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Abstract

Multichannel Source Separation has been a popular topic, and recently 
proposed methods based on the local Gaussian model (LGM) have pro-
vided promising result despite its high computational cost when several 
sensors are used. The main reason being due to inversion of a spatial 
covariance matrix, with a complexity of O(I3), being I the number of 
sensors. This drawback limits the practical application of this approach 
for tasks such as sound field r econstruction o r v irtual r eality, among 
others. In this paper, we present a numerical approach to reduce the com-
plexity of the Multichannel Non-negative Matrix Factorization (MNMF) 
to address the task of audio source separation for scenarios with a high 
number of sensors such as High Order Ambisonics (HOA) encoding. In 
particular, we propose a parallel multi-architecture driver to compute the 
multiplicative update rules in MNMF approaches. The proposed driver 
has been designed to work on both sequential and multi-core computers,
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as well as Graphics Processing Units (GPUs) and Intel Xeon copro-
cessors. The proposed software was written in C language and can be 
called from numerical computing environments. The proposed solution 
tries to reduce the computational cost of the multiplicative update rules 
by using the Cholesky decomposition and by solving several triangular 
equation systems. The proposal has been evaluated for different scenar-
ios with promising results in terms of execution times for both CPU and 
GPU. To the best of our knowledge, our proposal is the first system that 
addresses the problem of reducing the computational cost of full-rank 
MNMF-based systems using parallel and high performance techniques.

Keywords: Multichannel NMF, High Order Ambisonics, Cholesky 
decomposition, GPU, parallel architecture

1 Introduction

Non-negative matrix factorization (NMF) is a powerful tool for dimensionality
reduction in audio processing. It decomposes a non-negative data matrix (i.e.,
a matrix with non-negative entries) into a product of two lower-rank matrices.
This allows for the approximation of the data matrix as a sum of rank-1
non-negative matrices. This technique is popular due to its universality, as
it can be applied to a wide range of audio sources, including speech, music,
environmental sounds, etc., and its flexibility, as it can be adapted with various
constraints such as harmonicity of spectral patterns, smoothness of activation
coefficients, pre-trained spectral patterns, etc.

However, when dealing with multichannel data, standard NMF is not
suitable. Multichannel audio is becoming increasingly prevalent in today’s
world, with technologies such as distributed microphone arrays and ambisonic
microphones widely adopted for 360-degree videos and Virtual Reality (VR)
experiences. Additionally, the object-based audio format is also widely used
and regarded as a standard VR format. It consists of pairs of object meta-
data and corresponding waveform signals. Placing an audio object anywhere
in space gives listeners an immersive experience that can serve as the audio
part of the six degrees of freedom (6DOF) system proposed in MPEG-I [1]. In
this sense, converting from the High Order Ambisonics (HOA) format to the
object format is highly desired, but requires further processing of the captured
signals.

To address the limitations of standard NMF in handling multichannel data,
various extensions have been proposed, such as stacking channels into one
matrix structure [2] or considering a parallel factor (PARAFAC) model [3].
However, these methods primarily focus on using amplitude information and
do not fully exploit the spatial information present in microphone array record-
ings. To address this issue, the beamspace data model proposed by Lee et al. [4]
incorporates the projection of the input signal onto a set of steered directions
and accounts for the inherent phase-difference information present in these
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recordings. Another approach, as proposed in [5], is to project signals from a 
uniform linear array onto the Ray Space (RS) domain, where spatial informa-
tion is also encoded in the magnitude information. Other methods based on 
the RS domain incorporate the spatial information by using plenacoustic func-
tions [6, 7]. An alternative way for modeling spatial information is through the 
use of signal representations based on spherical harmonic (SH) domain [8, 9] 
or the spatial covariance matrix (SCM) [10].

