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Abstract. In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear 

deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic 

foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear 

deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a 

combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered 

for the elastic foundation. The material properties vary constantly across the FG plate thickness using different 

distributions as power-law, exponential and Mori–Tanaka model.  By using the virtual works principle and Navier's 

technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The 

effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, 

axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those 

reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is 

found between the predicted results and the available solutions of other higher order theories. Future mechanical 

analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks. 

 

 

Keywords: Bending; Stress; Functionally graded plate; Shear deformation theory; Stretching effect, 

Winkler-Pasternak parameters.  

 

1. Introduction 
Functionally graded materials (FGMs) are a brand-new class of inhomogeneous composite 

materials that are created by combining metals and ceramics. These materials have incredible 

effectiveness since the mechanical properties of FGMs vary constantly along the thickness direction 

(Barretta et al. 2016, Rachid et al. 2022). These two material characteristics vary continuously and 

smoothly in the desired directions. FGM can thus not only combine the best qualities of ceramic and 

metal but also reduce residual and thermal stresses, both of which are quite frequent in traditional 

multi-layered composite systems  (Mengzhen et al. 2021).  

Owing to this characteristic, FGM have been investigated in numerous engineering applications 

including the aerospace, automotive, aviation and defence sectors, as well as more recently the 

electronic and biological applications (Nguyen 2015, Abdelhak 2016, Aldousari  2017). Due to the 

widespread use of FGM in engineering domains recently, a number of theories have been established 
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to analyze the bending, buckling, and dynamic behaviors of diverse FG structures (Hebbar et al. 2020, 

Arefi and Allam 2015, Abdulrazzaq et al. 2020, Zaoui et al. 2021, 2022a). In order to study the free 

vibration of FG rectangular plates resting on elastic foundations, Mantari et al. (2014) introduced a 

new HSDT. Xiang and Kang (2013) carried out the bending analysis of functionally graded plates 

using an nth-order shear deformation theory. Based on an improved third-order shear deformation 

theory, Le et al. (2020) developed finite element formulations for analysing the vibration 

characteristics of FGSW plates partially supported by Pasternak foundation. For studying the static 

response of functionally graded plates resting on a Winkler-Pasternak foundation under a transverse 

uniform load or a sinusoidal distributed force, Benyoucef et al. (2010) introduced a novel hyperbolic 

shear deformation theory of plates. Using fewer unknowns, Thai and Kim (2013) used quasi-3D 

sinusoidal shear deformation theory to investigate the bending behaviour of FGM plates. The impact 

of porosity was studied utilizing the four variable plate theory for P- FGM plates with sinusoidal shape  

function. Based on Reddy's third-order shear deformation theory, Hosseini-Hashemi et al. (2011) 

introduced a novel exact closed-form approach to solve free vibration analysis of FG rectangular thick 

plates. Carrera et al. (2011) investigated the effects of thickness stretching in functionally graded 

plates and shells. Neves et al. suggested using quasi-3D sinusoidal and hyperbolic shear deformation 

theory to investigate the static and free vibration responses of FG plates (2012a, 2012b). Thai et al. 

(2013) investigated the bending, buckling and free vibration of FG thick plates resting on elastic 

foundation using a simple refined higher-order shear deformation theory with two variables. Jha et al. 

(2013) examined the free vibration behaviour of FG elastic, rectangular and simply supported plates 

using higher order shear/shear-normal deformation theories. Ouinas and Achour (2013) used the finite 

element approach to examine the buckling behavior of a square plate made of composite laminated 

material with an elliptical notch. Mantari and Soares (2015) presented the static response of advanced 

composite plates and shells utilizing quasi-3D non-polynomial sinusoidal higher-order shear 

deformation theories. Zhang et al. (2014) established a 3D elasticity solution for the bending of thick 

FG plates utilizing a hybrid semi-analytical approach—the state-space based differential quadrature 

method. Al-Khateeb and Zenkour (2014) used a revised shear and normal deformations plate theory to 

examine the effects of temperature and moisture on the bending behaviour of FG plates resting on 

elastic foundations. Mantari and Soares (2013) used a novel trigonometric higher-order theory that 

considers the stretching effect to develop an analytical solution for the static analysis of functionally 

graded plates. Lee et al. (2015) provided an improved higher order shear and normal deformation 

theory for E, P, and S-FGM plates on Pasternak elastic foundation. Using a new hyperbolic shape 

function, Akavci and Tanrikulu (2015) provided 2D and quasi-3D shear deformation theories for 

bending and free vibration analysis of single-layer FG plates. For the bending and free vibration 

analysis of functionally graded plates resting on elastic foundation, Mantari and Granados (2016) 

developed an original first shear deformation theory. To examine the static behavior of functionally 

graded single and sandwich beams with both shear deformation and stretching thickness effects, 

Yarasca et al. (2016) developed a Hermite-Lagrangian finite element formulation. Meftah et al. (2017) 

have conducted a free vibration analysis of FG plates on elastic foundations using a non-polynomial 

four refined shear deformation theory. To investigate the free vibration of functionally graded plates, 

Zaoui et al. (2017a) and Guerroudj et al. (2017) introduced hybrid quasi-3D shear deformation 

theories. Amar et al. (2018) developed a new, straightforward shear deformation theory with three 

unknowns for the static analysis of FG plates on elastic foundations. The bending, free vibration, and 

buckling behaviour of FG plates were investigated by Vu et al. (2019) utilizing a mesh-free technique 

and the inverse sin shear deformation plate theory. Levy type porous FGM plates' free vibration and 

bending analysis were examined by Demirhan and Taskin (2019). 

For the purpose of assessing the bending and free vibrations of FGMs plates with simply supported 

edges, a novel quasi-3D trigonometric HSDTs with a new displacement field with indeterminate 

integral variables had been devised (Sidhoum et al. 2018, Zaoui et al. 2020, 2021, 2022b). Mahmoudi 

et al. (2018) examined the effect of micromechanical models on the free vibration of rectangular FGM 

plate resting on elastic foundation. Younsi et al. (2018) developed a non-polynomial 2D and quasi-3D 

theory to investigate static and dynamic responses of FG plates. Belkhodja et al. (2019) investigated 

the flexion, free vibrations and buckling of FGMs plate with simply supported edges using a new 

exponential-trigonometric shear function. For FGM plates with the stretching effect present, Bekhodja 

et al. (2022) introduced a novel quasi-3D and 2D hybrid (polynomial-hyperbolic-exponential) HSDT 



with five unknowns of simply supported square or rectangular plates to study bending, free vibration, 

and buckling. 

The main purpose of the present work is to implement a new 2D and quasi-3D shear strain theories 

to study the bending behaviour of FG plates simply supported and resting on elastic foundations of the 

Winkler-Pasternak type. The most intriguing aspect of this theory is that, in contrast to other theories 

like Neves et al. (2012a, 2012b), It has a new displacement field with fewer unknowns. In the 

proposed field of displacements, transverse shear and thickness stretching effects are taken into 

account in quasi-3D theory but ignored in the 2D model. Furthermore, in order to satisfy shear stress 

free boundary conditions without incorporating a shear correction factor, these theories take into 

account a parabolic variation of transverse shear stresses across the thickness. The fundamental 

governing equations for FG plates subjected to sinusoidal and uniformly distributed loads are 

established using the virtual work principle. Navier's method is used to generate closed-form 

deflection solutions for simply supported plates and the obtained results are then compared to those 

found in the literature to show the suggested theories' precision and clarity. The bending response of 

FG plates has been investigated in relation to the impacts of power-law index, slenderness ratio, side-

to-thickness ratio, normal strain, Winkler-Pasternak parameters, various rules of mixture and boundary 

supports. 

