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ABSTRACT: The Quantum Theory of Atoms in Molecules (QTAIM) provides
an intuitive, yet physically sound, strategy to determine the partial charges of any
chemical system relying on the topology induced by the electron density ρ(r) . In a
previous work [J. Chem. Phys. 2022, 156, 014112], we introduced a machine
learning (ML) model for the computation of QTAIM charges of C, H, O, and N
atoms at a fraction of the conventional computational cost. Unfortunately, the
independent nature of the atomistic predictions implies that the raw atomic charges
may not necessarily reconstruct the exact molecular charge, limiting the
applicability of the latter in the chemistry realm. Trying to solve such an
inconvenience, we introduce NNAIMGUI, a user-friendly code which combines
the inferring abilities of ML with an equilibration strategy to afford adequately
behaved partial charges. The performance of this approach is put to the test in a
variety of scenarios including interpolation and extrapolation regimes (e.g chemical
reactions) as well as large systems. The results of this work prove that the equilibrated charges retain the chemically accurate
behavior reproduced by the ML models. Furthermore, NNAIMGUI is a fully flexible architecture allowing users to train and use
tailor-made models targeted at any atomic property of choice. In this way, the GUI-interfaced code, equipped with visualization
utilities, makes the computation of real-space atomic properties much more appealing and intuitive, paving the way toward the
extension of QTAIM related descriptors beyond the theoretical chemistry community.

■ INTRODUCTION
Most of the classical, and even some of the modern, chemical
narrative used to understand and predict the properties and
reactivities of a wide variety of compounds has relied, and still
does, on the electron density ρ(r). Moreover, chemical
intuition, and especially within the organic chemistry realm, is
inevitably grounded in ρ-related concepts such as electron
localization and delocalization. Indeed, the latter terms have
been very appealingly employed to rationalize multiple
chemical phenomena,1,2 including the reactivity,3 stability,4

and chemical properties5 (e.g., basicity vs nucleophilicity)
exhibited by a large collection of scaffolds and supramolecular
systems.6,7 Such a trend, triggered by the birth and
development of theoretical and computational chemistry,
has crystallized in numerous quantum-chemical (QM)
descriptors aimed at measuring the magnitude of such an
electron rearrangement. Within these, atomic charges,
condensing the extent of the local accumulation or depletion
of ρ(r) in a molecule, have spread widely across the chemistry
community, given their simplicity, low computational cost,
and intuitive analysis. For instance, they are known to play a
crucial role in current state-of-the-art analyses such as those
employed in the computational modeling of complex
supramolecular processes.8−10

Given the importance that partial charges play in chemistry,
numerous methodologies and approximations have been

derived for their computation. In this context, the Quantum
Theory of Atoms in Molecules (QTAIM),11 formulated by
Richard Bader, offers one of the most rigorous and intuitive
ways to estimate the local electron count of an atom. To do
so, the topology of ρ(r) is used to decompose the R3 space
into a collection of attraction domains from which atomic and
pairwise properties can be obtained upon integration of the
corresponding quantum mechanical operators. Unlike fitting
or semiempirical approaches, such as the commonly
employed Restrained Electrostatic Potential (RESP)
model,12 QTAIM charges are solely derived from first
principles, resulting in more robust and reliable values.
However, just as it happens with other descriptors grounded
in quantum chemical topology (QCT), the fairly high
computational cost of QTAIM calculations has limited their
applicability to small systems. Aiming at ameliorating such a
problem, we recently presented NNAIMQ,13 which, accord-
ing to our knowledge, is one of the first14 neural network
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based machine learning (ML) models designed for the fast
and accurate computation of Bader quantities. The latter
comprises four atomistic feed-forward neural networks
(FFNN) trained to compute QTAIM atomic charges of C,
H, O, and N atoms embedded in neutral gas-phase molecules
at the M06-2X/def2-TZVP level of theory. This approach has
been proven to exhibit reasonable prediction accuracies for
never-seen data, with mean absolute errors between 0.007 and
0.015 electrons on average, while being several orders of
magnitude faster than standard quantum-chemical calcula-
tions. However, the use of independent atomistic models
implies that the expected electroneutrality of the global
systems is not ensured by construction, something which is
furthermore accentuated by the, usually, additive nature of the
atomic errors. Such an inconvenience, particularly problematic
in extrapolation regimes, hinders the application of the ML
models in certain scenarios where quantitatively correct
electron counts are required. For instance, accurate and
well-behaved electron distributions are an absolute must when
it comes to estimating the electrostatic component to the
total interaction energy, where small errors in the former can
easily have detrimental effects on the reliability of the
latter.15−17

To tackle the aforementioned problem, and thus increase
the applicability of previous models, in this work, we
implement different charge equilibration schemes which
redistribute the excess molecular charge to recover the
desirable neutral character. Moreover, and trying to spread
the use of ML models outside the computational chemistry
community, we have designed a user-friendly graphical user
interface (GUI) which makes the computation of Bader
atomic properties much easier and appealing to the average
user. This Python based code, named NNAIMGUI, bears
multiple features to facilitate the calculation and analysis of
the results including: a built-in functionality to load the
starting geometries, a chemical featurization module, multiple
charge equilibration schemes, and a 3D-visualization tool,
among others. Moreover, its flexible architecture allows users
to easily train and apply tailor-made FFNN models, enabling
the prediction of atomic properties within any chemical space
of choice. Besides presenting the NNAIMGUI code, the
reliability and performance of the implemented electron
redistribution approaches is put to the test in multiple
scenarios going from standard equilibrium geometries to
chemical reactions and to even large size systems. The
manuscript is organized as follows: first, a brief overview of
the theoretical foundations behind the NNAIMQ approach
and the charge equilibration schemes is presented. Then, the
algorithmic details of the NNAIMGUI code are introduced,
and the performance of the latter is finally put to the test,
paying special attention to the accuracy of the resultant
atomic charges and the chemical insights that can be distilled
from their analysis. The final section gathers the conclusions
which can be drawn from this work.