The multichannel NMF (MNMF) modeling treats the complex-valued 
STFT coefficients as  realizations of  zero-mean ci rcular complex-valued Gaus-
sian random variables with structured variances (using NMF to model the 
signal power spectral density (PSD)) and covariances [11]. However MNMF 
suffers from the strong sensitivity to parameter initialization and a  high com-
putational cost. The former drawback can be mitigated by constraining the 
mixing model as a weighted combination of fixed spatial kernels steering toward 
a subset of possible spatial directions [10, 12] or by initializing the source PSD 
using single channel deep learning techniques [13, 14]. The later drawback lim-
its the practical use of this method for tasks involving a high number of sensors 
for applications such as dereverberation [15], sound field reconstruction [16, 17] 
or navigation for augmented/extended reality [18]. The main reason owing to 
the multiple matrix inversions during the parameter estimation procedure [19].

To mitigate this drawback, several diagonalization based methods have 
been proposed to provide computationally-efficient so lutions [9 , 13 , 17 , 20–
22] at the cost of limiting to certain array setup [22], reducing only to the 
SCM diagonal values [9] or relying on the statistical independence between the 
sources to derive the spatial characteristics [13, 21].

However, to our best knowledge, optimizations of the original full-rank 
solution have not studied in the literature. In this work, we study the effi-
ciency of the original full-rank MNMF in [23] and develop a novel approach 
based on Cholesky decomposition to allow novel MNMF extensions for sce-
narios where a high number of sensors are involved. We focus specifically on 
the application of the MNMF model in the HOA domain for A and B-formats, 
which is the most widely adopted sound field r epresentation. N ote t hat the 
Cholesky decomposition is a powerful tool for efficiently solving linear systems 
and inverting matrices. In the field o f s ignal p rocessing, i t h as b een u sed in 
a variety of applications such as instantaneous fundamental frequency esti-
mation [24], speech enhancement [25], and audio source separation [26, 27]. 
Additionally, it has also been used in combination with other techniques such 
as NMF to reduce dimensionality in data [27–29]. However, this is the first 
work in which the Cholesky decomposition is specifically u sed t o accelerate 
matrix inversions during the parameter estimation procedure in MNMF-based 
models.

In particular, we propose a parallel multi-architecture driver to compute 
the multiplicative update rules in MNMF approaches. The proposed driver has 
been designed for sequential and multi-core computers, as well as Graphics Pro-
cessing Units (GPU) and Intel Xeon coprocessors. Note that our approach can
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be called from numerical computing environments such as MATLAB or GNU 
Octave through MEX (MATLAB Executable) interfaces and from Python.

The structure of the rest of the article is as follows. In Sect. 2, we review 
some of the most common mixtures model representations and present the 
problem formulation. Then, the proposed approach is presented in Sect. 3. In 
Sect. 4, the evaluation setup is presented and the proposed system is tested 
for different scenarios. Finally, we summarize the work in Sect. 5.

2 Background

In this section we will review some of the most common mixtures model rep-
resentations in the literature. Then, the foundation of the multichannel NMF 
will be introduced, from the Local Gaussian Model (LGM) formulation to the 
derivation of the update rules.

2.1 Mixture Models

2.1.1 Microphone Domain

The source separation problem consists in estimating the contribution sj,t ∈ RI 

of each source j = 1, ..., J in each microphone i = 1, ..., I and at each time 
instant t = 1, ..., T . In the absence of noise, the mixture can be written as:

yt =

J∑
j=1

sjt , (1)

where yt = [y1,t, ..., xI,t] ∈ RI are microphone array signals. Under reverberant

conditions and assuming the hypothesis of point sources, the source signal s̃jt
can be related to its contribution sjt through:

sjt = [αj
i ∗ s̃

j ]t (2)

where ∗ denotes the convolution product, αj
i is the impulse response of the

mixing filter between the source j, and the microphone i.

