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A B S T R A C T
Background and objective: Valvular heart diseases (VHD) are associated with elevated mortality
rates globally. Despite transthoracic echocardiography (TTE) being the gold standard detection tool,
phonocardiography (PCG) could be an alternative as it is a cost-effective and non-invasive method
for cardiac auscultation. A lot of researchers have dedicated their efforts to improve the decision-
making process and developing robust and precise approaches to assist physicians in providing reliable
diagnoses of VHDs. Methods: This research proposes a novel approach for the detection of anomalous
valvular heart sounds from PCG signals. The proposed approach combines Orthogonal Non-negative
Matrix Factorization (ONMF) and Convolutional Neural Network (CNN) architectures in a three-stage
cascade, with the aim of improving the learning process and identifying the optimal ONMF temporal
or spectral patterns for accurate detection. The first stage computes the time-frequency representation
of the input PCG signal and performs a band-pass filtering to locate the spectral range most relevant
for the presence of such cardiac abnormalities. In the second stage, the ONMF approach extracts
the temporal and spectral cardiac structures which are used in the third stage to fed into the CNN
architecture for detecting abnormal heart sounds. Results: Several state-of-the-art CNN architectures
such as, LeNet5, AlexNet, ResNet50, VGG16 and GoogLeNet have been evaluated to determine the
effectiveness of using ONMF temporal features for VHD detection. The results reported that the
integration of ONMF temporal features with a CNN classifier produced significant improvements
for VHD detection. Specifically, the proposed approach achieved an accuracy improvement of
approximately 45% compared to using ONMF spectral features and 35% compared to using time-
frequency features from the STFT spectrogram. Additionally, the feeding ONMF temporal features
into low-complexity CNN architectures yielded competitive results comparable to those obtained with
more complex architectures. Conclusions: The temporal structure factorized by ONMF plays a critical
role in distinguishing between normal and abnormal heart sounds since the repeatability of normal
heart cycles is disrupted by the presence of cardiac abnormalities. Consequently, results highlight the
importance of appropriate input data representation in the learning process of CNN models in the
biomedical field of the valvular heart sounds detection.

1. Introduction
Currently and according to World Health Organization

(WHO) [1], cardiovascular disease (CVD) remains the
largest cause of death globally with an estimated 17.9 million
people dying from this cause in 2019 which accounted for
approximately 32% of all deaths worldwide. Specifically,
more than 85% of CVD deaths are due to myocardial
infarction and stroke, more than 33% occur prematurely in
people under the age of 70 and more than 75% of them occur
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in low- and middle-income countries due to late medical
detection. If we focus on Spain, CVDs were responsible for
24.3% of total deaths during 2020 [2].

In general, CVDs are usually associated with physiolog-
ical malfunctioning of the arteries in the cardiovascular sys-
tem, however, there are another type of specific CVDs called
valvular heart diseases (VHDs) that are growing rapidly in
the last years and are associated with structural or func-
tional abnormalities in one or more of the four valves in
the heart. The task of VHD detection is an urgent priority
across Europe [3] because VHDs are also considered a major
heart disease due to their high mortality rates because many
people live with these cardiac disease undetected for several
years until the patient requires immediate medical attention
[4] or receive treatment too late, which can lead to premature
death [3, 5, 6]. Several medical equipments are applied
to VHDs such as, Electrocardiogram (ECG), Chest X-ray
or the TransThoracic Echocardiography (TTE), the latter
being the most reliable diagnostic tool for the detection of
VHD at a costly investment in medical equipment, qualified
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personnel for its analysis and a long period of time for
the acquisition of cardiac data [7]. Because cardiac sound
signals contain relevant information associated with CVDs
[8, 9], auscultation is still applied due to low cost and
together with its non-invasive nature makes such analysis
very attractive to minimize healthcare costs at the expense
of the physician’s expertise to recognise and interpret the
meaning of the sounds heard through the medical devices
[10, 11]. Access to basic health technologies in all primary
care centers is essential to ensure that people in need receive
specialized medical treatment and advice so both the med-
ical and e-health engineering communities are investing a
lot of effort to provide early and reliable diagnosis of VHD
from phonocardiogram (PCG) signal analysis, a PCG signal
being a recording of heart sounds using a digital stethoscope
with the advantage that it can be subsequently analyzed
by several physicians [10]. Optimal treatment of VHD is
complex and resource-intensive, but the cost of not treating
it effectively is much higher, both from the point of view
of the patient and the economic cost to the sanitary system.
Specifically, people suffering from VHD who do not receive
proper medical treatment will typically require long hospital
stays, possible admission to intensive care units and returns
to the hospital, not to mention a reduction in the patient’s
quality of life [3].

A healthy heart is characterized by a periodic sequence
of two primary heart sounds, S1 (known as "lub") and S2
(known as "dub") throughout each cardiac cycle. Each S1
sound occurs just before a short gap known as systole in
which both mitral and tricuspid valves close while each S2
sound occurs just before a short gap known as diastole in
which both the aortic and pulmonary valves close [10]. In
this manner, the healthy heart valves generate an inaudible
blood flow that circulates in a forward direction due to the
correct closing and opening of the heart valves. The normal
heart sounds are associated to the presence of the S1 and
S2 sounds, located most of the relevant spectral content in
the range of 20-150 Hz [12, 13] as shown in the first row
of Figure 1. However, the presence of any VHD implies the
circulation of the blood flow in a backward direction, appear-
ing some of the main types of VHDs such as, aortic stenosis
(AS), mitral stenosis (MS), mitral regurgitation (MR) and
mitral valve prolapse (MVP). The term stenosis indicates a
narrowing of the valve that prevents adequate blood flow,
while the term regurgitation is associated with the inability
to prevent backflow of blood when the valves do not join
properly. As a consequence, any VHD generates an audible
blood flow because it becomes turbulent due to an anoma-
lous heart valve [14], appearing abnormal heart sounds such
as clicks, snaps and murmurs whose significant spectral
components can often be located at higher spectral range
between 500-600 Hz [12, 13]. These abnormal heart sounds
can be categorized according to some features such as timing
(systole or diastole), intensity (holosystolic, crescendo and
descrecendo) and what it sounds like (harsh, high-pitched,
low-pitched or blowing) as shown in the second and third
row of Figure 1.

