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We consider a general unitary scalar conformal field theory with a linear defect in D ¼ 4 − ϵ and a
surface defect in D ¼ 6 − ϵ. Using holography and the Hamilton-Jacobi formalism, we show that the β
functions controlling the defect renormalization group (RG) flow are the gradient of the entropy function.
This allows the proof that the relevant C-functions decrease monotonically along the RG flow. We provide
evidence that this property also holds in the full quantum theory for general scalar field theories.
An obstruction to the gradient property seems to appear at two-loop order when fermions are added.
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I. INTRODUCTION

The renormalization group (RG) flow plays a central role
in modern theoretical physics, as it allows us to understand
the relevant degrees of freedom of quantum systems at low
energies. Heuristically, RG flows are expected to be
irreversible. Refining this concept has been a major
research stimulus over the last four decades, starting with
the celebrated proof of the C-theorem in two dimen-
sions [1]. In the presence of defects—defined generically
as operators supported on a d-dimensional submanifold
Md inside a D-dimensional bulk theory—a similar picture
is expected [2–9]. In this context, it has been realized that a
relevant quantity to study defect RG flows is the free energy
F d when Md ¼ Sd, defined as minus the logarithm of the
partition function in the presence of a defect normalized by
the partition function of the bulk theory without the defect.
However, this quantity is scheme-dependent and is there-
fore not free from ambiguities. Denoting the radius of the
Sd by L and being Λ a UV cutoff, F d is given by the
following expression for line and surface defects

F d ¼
�
cð1ÞðΛLÞ − s1 d ¼ 1;

cð2ÞðΛLÞ2 þ cð0Þ − s2 logðΛLÞ d ¼ 2:
ð1Þ

Only the entropy functions sd are universal, in the
sense that they do not change under scaling

of Λ.1 In fact, it has been argued that these coefficients
are the pertinent C-functions for the defect RG flows in
ambient conformal field theories (CFTs); they are mono-
tonically decreasing and, in particular, for flows interpolat-
ing between a UV and an IR fixed point their value
decreases [7,9] (see also [3,4,8]) and coincide with the
appropriate central charges at the fixed points (in particular,
in d ¼ 2, at fixed points, s2 ¼ b

3
).

Proving this has been a tour de force over the years,
where various approaches (information-theoretic, holo-
graphic as well as purely field theoretic) have converged.
In this note we will offer yet a new viewpoint on these
monotonicity theorems. We will focus on line defects in
D ¼ 4 and surface defects in D ¼ 6, where it is possible to
consider a semiclassical limit that freezes the bulk quantum
dynamics. As will be shown below, in this limit it is
possible to give a formula for F d from which we obtain sd.
Moreover, we will show that, up to constant factors, the β
functions for the defect RG flow are the gradient of sd, in
particular proving a conjecture in [10,11]. Thus, a corollary
of this formula is that, for bulk CFTs, the RG flow indeed
minimizes sd.

II. HAMILTON-JACOBI AND THE DEFECT
PARTITION FUNCTION

We are interested in the class of theories defined by the
action
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1In d ¼ 1, the term s has a scheme dependence since it shifts
by a constant under a shift of Λ. However, this is without
relevance since one can define s1 in scheme-independent way as
s1 ¼ ð1 − L∂LÞF 1.
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I ¼
Z

dDx

�
1

2
ð∂μϕiÞ2 þ VðϕiÞ

�
; ð2Þ

where VðϕiÞ is a generic homogeneous polynomial of
degree n ¼ 3 in D ¼ 6, and n ¼ 4 in D ¼ 4, that is,

V6D ¼ 1

6
λijkϕ

iϕjϕk; V4D ¼ 1

24
λijklϕ

iϕjϕkϕl:

The fields have classical dimension d ¼ D−2
2
, thus the

classical theories are conformally invariant. In these theories
we consider a trivial defect supported on a d-dimensional
submanifold Md (that is, d ¼ 1 in D ¼ 4 and d ¼ 2 in
D ¼ 6). Classically, the fields ϕi themselves are marginal
deformations of the defect and, as such, must therefore be
included with generic couplings hi.
In [10–12] the theory was studied in the double-scaling

limit where hi → ∞, λijk → 0 with fixed hiλjkl in D ¼ 6,
and λijkl → 0 with fixed hihjλklmn in D ¼ 4.
This represents a semiclassical limit that freezes the

quantum dynamics of the bulk theory. While bulk loops are
suppressed, an infinite series of loops involving interactions
with the defect remain. As a consequence, the bulk theory
becomes a CFT coupled to the defect. In this limit the
defect partition function is determined by the saddle point
approximation and, consequently,

F d ¼− log
Zdefect

Zbulk
¼− log

R
Dϕie−SR
Dϕie−I

¼− loge−S ¼ S; ð3Þ

with

S≡ I − hð0Þi

Z
Md

ϕi: ð4Þ

Here hð0Þi represent the bare couplings (we will reserve hi
for the renormalized couplings), and S is evaluated on the
solution of the equations of motion for ϕi including the
defect source. We can express this solution as an infinite
series in powers of hiλjkl in D ¼ 6 and in powers of
hihjλklmn in D ¼ 4.
As will be seen below, generically S contains nonuni-

versal, scheme-dependent contributions, which reflect the
ambiguities described in the introduction. Considering only
the universal pieces, we can read the entropy functions sd
from Suniversal as

−Suniversal ¼
�
s1 d ¼ 1;

s2 logR d ¼ 2:
ð5Þ

The renormalization procedure leads to βi functions for
the hi couplings controlling the defect RG flow. This was
studied in great detail in [10–12] for a linear defect in 4D
and for a flat surface defect in 6D. We now wish to study
the properties of such flow, in particular explicitly comput-
ing sd in the semiclassical limit forMd ¼ Sd. Our strategy
will be to use rigid holography to evaluate S in the solution

of the classical equations of motion. For this purpose,
we perform a conformal transformation from RD to
Hdþ1 × Sdþ1, so that the defect is located at the Sd

boundary of Hdþ1, written in global coordinates as

ds2 ¼ dr2

1þ r2

L2

þ r2dΩ2
d þ L2dΩ2

dþ1: ð6Þ

For simplicity, in the following we will set L ¼ 1.
Assuming that the field only has r-dependence, the bulk
action becomes

S ¼ Cd

Z
R

0

dr
rdffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
�
1

2
ð1þ r2Þð∂rϕiÞ2 þ V

�
; ð7Þ

where Cd ¼ VolðSdÞVolðSdþ1Þ. This action is UV diver-
gent because the volume of Hdþ1 is infinite. We regulate
this divergence by placing the boundary of the hyperbolic
space at a finite value r ¼ R, which is assumed to be large
(R → ∞). Note in particular that there is no mass term
arising from the conformal coupling to curvature, by virtue
of a cancellation between the contributions from Hdþ1

and Sdþ1.
In the holographic approach, the actionS can be computed

by solving the classical equations ofmotion onHdþ1 with the
boundary condition ϕijboundary ¼ ð d

4πÞdhi (induced by the
source term in the boundary), and then evaluating the action
on the solution. A more elegant approach is based on the
Hamilton-Jacobi theory, where r is interpreted as time.
In what follows we shall use this approach.2

The canonical momentum conjugated to ϕi is

pi ¼ Cd
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
rd∂rϕi: ð8Þ

Then, the Hamiltonian is

H ¼ p2
i

2Cdrd
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p −
Cdrdffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p V: ð9Þ

This leads to the Hamilton-Jacobi equation

1

2CdRd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
�
∂S
∂ϕi

�
2

−
CdRdffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p V ¼ −
∂S
∂R

: ð10Þ

Let us make the ansatz

S ¼ CdvðRÞHðϕiÞ; vðRÞ≡
Z

R

0

dr
rdffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p ; ð11Þ

where it is understood that ϕi is evaluated at the regularized
boundary, located at large R (representing a UV cutoff).
Asymptotically, this leads to