■ THEORETICAL BACKGROUND
As first introduced by Bader,11 the Quantum Theory of
Atoms in Molecules (QTAIM) describes a chemical system
relying entirely on the topological features induced by the
ρ(r) scalar field, resulting in a partition of R3 into a collection
of well-defined domains or basins (Ω) separated by zero-flux
surfaces of the ∇ρ(r) field. Given the nonoverlapping nature
of the QTAIM basins, the expectation value of any one-

electron operator Θ can be exactly reconstructed in terms of
local basin expectation values, ΘΩ. Hence, under the QTAIM
approach, the local electron population of an atom (A) can be
obtained from the integration of ρ(r) within the attraction
basin of A (ΩA), and thus, the atomic charge (qA) becomes
readily available as

=q Z r r( ) dA A
A (1)

where ZA is the atomic number of atom A. And, similarly, the
molecular charge (Q) of an N-atom system is obtained from
the summation of all the local values:

=
=

Q q
A

N

1
A

(2)

As previously mentioned, the ML predicted atomic charges
are, unfortunately, not free of errors. The latter can easily add
up to each other, resulting in a predicted molecular charge
different from the exact (quantum-chemically derived) one. It
is thus convenient to measure this excess or deficiency of
electrons for a given system as

=
=

Q q Q
A

N

1
A
pred

(3)

where qApred is the predicted atomic charge for atom A. It
should be noticed that, for neutral molecules (Q = 0), the
previous expression is simplified to the first term (ΔQ =
∑A=1

N qApred).
To alleviate this offset in the reconstruction of the neutral

molecular character, electron redistribution techniques (here
referred to as charge equilibration) can be applied. For the
sake of clarity, it may be worth pointing out that the
equilibration schemes used in this context are rescaling
techniques which try to ameliorate the faults of ML models
and should not be mistaken for the quantum-chemical
approaches used sometimes to compute atomic charges in
the first place, something which is particularly common within
standard molecular dynamics simulations and related
fields18−22 and which has been even merged with modern
ML models.23 In the context of ML, different electron
redistribution algorithms have been developed over the
years.24−26 Under most common approaches, a subtle
correction is applied to every atomic charge (η) such that
the final ΔQ vanishes. For a given atom A, the correction may
take the following general functional form:

=
· ·| |

·| |=

w Q q

w qA N
A

A A
pred

1, A A
pred

(4)

where wA represents the weight given to a particular atom A.
After this, the corrected atomic charges can be readily
obtained by subtracting the η correction to the predicted
atomic charge:

=*q qA
pred

A
pred

A (5)

From the aforementioned expressions, it becomes clear that a
plethora of different algorithms can be employed to assign the
atomic weights (w), leading, hence, to numerous equilibration
schemes. Under the simplest approximation, for instance, the
weights can be homogeneously distributed among all of the
constituting particles, such that for an N-atom system, w is set
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to 1/N for all atoms. Despite its simplicity, this trivial
weighting scheme has been successfully applied in the
literature24,25 to correct ML predicted partial charges.
Additionally, some other more sophisticated and robust
methods have also been proposed in recent years. For
instance, Rai and Bakken26 employed the uncertainty of the
predictions to refine the atomic charges coming from Random
Forest Regressions models, something which has also been
successfully used by Bleiziffer et al.27 to obtain robust density
derived electrostatic and chemical DDEC charges28 as well as
other relevant properties of lead-like molecules. Unfortu-
nately, this type of approach cannot be straightforwardly
applied to independently derived atomic charges, owing to
the fact that each prediction arises from a single ML model.
Nevertheless, an alternative, yet analogous, strategy can be
derived from averaging the errors committed by each
atomistic NN. Although the partial charge of each atom is
derived by a single model, and thus we cannot assign a
conventional standard deviation to a prediction, it is still
possible to use the average error expected in this prediction as
a measure of the uncertainty. For such a purpose, we decided
to employ the error metrics exhibited by the NN models
when evaluated within the NNAIMQ testing database, as
gathered in Figure 1. The former, also referred to as external
validation, comprises a varied collection of 3865 CHON
molecules corresponding to the near-equilibrium chemical
space (further details can be found in the SI, section S5).
Such a database has been proven able to offer an unbiased
picture of the prediction abilities of the NN models. Hence,
the error metrics evaluated within the latter should provide a
reliable and trustworthy estimation of the actual performance
of the predictions.
As shown in Figure 1, although all of the errors are roughly

centered at the ideal values, the offsets are scattered to
different extents, depending on the chemical nature of the
atom. Indeed, this becomes even more evident if one takes a

look at the parameters of the normal distributions fitted to
that data (with parameters μ and σ), collected in Table 1.

