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Abstract
The detection of genetic material (DNA or RNA) is becoming
increasingly important not only in the clinical practice but also in
food quality control or environmental analysis. Since the amount
of the specific nucleic acid sequences targeted is often very low,
nucleic acid tests usually involve an amplification step, which
makesmany copies of the target. Although the polymerase chain
reaction (PCR) is the gold standard, nature provides amplification
systems that proceed at a constant temperature and are easier to
adapt to electrochemical platforms for point-of-need applications.
In this short review,wechronicle theevolutionofenzyme-assisted
isothermal nucleic acid amplification strategies, specifically
helicase-dependent amplification (HDA), loop-mediated
isothermal amplification (LAMP), and recombinase polymerase
amplification (RPA), directly coupled to conductive platforms to
facilitate the electrochemical transduction, describing the current
state of the art, and identifying some of the challenges to bring
these new platforms to the real practice as point-of-need tests.
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Introduction
Simple, decentralized, affordable, and fast quantitation of
nucleic acids is demanded in different fields such as
www.sciencedirect.com
clinical diagnosis, food safety, environmental monitoring,
or quality control [1,2]. Electrochemical hybridization-
based biosensors have the potential to meet these needs
since they combine the exquisite specificity of Watson-
Crick base pairing with the advantages of electro-

chemical transducers, including, rapid response, simple
instrumentation, compatibility with microfabrication
technologies, thus enabling portability and low cost,
minimum power consumption, and capability of working
with small volumes and cloudy samples. However, a sig-
nificant hurdle in the development of these affinity sen-
sors is that inmost cases the targetmolecules are relatively
long DNA/RNA sequences often at very low levels. In
consequence, a previous nucleic acid amplification pro-
cess is typically required to restrict the size of the oligo-
nucleotide target, thereby facilitating its on-surface

hybridization, while improving the method sensitivity.

At present, the polymerase chain reaction (PCR) is the
most widely used DNA amplification method, and it
only needs the DNA to be amplified (template), a
DNA polymerase enzyme, and two primers. Likewise,
PCR requires cycles of heating and cooling because the
primers cannot bind to the double-stranded DNA
template, and hence the DNA polymerase enzyme
cannot start their elongation unless the template is
thermally denatured [3].

On-surface amplification of nucleic acids allows the inte-
gration of an electrochemical genosensor with a target
amplificationmethodon the sameplatform, thus reducing
the overall analysis time, the likelihood of contamination,
and, ultimately, attaining an actual point-of-need molec-
ular test. To date, however, on-surface nucleic acid
amplification with electrochemical detection has seen a
slow transition to the practice. Here, we explore the
strengths and weaknesses of the latest developments in
electrochemical detection of on-surface enzyme-assisted

nucleic acid amplifications, focusing on isothermal pro-
cesses such as helicase-dependent amplification (HDA),
loop-mediated isothermal amplification (LAMP), and
recombinase polymerase amplification (RPA). To identify
the main challenges to be faced, we chronicle the evolu-
tionof thedifferent approaches reported todate, using the
advances and challenges identified in solid-phasePCRas a
starting point.
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2 Surface Electrochemistry (2023)
Solid-phase PCR
Solid-phase polymerase chain reaction (SP-PCR) ampli-

fication entails the attachment of one or two primers to
the electrode surface through its 50-end, allowing the
extension of the free 30-end catalyzed by the DNA po-
lymerase [4]. Surface confinement of primers helps to
minimize the formation of undesired primer dimers and
provides spatial separation of different target-specific
amplicons for multiplex detection in the same reaction
when using an electrode array.

Nevertheless, solid-phase amplification efficiency is
lower than that described for the liquid-phase coun-

terpart. This loss of efficiency is presumably related to
the steric hindrance of the solid support that would
hamper the capture and enzymatic replication of the
target. To address these issues, several points should
be considered.

(1) In order to make the surface-tethered primer more
accessible to interact with the target, a spacer can
be incorporated to its 50 extreme, thus coming closer
to a homogeneous hybridization [5].

(2) Similar to microarrays and traditional DNA/RNA

biosensors, the hybridization between the attached
primer and the target in solution is highly depen-
dent on the surface density of the former. Thus, a
balance between the number of surface-anchored
oligonucleotides and their accessibility for hybridi-
zation is usually observed as a result of electrostatic
repulsion or steric crowding [6].