Several signal processing and machine learning ap-
proaches have been proposed to address heart detection
and classification such as, Hidden Markov Models (HMM)
[15, 16, 17, 18, 19], Chirplet transform [20], Cepstrum
[21, 22], Cochleagram-based spectral clustering [23], Linear
Predictive Coding (LPC) [24], Envelograms [25], K-Nearest
Neighbour (KNN) [26], Support Vector Machine (SVM)
[27, 28, 29, 30, 31, 32], Wavelet entropy [33, 34, 35],
Wavelet transform [36, 37, 38], Entropy [39], Empirical
mode decomposition (EMD) [40], Principal Component
Analysis (PCA) [41, 42], Spectrograms [43, 44] and Mel-
Frequency Cepstrum Coefficients (MFCC) [45, 46] and
Spectral dissimilarity [10]. Recently, deep learning (DL)
techniques have been used in order to save time and avoid
manual time-frequency feature extraction that was per-
formed in most of the previous approaches, where ingrained
knowledge of signal processing is required. In this sense,
DL attempts to automate the feature extraction process
without the intervention of the signal processing engineer
through the training of models most of them being based
on Convolutional Neural Networks (CNN) [47, 48, 49, 50,
51, 52, 53, 54, 55] and Recurrent Neural Networks (RNN)
[56, 57, 58, 59, 60, 61, 62]. Das et al. [23] use spec-
tral clustering as unsupervised cardiac sound segmentation
method achieving a remarkable level of accuracy when
applied on Cochleagram feature. In [32], several features
from heart spectrogram images are extracted using pre-
trained CNN models followed by SVM classifier. In [34],
authors employed time-frequency represrntation based on
wavelet in order to select three two-dimensional feature
distributions comprising six features that included energy
and entropy information to classify and identify normal heart
sounds and systolic heart murmurs. In [38], a system to
classify cardiac disorder is presented in which the feature
extraction is performed using MFCCs and wavelets features
from the heart sounds and applying SVM, deep neural
network (DNN) and KNN. Li et al. [51] addressed the task of
normal and abnormal heart sounds classification combining
a set of feature and a compact CNN model, including a study
to determine the best feature selection and classification
performance based on CNN architecture. Baghel et al.
[54] applied a CNN model to reduce misclassification of
several heart disorders using a denoising stage based on a
Gaussian filter and data augmentation technique to increase
the robustness of the proposal. In order to automate the
feature extraction and selection process in the analysis of
the PCG signal, Chen et al. [62] combined one-dimensional
convolutional neural networks (1D-CNN) and long short-
term memory networks (LSTM) to classify normal and
abnormal heart sounds. Non-negative matrix factorization
(NMF) has been successfully applied in several sound signal
processing areas such as, audio [63, 64, 65, 66, 67], image
[68, 69, 70] and biomedicine [71, 72, 73, 74, 75, 76, 77]
confirming its high potential to find hidden spectral and
temporal structures into the raw data. Canadas et al. [71]
combined similarities and energy distributions from spectral
and temporal NMF patterns to separate heart and lung
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Figure 1: Time-frequency representations (spectrograms) associated to normal and abnormal heart sounds in PCG signals: normal
(A), AS (B), MR (C), MS (D) and MVP (E).

sounds. Dia et al. [73] estimated the heart rate from PCG
signals using an NMF approach based on a source-filter
model to model the quasiharmonic structure of heart sounds.
The study cited as [74] employs non-smooth NMF (nsNMF)
to identify the genes and pathways that are linked with
specific types of cancer. The dimensionality of the data is
reduced by means of nsNMF, which enables the subsequent
training of a cancer type classifier using a SVM model.

The main contribution of this work is to demonstrate
the efficacy of ONMF in improving the learning process
of CNN-based architectures for the detection of abnormal
heart sounds from PCG signals. Thus, ONMF is capable of
extracting relevant temporal structures that contain mean-
ingful cardiac content, thereby allowing for the identification
of significant deviations from the periodic pattern exhibited
by a healthy heart, which are indicative of cardiac mal-
function [21]. To this end, the proposed method consists
of three stages aimed at improving the learning of CNN
architectures for VHD detection. The first stage involves
the computation of a time-frequency representation and the
application of several band-pass filters to determine the most
relevant spectral band for detecting abnormal heart sounds.
The second stage decomposes the input signal and extracts
the time-domain and frequency-domain features associated
to the heart sounds. Finally, the third stage employs a CNN
architecture to detect the presence of valvular heart sounds
using either the temporal or spectral features factorized
by ONMF. Results show that the use of temporal ONMF
features improves the learning of CNN architectures in this
biomedical field since achieves that low-complexity CNN
models provide comparable performance to more complex
CNN models. This underscores the importance of selecting
an appropriate representation of input data during the train-
ing stage of a CNN model.

The remaining sections of the paper are structured as fol-
lows: Section 2 gives a review of the fundamentals of Non-
negative Matrix Factorization and Convolutional Neural
Networks. Section 3 illustrates in detail the proposed method
applied to VHD detection. Section 4 details the setup,
metrics and discusses the experimental results with other
state-of-the-art approaches. Finally, Section 5 describes the
main conclusions and the main directions in future work.

2. Background
2.1. Notations and basic concepts

Consider an input signal 𝑥(𝑡) composed of normal heart
sounds 𝑥𝑁 (𝑡) and abnormal heart sounds 𝑥𝐴(𝑡), being their
sampled versions 𝑥[𝑛], 𝑥𝑁 [𝑛] and 𝑥𝐴[𝑛] where the 𝑛 is the
sample index using a sampling rate 𝑓𝑠 Hz. We assume the
input magnitude spectrogram 𝐗 ∈ ℝ𝐹×𝑇

+ , composed of
𝐹 frequency bins and 𝑇 frames, as a linear mixing model
using 𝐗𝐍 ∈ ℝ𝐹×𝑇

+ and 𝐗𝐀 ∈ ℝ𝐹×𝑇
+ which denotes the

normal and abnormal heart sound magnitude spectrogram
such as, 𝐗 = 𝐗𝐍 + 𝐗𝐀. Each input spectrogram 𝐗 has been
computed by means of the magnitude of the Short-Time
Fourier Transform (STFT) applying a Hamming window
of size 𝑁 with 25% overlap. In this work, a normalized
spectrogram 𝐗 has been computed by enforcing its 𝐿1-norm
equals to the unity in order to be independent with respect to
input spectrogram and to the observation interval,

𝐗 = 𝐗
(

∑𝐹
𝑓=1

∑𝑇
𝑡=1 𝑋𝑓,𝑡

𝐹𝑇

) (1)

Hereafter, the normalized spectrogram 𝐗 will be noted
as 𝐗 to simplify the nomenclature throughout the paper.
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2.2. Non-Negative Matrix Factorization
Classical Non-negative matrix factorization (NMF) [78],

unconstrained NMF, is a technique for multidimensional
data reduction to extract hidden spectral and temporal struc-
tures by means of parts-based representation of objects with
non-negativity of the data. NMF approximates 𝐗 as a linear
combination of the 𝐾 most relevant components (rank) by
means of the product of a non-negative basis matrix 𝐖 ∈
ℝ𝐹×𝐾
+ and a non-negative activation matrix 𝐇 ∈ ℝ𝐾×𝑇

+ .
Each column or basis vector 𝑊𝑖 represents the 𝑖− 𝑡ℎ spectral
pattern associated to physical properties of sounds active in
the input spectrogram while each row or activation vector𝐻𝑖reports the time intervals in which each basis 𝑊𝑖 is active.
Next, the NMF factorization is detailed in Eq. (2),

𝐗 ≈ �̂� = 𝐖𝐇 (2)
�̂� being the estimated spectrogram and it is well-known the
choice 𝐾(𝐹 +𝑇 ) ≪ 𝐹𝑇 to reduce the dimensionality of the
data.