2This approach to renormalization has a long history. For
earlier applications of the Hamilton-Jacobi formalism in the
context of holographic renormalization, see Refs. [13–16].
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1

2d2

�
∂H
∂ϕi

�
2

− V ¼ −H: ð12Þ

This is an equation for HðϕÞ, which is easily solved in
perturbation theory in the λ couplings. To the first few
orders, we find

H ¼ V −
1

2d2
V2
i þ

1

d4
ViVjVij

−
1

8d6
ð20VijVikVjVk þ 8ViVjVkVijkÞ þ � � � ; ð13Þ

where Vi1���in stands for
∂

∂ϕi1
� � � ∂

∂ϕin
V. After evaluating this

expression on the boundary values ϕijboundary ¼ ð d
4πÞdhi

we get

S ¼ π1−dvðRÞHðhiÞ; ð14Þ
where now HðhiÞ is

HðhiÞ ¼ ΩV −
Ω2

d2
V2
i þ

4Ω3

d4
VijViVj −

8Ω4

d6
VijkViVjVk

−
20Ω4

d6
ViVijVjkVk þ � � � ; ð15Þ

where Ω ¼ d2

32π2
and H has been rescaled by a numerical

constant.
We can now compute the β function for the defect

couplings hi. In the Hamilton-Jacobi theory pi ¼ ∂S
∂ϕi
. Thus,

in the scheme naturally provided by holography,

βi ≡ R
∂hi
∂R

¼ 2

d
∂H
∂hi

; ð16Þ

where we used (8) at r ¼ R and took the R → ∞ limit.
Thus, in this scheme, the β function is indeed a gradient, in
agreement with similar results obtained in [10,11] for
planar defects. Furthermore, we now find that, for S1

and S2 defects, H represents the on shell action, which we
will now discuss.

A. C-theorem

Let us now comment on the implications forC-theorems.
These quantify the decrease in the low-energy effective
degrees of freedom of the system under the RG flow.
We first note that, as R → ∞, the action (14) inherits the

following R dependence

vðRÞ ¼
�R − 1þOðR−1Þ; for d ¼ 1;

R2

2
− 1

2
logð2e1

2RÞ þOðR−2Þ; for d ¼ 2:
ð17Þ

This is precisely the expected structure [cf. (1)]. The
divergences can be removed by adding suitable counter-
terms as in standard holographic renormalization. For the
present 4D and 6D theories we can add the following
boundary counterterms on the regularized boundary ∂MjR,

d ¼ 2∶ S6Dct ¼ H
8π2

Z
∂MjR

dΣ ¼ 1

2π
R2H;

d ¼ 1∶ S4Dct ¼ H
2π

Z
∂MjR

dl ¼ RH: ð18Þ

with dΣ≡ R2 sin θdθdφ and dl≡ Rdθ. Only the coeffi-
cient of logR in d ¼ 2 and the constant coefficient in d ¼ 1
are scheme-independent and thus physically meaningful.
Therefore, we obtain

s1 ¼ H; s2 ¼
H
2π

: ð19Þ

In terms of the RG time t ¼ − logR, the relevant velocity
vector in the space of couplings for the RG trajectories is
nothing but

βi ¼ −
∂hi
∂t

¼ 2πd−1
∂sd
∂hi

: ð20Þ

This relationship has several implications. To begin with, it
implies that sd is an extremum at conformal points. If the
conformal point is a (UV) unstable fixed point, then away
from this point sd is monotonically decreasing until it meets
another (IR) stable fixed point. More importantly, this
relationship shows that sd must decrease along the time
evolution of the RG flow. Indeed,

dsd
dt

¼ −βi
∂sd
∂hi

− βλα
∂sd
∂λα

¼ −
βiβi
2πd−1

− βλα
∂sd
∂λα

; ð21Þ

where λα denote the generic couplings fλijklg. For a
conformal theory in the bulk we find