(3) As far as replication is concerned, an important tip
to promote the target amplification on the solid
support consists in adding to the solution a small
amount of an unlabeled version of the anchored

primer (i.e. implementation of an asymmetric ratio
of forward and reverse primers in solution). This
way, amplification begins in the liquid phase and
proceeds until the limiting primer is consumed,
resulting in a shorter amplification product. This
one hybridizes more easily with the surface-
tethered primer than the complete target and be-
comes the template for on-solid amplification [7].
To thermodynamically favor the surface reaction,
the in-solution primer must be shorter at its 30-
terminus than the platform-anchored primer. A

difference of approximately 8 �C in the melting
temperature is recommended [8].

(4) Furthermore, the selection of appropriate chemistry
for primer immobilization becomes critical. As the
covalent bond is not significantly affected by
repeated thermal cycles during PCR, it is widely
used [9*].

Regarding the electrochemical transduction of the on-

surface nucleic acids amplification, different strategies
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are possible, and they can be clustered into label-free and
label-based approaches (Figure 1). The study of the
electron transfer rate between a redox pair present in the
solution and the modified electrode surface by either
voltammetry or faradaic impedance spectroscopy (FIS) is
framed within the first group. Another alternative is the
use of a redox species that binds to the generated dsDNA
via intercalation. All of them allow for real-time moni-

toring, conditionedby sensing layer stability; although, the
measurement duration in FIS imposes a higher sampling
time (about 10 min). Nevertheless, improved selectivity
and sensitivity could be expected with those strategies
involving labeled primers for subsequent introduction of a
redox enzyme or even deoxyribonucleoside triphosphates
(dNTPs) functionalized with an electroactive molecule.
The electrochemical quantification of the immobilized
enzymatic activity demands end-point measurements,
while the detection of amplicons harboring an electro-
active molecule attached to their nucleobases requires a

denaturation step that the PCR thermal cycling makes
compatible with real-time tracking [9*].

Solid-phase PCR amplification requires a sophisticated
thermocycling machine for fast and precise temperature
control along with a thermostable DNA polymerase
enzyme, thus being constrained to large laboratory in-
frastructures. Because of these PCR limitations, nucleic
acid amplification methods that proceed at constant
temperature, i.e. isothermal alternatives to PCR, are of
great interest since they do not require complex and

specialized equipment or heat-stable enzymes. These
methods include, among others, HDA, LAMP, and RPA.
They emulate in vivo processes of DNA replication and
their main differences are the enzymes involved and the
mechanism to elude the thermal denaturation of the
double-stranded DNA template that enables primer
annealing in PCR [10**].
Helicase dependent amplification
In HDA, a helicase disrupts the hydrogen bonds be-
tween the complementary strands that make up the
DNA duplexes, and a single-strand DNA-binding (SSB)
protein stabilizes the resulting ssDNA. Afterwards,
primer annealing and extension occur at a fixed tem-
perature of 65 �C [11] (Figure 2a). This amplification
technique was first developed in solution with real-time
[12] and end-point [13] electrochemical detection.

Although slightly slower than PCR [14], the combina-
tion of liquid-phase HDA with an electrochemical
hybridization-based biosensor led to increased selec-
tivity and sensitivity with respect to qPCR [15].

Solid-phase HDA was first developed in combination
with fluorescent detection, although low analytical
sensitivity was reported [16]. Some years later, HDA
integration on conductive indium tin oxide (ITO) sur-
faces was successfully carried out achieving, after 90 min
www.sciencedirect.com
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Figure 1
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b
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Electrochemical transduction of nucleic acid amplification. (a) Label-free strategies: signal-on impedimetric (upper scheme), and signal-off voltammetric
measurements (bottom scheme). (b) Label-based strategies: primer tagged with a hapten, e.g., biotin or fluorescein for incorporation of a redox enzyme
(upper scheme), use of dNTPs modified with a redox probe (bottom scheme). Abbreviations: FIS faradaic impedance spectroscopy, DPV differential pulse
voltammetry, SWV square wave voltammetry.
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of amplification, a detectability in line with that of real-
time PCR [17*]. An electrode-bound reverse primer was

combined with a labeled forward primer in solution,
such that amplification is detectable as an increase in
the activity of alkaline phosphatase on the surface,
electrochemically measured using 1-naphthyl phos-
phate as substrate. The use of asymmetric ratio for the
primers in solution led to a two-stage mechanism
(Figure 2b) supported by the presence of two different
regions in the response curve. No further attempts to
implement and/or improve this methodology have been
reported, despite the conductive and transparent sup-
port allows both electrochemical and optical detection.