It is reasonable to assume that the atomistic predictions
coming from heavily dispersed error distributions (such as the
one found for N atoms) are likely to contribute more to the
total molecular charge error. We have thus decided that they
should be subjected to larger corrections (η), defining weights
proportional to the σ parameter of each error distribution.
Such a strategy offers an approach analogous to that of
Bleiziffer et al.27 Pushing these ideas a bit further, we have
found it rather easy to derive different intuitive functional
forms to relate the weights (w) to representative statistical
and chemical parameters of the predictions. In this work, we
have thus implemented a number of different w flavors for an
N-atom system. For instance, the behavior of the atomic
charge of those atoms bearing a larger nominal electron count
is more likely to withstand to a larger extent the corrections
made upon equilibration. In this way, the weights can be
made proportional to the electron counts (Z − qpred):

=
[ ]

[ ]=
w

Z q

Z qB N
A

A A
pred

1, B B
pred

(6)

Analogously, it is reasonable to assume that, given the lower
prediction accuracy found for the heteroatoms (O,N) when
compared to the lightest species (C,H), the corrections can
be made proportional to the corresponding electronegativities
(χ):

Figure 1. Error distribution of the NNAIMQ predictions evaluated with the external validation (testing) data set. The real and fitted
distributions are shown in red and blue, respectively.

Table 1. Mean (μ) and Standard Deviation (σ) of the Error
Distributions for the Validation Data Sets in NNAIMQa

C H O N

μ 3.77 × 10−5 −2.98 × 10−4 −1.97 × 10−4 −2.83 × 10−4

σ 1.54 × 10−2 8.98 × 10−3 1.11 × 10−2 2.21 × 10−2

aAll values are reported in electrons.
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=
=

w
B N

A
A

1, B (7)

Altogether, and following an analogous approach, we have
derived a total of 11 routines for the assignment of the
corresponding weights, as gathered in Table. 2.

Besides these strategies, relying on different chemical or
statistical features of the data, it should be mentioned that
two additional approaches have been proposed. The latter are
grounded in an iterative procedure that draws noise from the
Gaussian distribution of each NN model to correct the
corresponding partial charges (see SI section S5.2). However,
given their computational cost and debatable performance,
they will not be discussed in detail in the main manuscript. It
is also worth mentioning that the redistribution of the excess
molecular charge by these charge equilibration schemes will
ensure the exact reconstruction of the molecular observables
at the expense of (probably) increasing the noise in the
atomistic predictions. Thus, special care should be taken
when equilibrating the partial charges, as large correcting
factors can partially hinder the quantum chemically accurate
trends offered by the ML models, especially in highly
polarized scenarios with a large excess of molecular charge.
Finally, in order to evaluate the performance of the electron
redistribution schemes used to correct the raw atomic
charges, different error metrics will be used, particularly the
mean absolute error (MAE), the root mean squared error
(RMSE), and the Pearson correlation coefficient (see SI
section S5 for more details). As a general trend, and unless
otherwise specified, all errors are reported relative to the
quantum chemical data, used as a reference.

■ ALGORITHMIC DETAILS
Figure 2 gathers the general protocol involved in the
calculation of equilibrated atomic charges (or any atomic
property in general) with the NNAIMGUI code. The
program requires three main input types:

• Equilibration parameters: These are related to the
electron redistribution strategy to be employed when
predicting QTAIM atomic charges: the factor used to bias
the standard deviation of the normal distributions (Sigma),
the maximum allowed residual molecular charge in the
iterative methods (Qtoler), and the algorithm used to

assign the weights (CEQ). Although NNAIMGUI has a wide
collection of built-in charge equilibration approaches, custom
algorithms can be also employed by selecting CEQ= −1. In
the case of the latter, the path to the corresponding module
must be also specified (for further details check the SI, section
S5).

• Model parameters: Specify the main ML kernel used to
obtain the raw atomic properties in the first place. Both built-
in (NNAIMQ13) and tailor-made models can be used. If
custom kernels are employed, which can be straightforwardly
trained with NNAIMGUI, the path to the model folder
(Model) must be given along with the name of the target
property (Target prop) and property units (Units).
The model folder contains both ACSF (input.ang, input.rad,
and input.type) and FFNN files, the former indicate the
parameters of the collection of Atom Centered Symmetry
Functions (ACSF)29 used to describe the local chemical
environments, whereas the latter gather the actual models
along with some statistical parameters required for the
standardization of the data. Further details on how to load
custom ML kernels can be found in the SI and the
NNAIMGUI GitHub.30

• Input geometry: The input file (with .xyz extension)
gathering the atomic labels and positions must be provided in
terms of general XYZ Cartesian coordinates (given in Å).
These three pieces of information constitute the basic input

of the code, which can be specified either as arguments during

Table 2. Algorithm Used to Assign the Atomic Weights
Throughout the Different Charge Equilibration Schemesa

equilibration
scheme atomic weight (w)

1 1/N
2 |qApred|/(∑B=1

N|qBpred|)
3 [ZA − qApred]/(∑B=1

N[ZB − qBpred])
4 χAS/(∑B=1

NχBS)
5 χAP/(∑B=1

NχBP)
6 σA/(∑B=1

NσB)
7 |μA|/(∑B=1

N|μB|)
8 (|μA|·σA)/(∑B=1

N[|μB|·σB])
9 (|μA|·[ZA − qApred]/rA)/(∑B=1

N|μB|·[ZB − qBpred]/rB)
10 (|μA|·[ZA − qApred])/(∑B=1

N|μB|·[ZB − qBpred])
11 (|μA|·σA·[ZA − qApred]/rA)/(∑B=1

N|μB|·σB·[ZB − qBpred]/rB)
aFurther details about the main parameters of each charge
equilibration kernel can be found in the SI, section S5.2.