 

2. Analytical formulation 

2.1. Material properties 

In this study, a functionally graded rectangular plate with uniform thickness ( ),h length ( ),a  width 

( ),b is considered as shown in Fig. 1. The FGM material properties are supposed to change constantly 

according the plate thickness using the following rules of mixture 

2.1.1 The power-law (P-FGM) variation 
The volume fraction of the P-FGM plate changes conti-nuously across the thickness of the plate 

according to the power law variation (Zaoui et al., 2017b) as given in Eq. (1) 
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2.1.2 The exponential (E-FGM) variation 
The E-FGM plate volume fraction vary continuously along the thickness direction of the plate 

according to the exponential distribution (Meradjah et al., 2018) as shown below 
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2.1.3  The Mori Tanaka Homogenization Model 
For Mori–Tanaka scheme (Mori and Tanaka, 1973; Akavci and Tanrikulu, 2015), the volume 

fraction of the FGM plate is given in the following equation 
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where P  represents the effective material property like Young's modulus ( ).E  The properties of the 

upper and bottom faces of the plate are designated by the letters 
mP  and 

cP , respectively. k  is the 

power law index. Poisson's ratio ( )  is assumed constant for all gradation models because its 

impact on the response of FG plates is relatively minimal. 

2.2.Kinematics 
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where 0u , 0v , bw , sw  and z  are the five unknown displacement functions of mid plate surface. The 

form function )(zf  depicts how the transverse shear strains vary along the thickness. Note that 

0)( zg  
for 2D problem.  

The shape function utilized herein, is presented by Zaoui et al. (2019, 2022b) as 
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and  
dz

df
zg 

                                                          
(5b) 

The general strain – displacement relations can be defined from Eqs. (4) by the application of the 

linear, small-strain elasticity theory as follows 
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where 

Based on higher order shear deformation theory and considering the stretching effect, a novel 

displacement field of plates is developed as expressed below 
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It can be seen from Eq. (6) that the transverse shear strains ( xz , yz ) are equal to zero at the top 

 2/hz   and bottom  2/hz   surfaces of the plate. A shear correction coefficient is, hence, not 

required. 

According to the three-dimensional (3D) elasticity, the stress-strain relationships for FG plates can 

be expressed as 
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The ijQ  expressions in terms of engineering constants are depends on the normal strain z .  

 In the case of quasi-3D HSDT’s, 0z  then ijQ  are 
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 If the 2D HSDT is used, 0z  then ijQ  are 
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For FG plates, the constitutive relations (8) can be used to precisely calculate the in-plane normal 

and shear stresses ( x ,
y and 

xy ). However, the boundary conditions at the upper and lower plate 

surfaces may notbe respected if the transverse normal and shear stresses ( z , 
yz  and xz )  derived 

from these constitutive relations. Hence, these stresses are calculated by integrating the 3D elasticity 

equilibrium equations with respect to the thickness coordinate as 
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where C's (i=1, 4) are constants that are specified by the upper and lower boundary conditions of the 

plate, which are expressed as follows. 
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2.3. Equilibrium equations and stress components 

By using the concept of virtual works, it is possible to construct the equilibrium equations of 

functionally graded plate subjected to mechanical applied loads, which can be written analytically as 
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Where A  is the top surface,  q  is the external load applied to the plate and ef  is the density of 

foundation reaction effort. For the Pasternak foundation model;  
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where wK is the transverse elastic coefficient of the foundation and ,sx syK K are coefficients of the 

shear layer foundation stiffness. If the foundation is homogeneous and isotropic, this means that 

sx sy sK K K  . The Winkler foundation replaces the Pasternak foundation if the stiffness of the 

shear layer foundation is ignored. 

By replacing Eqs. (6) and (8) in Eq. (13) and integrating over the thickness of the plate, Eq. (13) 

can be expressed as 
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The stress resultants ,N M  and Q  are given by 
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By substituting Eqs. (7) into Eq. (13), integrating the displacement terms in parts and putting the 

coefficients 0 u , 0 v ,  bw , sw  and z   to zero, independently, the governing equations of 

equilibrium can be constructed  as follows  
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The stresses and moment resultants given in Eqs. (15) can be formulated in terms of generalized 

displacements ( 0 u , 0 v ,  bw , sw  and z  ) by substituting Eq. (5) into Eq. (16) and integrating 

through the thickness of the plate, as 
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where the stiffness components and inertias are given as 
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3. Navier-type solutions for simply supported FG plates 
The Navier’s procedure (Shao and Ma, 2007; Grover et al., 2013), based on double Fourier series, is 

employed herein to define the closed-form solution of the partial differential equations (Eqs.(18)) for 

which the displacement variables satisfying the boundary conditions can be given as 
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(20) 

 

where ( mnU , mnV , bmnW , smnW , mn ) are unknown functions to be determined.   and  are expressed as 

 

/m a   and /n b                                                     (21) 

 

The transverse distributed load ),( yxq  is also expanded in a double-Fourier series as 
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The coefficients mnq  are given below for some general loadings 

 For uniformly distributed load 
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 For sinusoidal distributed load 

 

0qqmn                                                               
(24) 

in which 0q  is the intensity of the load. 

In order to obtain closed-form solutions (Eq. (25)) for the static issue of the FG plate, Eqs. (18), 

(20) and (22) must be substituted into Eq. (17). 
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4.Results and Discussion 
 

4.1. Bending study of FG plates with simple supports 

The accuracy of the current theory in analyzing thebending behavior of simply supported FG plates is 

examined in this section through the presentation of several numerical examples and comparison with 

the findings of various 2D, 3D, and quasi-3D shear deformation theories. Table 1 lists the mechanical 

properties of the metal and ceramic materials employed in this study. Both homogeneous isotropic 

plates and FGPs are investigated in the computations, and parameters study were also establshed. The 

numerical findings are presented in graphical and tabular forms by using the following non-

dimensional displacements and stresses 
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4.1.1. Functionally graded plates (P-FGM) 

(27) 



In this section, non-dimensional displacements and stresses of an 
32/ OAlAl FG square plate under 

uniformly and sinusoidal distributed loads for various values of the power-law index are calculated 

and presented in Tables 2 and 3. 

In Table 2, the computed results of non-dimensional deflection and stress components of 

moderately thick square FG plate under uniform load are compared with those given by quasi-3D and 

2D shear deformation theories by Akavci and Tanrikulu (2015) and Younsi et al. (2018). From this 

table, it can be observed that the results of the proposed 2D theory agree well with those of Akavci and 

Tanrikulu (2015) and Younsi et al. (2018) in all cases. Besides, by comparing the obtained values by 

the present quasi-3D theory with those given by the other quasi-3D theories, an excellent correlation 

can be remarked. 

Table 3presents the non-dimensional normal stress  x  and transverse displacement  w  of 

square thin and thick plates subjected to sinusoidal load forthree different power law index  k . The 

predicted results are compared with those generated by Carerra et al. (2011) based on a fourth-order 

variations of both in-plane and transverse displacements across the thickness, quasi-3D sinusoidal and 

hyperbolic shear deformation theories of Neves et al. (2012a, 2012b), quasi-3D shear deformation 

theories of Hebali (2014), 2D and quasi-3D hyperbolic shear deformation theories of Akavci and 

Tanrikulu (2015) and Younsi et al. (2018). A good agreement between the results is found for both 

thin and thick plates. Also, the present model provides a good prediction of both displacement and 

stress even in thick FG plates where the stretching effects are more pronounced. 

Moreover, it should be noticed that the number of unknown variables used in the present 

formulation is just four in the 2D theory and five in the quasi-3D model, while nine unknown 

functions were used in hyperbolic shear deformation theories of Neves et al. (2012a, 2012b). It can be 

concluded that the present theory is not only accurate but also comparatively simple in predicting the 

bending response of simply supported FGM plates. 

The stresses and displacements variations through the thickness of Al/Al2O3 FG square plate 

subjected to sinusoidal load are plotted in Fig. 2. The results are shown as compared with the quasi-3D 

shear deformation theory of Akavci and Tanrikulu (2015) for different values of power-law index  k . 