The cumbersome multi-step process required for
primer immobilization and the length of the amplifica-
tion step (90 min) represent a practical limitation.
Loop-mediated isothermal amplification
The widely used loop-mediated isothermal amplifica-
tion (LAMP) of DNA operates at a single temperature
www.sciencedirect.com
of 60e65 �C and it requires four primers (forward inner
primer FIP, forward outer primer F3, backward inner

primer BIP, and backward outer primer B3) that recog-
nize six different regions in the sense and antisense
strands of the target as well as a polymerase enzyme
with strand displacement activity, thus circumventing
the thermal denaturation. LAMP follows a two-step
mechanism in which a symmetrical single-stranded
dumbbell structure with two terminal loops is first
generated that serves as the initiator of a cyclic ampli-
fication step. The four primers participate in the first
step, while in the second one, only the inner primers are
involved. Self-priming and elongation of the FIP and

BIP 30-ends induce strand displacement, unfolding of
the hairpin and subsequent folding of the new strand.
By repeating this process, long structured amplicons are
obtained [18] (Figure 3a).

Besides its tolerance of intercalating and non-
intercalating redox probes [19], LAMP is also capable
of incorporating modified deoxyribonucleoside
Current Opinion in Electrochemistry 2023, 40:101322
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Figure 2
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Mechanism of the helicase-dependent amplification (HDA): (a) in solution, (b) on surface.
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triphosphates [20*,21] that could be harnessed for
electrochemical monitoring. LAMP products have been
detected on an electrode surface by capturing the
amplicons once the reaction has finished [22] or even as
they are formed in solution [23,24], but solidephase
LAMP on electrochemical platforms has not reported
so far. Conversely, on-surface LAMP has been very

recently developed in combination with optical detec-
tion [25]. To surmount the challenges posed by its
complex mechanism, two extra primers resulting from
inner primer modification are incorporated, ModFIP and
SSFIP. ModFIP possesses an oligonucleotide tail at its 30-
end that prevents self-priming and, in turn, blocks its
extension. As a result, a primary product of shorter and
defined size is formed in solution, and captured by
SSFIP, the primer attached to the surface, for further
elongation and detection (Figure 3b).

This scheme could be easily integrated into an elec-
trochemical platform by, for example, replacing the
fluorescent label incorporated at the 50-terminus of
conventional BIP by a redox compound, without
excluding the possibility of monitoring the amplification
Current Opinion in Electrochemistry 2023, 40:101322
by recording the changes in the electron-transfer rate of
a redox probe in solution. In any case, similar to HDA,
enzyme-extension of the LAMP primer anchored to the
electrode demands a thermal stable surface chemistry.
Recombinase polymerase amplification
The RPA mechanism is inspired by the homologous

recombination occurring in cells to repair mismatches or
double-strand breaks in the DNA double helix [26,27].
In this method, thermal denaturation of the DNA du-
plexes is replaced by a DNA strand invasion mechanism
catalyzed by a recombinase enzyme. This protein binds
to the primers (ssDNA) and forms a complex that scans
for the homologous sequence in the duplex DNA
(template). Once the homology is located, the complex
invades the dsDNA and triggers a strand exchange re-
action assisted by a single-strand DNA-binding (SSB)
protein that stabilizes the displaced DNA strand. Sub-

sequently, the recombinase dissociates from the com-
plex and the hybridized primers are elongated by a
strand-displacing polymerase at 37 �C. The repetition
of this process results in the exponential amplification of
www.sciencedirect.com
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Figure 3
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Mechanism of the loop-mediated isothermal amplification (LAMP): (a) in solution, (b) on surface.
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the sequence flanked by the pair of primers (Figure 4a).
To get the maximum efficiency, primers of 30e35 nu-
cleotides in length are recommended, although suc-

cessful RPA amplification has been informed when using
shorter primers.

Electrochemical transduction has been applied to the
detection of RPA amplicons produced in solution and
selectively captured with a complementary probe
anchored to the electrode [28e30]. However, with the
aim of attaining a molecular decentralized test, the
implementation of RPA on a conductive surface results
more appealing. The most common approach entails the
immobilization of one primer onto the electrode, while

the other primer is free in solution with the rest of the
reagents. The mechanism of this totally asymmetric
amplification strategy was elucidated (Figure 4b),
excluding a simple entrapment onto the sensing surface
of the products previously amplified in solution [31].
Unlike solid-phase PCR and HDA, the incorporation of
both primers in the solution to shorten the template has
been scarcely explored in RPA [32], presumably due to a
higher prevalence of primer-dimer artifacts, as a
www.sciencedirect.com
consequence of a lower amplification temperature and
longer primers.

