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Abstract
Feeding represents the largest economic cost in meat production; therefore, selec-
tion to improve traits related to feed efficiency is a goal in most livestock breeding 
programs. Residual feed intake (RFI), that is, the difference between the actual and 
the expected feed intake based on animal's requirements, has been used as the se-
lection criteria to improve feed efficiency since it was proposed by Kotch in 1963. 
In growing pigs, it is computed as the residual of the multiple regression model 
of daily feed intake (DFI), on average daily gain (ADG), backfat thickness (BFT), 
and metabolic body weight (MW). Recently, prediction using single-output ma-
chine learning algorithms and information from SNPs as predictor variables have 
been proposed for genomic selection in growing pigs, but like in other species, the 
prediction quality achieved for RFI has been generally poor. However, it has been 
suggested that it could be improved through multi-output or stacking methods. For 
this purpose, four strategies were implemented to predict RFI. Two of them cor-
respond to the computation of RFI in an indirect way using the predicted values of 
its components obtained from (i) individual (multiple single-output strategy) or (ii) 
simultaneous predictions (multi-output strategy). The other two correspond to the 
direct prediction of RFI using (iii) the individual predictions of its components as 
predictor variables jointly with the genotype (stacking strategy), or (iv) using only 
the genotypes as predictors of RFI (single-output strategy). The single-output strat-
egy was considered the benchmark. This research aimed to test the former three 
hypotheses using data recorded from 5828 growing pigs and 45,610 SNPs. For all 
the strategies two different learning methods were fitted: random forest (RF) and 
support vector regression (SVR). A nested cross-validation (CV) with an outer 10-
folds CV and an inner threefold CV for hyperparameter tuning was implemented 
to test all strategies. This scheme was repeated using as predictor variables different 
subsets with an increasing number (from 200 to 3000) of the most informative SNPs 
identified with RF. Results showed that the highest prediction performance was 
achieved with 1000 SNPs, although the stability of feature selection was poor (0.13 
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1   |   INTRODUCTION

The impact of rising feeding costs and the need to find 
new ways to reduce emissions to the environment by mak-
ing sustainable use of resources make improving feed effi-
ciency (FE) one of the most important objectives of meat 
production. Koch et al.  (1963) proposed a measurement 
of FE known as residual feed intake (RFI). This trait is de-
fined for each animal as the difference between its actual 
and expected feed intake, which is estimated based on its 
feed requirements for maintenance of physiological func-
tions and weight gain. Thus, RFI is estimated as the resid-
ual of a linear regression model of daily feed intake (DFI) 
on average daily gain (ADG), backfat thickness (BFT), and 
metabolic weight (MW). However, the availability of an 
effective measure for RFI can be difficult and expensive 
due to the need for individual measurements of feed in-
take for all animals. Consequently, predicting FE without 
measuring feed intake is a challenge in many breeding 
programs.

With the availability of high-density nucleotide poly-
morphism (SNP) data, several genomic models can be 
used to evaluate selection candidates to improve FE. For 
this purpose, machine learning (ML) methods are an ap-
pealing alternative since they do not require assumptions 
about the genetic determinism underlying a trait and they 
can be implemented when the number of parameters is 
much larger than the number of observations as is the 
case of the genomic analysis.

Machine learning methods have been successfully 
used in livestock and plant breeding to predict import-
ant economic traits using dense molecular markers as 
predictors. Some examples are milk yield in dairy cattle 
(Long et al., 2011) and reproductive traits in pigs (Wang 
et al., 2022). For the prediction of RFI, ML methods have 
been reported to be suitable when subsets of the most 
informative SNPs are used as predictor variables. Tusell 
et al. (2020) and Piles et al. (2021) predicted FE using dif-
ferent sources of phenotypic and genotypic information 

as well as different algorithms for SNP selection. In these 
studies, as well as in most genomic selection research, pre-
dictive models only use single phenotypes, building an in-
dependent model for each target variable and ignoring the 
relationship among them. Contrary to single-output mod-
els, multi-output models predict all the target variables 
simultaneously exploiting possible existing genetic cor-
relations. A review of the state of the art of multi-output 
regression problems is presented by Borchani et al. (2015). 
The main benefits of multi-output methods over single-
output methods are (i) less computation requirements 
since a single estimator is built, (ii) more efficient use of 
information since multi-output methods exploit possible 
dependencies between different target variables in addi-
tion to relationships among the features and the targets 
(Blockeel et al., 2000; Struyf & Džeroski, 2006), and (iii) 
a potential improvement of the predictive performance 
in comparison to single-output methods when multi-
ple targets are predicted simultaneously under the exis-
tence of relationships among target variables (Burnham 
et al., 1999; Han et al., 2012).