Figure 2. Flowchart for the main routines and features of the
NNAIMGUI code. For the sake of clarity, the following color code
has been used: gray for input features, orange for internal inputs, red
for internal outputs, and green for output features. Additionally, the
main routines involved in the calculation of the atomic properties are
shown in violet.
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the execution or through the main control dialogue of the
GUI, as shown in Figure 3. The XYZ coordinates are then fed

into the main ML kernel, which employs the internal SFC
(Symmetry Function Calculator) module to compute the
ACSFs used to describe the chemical environment in the near
vicinity of each atom. Our SFC module can handle a wide
spectrum of ACSF functional forms such that the chemical
features can be optimized for particular applications. The
resultant Atomic Environment Vectors (AEVs) are then
received by the atomistic FFNNs which output the (non-
equilibrated) atomic properties. If dealing with QTAIM
atomic charges, the molecular error accompanying the latter
can then be redistributed across the molecule using one of the
aforementioned correction schemes in such a way that the
desired equilibrated atomic charges are obtained. Finally, the
predictions are shown on the standard output of the code. At
this point, the results can be either saved as a .nnaim file or
visualized with the built-in plotting utility, as shown in Figure
4. In the latter case, additional input information will be
required: VisCl, VisLbl, and VisMap. The colors and
labels of the atoms can be determined either by the atomic
number (using the CPK coloring scheme) or by the value of
the resultant atomic properties, as given by the visualization
parameters VisCl and VisLbl. On the other hand,
different color maps, as implemented in Matplotlib,31 can
be chosen with the aid of the VisMap variable, making the
analysis of the results easier.
Furthermore, the built-in trainer module, shown in

Figure 5, accounts for all of the basic steps required to create
atomistic FFNN models from scratch. Starting from plain data
in extended XYZ format, the chemical features are computed,
and the database is then obtained with the xyz2dtbase
function. The latter is parsed to the trainer.train,
which, after setting the model architecture and hyper-
parameters, trains the FFNNs on the desired target property.
In this way, NNAIMGUI allows nonexperienced users to
create ML models in a few lines of code, which can be later
used to estimate and visualize atomic properties of interest.

Figure 3. Main control and input dialogue of the NNAIMGUI code.

Figure 4. Visualization frame of the NNAIMGUI code showing the molecular representation of the previously estimated and corrected QTAIM
atomic charges.
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Further details on model creation can be found in the GitHub
repository.30 Altogether, we consider that the here imple-
mented features of the NNAIMGUI code could further aid
the intuitive and straightforward determination of reliable
QTAIM atomic properties, paving the way toward the
extension of this and other QCT techniques within the
noncomputational community of the chemistry realm.

■ COMPUTATIONAL DETAILS
All of the additional geometry optimizations, single point
calculations, intrinsic reaction coordinate (IRC) path analyses,
and wave function generations used in this paper were
performed in the gas phase at the M06-2X/def2-TZVP level
of theory, as implemented in the Gaussian 09 quantum
chemistry package.32 The nature of the stationary points
found along the reaction coordinates was characterized
through the analysis of the eigenvalues of the Hessian matrix.
Similarly, the QTAIM atomic charges were obtained from the
corresponding wave functions with the PROMOLDEN33

code. As far as the proteins considered are regarded, single
point calculations were performed on the structures available
in the literature;34,35 further details can be found in the SI
(section S4).

■ RESULTS AND DISCUSSION
We comment now on the NNAIMGUI predictions of well-
behaved QTAIM atomic charges when using different charge
equilibration schemes. We have put to the test the
performance of the code in a wide variety of scenarios,
each of which will be discussed in a particular subsection. As
a clarifying note, and for the sake of simplicity, the different
electron redistribution strategies will be generally referred to
by their previously assigned numbers (as shown in Table. 2).
Additionally, the uncorrected atomic charges will be
designated by the number 0. Similarly, notice that, regardless
of the actual weight assignment strategy employed, atoms
bearing large partial charges are likely to undergo larger
corrections after charge equilibration, as reflected by eq 4.
This becomes particularly prominent in the case of some
heteroatoms, which, owing to their relatively large electro-
negativity, are more likely to be embedded in highly polarized
local chemical fragments, resulting in large partial charges.
Thus, it should not come as a surprise that the largest
equilibration corrections will be found for N and O atoms.
Interpolation Regimes. For the sake of convenience, we

start by analyzing the performance of each charge
equilibration scheme within the interpolation regime of the
parent NN model, where even the raw values should be
moderately well behaved. For such a purpose, the external
validation (testing) data of the original work,13 gathering a
total of 3865 CHON molecules, was used as our testbed
model.
Figure 6 shows the evolution of the errors in the atomic

predictions (as given by the MAE and RMSE errors) as a
function of the equilibration scheme. First of all, it is worth
pointing out that the prediction errors follow the same
behavior found previously for the uncorrected values, with
heteroatoms (O, N) showing, on a general basis, lower
accuracies. This finding arises from the lower number of
training data available for the latter, which, coupled with the
much more dispersed range of values visited by Q(O) and
Q(N) (see SI section 1), results in larger estimation errors.
On the other hand, as far as the charge equilibration scheme
is regarded, two very different behaviors can be discerned: for
C and H atoms, the error metrics are fairly stable, being
almost independent of the electron redistribution strategy
employed. This observation, with MAEs of 0.010 (C) and
0.006 (H) electrons on average, suggests that the corrections

