combination of 

(24)
r =

∑n

i=1

�
xi − x

�
⋅

�
yi − y

�
�

∑n

i=1

�
xi − x

�2
⋅

�∑n

i=1

�
yi − y

�2

Table 1   The independent 
variables and their means and 
standard deviations

wt% means weight percentage

Input variables Name of the 
variable

Mean Standard deviation

Ash (wt%) Ash 6.3885 8.5063
Fixed carbon (wt%) FC 13.719 5.9742
Volatile matter (wt%) VM 74.574 13.125
Carbon (wt%) C 47.413 8.3553
Hydrogen (wt%) H 5.8859 1.0305
Nitrogen (wt%) N 1.3104 1.0951
Oxygen (wt%) O 38.465 10.488
Highest treatment temperature (ºC) HTT 557.55 143.227
Heating rate (ºC/min) HR 18.774 9.4570
Particle size (mm) PS 0.9716 1.5244
Inert gas flow rate (mL/min) FR 130.660 96.651
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parameters in the grid, and obtains its goodness of fit. This 
method is a simple but very time and resource-consuming 
algorithm and, thus, not very efficient.

In this paper, a more economical method, the ABC opti-
miser, has been used to obtain the optimal hyperparameters 
for the SVM model. The employed goodness of fit in the 
optimisation process was R2. The flow chart of this proce-
dure is shown in Fig. 4.

In a way, the optimum coefficient of determination (R2) 
was also used in the cross-validation methodology (Agresti 
and Kateri 2021). Fivefold cross-validation allows the selec-
tion of the optimal hyperparameters for the ABC/SVM 
model (Kuhn and Johnson 2018). The data is split into five 
subsets of similar size in a random way and a set of param-
eters chosen. Then, a model is constructed with four subsets 
and checked with the remaining one and a goodness of fit is 
obtained (Chen et al. 2022). This procedure is repeated five 
times, employing a distinct subset as testing set each time. 
The average of the goodness of fit is the final value for the 
set of parameters that are being used. The ABC algorithm 
guides the selection of these sets of parameters to try accord-
ing to their fitness until it decides on a particular group of 
optimal hyperparameters (Kuhn and Johnson 2018; Chen 
et al. 2022).

The ABC/SVM models were built using LIBSVM (Chang 
and Lin 2011) and ABC (Karaboga et al. 2014) for MAT-
LAB. The initial intervals of the hyperparameters for the 
distinct kernels are indicated in Table 2.

The obtained hyperparameters of the SVM calibrated 
with the metaheuristic ABC optimiser are shown in Table 3.

For comparison purposes, the MLP neural network and 
M5 tree approaches have also been used in this paper. MLP 
accuracy also depends on its parameters (Du and Swamy 
2019; Kubat 2021):

•	 Learning rate (LR): This parameter acts in the optimisa-
tion of the weights. A small value ensures the conver-
gence, but it can be quite slow. Thus, a balance between 
convergence and speed must be found.

•	 Momentum (m): It is a coefficient that appears in a term 
used in the update of the weights.

•	 Number of hidden layer neurons (h): A golden rule is 
that the hidden layer number of neurons is approxi-
mately 2/3 the number of neurons in the input layer size.

Here, the cross-validation method (Agresti and Kateri 
2021) with fivefold was employed to determine the coeffi-
cient of determination (R2). The MLP with grid search from 
WEKA (Hall et al. 2009; Frank et al. 2016) was used. The 

Fig. 4   Flow chart for obtaining 
the ABC/SVM model

Table 2   Initial intervals of the hyperparameters for the different ker-
nels of the ABC/SVM-relied model fitted in this investigation