Inspired by multi-label classification approaches, 
Spyromitros-Xioufis et al.  (2012) proposed another algo-
rithm for multi-target regression: the stacking method. At 
the training phase, it consists of a two-stage process. In the 
first stage, multiple single-output models are fitted (base 
models), one per each of the target variables. In the second 
stage, the outputs of the first stage are used as inputs to fit 
another single-output regression model called meta-model. 
During this last stage, the algorithm learns the optimal com-
bination of the predictions of the base models to improve 
the prediction quality of the meta-model. In some cases, the 
meta-model can also include the inputs of the base models 
as predictor variables. At the prediction phase, the algorithm 
returns the outputs of the meta-model. Stacking methods 
have been shown to increase the predictive performance 
by 7.70% compared with GBLUP (a widely used method for 
genomic selection), which is very relevant for animal and 
plant breeding (Liang et al., 2021).

points out of 1). For all SNP subsets, the benchmark showed the best prediction per-
formance. Using the RF as a learner and the 1000 most informative SNPs as predic-
tors, the mean (SD) of the 10 values obtained in the test sets were: 0.23 (0.04) for the 
Spearman correlation, 0.83 (0.04) for the zero–one loss, and 0.33 (0.03) for the rank 
distance loss. We conclude that the information on predicted components of RFI 
(DFI, ADG, MW, and BFT) does not contribute to improve the quality of the predic-
tion of this trait in relation to the one obtained with the single-output strategy.

K E Y W O R D S

artificial intelligence, multi-trait, regression problem, residual feed intake, SNPs, stacking
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The goal of this work was to exploit the advantages of 
multi-output and stacking methods to find the best strat-
egy to predict the individual RFI from the genotype in a 
pig population. For this purpose, we used several metrics 
to evaluate the prediction performance of RFI obtained 
from two general strategies. In the first one, the RFI was 
obtained as the residual of the regression model of pre-
dicted DFI on predicted ADG, BFT, and MW, all of them 
obtained (i) from individual predictions from the genotype 
(multiple single-output strategy) or (ii) from simultane-
ously predictions from the genotype (multi-output strat-
egy). In the second one, the RFI was predicted directly 
(iii) using the individual predictions of DFI, ADG, BFT, 
and MW and the genotypes as predictors of RFI (stacking 
strategy) or (iv) using only the genotypes as predictors of 
RFI (single-output strategy). This last strategy was used as 
the benchmark.

2   |   MATERIALS AND METHODS

2.1  |  Animals

All the animals were born and raised in two specific 
pathogen-free nucleus farms for a terminal sire line of 
Topigs Norsvin (Vught). One of the farms was located 
in the Netherlands and the other one in France. Semen 
exchange between the two farms was frequent. Both nu-
cleus farms were equipped with IVOG feeding stations 
(INSENTEC) that daily registered individual feed intake 
for all pigs. The pigs were fed ad libitum with a commer-
cially available diet until the end of the performance test. 
Data on 5828 male pigs were available.

2.2  |  Phenotypes

The test period was from 68 to 155 days (31–130 kg of 
body weight) of the median. Daily feed intake (DFI, g/
day) was calculated as the total feed intake during this 
period divided by the number of days elapsed. Average 
daily gain (ADG, g/day) was calculated as the differ-
ence in body weight recorded at the beginning and the 
end of the test divided by the number of days elapsed. 
Only records from animals that started the test pe-
riod between 50 and 105 days of age and remained on 
the test period between 60 and 120 days were retained 
for the analyses. Back fat thickness (BFT) was meas-
ured ultrasonically on live animals (US-fat in mm) at 
the end of the test period. Metabolic weight (MW, g) 
was calculated as MW =

(Wstart+Wend)
0.75

2
, where Wstart and 

Wend are the body weight at the beginning and the end 
of the test period, respectively. All these records were 

pre-adjusted by environmental effects fitting a linear 
model which included the fixed effects of age at the start 
of the test (Age, covariate), duration of the performance 
test (Length, covariate), and the combination of farm 
and batch (FarmBatch, 46 levels). The FarmBatch effect 
resulted from the combination of 2 farms and 2-month 
period batches. Only FarmBatch levels with more than 
10 records each were retained for the analysis. Thus, 
the model to adjust the records for animal i-th, level of 
FarmBatch j-th, and trait kth can be written as:

where yijk is the individual record with k = DFI, ADG, BFT, 
and MW; β1k is the regression coefficient of trait k on age; 
β2k is the regression coefficient of trait k on Length, and eijk 
is the residual term. All the other terms are defined above. 
The adjusted records were obtained as the residuals from 
the corresponding model for each trait. These linear models 
were fitted using the lm() function of R (R Core Team, 2022).

2.3  |  Genotypes

Animals were genotyped using the Illumina Porcine 
SNP60 BeadChip (Illumina Inc.). Assuming an additive 
allele substitution effect, genotypes were arbitrarily coded 
to 0, 1, and 2 for the homozygote for the minor allele 
(i.e., aa), heterozygote (i.e., Aa) and the other homozy-
gote (i.e., AA), respectively. SNPs with a call rate lower 
than 0.90 and with a minor allele frequency lower than 
0.05 were removed. Animals with a call rate lower than 
0.90 and parent–offspring pairs that showed Mendelian 
inconsistencies were rejected. After this quality control, 
the number of SNPs remaining for further analysis was 
45,610 and the number of animals was 5708. Then, SNPs 
were binarized to 0|0 for the homozygote for the minor 
allele (coded as 0), 1|0 for the heterozygote (coded as 1) 
and 1|1 for the other homozygote (coded as 2), thus the 
number of features was doubled. This step was carried 
out to not consider the genotypes coding as a magnitude 
(see Figure 1).