Focusing on the NMF decomposition, it is performed
by minimizing a cost function 𝐷(𝐗|�̂�) that measures the
difference between the input and the estimation so, it ensures
the nonnegativity of the bases and activations applying a gra-
dient descent algorithm based on multiplicative update rules
[79] which are obtained calculating the partial derivatives
of the cost function associated to a given parameter 𝐙 as
follows,

𝐙 = 𝐙⊙

[

𝜕𝐷(𝐗|�̂�)
𝜕𝐙

]−

[

𝜕𝐷(𝐗|�̂�)
𝜕𝐙

]+ (3)

Several cost functions [80, 81] have been previously
used in sound processing such as Euclidean distance, the
Itakura–Saito divergence and the Cauchy distribution, how-
ever, in this work we propose to minimize the generalized
Kullback-Liebler divergence 𝐷𝐾𝐿(𝐗|�̂�) according to its
promising results [71, 75, 76, 10].

𝐷𝐾𝐿(𝐗|�̂�) = 𝐗 log 𝐗
�̂�

− 𝐗 + �̂� = (4)

= 𝐗 log 𝐗
𝐖𝐇

− 𝐗 +𝐖𝐇

The update process of the matrices 𝐖 and 𝐇 can be seen
in Eq. (5) and Eq. (6),

𝐖 ← 𝐖⊙

(

(𝐖𝐇)−1𝐗
)

𝐇𝑇

𝟏𝐇𝑇 (5)

𝐇 ← 𝐇⊙
𝐖𝑇 ((𝐖𝐇)−1𝐗

)

𝐖𝑇 𝟏
(6)

where 𝐖 and 𝐇 are randomly initialized with positive val-
ues, 𝟏 is the all-ones matrix, ⊙ and division represent the
element-wise product and division.

The main drawback of NMF is that it calculates the
reconstruction of the input spectrogram without guarantee-
ing physical meaning of the factorized components [82] or
even factorizing components that are the result of mixing
different parts of several sound sources. An alternative to
overcome this problem is to develop a constrained NMF that
incorporates prior information into the factorization process
by means of additional constraints (see Section 2.3) that help
to converge in a better solution.
2.3. Orthogonal Non-Negative Matrix

Factorization
Orthogonal Non-negative Matriz Factorization (ONMF)

is a constrained NMF that can be considered as the K-means
algorithm, where each basis vector 𝑊𝑖 or activation vector
𝐻𝑖 just correspond to clustering centroids [83]. ONMF has
demonstrated to be a powerful tool applied to sound source
separation [84, 85] and detection [75] since it minimizes the
redundancy between the components of the basis matrix 𝐖,
the activations matrix 𝐇 or both corresponding to a unique
sparse area in the solution region, which learns the most
distinct parts [86]. Considering as an example the orthog-
onality 𝜙(𝐖) applied to bases, 𝐖𝑇𝐖 = 𝐼 must be fulfilled,
in other words, 𝜙(𝐖) = 𝐖𝑇𝐖 − 𝐼 must be minimized
being 𝑇 the transpose operator and 𝐼 the identity matrix.
Incorporating 𝜙(𝐖) into the previous NMF factorization
procedure, the global objective function 𝐷(𝐗|�̂�) is obtained
in Eq. (7) where the basis matrix𝐖 and the activation matrix
𝐇 are computed using a gradient descent algorithm based on
multiplicative update rules [87, 88] until the convergence of
the factorization after 𝐼 iterations.

𝐷(𝐗|�̂�) = 𝐷𝐾𝐿(𝐗|�̂�) + 𝜆𝜙(𝐖) = (7)
= 𝐷𝐾𝐿(𝐗|�̂�) + 𝜆1

2
𝑇 𝑟𝑎𝑐𝑒

(

𝐖𝑇𝐖 − 𝐼
)

𝐖 ← 𝐖⊙
√

𝐗𝐇𝑇

𝐖𝐖𝑇𝐗𝐇𝑇 (8)

𝐇 ← 𝐇⊙ 𝐖𝑇𝐗
𝐖𝑇𝐖𝐇

(9)

where 𝐖 and 𝐇 are randomly initialized with positive val-
ues, 𝜆 controls the importance of the orthogonality con-
straint and the operator 𝑇 𝑟𝑎𝑐𝑒 computes the sum of diagonal
elements of the square matrix 𝐖𝑇𝐖. As a result, each basis
is orthogonal to the rest of them, that is 𝑊𝑖 ⟂ 𝑊𝑗 , 𝑖 ≠ 𝑗.
In this manner, ONMF improves the clustering performance
since it factorizes a wider set of true structures that can be
found in the input spectrogram [89].
2.4. CNN architecture

Convolutional Neural Networks (CNNs) represent a cat-
egory of sophisticated neural network architectures that have
significantly transformed the landscape of image and audio
processing tasks [90, 91, 92, 93, 94, 95]. CNNs are inspired
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by the visual cortex of animals, which uses a hierarchical or-
ganization of receptive fields to process visual information.
Specifically, CNNs are designed to handle large-scale im-
age data extracting meaningful features from images while
preserving the spatial and temporal dependencies inherent in
such data by employing a set of convolutional layers, pooling
layers, and fully connected layers, as follows:

Convolutional layers are the core building blocks of
CNNs and consist of a set of filters 𝐒 that convolve with
the input image to extract local spatial features. These fil-
ters slide over the image in a step-wise manner, and the
output of each filter is then passed typically through the
most used non-linear activation functions 𝜎(⋅), enhancing the
model’s generalization capabilities by enabling it to learn
and recognize patterns in the input data more effectively,
such as, the Sigmoid function, the hyperbolic tangent (Tanh)
function, the Rectified Linear Unit (ReLU) function and the
Leaky ReLU function [90, 93]. Mathematically, this can be
represented as follows:

𝐶𝑖,𝑗,𝑘 = 𝜎(
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
𝐼𝑖+𝑚−1,𝑗+𝑛−1 ⋅ 𝑆𝑚,𝑛,𝑘 + 𝑏𝑘) (10)

Here, 𝐶𝑖,𝑗,𝑘 represents the output of the 𝑘𝑡ℎ feature map at
position (𝑖, 𝑗). 𝐼𝑖+𝑚−1,𝑗+𝑛−1 represents the input image at
position (𝑖 + 𝑚 − 1, 𝑗 + 𝑛 − 1), and 𝑆𝑚,𝑛,𝑘 represents the
weight of the 𝑘𝑡ℎ filter at position (𝑚, 𝑛). 𝑏𝑘 represents the
bias term of the 𝑘𝑡ℎ filter.

Pooling layers are typically used after convolutional lay-
ers to downsample the feature maps and reduce the dimen-
sionality of the representation. These layers perform a spatial
aggregation of nearby features and can be implemented us-
ing max-pooling or average-pooling operations. Considering
the most common type of pooling (max-pooling) can be
expressed as follows:

𝑀𝑖,𝑗,𝑘 = max
(𝑚,𝑛)∈𝑅𝑖,𝑗

𝐶𝑖+𝑚−1,𝑗+𝑛−1,𝑘 (11)

where 𝑀𝑖,𝑗,𝑘 represents the output of the 𝑘𝑡ℎ feature
map at position (𝑖, 𝑗) after max-pooling. 𝑅𝑖,𝑗 represents the
pooling region around the position (𝑖, 𝑗), and typically has a
size of 2x2 or 3x3 [90, 92].