SVM hyperparameters Lower limit Upper limit

C 10–6 104

ε 10–6 104

σ 10–6 104

a 0 101

b 0 5
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Next, Fig. 5 illustrates the first- and second-order terms 
for the SVM model using the linear kernel. Figure 5 (a) 
shows the biomass HGP (Y-axis) versus HTT (X-axis), 
while keeping the ten remaining independent variables 
constant. In fact, from HTT 300 to 900  °C, H2 (%wt) 
is strictly increasing with a maximum of about 27%wt. 
Similarly, Figs.  5 (b) and (c) illustrate the biomass 
HGP (Y-axis) versus PS (X-axis) and versus C (X-axis), 
respectively (also with remaining input variables constant). 
Figure 5 (b) shows that from PS 1 to 5 mm, H2 (%wt) 
decreases gradually with a minimum of about 1%wt 
at PS 5 mm. Thereafter, from PS 5 to 8 mm, H2 (%wt) 
increases gradually with a maximum of about 8%wt. 
Figure 5 (c) indicates that from C (%wt) 20 to 60, H2 (%wt) 
roses gradually and peaked at about 20 at C (%wt) 60. 
Analogously, Fig. 5 (d) shows the biomass HGP as the 
dependent variable of the HTT and PS, while the other 
variables remain constant. Analogously, Figs. 5 (e) and (f) 
illustrate the biomass HGP as a function of the HTT and 

Table 3   Hyperparameters for 
the SVM approach fitted in this 
study using the ABC optimiser

Method Values of optimal hyperparameters

SVM linear kernel Regularisation factor C = 1.88 × 100, ε = 7.30 × 10–2

SVM polynomial kernel Regularisation factor C = 2.65 × 102, ε = 1.00 × 10–6, σ = 4.15 × 10–1, 
a = 0.5738, b = 4.37

SVM sigmoid kernel Regularisation factor C = 1.00 × 104, ε = 9.23 × 10–2, σ = 1.20 × 10–3, a = 0
SVM RBF kernel Regularisation factor C = 4.23 × 100, ε = 1.31 × 10–6, σ = 2.42 × 100

Table 4   Intervals for the MLP parameters in the grid search method

MLP hyperparameters Lower limit Upper limit

Learning rate 0 1
Momentum factor 0 1
Number of hidden layers 1 30

Table 5   Optimised parameters in the MLP model

Hyperparameters Optimal values

Learning rate (LR) 0.1
Momentum factor (m) 0.7
Number of hidden layers (h) 5

Fig. 5   Terms of the first and second order from the ABC/SVM model for the biomass HGP: a HTT first-order term; b PS term of first order; c C 
term of first order; d HTT and PS term of the second order; e HTT and C term of second order; and f PS and C term of second order

search space for the MLP parameters is shown in Table 4. 
The M5 tree model was also obtained with WEKA software.

The found optimal MLP parameters are indicated in 
Table 5.
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C, and PS and C, respectively. Figures 5 (d–f) show the 
variation of H2 (%wt) as a function of each two main input 
variables, keeping the remaining input variables constant. 
Therefore, these charts are surfaces in three dimensions. 
The interpretation is subject to the combination of the one-
dimensional variation of the two input variables.

Similarly, Table 6 illustrates the correlation and determi-
nation coefficients for the ABC/SVM, SVM without param-
eter optimisation, MLP, and M5 tree approaches.

It is important to consider that 80% of the dataset was 
employed in the training process, while the testing is done 
with the remaining 20%. This methodology was built 
with the training dataset and then used to predict the HGP 
values of the testing dataset. SVM with the polynomial 
kernel obtains the best results in the predictions of the 
biomass HGP with the test set, given that the coefficient 
of determination R2 of 0.9464 and a correlation coefficient 
r of 0.9751 are the highest. It took 0.1249 s to obtain the 
final HGP model with an iMac with a CPU Intel Core i5 @ 
3.2 GHz with 8 GB RAM and four cores. Also, the relative 
importance of the input variables in this model is shown 
in Table 7.

Therefore, the most important independent variable in 
the foretelling of HGP in the ABC/SVM model is HTT, fol-
lowed by FC, N, FR, and O and in minor contribution VM, 
HR, H, A, C, and PS.