2.4  |  Model fitting and evaluation

A nested resampling (see Figure 2) was implemented to 
obtain reliable performance estimates for the learners and 
to quantify the generalization ability of the model.

This method consists of two nested resampling loops. 
In the outer resampling loop, a 10-fold cross-validation 
(CV) was carried out by randomly dividing the dataset 
into 10 groups of equal size. One group was used as an 

yijk = FarmBatchjk + β1k ×Agei + β2k × Lengthi + eijk,
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      |  641MORA et al.

outer test set and the remaining nine groups were used as 
an outer training set. The train set was divided into three-
folds using an inner CV. One fold is used as a validation 
set and the rest as an inner train set. The evaluation of 
this inner CV will be used in a grid-search procedure to 
find the optimum hyperparameters of the machine learn-
ing systems. The grid-search method was implemented 
with the GridSearchCV() function from the scikit-learn 
package (Fabian Pedregosa Gaël Varoquaux et al., 2011). 
This is a process by which a model is built and evaluated 
with every combination (discrete grid) of the manually 
specified subset of values for each hyperparameter. The 
optimal hyperparameter values were chosen based on the 
mean absolute error on the validation set of this inner CV. 

The outer CV was repeated 10 times, each one with a dif-
ferent group of data used as a test set, resulting in a total 
of 10 pairs of training/test sets. Within each outer training 
set, RFI was estimated as the residual of a phenotypic lin-
ear regression of the observed values of DFI on ADG, BFT, 
and MW. Thus, for animal i-th:

The linear model was fitted using the ols() function 
from the stats models package in Python (Seabold & 
Perktold, 2010). The model fitted in each outer training set 
was used to compute RFI in each outer testing set. In addi-
tion, in each outer training set, feature selection was car-
ried out selecting subsets of the most informative features 

DFIi = β1 ×ADGi + β2 × BFTi + β3 ×MWi + RFIi.

F I G U R E  1   Schema of the binarization process for one SNP. In columns: ID (unique animal identification, from 1 until n animals) and 
SNP (single-nucleotide polymorphism, from 1 until p). 0: genotype for the homozygote for the minor allele (i.e., aa), 1: genotype for the 
heterozygote (i.e., Aa) and 2: genotype for the other homozygote (i.e., AA). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  2   Nested k-fold cross-validation diagram. [Colour figure can be viewed at wileyonlinelibrary.com]
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642  |      MORA et al.

(i.e., SNPs) in a regression performed with Random Forest 
(RF) (explained in the “Learner” section below). Machine 
learning algorithms were tested with different subsets of 
data that contained an increasing number (from 200 to 
3000 by 200) of the most informative SNPs carefully and 
strategically selected by RF. The process of feature selec-
tion was carried out independently for each outer CV it-
eration and for each variable (DFI, ADG, BFT, MW, and 
RFI), including an extra one to select the most important 
features that predict DFI, ADG, BFT, and MW simulta-
neously. Then, for each SNPs subset, a RF and a Support 
Vector for Regression (SVR) (explained in detail in the 
“Learner” section below) were fitted to all training data 
using the optimal hyperparameters. This scheme and the 
same data split were used to compare prediction perfor-
mance in the same conditions for the different strategies 
and the different number of features selected (i.e., most 
informative SNPs).

Two general strategies were implemented to predict 
RFI. The first one consists in the indirect prediction of RFI 
which requires predicting their components in a previous 
step (strategies i and ii) and the second one consists in pre-
dict RFI directly (strategies iii and iv) (see Figure 3). Here 
is a description of all four strategies:
I	 Multiple single-output: DFI, ADG, BFT, and MW were 

predicted individually using information from the gen-
otype. Then, the prediction of RFI was calculated as the 

difference between the predicted DFI and the value that 
results from applying the multiple regression model ob-
tained from the corresponding training set to the pre-
dicted values of ADG, BFT, and MW.

II	Multi-output: DFI, ADG, BFT, and MW were pre-
dicted simultaneously using information from the 
genotype. Then, the prediction of RFI was calculated 
as the difference between the predicted DFI and the 
value that results from applying the multiple regres-
sion model obtained from the corresponding training 
set to the predicted values of ADG, BFT, and MW.

III	Stacking: This strategy consists of two consecutive 
prediction procedures. In the first one (base models), 
DFI, ADG, BFT, and MW are predicted individually 
from the genotype. Then, these individual predictions 
and the genotype are used as predictors to predict RFI 
(meta-model).

IV	 Single-output: The prediction of RFI is made using 
only the SNPs as features. This strategy was used as the 
benchmark.