dsd
dt

¼ −
βiβi
2πd−1

≤ 0: ð22Þ

Therefore, the RG trajectories are such that sd is mono-
tonically decreasing along the flow from the UV to IR, thus
providing a proof of theC-theorem for defect theories in the
semiclassical limit. The picture for the RG flow is similar to
that of a particle rolling along a potential, where βi is the
analog of the velocity vector. Indeed, if the particle is at a
given (generic) point h⃗ðt0Þ at time t ¼ t0, at a later time
t ¼ t0 þ dt it will be at

h⃗ðt0 þ dtÞ ¼ h⃗ðt0Þ − β⃗dt: ð23Þ

Hence (assuming βλα ¼ 0)

sd½hðt0 þ dtÞ� ¼ sd½hðt0Þ� −
jβ⃗j2
2πd−1

dt: ð24Þ

again exhibiting the fact that the entropy functions decrease
along the RG flow.
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B. The ϵ expansion

Let us now consider the theories in D ¼ 4 − ϵ and
D ¼ 6 − ϵ. In our set-up, this means that we should now
consider the theory in Hdþ1 × Sdþ1−ϵ. This is implemented
by shifting the dimension in the sphere part of the geometry
dΩdþ1 → dΩdþ1−ϵ. This also induces a mass term coming
from the conformal coupling to curvature which, to first
order in ϵ, amounts to the change in the potential

V → −
d
8
ϵϕ2

i þ V: ð25Þ

When solving the Hamilton-Jacobi equation, the effect of
the mass term is to induce a OðV0Þ term in H proportional
to ϵ (therefore also present in the free theory). It should be
noted that this term affects the equations for the higher
orders in perturbation theory, but its effect isOðϵ2Þ and can
be neglected to leading order in ϵ. Thus, the effect of the ϵ
expansion is simply the expected shift in (15)

H → −
d
8
ϵh2i þH: ð26Þ

III. EXAMPLES

A. Lines in a quartic theory in D= 4− ϵ
For a generic quartic theory in D ¼ 4 − ϵ, the above

formulas (15) and (16) yield

s1 ¼ −
ϵhihi

8
þ λijklhihjhkhl

768π2
−
λiabcλiefg
36864π4

hahbhchehfhg

þ λiabcλjefgλijlm
589824π6

hahbhchehfhghlhm þ � � � ; ð27Þ

βi ¼ −
ϵhi

2
þ λijkl
96π2

hjhkhl −
λijabλjcef
3072π4

hahbhchehf

þ λijabλjkceλkfgl
49152π6

hahbhchehfhghl

þ λijkaλjbceλkfgl
147456π6

hahbhchehfhghl þ � � � ; ð28Þ

(recall that hi represents the renormalized defect cou-
plings). For simplicity in the presentation, we omitted here
the λ4 term, which can be read from (15) and (16).
It is worth noting that the last two terms of (28) arise

from differentiating a single term of s1 in (27), and thus are
related in a precise way. However, it should be remembered
that some of the terms in the β-functions are scheme
dependent from three-loop onwards. In a generic scheme,
the β function coefficients of three-loop terms will not
satisfy such relations and consequently the βi functions will
not be given by a gradient. However, we have just seen that
there is a natural scheme where the βi are given the simple
gradient formula (16) (a discussion comparing the different
schemes can be found in [11]).

The terms up to Oðλ2Þ agree with the corresponding
terms computed in (2.22) in [17] (note that here hi are
defined with the reverse sign with respect to the definition
in [17]).
For the familiar V ¼ λ

4!
ϕ4 potential, we find

s1 ¼ −
ϵh2

8
þ λh4

768π2
−

λ2h6

36864π4

þ λ3h8

589824π6
−

19λ4h10

113246208π8
þ � � � ; ð29Þ

β ¼ −
ϵh
2
þ λh3

96π2
−

λ2h5

3072π4

þ λ3h7

36864π6
−

95λ4h9

28311552π8
þ � � � : ð30Þ

As a sanity check, the first two terms in s exactly match
those in [18] [cf. (3.26) in that reference], while the first
three terms in β exactly match the corresponding terms
in [18] [cf. (3.17) in that reference].3