From this figure, it can be observedan excellent agreement between the obtained results and those 

computed by Akavci and Tanrikulu (2015). It is important to stress out that, the in-plane stresses  x  

and  xy  exhibit linear variation through the thickness of homogeneous plate while it is parabolic for 

FG plates. This figure also shows that, the deflection  w  and in-plane stresses  x  and  y  

increase and the shear stresses  xz  and  xy  diminish with the increasing value of material index  k

. 

Fig. 3 presents a 3D interaction diagram of the power-law index  k , side-to-thickness ratio  ha /  

and center deflection  w  using the proposed 2D and quasi-3D theories. It can be seen from this figure 

that the center deflection increases with the increase of the power-law index and decreases with the 

increasing of the thickness ratio. It is due to the fact that a higher value of  k  corresponds to lower 

value of volume fraction of the ceramic phase, and thus leads to the decrease of the value of the 

elasticity modulus which makes the plate softer. It also can be shown that the center deflections 

computed from the present 2D theory which neglect the thickness stretching effect are higher than 

those calculated from quasi-3D theory. 

 

4.1.2. Exponentially graded plates (E-FGM) 
Computations in this section are carried out for a simply supported E-FGM plate. The material 

properties of the E-FGM plate are defined by the exponential function given in Eq. (2). The non-

dimensional stress and displacements of the E-FGM plate are calculated and compared with the results 

of different HSDTs for different loadings. 

The center deflections  ,w  in-plane and transverse shear stresses  xzx  ,  of Al/Al2O3 plates 

under sinusoidal loads are calculated for different values of aspect ratio  ab / , thickness ratio  ha /  

and exponent values  k  in Tables 4-6. The central deflections of the very thick E-FGM plates are 



analyzed in Table 4. The obtained predictions are compared with the quasi-3D sinusoidal and exact 3D 

elasticity theories of Zenkour (2007), 2D and quasi-3D trigonometric models of Mantari and Soares 

(2013) and the quasi-3D and 2D shear deformation theories by Akavci and Tanrikulu (2015), Younsi 

et al. (2018). Since the proposed and other quasi-3D models include the thickness-stretching influence, 

they lead to results close to each other. Whereas, 2D HSDTs overestimate the deflections due to 

omitting the thickness stretching influence. In Tables 5 and 6, the computed non-dimensional stresses 

are provided as compared with those given by Younsi et al. (2018), Akavci and Tanrikulu (2015) 

based on quasi-3D and 2D hyperbolic theories and Mantari and Soares (2013) using 2D and quasi-3D 

trigonometric theories. It can be seen from the table that an excellent agreementis achieved between 

the results of present theory and those of other theories. Tables 4–6 demonstrate also that deflection 

 w  and transverse shear stress  xz  diminish and in plane stress  x  increases with the increase of 

the exponent  k . 

In Fig. 4, the variation of non-dimensional displacements and stresses according to the thickness of 

an E-FGM plate subjected to sinusoidal loading for different 
10 / EE  ratios are displayed using the 

present theory with including the thickness stretching effect and compared with the quasi-3D theory of 

Younsi et al. (2018). A very good accuracy between the solutions is observed. It can be seen also from 

these results that the non-dimensional displacements increase with the increasing of 
10 / EE . In 

addition, it can be deduced that 
10 / EE  ratios affect considerably the non-dimensional stresses. 

4.1.3. Comparative study 

In this party, parametric studies have been presented to evaluate the effect of power law index  k  

and side-to-thickness ratio  ha /  on the bending of functionally graded plates using three rules of 

mixture (P-FGM, E-FGM, Mori-Tanaka homogenization model). Fig. 5 illustrates the variation of 

non-dimensional deflection  w with respect to exponent index  k  and slenderness ratio  ha /  for P-

FGM, E-FGM, Mori-Tanaka homogenization scheme. It can be noted from this figure, that deflections 

of plates using E-FGM decrease and by using P-FGM and Mori-Tanaka homogenization model 

increase when the exponent index increases. Such behavior is due to the fact that the increase of 

power-law index will increase the stiffness of the EGM plate, and thus, lead to a reduction of 

transverse displacement. 

Fig. 6 is devoted to present the influence of side-to-thickness ratio on non-dimensional deflection 

of simply supported plate with different models. As can be observed from this figure, increasing of 

side-to-thickness ratio causes reducing of the magnitude of deflection, it means that the effect of shear 

deformation is significant when plates are thick  5/ ha  and negligible for thin plates. Further, it is 

apparent that plates made with exponential function have the lowest deflection than the other 

functions. 

Another comparative study for evaluating the dimensionless center deflections of Mori-Tanaka 

homogenization scheme, P-FGM and E-FGM plates subjected to sinusoidal load is carried out. From 

Fig. 7, it is showed that the deflection at the center of plates with Mori-Tanaka homogenization model 

is larger than those of P-FGM and E-FGM plates. The E-FGM plate which has the smallest deflection 

is stiffer than the other FGM plates. 

4.2. Analysis of FG plates on elastic foundation 

This section aims to demonstrate the accuracy of the proposed new models in predicting the static 

response of FG plates resting on elastic foundation.The following relations of non-dimensional 

displacements, stresses and foundation parameters in the bending problem are used 

,
2

,
2

,0
100

4

0









 hb

u
aq

D
u c ,

2
,0,

2

100
4

0









 hb

v
aq

D
v c

 

,
2

,
2

100
4

0









 ba

w
aq

D
w c











2
,

2
,

22

0

2 hba

aq

h
xx 

 



,
2

,
2

,
22

0

2











hba

aq

h
yy  










2
,0,0

2

0

2 h

aq

h
xyxy 

 

,
3

0

4

0
hE

aK
K w ,

3

0

2

0
hE

aK
J s


 GPaE 10   

,
4

c

w
w

D

aK
K  ,

2

c

s
s

D

aK
K 

)1(12 2

3




hE
D c

c  

 

In the first example, isotropic square plates on elastic foundation are analyzed to verify the 

accuracy of the proposed theories. The dimensionless deflection of homogeneous square plate 

subjected to uniform loads is presented in Table 8 for two values of the side-to-thickness ratio  ha /

and different values of the foundation parameters  sw KK , . The obtained results are compared with 

those given by Thai and Choi (2014a) using differential quadrature method and those of Al Khateeb 

and Zenkour (2014) based on refined shear deformation plate theory. This table proves that the 

computed results are in excellent agreement with those reported by the other theories of Thai and Choi 

(2014a), Al Khateeb and Zenkour (2014) for all values of side-to-thickness ratio and foundation 

parameters.  

The next example is implemented for Al/Al2O3 moderately thick rectangular plates on elastic 

foundation. Table 9 presents a comparison of non-dimensional displacements and stresses of FG plate 

for various exponent value  k  and foundation parameters  00 , JK
 
derived from the present theory, 

the sinusoidal shear deformation theory of Zenkour (2009), the 2D Zeroth-order shear deformation 

theory of Thai and Choi (2014a) and the first shear deformation theory of Mantari and Granados 

(2016). It is explicit that the present results are again found more close in all cases. It should be noted 

thatthe present theory is not only efficient but more accurate in predicting the bending behavior of FG 

plates resting on elastic foundation. The table exhibits that, axial displacements, deflection and stresses 

decreases with the increase of foundation parameters. In addition, it is apparent that the computed 

values from the present quasi-3D theory which takes into account the thickness stretching effect are 

smaller than those calculated from 2D theory. 

To check the effect of Winkler’s and Pasternak’s foundation parameters  xw KK ,  on the bending 

behavior of FG plates subjected to sinusoidal loads based on the proposed 2D and quasi-3D theories, 

Fig. 8 depicts the variation of non-dimensional deflection  w  of Al/Al2O3 FG square plates versus 

Winkler  wK  and Pasternak  sK  parameters. As can be seen from this figure, the dimensionless 

deflection diminishes when the foundation parameters increase. Compared to the Winkler parameter 

 wK , the Pasternak foundation parameter  sK  has more significant effect on decreasing the 

dimensionless deflection. Besides, the deflection computed by present quasi-3D theory are lower than 

those obtained from 2D theory which means the thickness stretching effect is more significant when 

the thickness of the plate is higher, but it is negligible with reducing the thickness of the plate. This 

indicates that the stretching effect is pronounced, and must be taken into account in the modelling of 

thick plate. 