2.5  |  Predictive performance metrics

Given the actual values of n test samples y =
(
y1, … yn

)
 

and their predictions ŷ =
(
ŷ1, … ŷn

)
, the predictive per-

formance of the models was evaluated using several 

F I G U R E  3   Descriptive graph illustrating the four strategies applied in this study. DFI: daily feed intake, ADG: average daily gain, MW: 
metabolic weight, BFT: back fat thickness, RFI: residual feed intake and SNP: single-nucleotide polymorphism. The selection criterion refers 
to the variable used to rank the selection candidates. [Colour figure can be viewed at wileyonlinelibrary.com]
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regression and ranking metrics. As regression metrics, 
we used the mean absolute error (MAE) defined as the 
difference between the observed and the predicted value:

and the relative absolute error (RAE):

where ytrain is the sample mean of the actual value y of the 
training samples.

As ranking functions, we used the Spearman correla-
tion between the ranking of the observed and the pre-
dicted value

and two-loss functions based on the same approach: zero–
one loss and rank distance loss. These measurements con-
sider only the top X% in a ranking of the total samples. For 
each predicted value that is part of the top X%, the loss is not 
incremented if the real value is also in that top X%. 
Nevertheless, if the predicted value does not satisfy that cri-
terion, we would sum 1 to the loss function (zero–one loss) 
or an amount equal to the difference between the real and 
the predicted position in the ranking of all values (rank dis-
tance loss):

being nTOP the number of samples in the top X% of the 
samples and pos the position in the ranking. The closer to 
zero, these losses are the better performance. For this study, 
we set X to 10 assuming that the best 10% of the selection 
candidates were selected.

2.6  |  Feature selection stability

Feature selection stability was estimated to find the 
smallest and the most stable subset of SNPs that leads to 
the best performance, removing either noisy or irrelevant 

features. The concept of stability of feature selection was 
defined for the first time by Kalousis et al.  (2005). An 
algorithm is stable if a small change in data does not 
lead to a large change in the subset of SNPs selected. 
Different measures to estimate the stability of feature 
selectors have been discussed in the literature (Khaire 
& Dhanalakshmi,  2019). Nogueira and Brown  (2016) 
defined the five properties that every stability measure 
should meet: (i) to allow variation in the number of 
features selected; (ii) to be a decreasing function with 
regard to the sample variance; (iii) to be upper/lower 
bounded by constants independent of the number of fea-
tures selected; (iv) to achieve its maximum only when 
all selected feature sets across training sets are identical 
and; (v) to be corrected for a chance. According to these 
properties, Nogueira et al. (2018) proposed a new stabil-
ity estimator defined as:

where pis the total number of SNPs (i.e 45,610), d is the av-
erage number of features selected over the M feature sets (in 
this case M = 10, one feature set per each outer fold) and 
s2
f
=

M

M −1
p̂f
(
1 − p̂f

)
 is the unbiased sample variance of the 

f th SNP, being p̂f  the mean of the frequency of the feature f.
Using the above stability measurement, the stability 

was estimated for each SNPs subset which ranges from −1 
to 1, with 1 being the value for the most stable system.

2.7  |  Learners

Support vectors for regression and RF were taken as learn-
ers to predict RFI in all strategies, except for the multi-

output strategy for which only RF was adopted because 
SVR, in contrast to RF, does not have a natural way to ex-
tend to multi-output regression.

A support vector for regression is a type of support 
vector machine that is used for predicting continuous 
variables. The objective of SVR is to find the flattest hyper-
plane that includes the maximum number of points corre-
sponding to observed data within a pre-defined threshold 
which is the maximum error (epsilon, ɛ). The algorithm 
uses a kernel function (linear, quadratic, radial basis func-
tion, etc.) whose purpose is to express the similarity be-
tween two vectors mapping lower dimensional data into 

MAE =
1

n

n∑
i=1

||yi − ŷi||

RAE =

∑n
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��yi − ŷi��∑n
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6
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higher dimensional data. A kernel function returns the 
inner product between two vectors in some transformed 
or feature space (which can be of infinite dimension). In 
general, a kernel can be expressed as k(x, z) =φ(x)’φ(z), 
where x and z are two vectors in the original space and 
φ(x) and φ(z) are the vectors in the transformed feature 
space. In the case of the linear kernel, the kernel function 
would be the original function, that is, the inner product 
between the two vectors. In this study, we applied a linear 
kernel.

Given a set of training data 
(
x1, y1

)
,
(
x2, y2

)
, … ,

(
xn, yn

)
where xi∈ Rp, yi ∈ R, xiis p-dimensional input vector (i.e., 
genotypic codes of p SNPs) and yi is the phenotypic value. 
It can be assumed that f (x) is a linear function of form 
f (x) = w�x + b, where w is the vector of regression coef-
ficients and b is the bias. In SVR, the objective is to find 
a function f (x)that minimizes the following regularized 
loss function:

where ‖w‖is the l2-norm of the coefficient vector w which 
represents the flatness of the function, ei = yi − f

(
xi
)
 is the 

error associated with each training data point, C is a positive 
regularization parameter that controls the trade-off between 
the complexity of the model and the training error, and L 
denotes the loss function:

A deep explanation of this method can be found in 
(Smola & Schölkopf, 2004). For the analysis, we used a lin-
ear kernel and ɛ equal to 0.1. The cost hyperparameter C 
was optimized through a grid-search procedure over the 
set of values {0.001, 0.01, 0.1, 1}.