Several studies have investigated the mechanisms 
of fuel production through pyrolysis (Cao et al. 2020). 
Pyrolytic gas is a result of the cracking and decomposition 
of large molecules present in the raw material during the 
initial stages of pyrolysis (e.g. CO2, H2). Hydrogen gas is 

generated by the decomposition and reforming of aromatic 
compounds and C–H groups (Hu and Gholizadeh 2019). 
Moreover, Zanzi et al. (2002) observed that increasing the 
temperature and reducing the particle size can accelerate 
the heating rate, leading to a lower char yield. This situation 
can also promote the cracking of hydrocarbons, resulting in 
a higher hydrogen content. HTT enhances the production 
of volatile matter through secondary reactions, leading to 
the formation of pyrolytic gas, such as decarboxylation, 
decarbonylation, dehydrogenation, deoxygenation, and 
cracking (He et  al. 2010). These findings suggest that 
the parameters based on the composition of the biomass 
(ultimate and proximate analysis) play a critical role 
in the mathematical model due to the kinetics of the 
pyrolysis process. Additionally, the analysed FR and PS 
and the amount of non-inert gas can influence the final 
compositions and HGP, depending on the chemical 
equilibrium (Hu and Gholizadeh 2019).

In this investigation, the HGP have been foretold from 
the independent variables from raw biomass as shown 
in Fig. 6, utilising the comparison of the observed and 
foretold HGP examples using the MLP (Fig. 6 (a)), M5 
tree (Fig. 6 (b)), ABC/SVM with RBF kernel (Fig. 6 (c)), 
and ABC/SVM with the polynomial kernel (Fig. 6 (d)) 
models. The best model is obtained by this fourth model.

To conclude, these techniques can be used with different 
types of biomass in similar or different bioenergy energy 
system conversion methods satisfactorily. However, it must 
be kept in mind the kinds of biomass and experimental 
environment. Thus, this hybrid ABC/SVM model is an 
excellent method for the foretelling of HGP. In this sense, 
one possible direction for future work is to apply this ABC/
SVM technique to the production of different combustible 
gases from the pyrolysis process (e.g. methane and carbon 
monoxide).

Table 6   Coefficient of determination (R2) and correlation coefficient 
(r), mean absolute error (MAE), and root mean square error (RMSE) 
for ABC/SVM, SVM, MLP, and M5 tree approach for the test dataset

Note: The boldfaced entries signify the best fitted model

Model RMSE MAE R2 r

ABC/SVM-polynomial 0.0660 0.0559 0.9464 0.9751
SVM-polynomial 0.2010 1.1753 0.4979 0.8893
ABC/SVM-RBF 0.0910 0.0756 0.8971 0.9476
SVM-RBF 0.1045 0.0793 0.8643 0.9325
ABC/SVM-linear 0.1162 0.0905 0.8320 0.9278
SVM-linear 0.1514 0.1301 0.7153 0.9103
ABC/SVM-sigmoid 0.1094 0.0806 0.8527 0.9324
SVM-sigmoid 0.1175 0.0913 0.8284 0.9197
M5 model tree 0.1014 0.0793 0.8722 0.9385
MLP 0.1161 0.8853 0.8325 0.9444

Table 7   Relative relevance 
ranking for the independent 
variables implicated in 
the ABC/SVM-relied 
approximation for the hydrogen 
gas foretelling as stated in the 
associated weights in absolute 
decreasing order

Input variable Weight

HTT 0.9638
PS – 0.3215
C – 0.3127
Ash – 0.2521
FC 0.2475
N 0.1580
FR 0.1294
O 0.1109
H – 0.0704
VM 0.0673
HR 0.0052
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Fig. 6   Observed and predicted 
values of H2 production for the 
test set using a MLP model 
(R2 = 0.8325); b M5 tree model 
(R2 = 0.8722); c ABC/SVM 
model with the RBF kernel 
(R2 = 0.8971); and ABC/SVM 
model with the polynomial 
kernel (R.2 = 0.9464)
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Conclusion

Different machine learning methods were used to solve 
this problem and the novel hybrid ABC/SVM approxima-
tion employed proved to be an adequate tool to estimate 
H2 production (HGP). The best ABC/SVM approach was 
obtained with SVR with the polynomial kernel, which got 
a coefficient of determination of 0.9464 for the testing set. 
The relative relevance of the independent variables in the 
prediction of HGP was determined: the variable highest 
treatment temperature (HTT) proved to be the most direct 
outstanding in the estimation of HGP. Finally, the HGP 
values estimated with this approximation concur with the 
dataset actual values.
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