Figure 5. Flowchart of the NNAIMGUI trainer module showing
how FFNN can be easily trained from plain XYZ files.

Figure 6. MAE and RMSE errors for the atomistic predictions of the NNAIMQ external validation data set in combination with different charge
equilibration schemes.
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applied to the C and H atoms do not have a huge impact on
the resulting qualitative and quantitative trends of their
electron counts. Contrarily, the errors made by the
equilibrated predictions of the O and N atoms are notably
higher and fluctuate much more with the equilibration
scheme used. This can be very appealingly explained after
taking a look at the distribution of values of the QTAIM
atomic charges (see SI section 1 for more details): whereas C
and H tend to exhibit an almost neutral character on average,
the partial charges of the heteroatoms (N and O) are
generally clustered within a range of −1.5 and −1.0 electrons,
owing to the much larger electronegativity of the latter.
Hence, the almost locally neutral C and H atoms are
subjected to much more subtle corrections, which allow the
latter to recover, to a higher extent, the quantum chemically
accurate trends reproduced by the ML models. Indeed, this is
also reflected in the dispersion plots of the corrected partial
charges (see SI section 1), which reveal that the equilibration
of the NN predicted values increases, in a more prominent
way, the dispersion of the O and N atoms, in agreement with
the previously shown results.
To further investigate the actual performance achieved by

each charge equilibration scheme, it may be enlightening to
have a look at Table 3, which gathers the average errors as

well as the Pearson correlation coefficients for the equilibrated
atomic charges. As can be seen, all schemes seem to perform
reasonably well, leading only to a very small worsening of the
error metrics (e.g., the MAE increases by 0.001 electrons at
most) with respect to the uncorrected values. This result is
not surprising at all, as in interpolation regimes, the ML
models are usually capable of reconstructing the neutral
molecular character, giving rise to small ΔQ values and thus
relatively innocent equilibration corrections. Nevertheless,
those equilibration strategies relying on the standard
deviation, the electronegativity, or even the straightforward
homogeneous assignment of the weights offer the best
performance on average. Indeed, the application of schemes
1, 4, 5, and 6 provides almost identical MAE and RMSE
metrics to those found for the uncorrected atomic charges,
while yielding quite decent r coefficients (0.996 on average).
These findings indicate that those weighting schemes which
promote larger corrections on the heteroatoms are more
successful, something which fits well with intuition and the
previously mentioned trends: the atomistic predictions of the

N and O atoms are the least reliable ones, being likely to
contribute the most to the total ΔQ and thus undergoing
larger corrections.
Deep Extrapolation Regimes: the Particularly Prob-

lematic Case of Chemical Reactions. Besides testing the
performance of the proposed charge equilibration schemes in
interpolation regimes (where only minor corrections are
usually applied), it is also crucial to test their reliability in
more challenging scenarios. For such a purpose, the evolution
of the equilibrated atomic charges throughout some of the
chemical reactions (Rx) used to test the original version of
NNAIMQ were studied (further information about the
computational details employed for the determination of the
corresponding reaction profiles can be found in the original
ref 13). Chemical reactions, involving bond breaking and
bond formation typically explore situations that lie well within
the extrapolation regimes of ML models. They are thus used
to test their performance since, on a general basis, NN
models are not expected to afford reliable predictions when
extrapolating.
Figure 7 shows a sketch of the reactions that we have

employed as testbed model. Besides the chemical trans-
formations studied before, and for the sake of completeness,
the Diels−Alder cycloaddition between 1,3-butadiene and
acetylene (Rx 3) was also analyzed (see SI section S2 for
more details). Altogether, these systems, combining both
polar and nonpolar species, σ and π bond rearrangements,

Table 3. Global Errors, As Given by the L1 (MAE) and L2
(RMSE) Norms along with Pearson Correlation Coefficient
(r) for Different Charge Equilibration Schemes

CEQ MAE (e−) RMSE (e−) r (a.u.) r2 (a.u.)