Random forest is a bagging technique of a multitude 
of independent decision trees at training time and output-
ting the mean prediction of the individual trees. Decision 
trees start with the root of the tree and follow splits based 
on variable outcomes until a leaf node is reached and the 
result is given. In the case of multi-output regression, the 
leaves store a vector instead of storing a single value. Each 
component of the vector is the prediction of each target 
variable. The criterion used to measure the quality of the 
split was the mean squared error (MSE):

where n is the number of data points, fi is the value returned 
by the model and yi is the actual value for data point (xi, yi). 
Different values were optimized through a grid search: the 
minimum number of samples required to split an inter-
nal node {2, 5, 10} and the minimum number of samples 
required to be at the leaf node {2, 4}. The number of trees 
was set up to 500 and the maximum depth of the tree to 
16. Random forest was also used for feature selection, with 
the same grid-search but changing the number of trees to 
100 and the maximum depth of the tree to 2 and 4. Feature 
importance is calculated as the decrease in the node of the 
mean absolute error weighted by the probability of reach-
ing that node. The node probability can be calculated by the 
number of samples that reach the node, divided by the total 
number of samples. The higher the value the more import-
ant the feature is. A further explanation of this algorithm 
can be found in (Breiman, 2001).

The analysis was performed by using the package 
scikit-learn (Fabian Pedregosa Gaël Varoquaux,  2011). 
The SVR and RF algorithms were implemented 
with the SVR and RandomForestRegressor functions, 
respectively.

3   |   RESULTS

3.1  |  Stability of feature selection

The stability of feature selection for each SNP subset is 
presented in Figure  4. The results indicate that the sta-
bility of the model increases as the number of SNPs se-
lected increases, ranging from 0.17 for 400 SNPs to 0.45 
for 3000 SNPs. However, as we will describe in detail in 
the following sections, the quality of the prediction in-
creases to reach a maximum with subsets between 1000 
and 1200 SNPs remaining constant beyond this maxi-
mum. Therefore, for the sake of simplicity, only results 
for subsets of up to 1400 SNPs will be shown. To compare 
the prediction performance of the two strategies and the 
benchmark, we focus on the results obtained using the 
1000 SNP subset (stability = 0.13).

3.2  |  Prediction performance

Results correspond to the predictive performance of RFI 
achieved following the four proposed prediction strate-
gies: multiple single-output, multi-output, stacking, and 
the benchmark (single-output strategy). Notice that all the 
strategies were conducted with nested 10-fold CV using 
different SNP subsets each time. Thus, for each SNP sub-
set, there were 10 prediction performances (one per each 
fold).

min

�
1

2
‖w‖2 + C

n�
i=1

L
�
ei
��
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3.3  |  Prediction performance of the traits 
involved in the definition of RFI

The prediction performance of the traits involved in the 
definition of RFI (i.e., DFI, ADG, BFT, and MW) was 
evaluated. All these traits were predicted individually 
(single-output method) and simultaneously (multi-output 
method). Random forest was implemented for both meth-
ods while SVR was only applied to the single-output 
method. Figures  5 and 6 show the boxplot of the rank-
ing metrics (i.e., Spearman correlation, zero–one loss and 
rank distance loss) obtained from observed and predicted 
values of DFI, ADG, BFT, and MW with RF for single and 
multi-output methods, respectively. Results for SVR can 
be seen in Figure  S1. Unlike expected, the performance 
of the individual predictions of ADG, DFI, BFT, and MW 
was not improved when simultaneous predictions of these 
variables were carried out. For the subset of 1000 SNPs, 
the highest prediction performance was obtained by im-
plementing the single-output method for BFT. In this 
case, the mean (SD) was 0.40 (0.02) for Spearman correla-
tion, 0.71 (0.06) for zero–one loss, and 0.24 (0.04) for rank 
distance loss. For the same trait, the values achieved with 
the multi-output method were 0.28 (0.04), 0.79 (0.06), 
and 0.31 (0.05) for Spearman correlation, zero–one loss, 
and rank distance, respectively. With the multi-output 
method, the highest predictive performance was obtained 
for DFI (mean Spearman correlation [SD] = 0.31 [0.04], 
mean zero–one loss [SD] = 0.78 [0.04], and mean rank 

distance loss [SD] = 0.28 [0.03]). For both methods, ADG 
showed the poorest prediction.