 

5. Conclusions 

This study examines the bending response of FG plates resting on elastic foundations using a new 

developed 2D and quasi-3D shear strain theories. A new shear shape function that meets the boundary 

conditions with no tension or compression on the bottom and top surfaces of the plate is used in the 

theory, which only uses  five unknowns, to account for a parabolic distribution of the transverse shear 

stress. Moreover, the shear correction factor has not been considered. The equilibrium equations were 

determined using the virtual work principle. In order to show the validity of the proposed theory, the 

analytical solutions of simply supported plates are produced using the double Fourier series and are 

compared to previously published solutions. The effects of a large number of parameters such as the 

(28) 



transverse normal strain, the form ratio of the plate, the length/thickness ratio, the volume fraction 

distributions, the various mixing laws as well as the boundary conditions on the deflection, axial 

displacements and the various stresses are examined in detail. The above-analyzed results allow for the 

following key conclusions: 

 

 It is clear from all of the comparative experiments that the proposed theory exhibits strong 

agreement with the findings of previous 2D and quasi-3D HSDTs. 

 Although there are five unknowns in the proposed quasi-3D HSDT, the results it produces are 

comparable to those of other published quasi-3D theories with more unknowns, such as the 

quasi-3D theories of Neves et al. (2012a, 2012b), which have nine unknowns, and Akavci and 

Tanrikulu (2015), which have six unknowns. 

 The power law index affects how much a plate deflects. A material index number greater than 

5 has very little impact. 

 The thickness stretching effect was not taken into account, which resulted in the little disparity 

between the current 2D and quasi-3D shear deformation values.  

 The findings show that the plate stiffens when the effects of normal deformations are taken 

into account, which reduces deflection and increases stresses.  

 For thick plates, the thickness stretching effect is more pronounced, therefore it must be 

accounted in the modeling. 

Finally, it can be concluded that the formulation developed here in can serve as a reference to 

future research and could be extended to the analysis of classical and thermal buckling of FG plates by 

introducing various combined boundary conditions. 
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Fig. 1 Geometry and coordinates of the considered FGM plate on elastic foundation. 
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Fig. 2Distributions of the non-dimensional displacements and stresses through the thickness of square 

P-FGM plate ( / 10a h  ) 

 

 

 



 

Fig. 3 Effect of the power-law index k and side-to-thickness ratio ha /  on the non-dimensional 

deflection w  of simply supported 32/ OAlAl  P-FGM plates. 
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Fig. 4 Distributions of the non-dimensional displacements and stresses through the thickness of square 

E-FGM plate ( / 10a h  ) 

 

 

 

 



 

Fig.5 Non-dimensional deflection variation w  of different models of FG plates for various values of 

power-law index k and side-to-thickness ratio  ha / . 
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Fig.6 Effect of the side-to-thickness ratio  ha /  on the non-dimensional deflection of different FG 

plates. 
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Fig. 7 Comparison of the deflection of Mori-Tanaka model, P-FGM and E-FGM plates

 .2,4/  kha  

 

 

Fig.8 Effect of foundation parameters  sw KK ,  on the non-dimensional deflection w  of FG square 

plates under sinusoidal load  .10/,1  hak  

 

 

 

 

 



 

Table 1 Material properties used in the FG plates. 

 

Material Properties   

  GPaE      (kg/m3) 

Aluminum (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 

Zirconia (ZrO2) 200 0.3 5700 

 

Table 2 The non-dimensional displacement and stress components of an Al/Al2O3 FG square plate 

subjected to uniformly distributed load ( 10/ ha ). 

 

k  Theory z  (0)w  
2

x

h


 
 
 

 
3

y

h


 
 
 

  0xz  
6

yz

h


 
 
 

 
3

xy

h


 
 
 

 

0 Akavci and Tanrikulu (2015) = 0 0.4665 2.8909 1.9103 0.4988 0.4363 1.2857 

Akavci and Tanrikulu (2015) ≠ 0 0.4635 2.9981 1.8925 0.4782 0.4315 1.2578 

Younsi et al. (2018) = 0 0.4665 2.8913 1.9102 0.5043 0.4367 1.2855 

Younsi et al. (2018) ≠ 0 0.4637 2.9919 1.8932 0.5042 0.4317 1.2585 

Present study = 0 0.4665 2.8912 1.9102 0.5043 0.4369 1.2856 

Present study ≠ 0 0.4625 3.0729 1.8756 0.4761 0.4307 1.2548 

1 Akavci and Tanrikulu (2015) = 0 0.9288 4.4707 2.1693 0.4988 0.5364 1.1141 

Akavci and Tanrikulu (2015) ≠ 0 0.8977 4.6110 2.0822 0.4782 0.5119 1.0211 

Younsi et al. (2018) = 0 0.9287 4.4713 2.1692 0.5043 0.5370 1.1141 

Younsi et al. (2018) ≠ 0 0.8980 4.6005 2.0832 0.4791 0.5121 1.0225 

Present study = 0 0.9287 4.4713 2.1692 0.5042 0.5372 1.1141 

Present study ≠ 0 0.8961 4.7379 2.0578 0.4761 0.5114 1.0206 

2 Akavci and Tanrikulu (2015) = 0 1.1940 5.2248 2.0342 0.4581 0.5643 0.9909 

Akavci and Tanrikulu (2015) ≠ 0 1.1376 5.3825 1.9257 0.4524 0.5081 0.8921 

Younsi et al. (2018) = 0 1.1940 5.2256 2.0340 0.4637 0.5657 0.9908 

Younsi et al. (2018) ≠ 0 1.1380 5.3726 1.9281 0.4532 0.5082 0.8926 

Present study = 0 1.1940 5.2255 2.0340 0.4636 0.5658 0.9908 

Present study ≠ 0 1.1352 5.5232 1.8972 0.4505 0.5074 0.8902 

4 Akavci and Tanrikulu (2015) = 0 1.3888 5.8855 1.7205 0.4090 0.5253 1.0305 

Akavci and Tanrikulu (2015) ≠ 0 1.3259 6.0382 1.6062 0.4358 0.4804 0.9274 

Younsi et al. (2018) = 0 1.3890 5.8866 1.7202 0.4151 0.5278 1.0303 

Younsi et al. (2018) ≠ 0 1.3262 6.0301 1.6101 0.4365 0.4806 0.9279 

Present study = 0 1.3889 5.8865 1.7202 0.4149 0.5279 1.0303 

Present study ≠ 0 1.3237 6.1920 1.5744 0.4341 0.4797 0.9256 

10 Akavci and Tanrikulu (2015) = 0 1.5875 7.3617 1.2828 0.4436 0.4159 1.0705 

Akavci and Tanrikulu (2015) ≠ 0 1.5453 7.5123 1.2016 0.4332 0.4561 0.9860 

Younsi et al. (2018) = 0 1.5875 7.3628 1.2825 0.4495 0.4174 1.0703 

Younsi et al. (2018) ≠ 0 1.5454 7.5064 1.2059 0.4339 0.4562 0.9862 

Present study = 0 1.5875 7.3628 1.2825 0.4495 0.4176 1.0703 

Present study ≠ 0 1.5436 7.6914 1.1724 0.4314 0.4554 0.9852 

 

 

 

 

 

 

 

 

 



Table 3 Non-dimensional displacement and stress of an Al/Al2O3 FG square plate subjected to 

sinusoidal load. 

