
Journal Title 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

An Elitist Seasonal Artificial Bee Colony
Algorithm for the Interval Job Shop
Hernán Díaz a, Juan J. Palacios a, Inés González-Rodríguez b, Camino R. Vela a,*,
a Dep. of Computing, University of Oviedo, Gijón, Spain
E-mails: diazhernan@uniovi.es, palaciosjuan@uniovi.es, crvela@uniovi.es
b Dep. Matemáticas, Estadística y Computación, Universidad de Cantabria, Santander, Spain
E-mail: gonzalezri@unican.es

Abstract. In this paper, a novel Artificial Bee Colony algorithm is proposed to solve a variant of the Job Shop Scheduling
Problem where only an interval of possible processing times is known for each operation. The solving method incorporates
a diversification strategy based on the seasonal behaviour of bees. That is, the bees tend to explore more at the beginning of
the search (spring) and be more conservative towards the end (summer to winter). This new strategy helps the algorithm avoid
premature convergence, which appeared to be an issue in previous papers tackling the same problem. A thorough parametric
analysis is conducted and a comparison of different seasonal models is performed on a set of benchmark instances from the
literature. The results illustrate the benefit of using the new strategy, improving the performance of previous ABC-based methods
for the same problem. An additional study is conducted to assess the robustness of the solutions obtained under different ranking
operators, together with a sensitivity analysis to compare the effect that different levels of uncertainty have on the solutions’
robustness.

Keywords: Artificial Bee Colony, Job Shop Scheduling, Makespan, Interval Uncertainty, Robustness

1. Introduction

The job shop scheduling problem (JSP) in its dif-
ferent variants is considered one of the most relevant
problems in scheduling, in part because it is used to
model many practical engineering and social applica-
tions [1]. It consists in organising the execution of a set
of jobs on a set of resources under a set of given con-
straints in an optimal way. In the literature, this most
commonly translates into minimising the project’s exe-
cution timespan, also known as makespan. Solving this
problem improves the efficiency of chain production
processes and has a positive impact on costs and envi-
ronmental sustainability [2].

Real-world applications of JSP can be generally
found in industries where customer orders may differ
and have their own parameters; this applies obviously
to many manufacturing industries, but also to service

*Corresponding author. E-mail: crvela@uniovi.es.

industries. For instance, a very common application
is semiconductor manufacturing; this includes wafer
fabrication, where layers of metal and wafer material
are built up in patterns on wafers of silicon or gal-
lium arsenide to produce the circuitry and where each
layer requires a number of operations. Another classi-
cal example of a job shop is a hospital, where patients
can be seen as jobs, so each patient has to follow a
given route and has to be treated at a number of dif-
ferent stations while going through the system [3]. A
railway scheduling problem can also be modelled as
a job shop by dividing the railway network into seg-
ments, so each job corresponds to a train trip and op-
erations in a job correspond to the track segments on
the train route [4]. Steel mills also have workshops
that function as job shops; they produce heavy-duty
parts which are processed in different machines, in-
cluding cutting machines, shaper machines, grinding
machines, milling machines, lathes and special turn-
ing machines, drilling/boring machines, polishing ma-

0000-0000/$00.00 © 0 – IOS Press. All rights reserved.

mailto:diazhernan@uniovi.es
mailto:palaciosjuan@uniovi.es
mailto:crvela@uniovi.es
mailto:gonzalezri@unican.es
mailto:crvela@uniovi.es

2 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

chines, and painting and drying machines [5]. Another
example can be found in the apparel industry, where
the job shop is used to model both a progressive bundle
system and a unit production system [6]. A wide list of
applications of the job shop scheduling in its multiple
variants can be found in the survey from [1]. Addition-
ally, real-life applications of the flexible variant of the
job shop are reviewed in [7].