Fully connected (FC) layers are typically added at the
end of the CNN to perform the final classification or regres-
sion task. These layers are similar to those used in traditional
neural networks and consist of a set of neurons that connect
every input to every output allowing for a more nuanced
interpretation of the data. The mathematical equation for a
fully connected layer can be represented as:

𝑌𝑝 = 𝑓 (
𝑁−1
∑

𝑖=0
𝐺𝑖,𝑝𝐷𝑖 + 𝑏𝑝) (12)

where 𝑓 (⋅) denotes the non-linear activation function, 𝑁
is the number of input neurons, 𝑌𝑝 represents the output of
the 𝑝𝑡ℎ neuron, 𝐺𝑖,𝑝 is the weight of the connection between

the 𝑖𝑡ℎ input and the 𝑝𝑡ℎ neuron, 𝐷𝑖 is the 𝑖𝑡ℎ input, and 𝑏𝑝 is
the bias term for the 𝑝𝑡ℎ neuron.

Different CNN architectures have been applied in the
field of image, audio and biomedicine as previously men-
tioned in Section 1 and Section 2.4, where some of the
classical CNN architectures that are still widely used as a
benchmark for classification tasks are described below:

• LeNet-5 [96] was one of the first CNN architectures
proposed by Yann LeCun in 1998 for handwritten
digit recognition. It consists of two convolutional-
pooling layers, followed by two fully connected layers,
and achieves an accuracy equals 99.2% on the MNIST
1 dataset. However, its limited depth and small recep-
tive field reduce its ability to learn complex features
and patterns in large databases.

• AlexNet [97], proposed by Krizhevsky et al. in 2012,
was the first CNN to win the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [98]. It con-
sists of five convolutional layers, three pooling layers,
and three fully connected layers, confirming the effec-
tiveness of deep CNNs and the use of ReLU activation
functions. However, AlexNet exhibits some remark-
able drawbacks such as, the high computational cost
to train and consequently, the high risk of overfitting
due to its large number of parameters.

• VGG16 [99], proposed by Simonyan and Zisserman
in 2014, has a very deep architecture consisting of
16 convolutional layers, five pooling layers, and three
fully connected layers. VGG16 demonstrated the im-
portance of small filter sizes and the use of max-
pooling layers for down-sampling. However, VGG16
has also a high computational cost due to its large
number of parameters so, it can make challenging to
train the model on resource-constrained devices or
with limited memory in order to achieve real-time
applications. Finally, VGG16 can suffere overfitting
since it has a large number of parameters which can
converge to poor generalization performance limiting
the ability of the architecture to be applied to new and
unseen data.

• ResNet50 [100], proposed by He et al. in 2016,
introduced the concept of residual connections, which
allow the network to learn residual functions in-
stead of directly learning the underlying mapping.
ResNet50 consists of 50 layers and achieved state-of-
the-art performance on the ILSVRC 2 and COCO 3
datasets. ResNet50 demonstrated the importance of
depth and residual connections in CNNs. Neverthe-
less, ResNet50 exhibits notable limitations, particu-
larly with regards to memory requirements and inter-
pretability of the learned features. The high memory
requirements arise from the large number of layers,

1http://yann.lecun.com/exdb/mnist/
2http://www.image-net.org/
3https://cocodataset.org/
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Network Conv Layers Pool Layers FC Layers Activation Parameters Accuracy Database
LeNet-5 [96] 2 (5x5) 2 (2x2) 2 Tanh 60k 99.2% MNIST
AlexNet [97] 5 (11x11, 5x5, 3x3) 3 (3x3, 2x2) 3 ReLU 60M 84.7% ILSVRC
VGG16 [99] 13 (3x3) 5 (2x2) 3 ReLU 138M 92.7% ILSVRC
ResNet50 [100] 50 (7x7, 3x3, 1x1) 1 (3x3) 1 ReLU 25.5M 92.5% ILSVRC
GoogLeNet [101] 22 (1x1, 3x3, 5x5) 3 (3x3, 2x2) 2 ReLU 6.8M 93.3% ILSVRC

Table 1
A detailed description, with a specific emphasis on their fundamental layers, relevant parameters, performance metric and databases
used for evaluation, of some classical CNN architectures.

which necessitates a significant amount of memory to
store the activations and gradients during the training
phase. In addition, the high number of layers hinders
the interpretation of the learned features, which can be
crucial for tasks such as feature selection and transfer
learning. These challenges limit the ability to gain
insights into the underlying patterns and structure of
the data.

• GoogLeNet [101], proposed by Szegedy et al. in
2015, introduced the concept of Inception modules,
which consist of multiple convolutional filters with
different kernel sizes and pooling operations. GoogLeNet
achieved state-of-the-art performance on the ILSVRC
dataset and demonstrated the effectiveness of us-
ing multiple filter sizes in a single layer. However,
GoogLeNet can generate significant computational
costs during the training phase mainly due to its com-
plex design, comprising 22 layers with several Incep-
tion modules and multiple paths, which increases the
probability of encountering leakage gradients during
the training process leading to slow convergence and
poor performance.

Finally, Table 1 shows a summary of the main character-
istics of the classical CNN architectures described above.

3. Proposed method
The majority of biomedical signal processing algo-

rithms that rely on CNNs commonly utilize standard time-
frequency representations, such as STFT, wavelet, scalo-
gram, Mel, or log-mel, without considering the physiolog-
ical behavior of the target signal. In this paper, we propose
applying the ONMF approach to extract relevant temporal
information from PCG signals in order to improve the
performance of abnormal heart sound detection facilitating
the learning process of any CNN architecture. The proposed
method consists of three stages: (i) Signal processing; (ii)
ONMF-based feature extraction; and (iii) CNN architecture.
The flowchart of the proposed method is shown in Figure
2, and details are depicted in the following Sections 3.1, 3.2
and 3.3.
3.1. Signal processing

Time-frequency representation using spectrograms ob-
tained through the Short-Time Fourier Transform (STFT)

has been proven to be useful for visualizing the character-
istics and behavior of biomedical sounds [75, 76, 10, 77].
In this regard, the procedure described in Section 2.1 has
been applied to obtain the magnitude spectrogram 𝐗 for
each input PCG signal 𝑥(𝑡). Specifically, each spectrogram𝐗
describes the temporal evolution of the spectral patterns that
composed the input PCG signal, characterizing both in time
and frequency the normal or abnormal heart sounds active
in the recording.