 

k  Theory z  
 3/hx  (0)w  

4/ ha  10/ ha  100/ ha  4/ ha  10/ ha  100/ ha  

1 Carrera et al. (2011) ≠ 0 0.6221 1.5064 14.9690 0.7171 0.5875 0.5625 

Neves et al. (2012a) ≠ 0 0.5925 1.4945 14.9690 0.6997 0.5845 0.5624 

Neves et al. (2012b) ≠ 0 0.5910 1.4917 14.9440 0.7020 0.5868 0.5648 

Hebali et al. (2014) ≠ 0 0.5952 1.4954 14.9630 0.6910 0.5686 0.5452 

Akavci and Tanrikulu (2015) = 0 0.5806 1.4895 14.9670 0.7282 0.5889 0.5625 

Akavci and Tanrikulu (2015) ≠ 0 0.5754 1.4322 14.3060 0.6908 0.5691 0.5457 

Younsi et al. (2018) = 0 0.5808 1.4896 14.9675 0.7283 0.5889 0.5625 

Younsi et al. (2018) ≠ 0 0.5758 1.4330 14.3135 0.6910 0.5692 0.5459 

Present study = 0 0.5803 1.4894 14.9675 0.7280 0.5889 0.5625 

Present study ≠ 0 0.5705 1.4157 14.1330 0.6896 0.5680 0.5447 

4 Carrera et al. (2011) ≠ 0 0.4877 1.1971 11.9230 1.1585 0.8821 0.8286 

Neves et al. (2012a) ≠ 0 0.4404 1.1783 11.9320 1.1178 0.8750 0.8286 

Neves et al. (2012b) ≠ 0 0.4340 1.1593 11.7380 1.1095 0.8698 0.8241 

Hebali et al. (2014) ≠ 0 0.4507 1.1779 11.8710 1.0964 0.8413 0.7926 

Akavci and Tanrikulu (2015) = 0 0.4431 1.1787 11.9200 1.1613 0.8818 0.8287 

Akavci and Tanrikulu (2015) ≠ 0 0.4247 1.1017 11.0880 1.0983 0.8417 0.7925 

Younsi et al. (2018) = 0 0.4437 1.1789 11.9209 1.1609 0.8817 0.8287 

Younsi et al. (2018) ≠ 0 0.4260 1.1045 11.1152 1.0982 0.8419 0.7928 

Present study = 0 0.4424 1.1783 11.9208 1.1618 0.8818 0.8287 

Present study ≠ 0 0.4181 1.0802 10.8633 1.0970 0.8403 0.7910 

10 Carrera et al. (2011) ≠ 0 0.3965 0.8965 8.9077 1.3745 1.0072 0.9361 

Neves et al. (2012a) ≠ 0 0.3227 1.1783 11.9320 1.3490 0.8750 0.8286 

Neves et al. (2012b) ≠ 0 0.3108 0.8467 8.6013 1.3327 0.9886 0.9228 

Hebali et al. (2014) ≠ 0 0.3325 0.8889 8.9977 1.3333 0.9791 0.9114 

Akavci and Tanrikulu (2015) = 0 0.3242 0.8778 8.9059 1.3917 1.0089 0.9362 

Akavci and Tanrikulu (2015) ≠ 0 0.3095 0.8229 8.3185 1.3352 0.9818 0.9141 

Younsi et al. (2018) = 0 0.3248 0.8780 8.9059 1.3915 1.0088 0.9362 

Younsi et al. (2018) ≠ 0 0.3109 0.8259 8.3473 1.3353 0.9819 0.9141 

Present study = 0 0.3235 0.8775 8.9059 1.3917 1.0089 0.9362 

Present study ≠ 0 0.3033 0.8031 8.1118 1.3333 0.9807 0.9130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 Non-dimensional deflection 
3

0
4

0

10
(0) , ,0

2 2

h E a b
w w

a q

 
  

 
 of E-FGM plates subjected to sinusoidal 

distributed load ( / 2a h  ). 

 

/b a  Theory z  k  

0.1 0.3 0.5 0.7 1 1.5 

1 Zenkour (2007) ≠ 0 0.5769 0.5247 0.4766 0.4324 0.3726 0.2890 

Zenkour (2007) = 0 0.5730 0.5180 0.4678 0.4221 0.3611 0.2771 

Mantari and Soares (2016) ≠ 0 0.5778 0.5224 0.4717 0.4256 0.3648 0.2793 

Mantari and Soares (2016) = 0 0.6362 0.5751 0.5194 0.4687 0.4017 0.3079 

Akavci and Tanrikulu (2015) = 0 0.6351 0.5741 0.5185 0.4679 0.4004 0.3075 

Akavci and Tanrikulu (2015) ≠ 0 0.5750 0.5198 0.4694 0.4236 0.3624 0.2780 

Younsi et al. (2018) = 0 0.6355 0.5745 0.5189 0.4683 0.4007 0.3077 

Younsi et al. (2018) ≠ 0 0.5758 0.5205 0.4701 0.4242 0.3629 0.2784 

Present study = 0 0.6343 0.5734 0.5179 0.4674 0.4000 0.3072 

Present study ≠ 0 0.5731 0.5181 0.4679 0.4222 0.3612 0.2771 

2 Zenkour (2007) ≠ 0 1.1944 1.0859 0.9864 0.8952 0.7726 0.6017 

Zenkour (2007) = 0 1.1879 1.0739 0.9700 0.8754 0.7493 0.5757 

Mantari and Soares (2016) ≠ 0 1.1940 1.0794 0.9750 0.8799 0.7537 0.5786 

Mantari and Soares (2016) = 0 1.2776 1.1553 1.0441 0.9430 0.8092 0.6237 

Akavci and Tanrikulu (2015) = 0 1.2763 1.1541 1.0431 0.9422 0.8079 0.6234 

Akavci and Tanrikulu (2015) ≠ 0 1.1938 1.0765 0.9723 0.8775 0.7511 0.5771 

Younsi et al. (2018) = 0 1.2768 1.1546 1.0435 0.9426 0.8082 0.6236 

Younsi et al. (2018) ≠ 0 1.1917 1.0774 0.9731 0.8782 0.7517 0.5775 

Present study = 0 1.2753 1.1532 1.0423 0.9415 0.8074 0.6231 

Present study ≠ 0 1.1880 1.0740 0.9701 0.8755 0.7494 0.5758 

3 Zenkour (2007) ≠ 0 1.4429 1.3116 1.9112 1.0811 0.9333 0.7275 

Zenkour (2007) = 0 1.4354 1.2977 1.1722 1.0579 0.9056 0.6961 

Mantari and Soares (2016) ≠ 0 1.4421 1.3037 1.1776 1.0627 0.9104 0.6992 

Mantari and Soares (2016) = 0 1.5340 1.3873 1.2540 1.1329 0.9725 0.7506 

Akavci and Tanrikulu (2015) = 0 1.5327 1.3861 1.2530 1.1320 0.9712 0.7503 

Akavci and Tanrikulu (2015) ≠ 0 1.4386 1.3005 1.1748 1.0602 0.9076 0.6976 

Younsi et al. (2018) = 0 1.5332 1.3866 1.2534 1.1324 0.9715 0.7504 

Younsi et al. (2018) ≠ 0 1.4396 1.3015 1.1756 1.0610 0.9082 0.6981 

Present study = 0 1.5316 1.3852 1.2521 1.1313 0.9706 0.7499 

Present study ≠ 0 1.4354 1.2977 1.1722 1.0579 0.9057 0.6961 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 Non-dimensional stress 
2

2
0

, ,
2 2 2 2

x x

h h a b h

a q
 

   
   

   
of E-FGM plates subjected to sinusoidal 

distributed load ( / 10a h  ). 