3.4  |  Prediction performance of RFI

The ranking metrics obtained when RF for regression 
was used as a learner to predict RFI following multiple 
single-output, multi-output, stacking, and single-output 
strategies are shown in Figure 7. In all cases, the single-
output strategy had the best prediction performance. 
Therefore, the individual and simultaneous prediction 
of the variables involved in the definition of RFI prior to 
the calculation of this parameter (indirect strategies) does 
not present any advantage over the classical prediction 
method (single-output strategy), nor does the inclusion of 
the individual prediction of the RFI components as predic-
tor variables of RFI together with the genotype (stacking 
strategy). The results obtained for regression metrics were 
in line with those obtained for the ranking metrics and 
they are shown in Figure S2. For the subset of 1000 SNPs 
and the benchmark, the mean (SD) of all the metrics was: 
0.23 (0.04) for Spearman correlation, 0.83 (0.04) for zero–
one loss, and 0.33 (0.03) for rank distance loss. Focusing 
on the indirect strategies, the multi-output strategy did 
not offer any advantage over the multiple single-output 
strategy as expected based on results on RFI components. 
For the subset of 1000 SNPs, the mean (SD) of the ranking 
metrics used to assess the prediction performance of RFI 

F I G U R E  4   Stability of feature selection for each single-nucleotide polymorphism (SNP) subset. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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646  |      MORA et al.

with the multi-output strategy and the multiple single-
output strategy were respectively: 0.20 (0.04) and 0.19 
(0.04) for Spearman correlation, 0.86 (0.05) and 0.84 (0.04) 
for zero–one loss, and 0.37 (0.03) and 0.36 (0.03) for rank 
distance loss.

The prediction performance obtained when SVR was 
used as a learner is shown in Figure 8 for the ranking met-
rics. The results for the regression metrics are in Figure S3 
and are consistent with the results obtained from rank-
ing metrics. For this learner, the means of the different 
metrics obtained with the single-output and the stacking 
strategies were very close. For the subset of 1000 SNPs, 
the mean (SD) of the ranking metrics used to assess the 

prediction performance of the stacking method and the 
benchmark were, respectively: 0.20 (0.06) and 0.19 (0.05) 
for Spearman correlation, 0.85 (0.05) and 0.85 (0.04) for 
zero–one loss, and 0.34 (0.04) and 0.35 (0.05) for rank dis-
tance loss. In contrast, the prediction of RFI though the 
indirect strategy demonstrated the poorest performance. 
For the subset of 1000 SNPs, the mean (SD) of the rank-
ing metrics were: 0.13 (0.04) for the Spearman correlation, 
0.84 (0.03) for zero–one loss and 0.38 (0.03) for rank dis-
tance loss.

Regarding the learner used (SVR and RF), differences 
in prediction performance were very small. Thus, for ex-
ample, the mean (SD) of the stacking strategy was better 

F I G U R E  5   Boxplot of the three ranking metrics (Spearman correlation, zero–one loss, and rank distance loss) between observed and 
predicted values of daily feed intake (DFI), average daily gain (ADG), backfat thickness (BFT), and metabolic weight (MW) with the single-
output method using random forest and different subsets sizes of single-nucleotide polymorphisms (SNPs) as predictor variables. The green 
circle represents the mean. [Colour figure can be viewed at wileyonlinelibrary.com]
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with SVR (mean Spearman correlation (SD) = 0.20 (0.06)) 
than with the RF (mean Spearman correlation [SD] = 0.17 
[0.04]) when a subset of 1000 SNPs was used as predic-
tor variables. In contrast, the prediction performance 
of the single-output strategy was better with RF (mean 
Spearman correlation [SD] = 0.23 [0.04]) than with SVR 
(mean Spearman correlation [SD] = 0.19 [0.05]) likewise 
the prediction performance of the multiple single-output 
strategy (mean Spearman correlation [SD] = 0.19 [0.04] 
and mean Spearman correlation [SD] = 0.13 [0.04], with 
RF and SVR respectively).

4   |   DISCUSSION

Several applications for multi-output regression have been 
reported over the years because of the multiple advantages 
it offers (Blockeel et al., 2000; Burnham et al., 1999; Struyf 
& Džeroski,  2006). However, to the best of our knowl-
edge, no study has explored the benefits of multi-output 
regression methods to predict RFI from the genotype until 
now. In the literature, some studies on the prediction 
of RFI using ML algorithms have been presented (Piles 
et al.,  2021; Tusell et al.,  2020; Yao et al.,  2016). Tusell 

F I G U R E  6   Boxplot of the three ranking metrics (Spearman correlation, zero–one loss, and rank distance loss) between observed and 
predicted values of daily feed intake (DFI), average daily gain (ADG), backfat thickness (BFT), and metabolic weight (MW) with the multi-
output method using random forest and different subsets sizes of single-nucleotide polymorphisms (SNPs) as predictor variables. The green 
circle represents the mean. [Colour figure can be viewed at wileyonlinelibrary.com]
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et al. (2020) and Piles et al. (2021) predicted this trait in 
a single-output model from the genotype using different 
sources of information on a population of pigs. In these 
studies, the highest prediction performance of RFI, in 
terms of Spearman correlation, was 0.34 with SVR and 50 
SNPs (Tusell et al., 2020). To improve this prediction per-
formance, the benefits of multi-output and stacking meth-
ods were explored in the present research using the same 
population of pigs.