Despite the above-mentioned drawback, the low
operation temperature of RPA greatly expands the pos-
sibilities to construct the sensing layer. In particular,
solid-phase RPA is compatible with the primer chemi-
sorption onto gold electrodes, one of the easiest pro-
cesses to fabricate biosensing platforms. When using
this immobilization chemistry, the spacer incorporated
in the grafted primer is generally a tail of thymines [33],
the nucleobase with less affinity for gold.

Recently, in order to maximize the number of immobi-

lized primer molecules with appropriate orientation and
accessibility, 3D architectures as poly(amidoamine)
dendrimers (PAMAM) have been evaluated as scaffolds
for oligonucleotide coupling [34]. The typical approach
based on the dendrimer film formation onto the solid
support, followed by the covalent attachment of oligo-
nucleotides was replaced by the immobilization of
preformed dendrimer-primer hybrids, thus circum-
venting dendrimer aggregation [35]. Even though
Current Opinion in Electrochemistry 2023, 40:101322
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Figure 4
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Mechanism of the recombinase polymerase amplification (RPA): (a) in solution, (b) on surface.
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developed on thermoplastic materials employed in

microfluidic chips, this surface chemistry could be
implemented in conductive surfaces [36].

Different strategies have been proposed for the elec-
trochemical detection of the on-surface generated
amplicons. The simplest one exploits the impedance
changes in the electrode-solution interface in the pres-
ence of ferri/ferrocyanide added to the solution, thus
resulting in a label-free strategy [37]. This method in-
volves two impedance readouts, before and after DNA
amplification. To reduce unspecific adsorption of RPA

reagents onto the binary self-assembled monolayer
(thiolated primer þ 6-mercapto-1-hexanol onto AuNP-
modified SPCEs), a washing step including Tween
detergent is carried out. Upon 1 h of RPA at 25 �C, the
detection of a DNA sequence specific of a plant virus at
1 pg/mL level (ca. 4 � 107 molecules in 15 mL) is
achieved. An alternative label-free approach allows
continuous monitoring (sampling time 5 min) of on-chip
amplicon elongation by recording the decrease in the
current intensity of ferricyanide free in solution arisen
from electrostatic repulsions with DNA. This way, after
Current Opinion in Electrochemistry 2023, 40:101322
40 min of amplification at 37 �C, was possible to detect

about 103 copies of a SARS-CoV-2 gene [38]. However,
it is unclear if the reverse-thiolated immobilized primer
is also added to the solution, and a second concern is
that the approach has only been tested in synthetic
DNA sequences.

Label-based strategies, however, have been more widely
explored. The typical approach for amplicon labeling
consists of using hapten-modified primers for subse-
quent incorporation of a redox enzyme. Because of its
high turnover number, the enzyme peroxidase is

particularly convenient, and generally attached through
biotin-(strept)avidin interaction [31]. Alternatively,
DT-diaphorase-tagged amplicons were generated on an
ITO surface and electrochemically detected employing
1,4-naphthoquinone as the electron mediator [32].

Nevertheless, in order to incorporate multiple labels per
amplicon molecule, thus enhancing its detectability, the
use of modified nucleotides results more convenient.
The RPA reaction accepts deoxyribonucleotides func-
tionalized with haptens [39,40], redox-active molecules
www.sciencedirect.com
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Table 1

Main features of the enzyme-assisted nucleic acid amplification methods.

Parameter PCR HDA LAMP RPA

Operation
temperature

Thermal cycling 65 �C 60–65 �C 37–41 �C

Number of primers 2 2 4 (at least) 2
Primer length 17–28 24–33 20–45 30–35
Software for primer

design
PrimerBLAST and Primer3 Primer3 PrimerExplorer V5 PrimedRPAa

Main enzymes Polymerase Polymerase, helicase Polymerase Polymerase,
recombinase

Amplicon size variable 80–120 Concatenated DNA Up to 1,5 kbp
(ideally 100–200 bp)

Availability Free of patent Partially under patent Free of patent Partially under patent
Tolerance to

inhibitors
Low Moderate Moderate Moderate

Initial thermal
denaturation

yes yes yes no

Kinetics in solution Exponential Exponential Exponential Exponential
Strategy to avoid

thermal cycling
none Strand unwinding

mechanism
Isothermal strand

displacement
Strand invasion

mechanism
Original reference [47] [48] [49] [50]

a PrimedRPA was implemented in Python 3 and supported on Linux and MacOS and is freely available from http://pathogenseq.lshtm.ac.uk/
PrimedRPA.html [46].
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[41], and even enzymes [42] whose activity is not
affected at 37 �C, but the modified dNTPs/natural
dNTPs ratio should be properly optimized.