0 0.0079 0.0118 0.9963 0.9926
1 0.0081 0.0120 0.9962 0.9924
2 0.0083 0.0124 0.9959 0.9919
3 0.0083 0.0123 0.9961 0.9922
4 0.0081 0.0121 0.9962 0.9924
5 0.0082 0.0121 0.9962 0.9924
6 0.0081 0.0121 0.9962 0.9923
7 0.0083 0.0124 0.9962 0.9923
8 0.0083 0.0126 0.9962 0.9924
9 0.0086 0.0131 0.9962 0.9924
10 0.0085 0.0130 0.9962 0.9924
11 0.0086 0.0131 0.9962 0.9924

Figure 7. Testbed reactions examined in this work. (1) Diels−Alder
cycloaddition between 1,3-butadiene and ethylene, (2) 1,3-dipolar
cycloaddition between acetonitrile oxide and ethylene, (3) Diels−
Alder cycloaddition between 1,3-butadiene and acetylene, (4)
tautomerism of 2-hydroxypyridine, (5) water-catalyzed tautomerism
of 2-hydroxypyridine, and (6) tautomerism of the 2-hydroxypyridine
dimer. The most relevant atoms involved in each chemical
transformation are highlighted in blue.
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and inter- and intramolecular transformations, should be
diverse enough to address the performance of the electron
redistribution approach in common extrapolation regimes.
The most relevant atoms, those which are likely to undergo a
significant change in their electron count throughout the
reactions, are highlighted in blue. Given the large amount of
data, only a collection of representative atoms embedded in
different chemical environments will be selected and
discussed in detail for each element type, as gathered in
Figures 8−11. For the sake of simplicity, the x-axis (ξ) is
simply an integer reaction coordinate. In this way, we can get
a grasp of the actual performance of all of the electron
redistribution schemes in a wide variety of chemical scenarios.

The trends for the remaining atoms can be found in the SI
(section S2.3).
First of all, it is evident that the largest discrepancies

between the equilibrated and the raw (CEQ = 0) values are
usually observed in the vicinity of the transition state (TS)
structures (located at ξ = 31, 17, 50, 25, 25, and 25 for Rx 1−
6, respectively). Such a finding is in perfect agreement with
our intuition: TSs are usually those configurations differing
the most from the equilibrium geometries used to train the
NN models and thus represent the most extreme scenario of
extrapolation. In this regime, ML predictions are likely to fail,
with atomic errors accumulating instead of canceling, which
gives rise to a large ΔQ that in turn yields substantial

Figure 8. Atomic charges of a few selected C atoms along reactions 1, 2, and 6.

Figure 9. Atomic charges of a few selected H atoms along reactions 2, 3, and 5.

Figure 10. Atomic charges of a few selected O atoms along reactions 2, 5, and 6.

Figure 11. Atomic charges of a few selected N atoms along reactions 2, 4, and 6.
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correcting factors (η). Indeed, the spurious accumulation of
molecular charge can easily yield nonphysical trends in the
atomic charges, as evidenced by some of the kinks found in
Figures 10 and 11. This is also reflected in the difference
between the uncorrected atomic charges and the quantum-
mechanically computed ones, as represented by black points
(·) in the aforementioned figures. Actually, the extent of the
offset between the latter values follows essentially the
behavior of ΔQ, as gathered in SI S2.1. Although we will
not enter into more details, the raw predictions show, in
general, a good correspondence with the QM data,
represented as dotted lines, at least on a qualitative level.
Such a result is only slightly worse for N atoms, given the
considerably reduced number of training points used for the
construction of its atomistic NN model as compared to other
species such as C and H.
Now, let us test the reliability of the resultant equilibrated

charges for each chemical element in the set. For C and H
atoms, all schemes afford nearly equivalent trends, in
agreement with the previously observed results for the
interpolation data (see Figure 6). This can be, once again,
attributed to the moderate nominal charge values usually
found for qC and qH. Additionally, it is also worth pointing
out that the behavior found for the different schemes seems
quite homogeneous across the different chemical environ-
ments found in these reactions. Something which becomes
even more evident if we take a look at the average
performance, reported in terms of the L1 and L2 based
error metrics, of each electron redistribution strategy, as
gathered in Figure 12. Not only is the MAE of the C and H
atoms quite independent of the equilibration strategy
employed, exhibiting mean values of 0.03 and 0.02 electrons,
but so are the standard deviations of the latter, as represented
by the shadow of the filled curves.
Altogether, these results suggest that a good performance is

likely to be achieved by any of the equilibration schemes
explored in the extrapolation regime of any of the C or H
atoms. Indeed, and as a general trend, distributing ΔQ does
not seem to significantly worsen the prediction accuracy of
these two species, as reflected by the almost negligible
increase in the errors found for the equilibrated results when
compared to the raw ones (CEQ = 0 in Figure 12). It may be
noted in passing, however, that although the same evolution
of the errors is found for the interpolation and extrapolation

regimes, the absolute values for the former are noticeably
lower than for the latter, with a scale factor of ∼2. Such a
result, also observed in the uncorrected data, is not surprising
as the accuracy of the models is known to significantly drop
when extrapolating.
Considerably different findings are found for N and O,