Multi-output models ensure better predictive per-
formance when the targets are correlated (Breiman & 
Friedman,  1997; Similä & Tikka,  2007). This is a conse-
quence of the fact that they can contribute knowledge 
about each other whereas, single-output models cannot 

exploit this information naturally. This was demonstrated 
by Jia and Jannink (2012) with simulated data. These au-
thors showed that when two traits were genetically un-
correlated and only one of them was highly heritable, the 
multiple-output model was inferior to the single-output 
model, while it was superior when the traits were genet-
ically correlated and only one of them was highly her-
itable. In the case of the traits involved in the definition 
of RFI (i.e., DFI, ADG, BFT, and MW) it is well-known 
that they are moderately heritable and are correlated be-
tween them (Mora et al., 2022). Therefore, it was expected 
that the information on the traits involved in the defini-
tion of RFI considered jointly could improve the predic-
tion performance of every single trait. Different studies 

F I G U R E  7   Boxplot of prediction performance assessed with ranking metrics using random forest for the indirect (multiple 
single-output and multi-output strategies) and direct strategies (stacking and single-output strategies) with different subsets sizes of 
single-nucleotide polymorphisms (SNPs) as predictor variables. The green circle represents the mean. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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in different areas of research have applied multi-output 
methods to improve individual predictions. For example, 
in Han et al. (2012), the aim was to predict the multiple 
gas tank level simultaneously. In this case, the accuracy of 
the single-output model was rather poor perhaps because 
the single-output model can hardly reflect the dynamics 
of the multiple tanks, especially when a certain tank is 
offline. In another study, the advantages of multi-output 
method were used to predict different biophysical param-
eters from remote sensing images simultaneously, leading 
to an improvement with respect to the single-output re-
gression approach (Tuia et al., 2011). However, not in all 
cases multi-output methods outperformed single-output 
methods, but even in those cases, a multi-output method 
may be advantageous if the training period is shorter. This 

is the case of the study of Kocev et al.  (2009), in which 
there is no statistical difference between the multi and 
single-output methods in terms of model performance 
when they tried to predict multiple scores of the condition 
of the vegetation at a given site. In our study, neither multi-
output nor stacking approaches offered an advantage, in 
terms of prediction performance, over the single-output 
strategy to predict RFI. As expected, the simultaneous 
prediction of the traits involved in the definition of RFI 
did not improve their individual predictions. This could 
be because the individual predictions of DFI, ADG, BFT, 
and MW from SNP information were not accurate enough 
(see Figure  5) to contribute relevant information. Thus, 
the prediction performance of computing RFI using the 
individuals or simultaneous predictions of its components 

F I G U R E  8   Boxplot of prediction performance assessed with ranking metrics using support vector for regression for the indirect 
(multiple single-output strategy) and direct strategies (stacking and single-output strategies) with different subsets sizes of single-nucleotide 
polymorphisms (SNPs) as predictor variables. The green circle represents the mean. [Colour figure can be viewed at wileyonlinelibrary.com]
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(indirect strategies) was very similar when RF was used as 
a learner. Likewise, the individual predictions along with 
the genotype as predictors (stacking strategy) did not help 
to improve the prediction performance of RFI. If there are 
certain variables that show accurate predictions based on 
the genotype individually, it is possible that the prediction 
of another variable, which does not have strong individual 
predictions, could be enhanced if it is closely correlated 
with the well-predicted variables. In such cases, the well-
predicted variables would provide valuable information 
while the poorly predicted ones contribute mostly to noise. 
We believe that this applies to both multi-output and stak-
ing analysis. To demonstrate this, we have performed the 
prediction by implementing the staking strategy using the 
actual values of the variables DFI, ADG, BFT, and MW. 
This analysis would correspond to the extreme case of 
staking as we have implemented it, but in which the val-
ues of the RFI components would have been perfectly pre-
dicted. In Figure S4 are the results of this demonstration 
compared with the single-output and stacking strategies. 
The results show that the quality of the RFI prediction is 
almost perfect when the RFI components have been per-
fectly predicted (stacking actual values).

Although the individual predictions of the RFI compo-
nents may not be highly accurate it does not necessarily 
imply that they cannot provide valuable information to en-
hance the accuracy when used in multi-output or stacking 
strategies. In our case, we had no prior information on what 
the minimum thresholds of individual prediction quality 
and correlation between traits would be for these to provide 
valuable information in a multi-output model to improve 
individual predictions. Hence, it was necessary to carry out 
the test. The individual prediction of ADG was previously 
reported by Tusell et al. (2020) reaching a value of 0.30 for 
SC with 1000 SNPs using SVR as a learner. In our study, with 
the same leaner and the same population, this prediction 
performance was 0.26 with 1000 SNPs, but it was not sta-
tistically different from the former. Srivastava et al. (2021) 
also predicted BFT, among other carcass traits, using SNPs 
as predictors in a cattle population. The prediction perfor-
mance of this trait reached its maximum with SVR and it 
was 0.34 in terms of correlation, lower than the value we 
obtained with our individual prediction (0.40) but not statis-
tically different either. Therefore, no good prediction perfor-
mances have been reported for these individual traits using 
ML algorithms and the genotype as the predictor.