2.1.2 HOA domain

In the HOA domain, any plane wave can be characterized by a sound
signal st and a direction of arrival of the sound γ. The unit vector γ indi-
cates the direction of arrival of the plane wave (the origin of the sound
source). This vector can be decomposed in spherical coordinates as γ =
(cosϕ cos θ, sin θ cosϕ, sin θ), with θ being the azimuth and ϕ the elevation of
the sound source. The SH components gains for source at direction (ϕ, θ) can
be expressed as,

Znm(ϕ, θ) =

√
(2n+ 1)

(n− | m |)!
(n+ | m |)

Pn|m|(sin θ)zm(ϕ) , (3)
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where the SH order and degree are denoted by n and m, respectively. Pn|m| is
the associated Legendre function of degree n and

zm(ϕ) =


√
2 sin | m | ϕ if m < 0

1 if m = 0 .√
2 cos | m | ϕ if m > 0

(4)

Each order n has i = 1, ..., I channels (i.e. SH signals) with I = (n + 1)2.
The SH components are usually ordered using the so-called ACN ambisonics
channel ordering1 as a vector z(γ) ∈ RK containing each Znm(ϕ, θ).

For a general set of multiple localized sources (multiple plane waves) with
signals sjt coming from direction γj , the anechoic ambisonics mixture yt ∈ RI

can be expressed as:

yt =

J∑
j=1

sjty(γ
j) . (5)

As explained in [30], reverberant conditions can be modeled considering an
image-source model of L images modeling reflections and late reverberation
(up to a desired limit). In this way, the mixture model can be expressed as a
function of a propagation delay δjl and a propagation filter hj

l (τ) that models
the absorption and attenuation correspoding to each l-th image of each q-th
source. The resulting reverberant model is expressed as:

yt =

J∑
j=1

sj(t− δj)y(γj) +

J∑
j=1

Ω∑
τ=δj+1

sj(t− τ)hj(τ)) , (6)

where δj are the direct path delays and Ω is the chosen maximum sample
length for the ambisonics IRs. Note that, for causality, the first non-zero index
of hj(τ) is set as τ = δjl .

2.2 Local Gaussian Model

The model assumes that an I-channel vector of a short-time Fourier transform
(STFT) bin for j-th source can be modeled as a multivariate complex Gaussian,
i.e.,

sjft ∼ NC(0,R
j
ft), (7)

where sjft ∈ CI denotes the spatial image of the j-th source in the STFT

domain, Rj
ft = E[sjfts

j
ft

H
] ∈ CI×I denotes the covariance matrix of the com-

plex Gaussian distribution C, where f is the frequency bin index, and t is the
time frame index.

Let us represent the spatial image of a mixture of multiple sources yf,t ∈ CI

as a sum of complex Gaussians, i.e.,

1http://ambisonics.ch/

http://ambisonics.ch/


Springer Nature 2021 LATEX template

6 A parallel kernel based on Cholesky decomposition for MNMF

yft =

J∑
j=1

sjft(ω) ∼ NC(0,Rft), (8)

where Rj
f,t ∈ CI×I denotes the SCM. Under the assumption that the sources

are mutually independent, the SCM of the mixture Rj
f,t can be modeled as

the sum of the SCMs of all sources, i.e.,

Rft = E[yfty
H
ft] =

J∑
j=1

Rj
ft(ω), (9)

and the log-likelihood of the spatial image yft for the model parameters φ can
be expressed as

logPft =

J∑
j=1

logNC(yft | 0, R̂ft(φ)), (10)

where the SCM of the mixture is modeled by R̂ft(φ)) and the parameter φ
will be defined in the next section. The maximization of this likelihood can
be interpreted as the minimization of the log-determinant divergence between
the empirical SCM, R̃ft = yfty

H
ft, and the estimated SCM, R̂ft ∈ CI×I

C(φ) =
∑
ft

DLD

(
R̂ft | R̃ft

)
≡

∑
ft

tr
(
R̃ftR̂ft(φ)

−1
)
+ log det

(
R̂ft(φ)

)
,

(11)
where C(φ) can be seen as a cost function that we want to minimize with
respect to the model parameters φ. We denote the log-determinant divergence
by DLD.