being much more sensitive to the weight assignment strategy
(see Figures 10 and 11). In parallel to the observations
already reported under interpolation conditions, larger errors
are found when these atoms are compared to their lightest
analogs (C, H). This is not restricted to raw predictions, but
the prominent corrections arising from the large qO and qN
values also have a non-negligible impact on the dispersion of
the latter. Nonetheless, and to our surprise, redistributing ΔQ
does not always increase the prediction errors, as proven by
the partial charges of the N atoms (see Figure 12). Despite
being counterintuitive at first glance, this result can be
explained attending to the particularly bad extrapolation
abilities of the nitrogen NN model, something which, coupled
to the unfamiliar chemical environment visited throughout the
reactions, inevitably increases the uncertainty of the
predictions. This lack of accuracy can easily result in heavily
polarized N atoms (bearing abnormally high or low electron
counts) which in turn build up large ΔQ values. In this
scenario, equilibrating the charges may be particularly
beneficial as it counteracts the bias of the model, resulting
in the spurious decrease of the prediction errors. This effect
can be readily seen in Figure 11, where the corrected atomic
charges are closer to the quantum chemically computed ones
than the starting raw values. On the other hand, opposed
trends are observed for the O atoms: charge equilibration
results in a slight worsening of the qO values, as evidenced by
the moderate increase of the L1 and L2 metrics. Indeed, and
unlike in the case of nitrogen, the evolution of the prediction
errors with the scheme employed is essentially analogous to
that found for the reference database (Figure 6). The success
of the weight assignment strategies in this case depends to a
much higher extent on the chemical environment, as proven
by the increase in the standard deviation of the errors. This is
also observed, although in a much more subtle way, for the N
atoms. In this context, it may be worth highlighting that the
highest discrepancy between different electron redistribution
strategies is found for Rx 2: the prominent polarization of the
system, as reflected by the large partial charges, in

Figure 12. Mean MAE and RMSE errors for the equilibrated atomistic predictions in extrapolation regimes. Partially transparent filled curves
indicate the standard deviation of the results, as computed with all of the chemical reactions here studied.
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combination with the significant ΔQ values (≈ 0.5e) reached
in the vicinity of the TS (see SI section S2.1) gives rise to a
quite noticeable deviation between the corrected and the raw
values, explaining the behavior observed in Figures 10 and 11.
The previously mentioned trend is furthermore enhanced by
the considerably lower number of data points available for O
and N when compared to C and H. Notice that this is not a
result of a biased selection of the training data, but it is
instead a consequence of the natural occurrence of these
elements in common molecules. In fact, in organic chemistry,
these heteroatoms are usually embedded in local functional
groups (e.g OH, NH2) and thus do not constitute the main
skeleton of the molecules. Finally, and as far as the strategy
used to assign the atomic weights is regarded, it seems that
charge equilibration scheme 6 offers the best performance, in
agreement with the results found in interpolation regimes.
Molecular Dynamics (MD) Simulations. Besides the

quantitatively correct values many times employed in the
context of computational chemistry, very valuable chemical
insights can be often drawn from qualitative analyses. It is
thus important to explore how the application of the charge
equilibration schemes alters the response of the electron
count of an atom to a perturbation of its nearby chemical
environment, as measured by the relative changes in the
atomic charges, Δq. With that aim, the behavior of the
equilibrated partial charges along MD simulations of some
medium to large size systems, a cyclopamine molecule and a
steroid-based supramolecular complex {steroid: [CH3OH]3}
(see Figure 13), was studied. Further information about these
systems and the computational details involved in their MD
simulations can be found in ref 13. The combination of the
near-equilibrium structures visited throughout the MD
simulations and the large molecular size places these systems
in a particularly sweet and convenient spot between
interpolation and extrapolation regimes. Additionally, given
the large computational cost of the conventional QM
calculations required to obtain the QTAIM atomic charges
explored during the simulation, the performance metrics will
be reported relative to the raw values (CEQ = 0).
Let us start by analyzing the evolution of the local electron

counts throughout the simulations, as gathered in Figure 14.
For the sake of convenience, a selection of atoms belonging
to widely different chemical environments was selected.
Moreover, and accounting for the large amount of data-
points available for the steroid supramolecular complex, only
bin-averaged data obtained by averaging every 15 MD steps
are reported. Despite the evident offset between the raw and

the corrected charges, all equilibration schemes seem to
appropriately maintain the qualitative trends exhibited by q. It
is worth noticing that this behavior is not exclusive to the
previously shown collection of atoms but that similar results
are obtained for the remaining molecular constituents (see SI
section S3). This clearly proves that distributing ΔQ is
unlikely to significantly alter the trends in the individual
charges. In this way, the resultant corrected partial charges do
hold the chemically intuitive behavior obtained from the
quantum chemical calculations. As an example, one can have
a look at the O atom of the OH group of one of the CH3OH
molecules that binds to the active pocket of the steroidal
scaffold (e.g., O 116 in Figure 14). As shown, the formation
of fairly strong intermolecular interactions (e.g., H-bonding)
triggers a quite prominent electron redistribution between the
molecules. More specifically, as the substrate approaches one
of the carbamate moieties of the steroid skeleton, a non-
negligible decrease in the electron count of the aforemen-
tioned O atom occurs, very clearly reflected by the decrease
of qO. Considerably smaller fluctuations are found throughout
the simulation of the cyclopamine molecule, where atomic
charges are only slightly perturbed by the normal vibration
modes of the molecule. Despite being subtle, these
oscillations can be appealingly recovered by all of the here
explored charge equilibration schemes.
Although all of the weight assignment approaches recover

quite successfully the qualitative trends in the partial charges,
a more robust comparison is provided by the analysis of the
mean correlation and error metrics, as collected in Figure 15.
Once again, it seems that applying larger corrections to the

heteroatoms achieves the best average performance. Indeed,
equilibration schemes 1, 4, 5, and 6 show the best results,
displaying decent error metrics as well as good correlation
coefficients for all of the chemical elements.