/b a  Theory z  k  

0.1 0.3 0.5 0.7 1 1.5 2 2.5 3 

1 Mantari and Soares 

(2016) 

≠ 0 0.2196 0.2345 0.2503 0.2671 0.2944 0.3460 0.4065 0.4775 0.5603 

Mantari and Soares 

(2016) 
= 0 0.2062 0.2204 0.2355 0.2515 0.2774 0.3264 0.3835 0.4502 0.5278 

Akavci and Tanrikulu 

(2015) 
= 0 0.2063 0.2205 0.2356 0.2516 0.2776 0.3266 0.3838 0.4504 0.5281 

Akavci and Tanrikulu 

(2015) 
≠ 0 0.2142 0.2285 0.2438 0.2601 0.2866 0.3370 0.3964 0.4664 0.5485 

Younsi et al. (2018) = 0 0.2063 0.2205 0.2355 0.2516 0.2775 0.3265 0.3837 0.4504 0.5279 

Younsi et al. (2018) ≠ 0 0.2137 0.2280 0.2433 0.2595 0.2860 0.3363 0.3957 0.4657 0.5478 

Present study = 0 0.2063 0.2205 0.2356 0.2517 0.2776 0.3266 0.3838 0.4505 0.5282 

Present study ≠ 0 0.2195 0.2344 0.2502 0.2670 0.2943 0.4359 0.4064 0.4773 0.5602 

2 Mantari and Soares 

(2016) 

≠ 0 
0.4552 0.4867 0.5200 0.5554 0.6126 0.7201 0.8449 0.9898 1.1580 

Mantari and Soares 

(2016) 
= 0 0.4350 0.4649 0.4966 0.5303 0.5850 0.6881 0.8085 0.9490 1.1125 

Akavci and Tanrikulu 

(2015) 
= 0 0.4351 0.4650 0.4968 0.5305 0.5852 0.6884 0.8088 0.9493 1.1129 

Akavci and Tanrikulu 

(2015) 
≠ 0 0.4466 0.4773 0.5098 0.5443 0.6002 0.7058 0.8289 0.9725 1.1397 

Younsi et al. (2018) = 0 0.4351 0.4650 0.4967 0.5305 0.5851 0.6883 0.8087 0.9492 1.1128 

Younsi et al. (2018) ≠ 0 0.4459 0.4765 0.5090 0.5435 0.5993 0.7048 0.8278 0.8278 1.1388 

Present study = 0 0.4351 0.4650 0.4968 0.5306 0.5852 0.6884 0.8089 0.9494 1.1131 

Present study ≠ 0 0.4551 0.4865 0.5199 0.5553 0.6124 0.7199 0.8447 0.9897 1.1579 

3 Mantari and Soares 

(2016) 

≠ 0 
0.5514 0.5896 0.6302 0.6733 0.7427 0.8730 1.0240 1.1990 1.4017 

Mantari and Soares 

(2016) 
= 0 0.5288 0.5651 0.6037 0.6447 0.7112 0.8365 0.9828 1.1536 1.3523 

Akavci and Tanrikulu 

(2015) 
= 0 0.5290 0.5653 0.6039 0.6449 0.7114 0.8368 0.9832 1.1540 1.3528 

Akavci and Tanrikulu 

(2015) 
≠ 0 0.5418 0.5791 0.6187 0.6608 0.7289 0.8570 1.0061 1.1797 1.3813 

Younsi et al. (2018) = 0 0.5289 0.5652 0.6038 0.6449 0.7113 0.8367 0.9831 1.1538 1.3527 

Younsi et al. (2018) ≠ 0 0.5410 0.5783 0.6179 0.6599 0.7279 0.8559 1.0050 1.1786 1.3803 

Present study = 0 0.5290 0.5653 0.6039 0.6450 0.7114 0.8368 0.9833 1.1541 1.3529 

Present study ≠ 0 0.5512 0.5895 0.6300 0.6731 0.7425 0.8728 1.0238 1.1988 1.4016 

 

 

Table 6 Non-dimensional stress  
0

0 0, ,0
2

xz xz

h b

aq
 

 
  

 
of E-FGM plates subjected to sinusoidal 

distributed load ( / 10a h  ). 

 

/b a  Theory z  k  

0.1 0.3 0.5 0.7 1 1.5 2 2.5 3 

1 Mantari and 

Soares (2016) 
≠ 0 0.2454 0.2450 0.2442 0.2430 0.2405 0.2344 0.2263 0.2162 0.2045 

Mantari and = 0 0.2380 0.2376 0.2368 0.2356 0.2330 0.2268 0.2185 0.2094 0.1985 



Soares (2016) 

Akavci and 

Tanrikulu 

(2015) 

= 0 0.2434 0.2430 0.2422 0.2410 0.2385 0.2324 0.2242 0.2140 0.2023 

Akavci and 

Tanrikulu 

(2015) 

≠ 0 0.2367 0.2364 0.2359 0.2353 0.2338 0.2300 0.2249 0.2182 0.2102 

Younsi et al. 

(2018) 
= 0 0.2416 0.2412 0.2404 0.2392 0.2366 0.2305 0.2222 0.2121 0.2003 

Younsi et al. 

(2018) 
≠ 0 0.2371 0.2369 0.2364 0.2357 0.2342 0.2304 0.2252 0.2186 0.2105 

Present study = 0 0.2461 0.2457 0.2449 0.2437 0.2412 0.2351 0.2269 0.2168 0.2051 

Present study ≠ 0 0.2357 0.2354 0.2350 0.2343 0.2328 0.2291 0.2240 0.2174 0.2094 

2 Mantari and 

Soares (2016) 
≠ 0 0.3927 0.3921 0.3908 0.3889 0.3849 0.3752 0.3621 0.3460 0.3273 

Mantari and 

Soares (2016) 
= 0 0.3810 0.3803 0.3790 0.3770 0.3730 0.3630 0.3497 0.3344 0.3165 

Akavci and 

Tanrikulu 

(2015) 

= 0 0.3896 0.3889 0.3877 0.3857 0.3817 0.3719 0.3588 0.3425 0.3237 

Akavci and 

Tanrikulu 

(2015) 

≠ 0 0.3790 0.3787 0.3779 0.3768 0.3744 0.3684 0.3602 0.3496 0.3368 

Younsi et al. 

(2018) 
= 0 0.3867 0.3860 0.3847 0.3828 0.3787 0.3689 0.3557 0.3394 0.3206 

Younsi et al. 

(2018) 
≠ 0 0.3797 0.3793 0.3786 0.3774 0.3750 0.3691 0.3608 0.3501 0.3373 

Present study = 0 0.3939 0.3933 0.3920 0.3901 0.3860 0.3763 0.3632 0.3470 0.3282 

Present study ≠ 0 0.3774 0.3770 0.3763 0.3752 0.3728 0.3669 0.3587 0.3482 0.3355 

3 Mantari and 

Soares (2016) 
≠ 0 0.4418 0.4411 0.4396 0.4375 0.4330 0.4221 0.4074 0.3893 0.3683 

Mantari and 

Soares (2016) 
= 0 0.4286 0.4279 0.4264 0.4242 0.4196 0.4084 0.3934 0.3761 0.3558 

Akavci and 

Tanrikulu 

(2015) 

= 0 0.4383 0.4376 0.4361 0.4340 0.4294 0.4185 0.4036 0.3854 0.3642 

Akavci and 

Tanrikulu 

(2015) 

≠ 0 0.4265 0.4261 0.4252 0.4239 0.4212 0.4146 0.4053 0.3934 0.3789 

Younsi et al. 

(2018) 
= 0 0.4350 0.4343 0.4328 0.4307 0.4261 0.4151 0.4002 0.3819 0.3607 

Younsi et al. 

(2018) 
≠ 0 0.4273 0.4268 0.4260 0.4247 0.4220 0.4153 0.4059 0.3940 0.3795 

Present study = 0 0.4432 0.4425 0.4410 0.4389 0.4343 0.4234 0.4086 0.3904 0.3693 

Present study ≠ 0 0.4246 0.4242 0.4234 0.4221 0.4194 0.4128 0.4036 0.3918 0.3775 

 

Table 7 Non-dimensional central displacement   0(0) /w G h w h q  and in-plane normal stress 

    00 0x x q  of E-FGM plates subjected to uniformly distributed load. 