2.3 Multichannel NMF (MNMF)

In [23], the authors proposed a MNMF framework where the SCM mixture R̂ft

is assumed to be a positive definite Hermitian and modeled as a superposition
of time-invariant SCMs Gf,k ∈ CI×I coupled with a scale value λf,t that
represents the PSD and can be modeled using a classical NMF structure. The
scale value can be modeled using a classical NMF structure:

λft =

K∑
k=1

wfkhkt, (12)

where k denotes the NMF component index, wfk and hkt represent both the
basis functions and their corresponding time-varying gains. The SCM mixture
R̂ft can be expressed as:

R̂ft(φ) =

K∑
k=1

Gfkwfkhkt, (13)
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where the model parameters φ = {Gfk, wfk, hkt} can be estimated by min-
imizing the cost function in Eq. (11) using classical algorithms such as
the expectation-maximization (EM) [31] or the majorization-minimization
(MM) [23] to derive the update rules. In particular, for the model in Eq. (13),
the update rules using MM are as follows:

wfk ← wfk

√√√√√∑
t hkt tr

(
R̂−1

ft RftR̂
−1
ft Gf,k

)
∑

t hkt tr
(
R̂−1

ft Gf,k

) (14)

gkt ← gkt

√√√√√∑
t wfk tr

(
R̂−1

ft RftR̂
−1
ft Gf,k

)
∑

f wfk tr
(
R̂−1

ft Gf,k

) (15)

whereas, updating Gfk require to solve an algebraic Riccati equation of the
form GfkAGfk = B. Details are omitted for the sake of brevity but could be
reviewed in [23].

Unfortunately, updating the model parameters requires a huge computa-
tional cost of order O(I3) owing to the multiple matrix inversions during the
parameter updates [19]. This drawback limits the use of this framework when
the number of channels increases. For example, in the HOA, modeling a fourth
order representation requires at least (4 + 1) × 2 = 25 microphones to avoid
spatial aliasing, which makes the method infeasible in practical situations.

As commented in the introduction, several diagonalization based methods
have been proposed to provide computationally-efficient solutions [9, 13, 20–
22] at the cost of limiting to certain array setup [22], reducing only to the
SCM diagonal values [9] or relying on the statistical independence between
the sources to derive the spatial characteristics [13, 21]. However, to our best
knowledge, optimizations of the original full-rank solution have not studied
in the literature. In the next section, we present an approach to optimize the
inverse of full-rank matrices.

3 Proposed approach for reducing the
complexity of MNMF

In this work, a parallel approach for updating the full-rank matrices of MNMF
systems is proposed. In particular, the objective of this work is to provide an
efficient solution to the problem described in Section 2.3, i.e., reducing the
computational cost of the multiplicative update rules in the MNMF approaches
when dealing with high number of microphone signals, such as the case of
HOA encoding.

As presented in Section 2.3, the multiplicative update rules (see Eq. 14
and Eq. 15) involve/////the///////////////calculation///of the inverse of the SCM R̂ft for each
time-frequency point (f, t) and matrix multiplications. These operations entail
a high computational cost for two reasons: 1) it is necessary to repeat them
as many times as the number of iterations required for the convergence of the
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method and as the number of time-frequency points of the input signal spec-
trogram, and 2) the large size of the matrices when dealing with multichannel 
recordings with high number of microphones.

In this sense, the design of a driver that allows to efficiently compute the 
multiplicative update rules is required to develop a feasible MNMF system 
for real scenarios. Therefore, we propose a parallel multi-architecture driver 
designed to work on multi-core computers and GPU. The proposed software 
was written in C language using, as appropriate, OpenMP or the CUDA suite. 
This driver can also be called from numerical computing environments such 
as MATLAB or GNU Octave through MEX (MATLAB Executable) interfaces 
or from Python.

To deal with the goal, we propose to use the Cholesky decomposition for 
Hermitian and positive semi-definite matrices, as explained below. Without 
loss of generality, the target operation to speedup can be expressed as:

α← α

∑
β tr

(
A−1BA−1C

)∑
β tr (A−1C)

(16)

where α, β ∈ R and A,B,C ∈ CI×I . Note that A,B,C are Hermitian and
positive semi-definite matrices. As can be observed, the most costly operation
in Eq. 16 is