B. Surfaces in a cubic theory in D= 6− ϵ
We now consider a generic cubic theory in D ¼ 6 − ϵ.

In this case, formulas (15) and (16) give

2πs2 ¼ −
ϵ

4
hihi þ λijk

48π2
hihjhk −

λiabλicd
1024π4

hahbhchd

þ λiabλjcdλije
8192π6

hahbhchdhe þ � � � ; ð31Þ

βi ¼ −
ϵ

2
hi þ λijk

16π2
hjhk −

λijbλjcd
256π4

hbhchd

þ λijaλjkbλkcd
2048π6

hahbhchd þ λijkλjabλkcd
8192π6

hahbhchd

þ � � � ð32Þ
As in the 4D case, the last two terms of (32) originate from a
single term in (31), again showing that the gradient property
imposes constraints on the coefficients of the β functions.
Let us apply these formulas to a OðNÞ model with scalar

fields σ and ϕa, a ¼ 1;…; N, and a potential

V ¼ λ1
2
σϕ2

a þ
λ2
6
σ3:

Let hσ and ha denote the renormalized defect couplings to σ
and ϕa. Tuning ha ¼ 0, we now find

2πs2 ¼−
ϵ

4
h2σ þ

λ2h3σ
48π2

−
λ22h

4
σ

1024π4
þ λ32h

5
σ

8192π6
−

3λ42h
6
σ

131072π8
þ�� �

βhσ ¼−
ϵ

2
hσ þ

λ2h2σ
16π2

−
λ22h

3
σ

256π4
þ 5λ32h

4
σ

8192π6
−

9λ42h
5
σ

65536π8
þ�� � :

3Bulk loops start at order λ2. These contributions are missing in
the semiclassical formula (30), which contains only the terms
with the highest power of h for a given power of λ.
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Note that these semiclassical contributions do not depend
on N, as expected, as the N dependence emerges only
when incorporating bulk loops. These expressions can be
compared with various results in the literature. Setting
λ1 ¼ λ2 ¼ 0, in the free theory we recover the result
s2 ¼ − ϵ

8π h
2
σ in [8,19]. Moreover, the first two terms in

the β function reproduce the results of [12] [cf. (64) in that
reference]. At Oðλ2Þ there are, in addition, bulk loop
contributions recently computed by [20].
Using (32), one can also write the β function for defect

couplings ha ≠ 0. The resulting formula reproduces the
two loop results of [21] [cf. (4.4)], but in addition provides
all semiclassical contributions up to four loops.

IV. BEYOND THE SEMICLASSICAL LIMIT

In the previous sections we have used Hamilton-Jacobi
theory combined with holography to compute F d in a
semiclassical limit. The holographic setup provides a
natural scheme where the β functions are a gradient of
sd, at least up to four loop orders. This ensures the
monotonicity of sd along the RG flow. An important
question is to what extent these considerations survive
the inclusion of bulk loops.
Let us first consider line operators in scalar field theories

in D ¼ 4 − ϵ. The β functions for the general model (2)
including bulk loops were computed in [17] up to Oðλ2Þ.
Using the expression (2.22) for the βi in [17], it is easy to
check that ∂jβi − ∂jβi ¼ 0. Therefore, the β functions are
still, remarkably, a gradient, now of a “quantum-corrected”
HQ given by

HQ ¼ Hþ 1

24
VjklVjkl −

1

4
VklVkl: ð33Þ

However, it remains to check that HQ is proportional
to s1 (obtained from the quantum corrected F 1). For the
melonic tensor model in D ¼ 4 − ϵ—which can be
regarded as a particular quartic scalar theory—both the
beta functions and the s1 were computed in [22] in the large
N limit. In this limit it turns out that some contributions of
bulk loops are equally relevant as the diagrams correspond-
ing to the semiclassical limit (cf. the diagram on the right of
Fig. 7 in that reference). Interestingly, [22] finds that not
only the β function is a gradient, but also that the HQ

function is a multiple of s1 [see (4.30) in [22] ].
Reference [17] also computes the β function for line

defects in D ¼ 4 − ϵ in a model including fermions. Using
the same notation as in [17], we add to our action