Next, we propose to apply different band-pass filters
on the magnitude spectrogram 𝐗 to find the most relevant
spectral range for the abnormal heart detection. Therefore,
Table 2 reports the cut-off frequencies used to design the
band-pass filters assuming that most of the energy of normal
and abnormal heart sounds can be found between 20-200 Hz
and 200-700 Hz respectively [12, 13]. Figure 3 shows the
magnitude spectrogram 𝐗 for a PCG signal 𝑥(𝑡) composed
of normal and abnormal heart sounds analyzing the spectral
bands 𝐵𝐶 ∈ [20 − 700]Hz, 𝐵𝑁 ∈ [20 − 200]Hz and
𝐵𝐴 ∈ [200−700]Hz, noting some observations: i) Focusing
on the spectral band 𝐵𝐴, it is discernible that the amplitude
of abnormal sounds is notably greater than the amplitude of
normal sounds, which consequently facilitates the differen-
tiation between a subject suffering cardiac abnormalities (as
depicted in subfigure 3F) and a healthy subject (as portrayed
in subfigure 3C); ii) Most of the normal heart sounds are
found in the spectral band 𝐵𝑁 , while only a small proportion
of abnormal heart sounds are present in this frequency range,
which appears to make it difficult to detect the presence of
VHD (subfigure 3E) and a healthy PCG signal (subfigure
3B); and iii) Likewise, the spectral band denoted by 𝐵𝐶poses a challenge in discriminating between a PCG signal
exhibiting the presence (subfigure 3D) or absence (subfigure
3A) of cardiac disorders, given that the energy distribution of
normal and abnormal cardiac sounds is relatively equitable
within this range. The process of hyperparameter optimiza-
tion, as presented in Section 4.4, provides corroborating
evidence that the cardiac content located in the spectral band
𝐵𝐴 is the optimal frequency range for this detection task.
3.2. ONMF-based feature extraction

We propose to extract the temporal and spectral features
of the heart sounds by means of ONMF applied to the
magnitude spectrogram 𝐗 of the input PCG signal 𝑥(𝑡), as
described in Section 2.3. As can be seen in Eq. (7), the
ONMF approach allows to decompose the input magni-
tude spectrogram 𝐗 into the product of two non-negative
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Figure 2: Flowchart of the proposed method applied to the detection of abnormal heart sounds that reveal the presence of VHD.

Band identifier Frequency band (Hz) Spectral content
𝐵𝐹 [20 − 2048] Full spectral band using a sampling frequency 𝑓𝑠 Hz
𝐵𝐶 [20 − 700] Most energy of both normal and abnormal heart sounds
𝐵𝑁 [20 − 200] Most energy of normal heart sounds
𝐵𝐴 [200 − 700] Most energy of abnormal heart sounds

Table 2
Description of the proposed frequency bands.

matrices: basis matrix 𝐖 (frequency characteristics) and
activation matrix 𝐇 (time characteristics). Concretely, 𝐖
provides a dictionary composed of the spectral patterns that
are active in the input PCG signal and 𝐇 stores the temporal
activity of the previous spectral patterns over time. The
procedure to obtain the basis and activation matrix using the
ONMF approach is summarized in Algorithm 1.

Considering the temporal repetitiveness exhibited by
the periodic rhythm of a normal heart sounds, we propose
to use the ONMF activation matrix 𝐇 (temporal features)
in combination with a CNN architecture to improve the
abnormal cardiac detection. In order to clarify the proposal,
Figure 4 shows an example of the ONMF basis 𝐖 and
activation 𝐇 matrices for a PCG signal with and without

Algorithm 1 ONMF
Require: 𝑥(𝑡), 𝐾 , 𝑁 and 𝐼 .
1: Compute the input PCG magnitude spectrogram 𝐗.
2: Normalize the magnitude spectrogram 𝐗 using Eq. (1).
3: Apply a band-pass filtering.
4: Initialize 𝐖 and 𝐇 with random non negative values.
5: Update 𝐖 using Equation (8).
6: Update 𝐇 using Equation (9).
7: Repeat steps 5-6 until the algorithm converges (or until
the maximum number of iterations 𝐼 is reached).
ssreturn 𝐖 and 𝐇

abnormal sounds. On the one hand, both dictionaries 𝐖
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Figure 3: Magnitude spectrogram associated with normal (A, B and C) and abnormal (D, E and F) heart sounds in a PCG signal
analyzing the spectral bands 𝐵𝐶 (A and D), 𝐵𝑁 (B and E) and 𝐵𝐴 (C and F).
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Figure 4: ONMF basis 𝐖 (A and C) and activation 𝐇 (B and D) matrices obtained from a PCG signal with normal (A and B)
and abnormal (C and D) heart sounds analyzing the spectral band 𝐵𝐴.

show spectral patterns with very similar frequency content,
which suggests that the frequency features extracted from the
ONMF approach are not relevant to differentiate a PCG sig-
nal with cardiac abnormalities (subfigure 4C) from a healthy
PCG signal (subfigure 4A). However, the temporal features
extracted from the ONMF in the activations matrices𝐇 seem
to be crucial to determine whether a PCG signal has a VHD
(subfigure 4D) or lacks it (subfigure 4B). In this regard,
preliminary analysis suggested that temporal information
provides clearer insights into cardiac abnormalities by mod-
eling the disruption of temporal repeatability in the periodic
rhythm of a normal heart sound since it is widely known
that cardiac abnormalities are highly dependent on temporal
information encoded between successive heartbeats, as well
as the temporal location in the cardiac cycle of the heart
sound events S1, systole, S2, and diastole [10].

Unlike the classical NMF method, the ONMF is able to
factorize with the most predominant and true spectral struc-
tures active in the cardiac signal. This feature reduces the
problem of fragmentation of a true cardiac spectral pattern
into multiple spectral components. Consequently, ONMF
facilitates the factorization of cardiac spectral patterns with
greater physiological relevance, a feature that is further
demonstrated in its more coherent modelling of the temporal
dynamics of cardiac function.
3.3. CNN architecture: UjaNet

As previously mentioned, the main contribution of this
paper is to combine the temporal information provided by
ONMF with a CNN architecture to facilitate the learning
process in the detection between normal and abnormal heart
sounds from PCG signals. To this end, we have implemented
a simple CNN architecture, denoted as UjaNet, to demon-
strate that the enhancement in learning facilitated by feeding

Layer type Kernel Atribute Activation
Conv2D 5 x 5 16 Filters LeakyReLu

MaxPool2D 2 x 2 -
Conv2D 5 x 5 32 Filters LeakyReLu

MaxPool2D 2 x 2 -
Flatten - -
Dense 100 units LeakyReLu

Dropout 0.5 -
Dense 50 units LeakyReLu

Dropout 0.5 -
Dense 1 units Sigmoid

Table 3
A detailed description of the layers and parameters of the
proposed UjaNet architecture.

the ONMF activations is also applicable to basic architec-
tures that are relatively simple. Specifically, the architecture
UjaNet has been developed based on well-known established
guidelines [90, 93], which are: i) at least two convolutional
layers to facilitate feature extraction process; ii) the size of
the filter kernels should not be too long (not greater than
or equal to 5x5) to reduce the number of parameters and
computations; iii) a reduction layer after each convolutional
layer to reduce the spatial dimensions of the generated
feature map reducing the computational cost of the model;
iv) use a flattening layer before the dense layers to convert
the multidimensional data of the generated feature maps into
a feature vector that can be used by the artificial neural
network for classification; v) use the dropout regularisation
technique to avoid overfitting in the training dataset; and
vi) use the sigmoid function in the final output layer for a
binary CNN classification model. The guidelines, previously
mentioned, are summarised in the Table 3.
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Figure 5: An overview diagram of the proposed method consisting of combining ONMF and CNN architecture.