Z = tr
(
A−1BA−1C

)
(17)

and, in particular, the inverse ofA, since the number of channels I is really high
in HOA signals. Our proposal consists of reformulating Eq. 17 as a problem of
solving several linear equations systems. In this sense, we can first define the
following systems of linear equations:[

X Y
]
= A−1

[
B C

]
. (18)

This implies

A
[
X Y

]
=

[
B C

]
. (19)

To address these systems, we propose to apply the Cholesky decomposition
on the matrix A. Thus, if A ∈ CI×I is a positive semi-definite Hermitian
matrix, Cholesky decomposition factorizes it into an upper triangular matrix
and its conjugate transpose as follows:

A = UTU. (20)

In our approach, the Cholesky decomposition has been addressed using
the LAPACK implementation based on Level 3 BLAS calls. The total num-
ber of floating-point operations is approximately /////4

3n
3 4
3I

3 for complex flavors
according to LAPACK documentation.

Using the Cholesky decomposition on A, Eq. 19 can be redefined as the
following triangular systems of linear equations:

UT
[
Z1 Z2

]
=

[
B C

]
(21)
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Algorithm 1 Pseudocode of the proposed driver

Input: Matrices A, B and C and scalars α and β.
1: Compute the Cholesky decomposition of A.
2: Obtain Z1 and Z2 solving the linear equation system in Eq. 21.
3: Obtain X and Y solving the linear equation system in Eq. 22.
4: Compute the trace of Y.
5: Compute the trace of XY.
6: Update α using Eq. 23.

Output: The updated value of α.

and
U

[
X Y

]
=

[
Z1 Z2

]
. (22)

These systems are solved in our approach using again the LAPACK imple-
mentation based on Level 3 BLAS calls. These operations (i.e., the Cholesky
decomposition and the equation system solving) require //////28

3 n3 52
3 I3.

Once the equation systems have been solved, Eq. 16 can be reformulated
as:

α← α

∑
β tr (XY)∑
β tr (Y)

. (23)

Finally, the trace of the matrix product XY has been addressed taking
into account that only elements of the diagonal must be computed instead of
computing the whole matrix product.

The pseudocode of the proposed approach is detailed in Algorithm 1.
The code for the proposed parallel multi-architecture driver is freely available
online2.

4 Evaluation and experimental results

In this section, the proposed system is evaluated in terms of execution times
and speedup. In this evaluation, we have conducted several experiments to
analyze the performance and reliability of our proposal is a synthetic dataset.
For this purpose, we have generated several multi-channel synthetic mixtures
with different duration and number of channels. All these mixtures were cre-
ated with a sampling frequency of 44,1 kHz. In particular, the time-frequency
representation used for the mixtures was obtained by using 2048-point short-
time Fourier transform (STFT) and half overlap between adjacent frames.//////The
/////////FFTW///////////package/////[32]//////was//////used////to////////////compute/////the/////////STFT. Finally, the number of
channels considered varied between 64 and 4096.

Regarding the testbed, we have focused our interest on two different sys-
tems. Firstly, we have used a server with two Intel® Xeon® E5-2603 v3
processor with 6 cores each. It operates at 1.60 GHz and HyperThreading
and Turbo Boost are both deactivated. This server has 1 TB of RAM and a