 

/h a  Quantity Theory 0 1/E E  

0.1 0.5 1 2 10 

0.2 w  Vaghefi et al. (2010) (BEM) 4.0916 8.9751 12.5990 17.6640 39.0600 

Vaghefi et al. (2010) (FEM) 4.1215 9.0047 12.6130 17.7110 39.1550 



Akavci and Tanrikulu(2015) (

0z  ) 
3.8333 8.8724 12.5970 17.7440 38.3330 

Younsi et al. (2018) ( 0z  ) 3.8345 8.8756 12.6025 17.7511 38.3451 

Present study ( z = 0) 4.1011 9.1087 12.8653 18.2171 41.0098 

Present study ( 0z  ) 3.8265 8.8560 12.5740 17.7123 38.2668 

x  
(-h/2) 

Vaghefi et al. (2010) (BEM) -15.356 -9.2902 -7.4462 -5.9410 -3.4665 

Vaghefi et al. (2010) (FEM) -15.403 -9.2995 -7.4588 -5.9591 -3.4805 

Akavci and Tanrikulu(2015) (

0z  ) 
-

16.3220 
-9.6545 -7.6944 -6.1109 -3.4530 

Younsi et al. (2018) ( 0z  ) 
-

16.2898 
-9.6313 -7.6770 -6.0994 -3.4504 

Present study ( z = 0) 
-

15.6820 
-9.2913 -7.3718 -5.8141 -3.2271 

Present study ( 0z  ) 
-

16.6927 
-9.8955 -7.8723 -6.2318 -3.4891 

0.3 w  Vaghefi et al. (2010) (BEM) 0.9707 2.1378 2.9853 4.1208 8.7134 

Vaghefi et al. (2010) (FEM) 0.9732 2.1407 2.9792 4.1333 8.7293 

Zhang et al. (2014) 0.9735 2.1405 2.9795 4.1332 8.7343 

Akavci and Tanrikulu(2015) (

0z  ) 
0.8923 2.0834 2.9602 4.1669 8.9229 

Younsi et al. (2018) ( 0z  ) 0.8925 2.0843 2.9615 4.1685 8.9253 

Present study ( z = 0) 0.9602 2.1772 3.0822 4.3543 9.6015 

Present study ( 0z  ) 0.8908 2.0798 2.9549 4.1595 8.9080 

x  Vaghefi et al. (2010) (BEM) -7.223 -4.3084 -3.4496 -2.7499 -1.6449 

Vaghefi et al. (2010) (FEM) -7.2639 -4.3378 -3.4681 -2.7673 -1.6499 

Zhang et al. (2014) -7.1493 -4.3227 -3.4710 -2.7853 -1.6759 

Akavci and Tanrikulu(2015) (

0z  ) 
-7.6576 -4.5062 -3.5748 -2.8235 -1.5731 

Younsi et al. (2018) ( 0z  ) -7.6386 -4.4941 -3.5659 -2.8175 -1.5715 

Present study ( z = 0) -7.2499 -4.2796 -3.3846 -2.6589 -1.4605 

Present study ( 0z  ) -7.7999 -4.5974 -3.6421 -2.8693 -1.5869 

 

Table 8 Comparison of the dimensionless deflection
w  of isotropic square plate subjected to 

uniformly distributed load. 

 

wK  sK  10/ ha  200/ ha  

Thai et 

al. 

(2013) 

Al 

Khateeb 

and 

Zenkour 

(2014) 

Present 

2D 

Present 

Quasi-

3D 

Thai et 

al. 

(2013) 

Al Khateeb 

and 

Zenkour 

(2014) 

Present 

2D 

Present 

Quasi-

3D 

1 5 3.3455 3.18068 3.3452 3.3302 3.2200 3.21959 3.2200 3.2117 

10 2.7504 2.61977 2.7503 2.7452 2.6684 2.66809 2.6684 2.6628 

15 2.3331 2.2253 2.3330 2.3329 2.2763 2.27602 2.2763 2.2722 

20 2.0244 1.93304 2.0243 2.0270 1.9834 1.98317 1.9834 1.9803 

34 5 2.8421 2.70699 2.8420 2.8358 2.7552 2.75485 2.7552 2.7491 

10 2.3983 2.28765 2.3982 2.3977 2.3390 2.33866 2.3389 2.3346 

15 2.0730 1.97963 2.0729 2.0754 2.0306 2.03037 2.0306 2.0274 

20 1.8244 1.74394 1.8244 1.8286 1.7932 1.79298 1.7932 1.7907 

54 5 1.3785 1.32344 1.3784 1.3854 1.3688 1.36864 1.3688 1.3674 



10 1.2615 1.21169 1.2614 1.2684 1.2543 1.25412 1.2542 1.2531 

15 1.1627 1.11725 1.1627 1.1694 1.1572 1.15711 1.1572 1.1562 

20 1.0782 1.03638 1.0782 1.0847 1.0740 1.07389 1.0740 1.0732 

 

 

 

Table 9 Comparisons of non-dimensional displacements and stresses of simply supported FG 

rectangular plate (Al/Al2O3) resting on elastic foundation under uniform loads  10/,3  haab . 

 

k  0K  0J  Method u  v  w  

x  


y  


xy  

0 

0 0 

Zenkour (2009) 0.1972 0.1022 1.2583 0.7162 0.2448 0.2893 

Thai and Choi (2014a)  0.1971 0.1022 1.2583 0.7160 0.2447 0.2890 

Present 2D 0.1972 0.1021 1.2582 0.7159 0.2442 0.2869 

Present Quasi-3D 0.1953 0.1009 1.2503 0.8755 0.4074 0.2823 

100 0 

Zenkour (2009) 0.192

2 

0.100

3 

1.2259 0.697

0 

0.2376 0.2843 

Thai and Choi (2014a) 0.192

2 

0.100

3 

1.2260 0.696

9 

0.2375 0.2840 

Mantari and Granados 

(2016)  

0.1910 0.0995 1.2260 0.694

1 

0.2366 0.2795 

Present 2D 0.192

2 

0.100

2 

1.2259 0.696

7 

0.2370 0.2819 

Present Quasi-3D 0.190

5 

0.099

1 

1.2186 0.852

3 

0.3959 0.2774 

0 100 

Zenkour (2009) 0.183

0 

0.096

7 

1.1662 0.661

9 

0.2245 0.2746 

Thai and Choi (2014a)  0.183

0 

0.096

7 

1.1662 0.661

8 

0.2245 0.2744 

Mantari and Granados 

(2016)  
0.1819 0.0959 1.1662 0.659

2 
0.2236 0.2700 

Present 2D 0.183

0 

0.096

6 

1.1661 0.661

6 

0.2239 0.2723 

Present Quasi-3D 0.181

5 

0.095

5 

1.1599 0.809

7 

0.3749 0.2681 

100 100 

Zenkour (2009) 0.1787 0.0951 1.1382 0.645

3 

0.2184 0.2702 

Thai and Choi (2014a)  0.1787 0.0951 1.1382 0.645

2 

0.2183 0.2700 

Mantari and Granados 

(2016)  

0.1776 0.0942 1.1382 0.642

7 

0.2175 0.2656 
Present 2D 0.1787 0.0950 1.1381 0.645

1 

0.2178 0.2679 

Present Quasi-3D 0.1772 0.0939 1.1323 0.789

5 

0.3650 0.2638 

0.5 

0 0 

Zenkour (2009) 0.3492 0.1810 1.9344 0.233

7 

0.0799 0.0941 
Thai and Choi (2014a)  0.3491 0.1809 1.9345 0.233

7 

0.0799 0.0941 

Present 2D 0.3492 0.1807 1.9343 0.233

6 

0.0797 0.0934 
Present Quasi-3D 0.3346 0.1729 1.8995 0.276

3 

0.1286 0.0891 

100 0 

Zenkour (2009) 0.3358 0.1759 1.8590 0.224

2 

0.0763 0.0916 

Thai and Choi (2014a)  0.3358 0.1758 1.8590 0.224

2 

0.0763 0.0916 

Mantari and Granados 

(2016)  