In summary, Figure 5 shows a complete scheme of the
proposal combining the ONMF activation matrix 𝐇 with the
CNN architecture UjaNet to discriminate between normal
and abnormal heart sounds associated to VHD.

4. Experimental results
In this section, an optimization procedure is employed

to derive the optimal parameter configuration for the ONMF
technique in order to distinguish between normal and abnor-
mal heart sounds. Once the optimal ONMF configuration
has been determined, the performance of a set of standard
CNN architectures will be evaluated using two different data
inputs: i) from the ONMF activations; ii) from the STFT
spectrogram. In this manner, the results of this evaluation
will be used to determine the most effective input data to
improve the learning in the abnornal heart sounds detection
using CNN architectures.
4.1. Dataset

In this study, the publicly accessible database 𝐷𝛾
4 was

utilized for evaluating the proposed method. This dataset has
been widely used for detection and classification of VHD in
several previous studies [38, 54, 102, 6]. It contains 1000
PCG signals obtained from multiple sources, including 2
books and 48 websites [38], and has a resolution of 16-
bits per sample, a sampling frequency of 8 kHz, and a bit
rate of 128 kbps. Each recording is approximately 3 seconds
long, covering at least three cardiac cycles. The dataset was
divided into two groups: a normal set composed of 200
audio samples from healthy individuals (20% of the total)
and an abnormal set of 800 audio samples from patients
with one of the following four major category VHDs: aortic
stenosis (AS), mitral regurgitation (MR), mitral stenosis
(MS), or mitral valve prolapse (MVP) (80% of the total,
with 200 audio samples per type of VHD). A more detailed
description of the dataset can be found in Table 4.

4https://github.com/yaseen21khan/Classification-of-Heart-Sound-
Signal-Using-Multiple-Features-/blob/master/README.md

Patient’s condition VHD Total recordings
Healthy (normal sound) 200

Unhealthy (abnormal sound)

Aortic stenosis (AS) 200
Mitral regurgitation (MR) 200

Mitral stenosis (MS) 200
Mitral valve prolapse (MVP) 200

Total 1000

Table 4
Summary of the evaluated database 𝐷𝛾 [38], detailing type of
patient associated to normal or abnormal heart sounds, type
of VHD and number of recordings per type of VHD.

4.2. Experimental setup
Next, we will outline the initialization of the parameters

utilized in the three blocks of the proposed method: signal
processing, feature extraction, and CNN classifier.

• Signal processing. In a preliminary study, the pa-
rameters used were based on prior work [10] as they
demonstrated the optimal balance between classifi-
cation performance and computational efficiency: a
sampling rate 𝑓𝑠 = 4096 Hz, a Hamming window
with N=128 samples length, 25% overlap (resulting
in a temporal resolution of 7.8 ms) and a Discrete
Fourier Transform (DFT) using 2N points (yielding
a frequency resolution of 4 Hz).

• ONMF-based feature extraction. The convergence
both the NMF and ONMF approaches was empirically
observed after 60 iterations for each signal. As a result,
the number of iteration 𝐼 was set to 60. The parame-
ters involved in the decomposition process, including
the type of factorization (NMF or ONMF), the basis
matrix 𝐖, the activation matrix 𝐇, and the rank or
number of components 𝐾 , were computed through a
comprehensive analysis based on a hyperparametric
optimiation, as described in Section 4.4.

• CNN architecture. A 10-fold cross-validation method-
ology has been implemented during the entire training
procedure and repeated 5 times to guarantee the ro-
bustness of the model, and a consequence, the average
results are presented in a similar way as occurs in
recent biomedical machine learning works [103]. For
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each fold, the database 𝐷𝛾 was divided into train-
ing–testing subsets using a 75%-25% distribution, re-
spectively. Once both subsets were defined, 25% of the
training subset was used for validation. Considering
that the database 𝐷𝛾 is composed of 4 types of VHDs,
as can be seen in Table 4, we ensure that each type of
VHD was distributed proportionally in each fold. In
addition, a total of 30 epochs were used with a batch
size of 16, a learning rate of 0.001 and the adaptive
data momentum (ADAM) optimization algorithm.
Besides, in order to avoid an over-fitting, the early
stopping strategy employed during the training was set
at 10 consecutive epoch, taking as monitor parameter
the validation loss. Finally, the experimental works
were applied using Tensorflow and Keras installed on
a computer with an ntel(R) Core(TM) i9-12900HK
CPU @2.9 GHz with 14 core, NVIDIA GeForce RTX
3080Ti GPU and 16 GB RAM.

4.3. Metrics
In order to determine the type of heart sounds, normal

or abnormal, the performance of the proposed method has
been evaluated using a set of well-known metrics widely
used in the field of biomedical signal processing [104, 6,
105, 42, 106, 103]: i) Accuracy (𝐴𝑐𝑐), the ability to cor-
rectly identify the type of heart sounds, that is, normal
or abnormal; ii) Sensitivity (𝑆𝑒𝑛), the ability to correctly
identify abnormal heart sounds; iii) Specificity (𝑆𝑝𝑒), the
ability to correctly identify normal heart sounds taking into
account the number of misclassified normal heart sounds;
iv) Precision (𝑃𝑟𝑒), the ability to correctly identify abnormal
heart sounds taking into account the number of misclassified
normal heart sounds; and v) Score (𝑆𝑐𝑜) averages the perfor-
mance obtained by the Sensitivity and Specificity. Although
the metric 𝐴𝑐𝑐 has been chosen as the most relevant measure
through the hyperparametric optimization process of the
proposed method (see section 4.4) similarly as occurs in
[23], the four remainder metrics have also been considered
to show specific performances provided by different CNN
architectures when are combined with the proposed method
based on ONMF (see section 4.5).

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(13)

𝑆𝑒𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(14)

𝑆𝑝𝑒 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(15)

𝑃𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(16)

𝑆𝑐𝑜 =
𝑆𝑒𝑛 + 𝑆𝑝𝑒

2
(17)

For the purpose of these metrics, 𝑇𝑃 (True Positive)
represent the number of abnormal heart sounds correctly
detected, 𝑇𝑁 (True Negative) represent the number of nor-
mal heart sounds correctly detected, 𝐹𝑃 (False Positive)

represent the number of normal heart sounds misclassified
as abnormal heart sounds, and 𝐹𝑁 (False Negative) repre-
sent the number of abnormal heart sounds misclassified as
normal heart sounds.