2https://github.com/QHPC-SP-Research-Lab/Parallel-Cholesky-MNMF

https://github.com/QHPC-SP-Research-Lab/Parallel-Cholesky-MNMF
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GPU TESLA P100-PCIe with 16 GB of RAM. /////The//////////////theoretical/////////////////performance
/////(for//////////floating///////point//////////////operations///in/////////double/////////////precision)///of////the///////CPU///is///////////////////approximately
////300//////////////GFLOPS/////////////according/////to//////the///////Intel/////////////////////documentation//////and//////the///////////////theoretical
///////////////performance////of/////the////////GPU///is///////////////////approximately///////4750/////////////GFLOPS//////////////according///to//////the
///////////NVIDIA////////////////////documentation.//////////////Therefore,/////the//////////////theoretical///////////speedup///of/////the///////GPU///////with
/////////respect////to/////the////////CPU////is///////////////////approximately/////16./////////////Secondly,//////the/////////////////experiments///////were
/////////////conducted////on//a/////////server//////with//////two/////////Intel®//////////Xeon®////////Silver///////4314////////////processor///////with////16
//////cores////////each.//////This/////////server////////////operates///at///////2.40//////GHz//////and/////has//////128/////GB////of////////RAM//////and
/a////////GPU///////RTX////////////////A6000-PCIe///////with////48/////GB////of/////////RAM.////In/////this///////case,/////the///////////////theoretical
///////////////performance//////(for//////////floating////////point//////////////operations///in/////////double/////////////precision)////of/////the///////CPU///is
//////////////////approximately///////1200/////////////GFLOPS/////////////according///to/////the///////Intel////////////////////documentation//////and/////the
/////////////theoretical////////////////performance///of/////the///////GPU///is//////////////////approximately///////1210////////////GFLOPS/////////////according
///to////the////////////NVIDIA////////////////////documentation.//////////////Therefore,////we/////////expect//a//////////////theoretical///////////speedup////on
/////this////////server////of///////////////////approximately/////one///////////between/////the////////GPU//////and////////CPU.///////Both///////////systems
////run///////////CentOS/////////Linux///7,/////the//////////////OpenBlas/////////library///////////(release/////////0.3.20,/////////////February/////////2022),
////the//////////FFTW/////////library//////////(release/////////3.3.10,//////////////September/////////2021),/////the//////Intel//////////oneAPI///////////(release
/////////2022.2,//////May////////2022)//////and/////the////////GNU///C/////////////Compiler//7///////with/////the////////////////specification/////4.5////of
////////////OpenMP.///////////////OpenBLAS///is///an/////////////optimized////////BLAS//////////library///////based////on////////////////GotoBLAS2//////1.13
///////BSD. The theoretical peak performance for floating point operations in double
precision (TPPDP) of this system is 307.2 GFLOPS, according to the Intel
documentation3, and the TPPDP of its GPU is approximately 4.7 TFLOPS
according to the NVIDIA documentation4. Therefore, the theoretical speedup
of the GPU with respect to the CPU is approximately 16. Secondly, the
experiments were conducted on a server with two Intel® Xeon® Silver 4314
processor with 16 cores each. This server operates at 2.40 GHz and has 128 GB
of RAM and a GPU RTX A6000-PCIe with 48 GB of RAM. In this case, the
TPPDP of the CPUs is approximately 2.5 TFLOPS and the TPPDP of the
GPU is approximately 1.2 TFLOPS according to the NVIDIA documentation5.
Therefore, we expect the CPU to achieve a theoretical speedup of approx-
imately two compared to the GPU on this server. Both systems run Linux
CentOS Linux 7, Intel oneAPI (release 2022.2, May 2022) and CUDA/cuBLAS
(release 11.6).

4.1 Results

The limits of the proposed approach for both testbeds have been explored in
this section. Thus, in the experimentation, we have measured the complexity
of the developed driver as a function of the size of the target matrices. In this
sense, note that the maximum number of operations analogous to Eq. 16 that
can be carried out simultaneously is given by the size of the GPU and CPU
memory, and thus by the size of the matrices considered. Table 1 summarizes
the number of simultaneous operations, depending on the number of channels
of the input audio mixtures, that can run in the described testbeds. A column

3https://ark.intel.com/
4https://www.nvidia.com/en-us/data-center/tesla-p100/
5https://www.nvidia.com/en-us/design-visualization/rtx-a6000/

https://ark.intel.com/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
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I///#///////////channels # operations # audio frames
64 589824 575
128 147456 144
256 36864 36
512 9216 9
1024 2304 2,2
2048 576 0,6
4096 144 0,1

Table 1: Number of simultaneous operations depending on the number of
channels of the input audio mixtures.

has been included to indicate the approximate number of audio frames pro-
cessed in each case. //////Note///////that/////this/////////////limitation///is////////given////by/////the/////128/////GB////of///////CPU
///////RAM/////and////16/////GB///of///////GPU////////RAM////////////available////for///////both///////////systems.Note that the max-
imum problem size is limited by the different memory capacities of the two
servers used in the experiments. One server has only 128 GB of CPU RAM
and the other has 16 GB of GPU RAM. Thus, both values were chosen to
determine the maximum problem size and ensure a fair comparison between
both servers.