In the stacking method, we take the prediction of the 
traits and the genotype to predict RFI. The improvement 
of the stacking method over the single-output has been de-
scribed in several studies. In the agricultural field, Sapkota 
et al.  (2020) proposed a Bayesian multi-output regressor 
stacking to improve the genomic selection of grain com-
position traits, and this method achieved an improvement 
over the single-output model while the multi-output did 

not bring any improvement. Regarding the prediction of 
RFI, Martin et al.  (2021) predicted this trait in Holstein 
cows with staking methods using different sources of 
information such as blood metabolite data and sensor-
derived behaviour. In this case, in the meta-model stage, 
two learning algorithms were combined: RF and gradient 
boosting, while in the present study, we combine the indi-
vidual predictions of the traits involved in the definition 
of RFI in the meta-model phase. Similarly to our study, 
the RFI prediction models provided poor accuracy and the 
staking method did not confer any advantage, being this 
prediction more sensitive to the type of data used as pre-
dictors. This might be because, RFI is hard to predict due 
to its definition. The predictive model could capture any 
variation in RFI corresponding to an additional energy 
sink not considered in the RFI calculation. By contrast, 
in our study, we included the same energy sinks in the 
predictive model that we used to compute RFI, and even 
so, an improvement of this prediction was not achieved. 
Another alternative of stacking could have been to use the 
simultaneous predictions of DFI, ADG, BFT, and MW in 
the meta-model instead of the individual predictions. This 
strategy was not carried out considering the results we ob-
tained when comparing simultaneous and individual pre-
dictions of individual traits.

An alternative to multi-output regressor methods 
is to transform the multi-output model into multiple 
single-output models. In this area, the concept of re-
gressor chains was introduced by Spyromitros-Xioufis 
et al. (2016). This method consists of selecting a random 
chain of the set of target variables, then each model 
makes a prediction in the order specified by the chain 
using all the features provided to the model plus the 
predictions of models in the upstream positions of the 
chain. However, the main problem with this method 
is that is very sensitive to the selected positions in the 
chain, increasing the number of possible configura-
tions of the chain as the number of targets to predict 
increases. Thus, in our study, we decided not to test this 
method to predict RFI because the order to predict the 
variables is not clearly known beforehand.

Apart from the most used metrics to evaluate the pre-
diction performance, we proposed two novel loss func-
tions (zero–one loss and rank distance loss) to evaluate the 
prediction performance of RFI. In the breeding programs 
of prolific species, the objective is to select a percentage 
of the best animals. These loss functions are suitable in 
these cases since they evaluate the quality of the classi-
fication based on belonging to the group of the best 10% 
candidates. To the best of our knowledge, this is the first 
time that a prediction is evaluated with this type of loss 
function in the context of a breeding program.

For all the strategies, machine learning algorithms were 
tested with different subsets of data that contained an 
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increasing number (from 200 to 3000 by 200) of the most 
informative SNPs selected with RF. The idea was to find 
the smallest SNPs subset that is steady and carries a good 
prediction performance. This would allow the use of low-
density SNP panels, a cost-effective practice for breeding 
programs since many animals could be genotyped. Our 
results showed that the quality of the prediction increases 
to reach a maximum with subsets of between 1000 and 
1200 SNPs and remains constant beyond this maximum. 
However, the stability of feature selection for the subset 
of 1000 SNPs was only 0.13 out of 1. This could indicate 
that this set of predictors is not steady enough, that is, this 
set is quite sensitive to changes in the training set. Hence, 
producing a low-density SNP chip including those SNPs 
would not be advisable. In this study, RF for regression was 
carried out for feature selection but other methods could 
offer better stability. Piles et al. (2021) explore the influence 
on the stability of the selected subset of SNPs of various 
combinations of feature selection methods and learners 
for predicting RFI from the genotype. They demonstrated 
that different feature selection algorithms performed simi-
larly well for prediction, but they showed wide differences 
in terms of stability. In our study, the goal was to compare 
the four strategies under the same conditions, and thus we 
chose the SNPs subset with the best prediction performance 
regardless of its model stability. For the same reason, only 
RF for regression and SVR were used as learners of our pre-
dictive models. Many ML algorithms can predict more than 
one output simultaneously, but RF for regression is a good 
choice for their predictive power, the computational time, 
and because it is easy to understand (Kocev et al., 2009). 
Moreover, RF can be considered a scalable algorithm, 
hence, it is promising when it deals with dimensional data 
since it works with subset of data. Compared with SVR, no 
significant differences were observed between these two 
learners for the different prediction strategies.

5   |   CONCLUSIONS

Considering that improving FE is critical in breeding 
programs, this study evaluates the potential advantages 
of multi-output and stacking models to improve the RFI 
prediction compared with single-output models. Unlike 
expected, the simultaneous prediction of the traits in-
volved in the definition of RFI did not improve its predic-
tion quality with respect to their individual predictions. 
In addition, these individual predictions were not accu-
rate enough to provide relevant information to improve 
the RFI prediction jointly with the genotype. This indi-
cates that complex models do not necessarily outperform 
simple approaches and that each case should be assessed 
before making decisions on the method. In our case, for 

the algorithms and feature selection methods tested, the 
single-output RF for regression using a subset of 1000 
SNPs seems to be the best choice to predict RFI in this 
population of growing/finishing pigs.
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