In the training/testing scheme used in this paper, the
confusion matrix has been generated for each fold sequen-
tially. In addition, after all iterations we have calculated the
average confusion matrix. In this sense, all metrics have been
obtained from the average confusion matrix in order to show
the overall detection results and from the confusion matrix
of each fold to show the variability of the cross-validation
methodology used.
4.4. NMF optimization

The use of the proposed ONMF approach is based on
a range of parameters that can significantly impact the per-
formance of the factorization in order to ensure the accurate
and effective detection of abnormal heart sounds. To address
this, a hyperparametric optimization process has been im-
plemented to determine the best combination of parameters
that will improve the learning of the CNN architecture. The
optimization process evaluated four key parameters: i) The
type of non-negative matrix factorization in order to improve
the extraction of spectro-temporal features from the input
signal. In this case, the optimization analyzes the perfor-
mance of the unconstrained NMF with the constrained NMF
based on orthogonality, that is, ONMF; ii) The input data
fed into the CNN architecture. The factorized information
can be derived from the spectral domain represented by
the basis matrix 𝐖 by means of spectral patterns and the
temporal domain represented by the activations matrix 𝐇
which provides temporal features; iii) The bandpass filtering
applied to the input signal, specifically, four different filter-
ing ranges have been considered: 𝐵𝐹 ∈ [20 − 2048]Hz (full
spectral band), 𝐵𝐶 ∈ [20−700]Hz (spectral band with most
energy of both normal and abnormal heart sounds), 𝐵𝑁 ∈
[20 − 200]Hz (spectral band with most energy of normal
heart sounds), and 𝐵𝐴 ∈ [200 − 700]Hz (spectral band
with most energy of abnormal heart sounds); and finally,
iv) The rank or number of components 𝐾 used to factorize
the spectral and temporal content of the input signal, that is,
𝐾 = [16, 32, 64, 128, 256, 512].

Figure 6 shows the performance results obtained from
the hyperparametric optimization previously mentioned to
discriminate normal and abnormal cardiac sounds:

Focusing on the type of non-negative matrix factoriza-
tion and comparing Figure 6A-6C and Figure 6B-6D, it
can be observed the superiority of the ONMF approach
over NMF. The best configuration for both approaches,
Figure 6D, was achieved by using the activations 𝐇 with the
bandpass filter 𝐵𝐴 and 𝐾 = 128 components, resulting in
approximately 25% improvement in performance for ONMF
compared to NMF (see Figure 6B). This is attributed to
the use of a constrained NMF based on the orthogonality
incorporated in the spectral domain because is able to model
the most distinct true cardiac spectral structures hidden in the
input signal avoiding to split a true heart spectral pattern into
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multiple spectral components as is often the case with NMF
so. As a consequence, ONMF factorizes cardiac spectral
patterns with more physiological significance which also
implies a more physiological significance of the temporal
cardiac patterns as it is in line with the results of the fol-
lowing paragraph.

Focusing on the input data fed into the CNN architecture
and comparing Figure 6A-6B and Figure 6C-6D, using
only temporal information from the activation matrix 𝐇
(see Figure 6D) results in a 45% improvement compared to
using only spectral information from the basis matrix 𝐖 as
shown in Figure 6C. The reason seems to be that temporal
information more clearly reveals cardiac abnormalities by
modeling the break in the temporal repeatability exhibited
by the periodic rhythm of a normal heart sound since it is
well-known that cardiac abnormalities depend significantly
on the temporal information encoded between consecutive
heartbeats, as well as the temporal location of the beats in
the cardiac cycle (S1, systole, S2 and diastole). Therefore,
temporal information can be considered more representative
for identifying cardiac abnormalities compared to spectral
information, as the spectral behavior of both normal and
abnormal heart sounds exhibit similar patterns, such as
smoothness across the frequency domain.

Focusing on the bandpass filtering applied to the input
signal and comparing all subfigures in Figure 6, it is found
the optimal bandpass filtering in the frequency range 𝐵𝐴 in
which a high percentage of the abnormal heart sounds often
exhibit the highest energy. Specifically, Figure 6D indicates
a noticeable improvement in detection performance of 18%,
10%, and 9% compared to the band 𝐵𝐹 , 𝐵𝐶 , and 𝐵𝑁 , and
are also in concurrence with the findings from previous
studies that have analyzed comparable spectral bands [107,
108, 109]. The higher performance in the band 𝐵𝐴 seems
due to the higher level of distinguishable information it
offers for identifying abnormal heart sounds, as normal heart
sounds have less energy in this frequency range, resulting in
improved detection compared to other frequency bands. In
contrast, the least restrictive band, 𝐵𝐹 , obtains the lowest
performance due to the presence of non-cardiac sounds
above 700Hz, which may lead to confusion in the learning
of the CNN architecture for detecting cardiac abnormalities.
Bands 𝐵𝐶 and 𝐵𝑁 exhibit similar results (differing by only
1% in terms of average accuracy), with 𝐵𝑁 containing most
of the normal heart sounds and a non-significant proportion
of abnormal heart sounds. Similarly, the band 𝐵𝐶 hinders
the analysis of the cardiac temporal repetitive pattern as the
energy distribution of normal and abnormal heart sounds is
more balanced.

Focusing on the rank of the factorization model, all
subfigures in Figure 6 report the best performance when
the number of components, 𝐾 , is between 32 and 128, with
the best detection observed at 𝐾 = 128. The use of a low
number of components, 𝐾 ≤ 32, in the decomposition
process is insufficient for capturing all the spectro-temporal
characteristics of cardiac sounds, showing a abrupt drop of
more than 48% (see Figure 6D) compared to the optimal

value. Conversely, a high number of components 𝐾 ≥ 256
factorizes spectral patterns that lack of physiological sig-
nificance, as the cardiac spectral structures are fragmented
into multiple components rather than being represented in
individual components, displaying a decline in performance
with a drop of more than 24% in Figure 6D.

In short, the hyperparametric optimization reports that
the optimal performance for detecting normal and abnormal
heart sounds is achieved by using only the temporal features
factorized in the ONMF activation matrix with 𝐾 = 128
components jointly analyzing the content located in the
frequency range 𝐵𝐴 as it often shows most of the relevant
content found in most of abnormal heart sounds that charac-
terize major VHD such as those considered in this work.
4.5. Results and comparative evaluations

The optimized ONMF proposal is used in order to assess
the performance using CNN classifiers, in comparison to a
conventional time-frequency representation, specifically, the
Short Time Fourier Transform (STFT) spectrogram due to
its relevance and efficiency demonstrated in previous works
in the field of biomedical signal processing [75, 76, 10,
77, 103]. Several CNN architectures have been evaluated to
analyze the robustness of the proposed method with different
machine learning models. Hereafter, the results obtained
using the STFT spectrogram are referred to as STFT, while
those obtained from the hyperparametric optimization are
referred to as ONMF. Indicate to the reader that the STFT
spectrograms were filtered in the optimal frequency range
𝐵𝐴 to ensure fairness in the cardiac detection assessment.