Different CPU and GPU schemes have been considered for the development
of the proposed driver. Regarding the CPU approaches, the first one considered
was based on the //////Intel///////Math/////////Kernel//////////Library//////////(MKL)Intel oneAPI Math Kernel
Library (oneMKL). In this approach, all testbed cores were intensely exploited
using the extensively parallelized matrix product instructions of the library. On
the other hand, a compulsive parallelism approach were implemented based on
OpenMP directives. In this case, the problem was tackled by running multiple
sequential matrix products in parallel.

Concerning the GPU, several techniques were evaluated. /////Note////////that
/////////////techniques///////such///as/////////////zero-copy////or/////////unified///////////memory////do/////not///////////provide///////good//////////results,
//////since//////the////////////memory///////////////reservation/////for////////////matrices////is///////done///////////outside//////the/////////////proposed
////////driver.Note that techniques such as zero-copy or unified memory were not used
(or did not provide satisfactory results) in our approach, as the memory allo-
cation for matrices is done outside the proposed driver. The first approach
considered was the classical one, based on synchronous communications, in
which a continuous flow of data was established to the GPU which processes
the data as it arrives. Next, we proposed an approach based on streams. Finally,
we combined events and streams to use massively parallel programming on the
GPU.

Fig. 1 shows the results obtained in terms of execution times for the Xeon
E5-2603 and Xeon Silver 4314 servers as a function of the number of chan-
nels of the input audio mixtures and the number of simultaneous operations
performed.

Let us start by analyzing the performance of the Xeon E5-2603 server.
///As//////can////be/////////////observed,/////the///////best/////////results/////for///////both////////small//////and///////large////////////matrices/////are
///////////obtained////by////the////////OMP//////////scheme////////////regarding///////CPU///////////////approaches. As can be observed,
regarding CPU approaches, the best results for both small and large matrices
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(a) Execution times measured in the
Xeon E5-2603 server.

64 128 256 512 1024 2048 4096

Number of channels

4

8

16

32

64

128

256

512

1024

E
x
e
c
u
ti
o
n
 t
im

e
s
 [
s
]

OMP - CPU

oneMKL - CPU

Classic - GPU

Events - GPU

Streams - GPU

(b) Execution times measured in the
Xeon Silver 4314 server.

Fig. 1: Experimental results as a function of the number of channels of the
input audio mixtures and the number of simultaneous operations performed
in the testbeds.

are obtained when multiple sequential matrix products are run in parallel using
OpenMP directives. This strategy is referred to as OMP throughout the rest
of the paper. In the particular case of very large matrices, the results obtained
by the ///////MKLoneMKL approach are close to those obtained by OMP. These
results indicates that tackling the problem with ///////MKLoneMKL versus OMP
is only suitable when the matrices are of significant size. Concerning GPU
schemes, we can observe a very similar trend for all the described approaches.
In general, the stream scheme outperforms all the other approaches in terms
of execution times. Note that for matrices with 2048 and 4096 channels the
times obtained for the event-based approach are very similar to those based
on streams. Finally, mention that for small sizes the OMP version provides a
better performance than the GPU versions.

Results for the Xeon Silver 4314 are illustrated in Fig. 1b. In general,
the behavior observed is similar to the one obtained by the Xeon E5-2603
server. However, in this case the OMP approach provides the best performance
compared to the other systems, both for CPU and GPU. This is basically due
to the use of a more powerful CPU (1200 GFLOPS) and a GPU with worse
performance (1210 GFLOPS). For large sizes, the speedup of the GPU respect
to the CPU is very close to one, as we already expected. Again we can see that
the ///////MKLoneMKL approach achieves better results than the OMP approach
for large matrices (i.e., 4096 channels). Finally, among all GPU approaches,
the stream-based scheme obtains the best results.