RPA-based solid-phase primer elongation using
ferrocene-label nucleotides (Fc-dNTPs) has been
recently applied to the electrochemical detection of
single-point mutations [41*]. In particular, four 5’thiol-
modified primers whose base sequence differs only in the
3’terminal nucleobase, the mutation site, were chem-

isorbed onto different electrodes of an array, and subse-
quently incubated with the target DNA containing the
mutation. This one hybridizes with the four surface-
confined primers, but the extension only takes place on
the electrode surface modified with the primer totally
complementary. Prior to Fc detection by square wave
voltammetry, an acidic treatment with glycine-HCl at pH
3was carried out to, according to the authors, removeRPA
reagents nonspecifically adhered, but probably equally
important, to denature the rigid duplex and bring Fc
moieties closer to the electrode surface. This methodol-

ogy allowed the identification of single-pointmutations at
femtomolar level (13.3 fM or about 8х105 copies of
mutant DNA) in fingerpick blood samples after thermal
lysis andminimum dilution. It implies an improvement of
almost three orders of magnitude with respect to just on-
solid primer elongation without RPA amplification [43].

Not yet implemented on conductive surfaces, alternative
RPA-based approaches to detect single-point mutations
have recently been reported. They explore different
strategies to suppress replication of the wild-type allele,
www.sciencedirect.com
while promoting amplification of the mutant allele by
DNA polymerase. One option is the so-called blocked-
RPA, an adaptation of the blocked-PCR at lower and
constant temperature. More specifically, a 30-blocked
oligonucleotide complementary to the wild-type
sequence competes favorably with the primer, inhibit-
ing its amplification [44]. Another alternative makes use
of nuclease-dead forms of clustered regularly interspaced
short palindromic repeats (CRISPR) ribonucleoprotein
complexes as sequence-specific blockers, whose heat

sensitivity makes them incompatible with PCR [45].

Partial substitution of dTTP by HRP-dTTP in the RPA
amplification mixture was performed to obtain, tethered
to a screen-printed gold electrode, a dsDNA product
harboring several redox enzymemolecules. The expected
signal amplification would offset the extra step of adding
the enzyme substrates. This approach was applied to the
detection of an antibiotic resistance gene in E. coli, and
preliminary results revealed significant nonspecific in-
teractions that render difficult the quantification [42].
Conclusion and outlook
Nucleic acid amplification is an essential tool in
numerous fields, being PCR the leading option.
Nevertheless, alternatives running at a constant tem-

perature such as HDA, LAMP, and RPA can be more
easily integrated into electrochemical platforms for the
development of cost-effective and low-power handheld
biosensing devices. In Table 1, a summary of the main
features of the isothermal alternatives to standard PCR
Current Opinion in Electrochemistry 2023, 40:101322
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discussed here is shown. All of them combine, at least, a
DNA polymerase enzyme and a set of primers to initiate
the replication that proceeds exponentially in a liquid
phase. Unlike PCR, kinetics is not determined by
thermal cycling but by the efficiency and processivity of
the enzymes. In this regard, RPA is the fastest of the
three [10], with LAMP and HDA showing similar speed.
And although the criteria for primer design are dissim-

ilar, there are dedicated software to aid in this task. In a
strict sense, only RPA is a true isothermal method
because HDA and LAMP require initial thermal dena-
turation. Recently, however, a new helicase with
enhanced processivity and speed has been engineered,
leading to an improved version of HDA named SHARP
(SSB-helicase assisted rapid PCR) [51].

The integration onto an electrode surface has been
accomplished in the case of HDA and RPA but, consid-
ering the recent findings [25], we envision that solid-

phase electrochemical LAMP will be reported in the
near future. On-surface isothermal amplification,
although not necessarily exponential, is still competitive,
being able to detect few copies of DNA in 40e90 min
and move the multiplex detection closer to the point of
need. In this context, the low working temperature
makes RPA especially attractive, even for developing
wearable tests [52]. However, it is also more prone to
generating spurious nonspecific products, issue
addressed in its variant SIBA (Strand Invasion-Based
Amplification) by incorporation of an invasion oligonu-

cleotide [53]. A general pending task is the integration of
sample preparation and DNA extraction that depend on
the matrix and the specific aim of the analysis. Notably,
the evaluated isothermal amplification methods seem to
be less affected by inhibitors than PCR.
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