■ APPLICATIONS: ADEQUATELY BEHAVED QTAIM
CHARGES IN LARGE SYSTEMS

As a final proof of concept, we use NNAIMGUI in a real, and
more challenging, scenario. For such a purpose, we decided to
predict the QTAIM atomic charges of a collection of CHON
mini-proteins: Chignolin34 and TC5b,35 as shown in Figure
16. Both represent examples of tailor-made protein models
which have been successfully proposed in the literature36−38

as testbed systems to study the nature of a wide variety of
supramolecular phenomena. Hence, these scaffolds, bearing
138 and 309 atoms, respectively, are particularly convenient
to test the applicability of our code for larger systems.

Figure 13. Cyclopamine molecule (left) and the {steroid: [CH3OH]3} supramolecular complex (right).
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Figures 17 and 18 gather the distribution of partial charges,
given in electrons, for both proteins as computed according to
QM and ML methods. All of the molecular graphs have been
rendered with the NNAIMGUI code. Considering the

superior performance of heteroatom penalizing schemes, and
in particular those relying on the standard deviation of the
FFNN error distributions (CEQ = 6), we will restrict our
discussion to this equilibration algorithm.

Figure 14. Evolution of the equilibrated atomic charges of relevant atoms of the cyclopamine (left) and steroid (right) molecules throughout the
MD simulations. The numbering shown in the XYZ Cartesian coordinates of both molecules, gathered in the SI, section S3, was employed.
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From the aforementioned figures, it becomes evident that
the ML model is able to appealingly reproduce the quantum
chemically computed distribution of partial charges for both
proteins. Moreover, correcting the atomic charges with the
aid of the σ-based weight assignment (CEQ = 6) does not
seem to significantly alter the results. It should be pointed out
that such a trend is not exclusive to this particular correction
scheme, but that similar results can be found for the
remaining ones (see SI section S4 for more details).
Analogously, and in agreement with the results found in
previous sections, the atomic errors are not affected up to a

large extent by the redistribution of the excess molecular
charge. This is clearly reflected by the linear and narrow
dispersion found in Figure 19, the correlation plot between
the raw and equilibrated atomic charges for both supra-
molecular structures.
Finally, and as can be seen in Figure 20, the prediction

accuracy of the models is not heavily biased by the
application of the charge equilibration strategy. As expected,
the highest errors are usually observed in the vicinity of the
heteroatom containing scaffolds, such as C�O or NH2
groups, owing to the already mentioned limited extrapolation
abilities of the ML atomistic models for O and N atoms. Such
a distribution of errors does not arise from the application of
the equilibration step, but it is rather intrinsic to the NN
models. Indeed, the results found for the uncorrected values
(see SI section 4) reveal that correcting the atomic charges
may actually soften the topology of the error distributions.
Something which is particularly pronounced for the O and N
atoms and can even result in a subtle improvement of the
accuracy of the predicted atomic charges, as shown in Figure
17, for instance.

■ CONCLUSIONS
NNAIMQ offers a fairly robust approach to compute QTAIM
atomic charges at a much reduced computational cost.
However, the independent nature of the atomistic predictions
does not guarantee the exact reconstruction of the total

Figure 15. MAE, RMSE, and Pearson’s correlation coefficient (r2) of the equilibrated partial charges obtained with different charge equilibration
schemes. All reported values are the average obtained in the MD simulations examined in this work.

Figure 16. Ball and stick representation of Chignolin (left) and TC5b (right) proteins.

Figure 17. Distribution of partial charges (in electrons) in the
Chignolin molecule as computed by electronic structure calculations
(left) and by the NNAIMGUI code. For the latter, the raw (center)
and equilibrated (right) values are shown.
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molecular charge. In this work, we have explored the
possibility of correcting the raw ML predictions with a
simple charge equilibration scheme which can be controlled
by tuning the weight attributed to each atom. These features
have been implemented in a new Python based code, named
NNAIMGUI, which is moreover equipped with a Graphical
User Interface (GUI). The results of this work suggest that,
though simple, the here explored charge equilibration
provides exactly canceling atomic charges which still hold
the quantum-chemically accurate behavior recovered by the

ML models. Besides partial charges, NNAIMGUI can deal
with any other atomic property and chemical space of choice,
allowing the user to easily build and apply their own FFNN
models trained for any particular applications. Altogether, the
findings obtained in this work coupled to the flexibility and
visualization abilities of our code prove that NNAIMGUI
could significantly ease the estimation of well-behaved
QTAIM atomic properties even for noncomputational
chemistry users, paving the way toward the rigorous study

Figure 18. Distribution of partial charges (in electrons) in the TC5b molecule as computed by electronic structure calculations (left) and by the
NNAIMGUI code. For the latter, the raw (center) and equilibrated (right) values are shown.

Figure 19. Dispersion of the equilibrated vs raw atomic charges of
both proteins as predicted by NNAIMGUI.

Figure 20. Distribution of the errors made by NNAIMGUI (CEQ =
6) in the estimation of the partial charges of the Chignolin (left) and
TC5b (right) proteins. All of the errors, reported in electrons, are
computed as the difference between the predicted and the computed
values.
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of computationally demanding problems on feasible time
scales.
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