Fig. 2a shows the results obtained by the Xeon E5-2603 server limiting
RAM consumption to 750 GB. This implies that approximately seven times
more simultaneous operations analogous to Eq. 16 can be run. In this case
we can see that the times obtained have increased by approximately an order
of magnitude. In addition, all approaches have scaled as expected. As can be
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Fig. 2: Experimental results as a function of the number of channels of the
input audio mixtures in the Xeon E5-2603 server. These results were obtained
by limiting RAM usage to 750 GB.
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Fig. 3: Overall performance respect to the peak performance as a function of
the number of channels of the input audio mixtures.

observed, the stream scheme again obtains the best results. On the ohter hand,
Fig. 2b depicts the speedup of the stream version compared to the OMP version
for the Xeon E5-2603 server. These two approaches have been chosen because
they provide the best results for GPU and CPU, respectively. As can be seen,
for audio with few channels, the speedup provided by the GPU scheme with
respect to the CPU scheme is not very high. However, the speedup increases
as the size of the problem grows, indicating that it is more suitable to use
GPU approaches for these cases. This was the expected behavior in view of
the computed theoretical speedup.
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Finally, to assess the resource utilization of our method, we have measured 
its performance in relation to the theoretical peak performance of both servers. 
Figure 3 displays the results as a function of the number of channels in the 
input audio mixtures. For the CPU results, we have chosen the OMP strategy, 
as it provided the best results, and we have varied the number of cores used. 
Additionally, we have included results for the GPU using the Streams, Events, 
and Classics strategies. Figure 3a shows the results for the Xeon E5-2603 
server. As can be observed, the obtained performance increases as the number 
of channels increases, which makes sense since the problem dimension also 
increases. For large sizes, the performance for the CPU reaches 90%. In the 
case of the GPU, the performance is worse and only for large sizes is a 40%
performance achieved. This can be attributed to the fact that the problem size 
may not be large enough to fully utilize the capabilities of the GPU, leading to 
lower performance compared to the CPU. On the other hand, Figure 3b shows 
the results for the Xeon Silver 4314 server. The behavior is similar to the other 
system. However, in this case, it can be observed that the performance for 32 
cores decreases. This may be due to resource saturation, energy constraints, or 
thermal issues [33]. In terms of the GPU, the results obtained for large sizes 
are close to 70%.

5 Conclusion

In this paper, we present a numerical approach to address the audio source 
separation task based on MNMF for recordings with high number of channels, 
such as HOA encoding. In particular, we propose a parallel multi-architecture 
driver to compute the multiplicative update rules in MNMF approaches, opti-
mizing the computation requirements and mitigating the effect o f  t he inverse 
operation in the full-rank model. The proposed driver has been designed to 
work on both sequential and multi-core computers, as well as GPU and Intel 
Xeon coprocessors. The proposed software was written in C language using, as 
appropriate, OpenMP or the CUDA suite. The driver can also be called from 
numerical computing environments such as MATLAB or GNU Octave through 
MEX (MATLAB Executable) interfaces and from Python. The proposed solu-
tion tries to reduce the computational cost of the multiplicative update rules by 
using the Cholesky decomposition and by solving several triangular equation 
systems.

The proposal has been evaluated for different s c enarios w i th promising 
results in terms of execution times for both CPU and GPU. To the best of 
our knowledge, our proposal is the first s ystem t hat a ddresses t he p roblem of 
reducing the computational cost of MNMF-based systems using parallel and 
high performance techniques.

In conclusion, our proposed solution shows promising results in terms of 
computational cost reduction for MNMF-based systems. In future work, we 
plan to integrate this driver into a sound source separation model based on 
MNMF and investigate its use in the ambisonic and/or spherical harmonics
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domain. This would allow for a more comprehensive evaluation of the proposed
method and its potential applications in audio processing. Additionally, we
plan to investigate the potential of the proposed driver to be integrated into
other audio processing pipelines, such as audio object-based format conversion
and sound field reconstruction. Overall, this work contributes to the advance-
ment of audio processing techniques, particularly in the field of multichannel
audio source separation.
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