0.3342 0.1746 1.8597 0.223

5 

0.0761 0.0905 
Present 2D 0.3358 0.1756 1.8589 0.224

2 

0.0761 0.0910 

Present Quasi-3D 0.3221 0.1681 1.8271 0.265

3 

0.1231 0.0867 

0 100 

Zenkour (2009) 0.3120 0.1665 1.7248 0.207

5 

0.0701 0.0871 

Thai and Choi (2014a)  0.3119 0.1665 1.7248 0.207

5 

0.0701 0.0870 

Mantari and Granados 

(2016)  

0.3105 0.1653 1.7254 0.206

8 

0.0699  0.0859 
Present 2D 0.3120 0.1663 1.7247 0.207

4 

0.0699 0.0864 

Present Quasi-3D 0.2997 0.1593 1.6980 0.245

8 

0.1136 0.0824 

100 100 

Zenkour (2009) 0.3013 0.1623 1.6640 0.1999 0.0673 0.0850 

Thai and Choi (2014a)  0.3012 0.1623 1.6640 0.1999 0.0673 0.0850 

Mantari and Granados 

(2016)  

0.2998 0.1612 1.6646 0.199

2 

0.0671 0.0838 
Present 2D 0.3013 0.1621 1.6639 0.1998 0.0671 0.0843 

Present Quasi-3D 0.2896 0.1554 1.6394 0.2369 0.1092 0.0805 

1 
0 0 

Zenkour (2009) 0.4855 0.2515 2.5133 0.325

0 

0.1111 0.1307 
Thai and Choi (2014a)  0.4854 0.2515 2.5134 0.325

0 

0.1111 0.1306 

Present 2D 0.4854 0.2512 2.5132 0.324

9 

0.1108 0.1298 

Present Quasi-3D 0.4544 0.2347 2.4287 0.375

2 

0.1746 0.1209 



100 0 

Zenkour (2009) 0.4617 0.2424 2.3874 0.308

1 

0.1047 0.1263 

Thai and Choi (2014a)  0.4616 0.2424 2.3875 0.308

0 

0.1047 0.1262 

Mantari and Granados 

(2016) 

0.4597  0.2410 2.3875 0.307

2 

0.1044  0.1249 
Present 2D 0.4616 0.2421 2.3873 0.308

0 

0.1045 0.1254 

Present Quasi-3D 0.4329 0.2265 2.3115 0.356

3 

0.1652 0.1170 

0 100 

Zenkour (2009) 0.4204 0.2262 2.1702 0.279

1 

0.0940 0.1183 

Thai and Choi (2014a)  0.4203 0.2261 2.1703 0.279

1 

0.0940 0.1182 

Mantari and Granados 

(2016)  

0.4186 0.2248 2.1703 0.278

4 

0.0938 0.1169 
Present 2D 0.4204 0.2258 2.1701 0.279

0 

0.0938 0.1174 

Present Quasi-3D 0.3955 0.2118 2.1083 0.323

8 

0.1493 0.1097 

100 100 

Zenkour (2009) 0.4023 0.2191 2.0746 0.266

3 

0.0893 0.1148 

Thai and Choi (2014a)  0.4022 0.2190 2.0746 0.266

3 

0.0893 0.1148 

Mantari and Granados 

(2016)  

0.4006  0.2177 2.0746  0.265

6 

0.0890  0.1135 
Present 2D 0.4023 0.2188 2.0745 0.266

2 

0.0890 0.1139 
Present Quasi-3D 0.3790 0.2054 2.0184 0.309

3 

0.1422 0.1066 

2 

0 0 

Zenkour (2009) 0.6565 0.3401 3.2267 0.439

6 

0.1502 0.1766 
Thai and Choi (2014a)  0.6564 0.3400 3.2266 0.439

5 

0.1502 0.1766 

Present 2D 0.6565 0.3397 3.2266 0.439

4 

0.1499 0.1755 

Present Quasi-3D 0.6025 0.3113 3.0706 0.4975 0.2315 0.1604 

100 0 

Zenkour (2009) 0.6157 0.3245 3.0219 0.4106 0.1394 0.1690 

Thai and Choi (2014a)  0.6156 0.3244 3.0218 0.4105 0.1394 0.1690 

Mantari and Granados 

(2016)  

0.6134  0.3227 3.0178  0.409

6 

0.1390  0.1673 

Present 2D 0.6157 0.3241 3.0218 0.4104 0.1390 0.1679 

Present Quasi-3D 0.5669 0.2977 2.8854 0.4661 0.2160 0.1538 

0 100 

Zenkour (2009) 0.5476 0.2975 2.6814 0.362

8 

0.1217 0.1557 

Thai and Choi (2014a)  0.5475 0.2974 2.6814 0.362

8 

0.1217 0.1557 

Mantari and Granados 

(2016)  

0.5456 0.2959 2.6783 0.362

0 

0.1215 0.1541 

Present 2D 0.5475 0.2971 2.6813 0.362

7 

0.1214 0.1546 

Present Quasi-3D 0.5069 0.2740 2.5748 0.414

1 

0.1904 0.1421 

100 

 

100 

 

Zenkour (2009) 0.5187 0.2861 2.5364 0.342

3 

0.1142 0.1502 

Thai and Choi (2014a)  0.5186 0.2860 2.5364 0.342

3 

0.1142 0.1501 

Mantari and Granados 

(2016)  

0.5168  0.2845 2.5336  0.341

6 

0.1139  0.1486 

Present 2D 0.5187 0.2856 2.5363 0.342

2 

0.1138 0.1490 

Present Quasi-3D 0.4813 0.2639 2.4415 0.391

6 

0.1794 0.1372 

5 

0 

 

0 

 

Zenkour (2009) 0.7805 0.4045 3.8517 0.522

4 

0.1785 0.2104 
Thai and Choi (2014a)  0.7802 0.4043 3.8506 0.522

3 

0.1785 0.2103 

Present 2D 0.7804 0.4040 3.8516 0.522

2 

0.1781 0.2089 

Present Quasi-3D 0.7198 0.3721 3.6893 0.594

1 

0.2765 0.1919 

100 0 

Zenkour (2009) 0.7232 0.3825 3.5629 0.4816 0.1633 0.1997 

Thai and Choi (2014a)  0.7230 0.3824 3.5620 0.4816 0.1633 0.1996 

Mantari and Granados 

(2016)  

0.7198 0.3799 3.5433 0.480

3 

0.1628 0.1971 

Present 2D 0.7231 0.3820 3.5628 0.4816 0.1629 0.1982 

Present Quasi-3D 0.6693 0.3528 3.4247 0.5496 0.2544 0.1825 

0 

 

100 

 

Zenkour (2009) 0.6305 0.3456 3.0979 0.4168 0.1394 0.1815 

Thai and Choi (2014a)  0.6304 0.3455 3.0972 0.4168 0.1394 0.1814 

Mantari and Granados 

(2016)  

0.6280  0.3434 3.0834  0.416

0 

0.1391  0.1791 

Present 2D 0.6304 0.3451 3.0978 0.4166 0.1390 0.1800 

Present Quasi-3D 0.5868 0.3199 2.9948 0.4781 0.2194 0.1663 

100 

 

100 

 

Zenkour (2009) 0.5923 0.3304 2.9052 0.389

7 

0.1294 0.1741 

Thai and Choi (2014a)  0.5922 0.3303 2.9046 0.389

7 

0.1294 0.1740 

Mantari and Granados 

(2016)  

0.5901 0.3283 2.8925 0.389

1 

0.1292 0.1717 

Present 2D 0.5922 0.3298 2.9050 0.389

5 

0.1290 0.1726 

Present Quasi-3D 0.5524 0.3063 2.8153 0.448

1 

0.2047 0.1597 



 