The proposed method for detecting abnormal heart
sounds was evaluated using six CNN architectures - UjaNet,
LeNet5, AlexNet, ResNet50, VGG16, and GoogLeNet - as
illustrated in Figure 7. The assessment was based on the
detection performance, which was determined by inputting
both the STFT spectrogram and the ONMF activation matrix
into the classifiers. Each box plot represents 50 data points,
which correspond to a 10-fold cross-validation of the testing
portion of the database𝐷𝛾 . The lower and upper lines of each
box represent the first and third quartiles, respectively, while
the line in the center of each box represents the median.
The diamond shape in the center of each box represents
the average value. The lines extending above and below
each box represent the extent of the remaining samples,
excluding outliers, which are defined as points over 1.5 times
the interquartile range from the median and are depicted as
crosses. The results demonstrate that the use of ONMF tem-
poral information followed by a CNN classifier significantly
improves the detection performance compared to using
the STFT spectrogram in cascade with a CNN classifier,
regardless of the metric or classifier used. Specifically, the
average accuracy results obtained using the ONMF activa-
tions outperform those obtained from the STFT spectrogram
by 35%, 30%, 23%, 10%, 8%, and 6% for UjaNet, LeNet5,
AlexNet, ResNet50, VGG16, and GoogLeNet (see Figure
7A). Additionally, all subfigures of the Figure 7 demonstrate
the promising robustness of the proposed approach for
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Figure 6: Average accuracy results provided by the hyperparametric optimization process considering as input to the CNN network
UjaNet the matrix of bases 𝐖 or activations 𝐇 of the NMF or ONMF approach: subfigure A (NMF-𝐖), subfigure B (NMF-𝐇),
subfigure C (ONMF-𝐖) and subfigure D (ONMF-𝐇). Each pixel represents the metric 𝐴𝑐𝑐(%) obtained from the average confusion
matrix associated with the 10-fold cross-validation of the database 𝐷𝛾 . The rows represent the number of components 𝐾 of the
NMF or ONMF factorization process and the columns represent each bandpass filter applied (𝐵𝐹 , 𝐵𝐶 , 𝐵𝑁 or 𝐵𝐴).

each metric being the average accuracy results obtained
by ONMF very similar for all the evaluated classifiers and
range from 93% (AlexNet) to 98% (GoogLeNet). Moreover,
the use of temporal information from the ONMF approach
significantly improves the detection performance of UjaNet,
LeNet5, and AlexNet, which were not competitive using
the STFT spectrogram. In fact, using temporal information
from ONMF, UjaNet, LeNet5, and AlexNet not only become
competitive but also show behavior similar to that of more
complex networks such as ResNet50. This fact reports that
the ONMF temporal characteristics play a crucial role in
detecting the presence of cardiac abnormalities emphasizing
the importance of using an appropriate representation of
input data in the learning process of a CNN model as occurs
in recent works [110, 103]. Focusing on Figures 7B and
7C, outcomes also indicate that the detection performance
using the ONMF approach is higher for all the evaluated
CNN architectures. However, it should be noted that this
higher sensitivity, Figure 7B, does not necessarily mean that
the proposed approach prioritizes the detection of abnormal
heart sounds at the expense of reducing the correct diagnosis
of healthy patients (see Figure 7C) since it must be a trade-
off that should be evaluated by medical physicians based
on the specific application and the requirements. Figure
7B shows that the ONMF proposal improves the reliability
in the diagnosis of the presence of cardiac abnormalities
and provides a lower dispersion, specifically, a dispersion
between 13% (VGG16) and 40% (AlexNet) when using
the STFT spectrogram, and between 2% (GoogLeNet) and
10% (AlexNet) when using the ONMF approach. This fact

suggests that the ONMF approach improves the training of
the CNN models, making the detection less affected by the
subset of the database used for training, in other words,
the ONMF approach successfully generalizes the behavior
of abnormal heart sounds, regardless of the subset of the
database used for training.

Figure 8 shows the average confusion matrix generated
after all iterations composing the 10-fold cross-validation
process for all CNN networks evaluated using the STFT
spectrogram and the ONMF activations. Specifically, it re-
ports that the improvement produced by the ONMF model
over the STFT spectrogram is higher in terms of FN com-
pared to FP for all evaluated networks so, this leads to a more
accurate and more patient-protective diagnosis as the CNN
classifier will miss fewer unhealthy patients and thus min-
imize the number of undetected VHD patients. The results
show that the ONMF model improves the performance of
the CNN network by adapting its training to better reflect the
heart sound patterns, which clearly translates into a decrease
in the loss of cardiac anomalies (FN) and occurrence of false
heart anomalies (FP) at the expense of increasing the correct
detection of normal (NT) and abnormal (TP) cardiac events
regardless of the complexity and capacity of the classifier
architecture.

5. Conclusions and Future work
This work proposes a combination of factorization and

Convolutional Neural Network (CNN) to improve the detec-
tion of the presence of VHDs. The proposal combines the
temporal information from heart sounds, obtained through
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Figure 7: Results related to 𝐴𝑐𝑐 (A), 𝑆𝑒𝑛 (B), 𝑆𝑝𝑒 (C), 𝑃𝑟𝑒 (D) and 𝑆𝑐𝑜 (E) evaluating the database 𝐷𝛾 for different CNN
networks in which either the STFT spectrogram or the activation matrix of the ONMF approach is being used as input data.

the temporal activations by means of Orthogonal Non-
Negative Matrix Factorization (ONMF), followed by a
CNN architecture to achieve better differentiation between
normal and abnormal cardiac events from phonocardiogram
(PCG) signals. The increasing the training reliability of

the CNN can be attributed to the use of an ONMF in the
spectral domain since it models the most distinct true cardiac
spectral structures in the input signal, thereby avoiding the
fragmentation of true heart spectral patterns into multiple
spectral components, which is often observed in traditional
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Figure 8: Average confusion matrix in the heart detection performance evaluating the database 𝐷𝛾 for different CNN architectures:
UjaNet (A and B), LeNet5 (C and D), AlexNet (E and F), ResNet50 (G and H), VGG16 (I and J) and GoogLeNet (K and L).
The left column represents the scenario in which the input is the STFT spectrogram while the right column indicates the scenario
in which the input is the ONMF activations.
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NMF methods. As a result, the patterns decomposed by
ONMF provide a greater physiological significance, and this
is reflected in the resulting temporal cardiac patterns as well.

In order to enhance the performance of the ONMF
approach, a hyperparameter optimization process was exe-
cuted. The results of this process indicated that the optimal
configuration for detecting heart abnormalities was achieved
by utilizing the ONMF activation matrix with 128 com-
ponents and a [200-700]Hz bandpass filter as input to the
proposed CNN classifier UjaNet.

The data feeding of the CNN classifier using the ONMF
activations was evaluated and compared to the performance
obtained using the STFT spectrogram as input. The results
indicated that: i) The ONMF model demonstrated superior
performance compared to the STFT spectrogram for all
analyzed CNN architectures. This highlights the importance
of incorporating the temporal information provided by the
ONMF approach in order to effectively distinguish between
normal and abnormal heart sounds, as the repetitive pattern
present in normal heart cycles is disrupted in the presence
of abnormal heart sounds; ii) The utilization of ONMF
activations as inputs to CNNs results in low-complexity
CNN models, such as LeNet5 or UjaNet, achieving com-
parable performance to more complex CNN models, such
as VGG16 or GoogLeNet. This highlights the critical role
that ONMF temporal features play in the detection of VHDs,
emphasizing the significance of employing an appropriate
representation of input data in the training process of a
CNN model, as observed in prior studies in the domain of
biomedical signal processing as previously detailed.

Future work will focus on two challenging topics. Firstly,
the development of novel time-frequency representations of
input data with the aim of improving the learning capabilities
of CNN models while reducing computational requirements
and achieving performance comparable to current state-
of-the-art CNN models. Secondly, the development of in-
novative data augmentation strategies based on the time-
frequency characteristics of abnormal heart sounds, with
the goal of improving the classification performance for
major VHDs such as aortic stenosis, mitral stenosis, mitral
regurgitation, and mitral valve prolapse.
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