Ifermion ¼ I þ
Z

dDx

�
1

2
yiabϕiψaψb þ H:c:

�
; ð34Þ

where yiab are symmetric in the fermion flavor indices.
DefiningYij ¼ yiaby�jab þ yjaby�iab, and demanding that βi is
a gradient, that is ∂jβi − ∂jβi ¼ 0, we now get the condition

λikrsYkj − λjkrsYki ¼ 0; ð35Þ
for all r, s. This implies that all matrices fMðrsÞgij ¼ λijrs,
with r; s ¼ 1;…; N should commute with Yik. For a
general model, this condition is not fulfilled and the βi
functions do not seem to be a gradient (at least in the
scheme of [17]). For particular fermion couplings, one may
have Yij ¼ Y0δij. In such a case the β would still be a
gradient. An example is to take yiab ¼ Ti

ab, where Ti are
the generators of the Lie algebra of OðNÞ in a symmetric
representation. In a suitable basis, Tr½TiTj� ¼ aδij, and
(35) is satisfied for any set of couplings fλijklg. In this
particular model with interacting scalar and fermion fields,
the β function is still of the form βi ¼ ∂iĤ.
It should be noted that fermion contributions to βi appear

only through Feynman diagrams that include fermion loops
in the bulk. Therefore, fermion contributions are suppressed
in the double-scaling limit and do not alter the calculation of
the defect coupling beta functions in the previous sections.

V. FINAL COMMENTS

In this note we have provided a proof of the monotonicity
of RG flows for line defects inD ¼ 4 and surface defects in
D ¼ 6 in general unitary CFTs with scalar fields in a
semiclassical limit. In the case of free scalar field theories,
the proof applies to the complete quantum theory. By
mapping to Hdþ1 × Sdþ1 the problem of studying spherical
defects becomes effectively one-dimensional, with the
radial coordinate of Hdþ1 playing the role of time. Using
the Hamilton-Jacobi formalism, we derived the relevant
formula for sd—here explicitly written to four loop order—
which also governs the defect β functions, given by the
gradient of sd in the coupling space. Consequently, the
renormalization group flow exhibits a resemblance to a
particle’s motion along a potential, thereby guaranteeing
the monotonic decrease of the entropy functions along the
flow. Importantly, this conclusion remains independent of
the presence of an IR defect fixed point.
Our analysis is conducted within the semiclassical limit,

wherein the contributions of bulk loops are suppressed. In
the holographic framework, this corresponds precisely to
the large N limit, which endows the bulk theory with
classical behavior. Clearly, it is important to investigate
whether the structure found holds, to some extent, in the
complete quantum theory. An initial step in this direction
involves establishing whether the beta function in the full
quantum theory can be expressed as the gradient of a
coupling-dependent function within an appropriate scheme.
As we have observed, this turns out to be the case for
scalar field theories, at least up to the two-loop order.
Subsequently, in a second step, the objective would be to
establish the proportionality of this function to the defect
entropy. At least in the melonic limit, we have found that
the β function indeed emerges as a gradient of the on shell
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action. Although certain bulk diagrams are neglected in the
melonic limit, strikingly this property persists. On the other
hand, upon the inclusion of fermions, the situation seems to
be different, as even in the initial step, β functions are not
determined by a gradient in fermion models with generic
couplings. It would be of great interest to delve into a more
detailed examination of the underlying obstruction and
explore its potential implications for C-theorems.
Our derivation of the C-theorems has been carried out

specifically for lines in four dimensions and for surfaces in
six dimensions. It holds great interest to expand the current
approach to encompass defects of arbitrary dimension d in
D-dimensional bulk theories, as well as to explore the
implications of monodromy defects. In particular, a com-
pelling direction lies in the generalization of C-theorems
for d ¼ 3 and d ¼ 4. This would complement the

recent findings derived from the quantum information
approach [9], offering further insights into the fundamental
physical mechanisms that underlie these theorems.
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