To increase its applicability, we must take into ac-
count that in real-world situations the available infor-
mation is often imprecise. Interval uncertainty arises as
soon as information is incomplete, and contrary to the
case of stochastic and fuzzy scheduling, it does not as-
sume any further knowledge [8, 9]. Moreover, intervals
are a natural model whenever decision-makers prefer
to provide only a minimal and a maximal duration,
and obtain interval results that can be easily under-
stood. Under such circumstances, interval scheduling
allows to concentrate on relevant scheduling decisions
and to produce robust solutions. Intervals can also be
provided if there is some uncertainty about numerical
data, as done, for instance, in [10].

Solving scheduling problems with interval uncer-
tainty can also contribute to the active field of fuzzy
scheduling [11]. Here, it is common to use fuzzy in-
tervals to represent both uncertainty and preference
in parameters, such as ill-known processing times and
flexible due dates [12]. Fuzzy intervals are fuzzy sets
in the real line whose level-cuts are intervals. Since
fuzzy arithmetic is defined via the extension principle
for fuzzy sets, operations between fuzzy intervals ex-
tend the usual interval analysis into membership func-
tions [13, 14]. Hence, solving a scheduling problem
where pure intervals are used to represent ill-known
durations provides a first step towards solving prob-
lems in the framework of fuzzy scheduling.

Additionally, intervals are inherent to interval-valued
fuzzy sets, where the membership degree of an ele-
ment of the set corresponds to a value in a consid-
ered membership interval [15]. Interval-valued fuzzy
sets provide an alternative model for ill-known pro-
cessing times where decision makers find it tough to
quantify their judgement about the membership of a
possible duration value as a number in the interval
[0, 1] and prefer instead to reflect their opinions by a
range [16, 17].

Contributions to scheduling with interval uncer-
tainty are not abundant in the literature. A recent re-
view of publications where intervals are used to model
either setup or processing times (or both) in different
scheduling problems can be found in [9]. For the job

shop, a genetic algorithm is proposed in [18] to min-
imize the total tardiness when both durations and due
dates are intervals. In [19] a different genetic algorithm
is applied to the same problem and [20] includes a
study of the influence of using different interval rank-
ing methods on the robustness of the resulting sched-
ules. In [21], a hybrid between particle swarm optimi-
sation and a genetic algorithm is used to solve a flex-
ible JSP with interval durations within a more com-
plex integrated planning and scheduling problem. Fi-
nally, the JSP minimising makespan with interval du-
rations is tackled using a population-based neighbour-
hood search in [22], a genetic algorithm in [23] and,
more recently, an artificial bee colony method in [24],
with the latter achieving the results that constitute the
current state of the art and serving as basis for this pa-
per.

The above methods for solving scheduling problems
with interval uncertainty belong to the nature-inspired
computing paradigm. Indeed, nature-inspired methods
have proved very successful in solving complex opti-
misation [25]. Evolutionary algorithms, inspired in bi-
ological evolution, have been widely used for solving
complex optimisation problems, many of them with
engineering applications [26]. Another well-known
group of bio-inspired algorithms are swarm intelli-
gence methods, mimicking the collective behaviour of
decentralised, self-organized systems in nature, such
as flocks of birds or ant colonies [27]. Together with
biology-based algorithms, we find methods inspired
in physics [28]. Perhaps the best-known is simulated
annealing (SA), based on the principle of thermody-
namics [29]. Other example of physics-based method
is the harmony search algorithm (HSA), which is a
music-inspired population-based metaheuristic algo-
rithm [30]. The gravitational search algorithm (GSA)
has its roots in gravitational kinematics [31] while the
water drop algorithm (WDA), in hydrology and hydro-
dynamics [32]. Finally, we can also find chemical re-
action optimisation, a population-based meta-heuristic
algorithm based on the principles of chemistry [33].

Examples abound in the literature where swarm in-
telligence methods have been proposed to tackle com-
plex optimisation problems. For instance, cat swarm
optimisation, inspired by the biological behaviour of
domestic cats, performs very well on binary com-
binatorial optimisation problems such as 0/1 knap-
sack [34]. Spider monkey optimisation, based on the
social behaviour of spider monkeys is successfully ap-
plied to the travelling salesman problem [35]. A par-
ticle swarm optimisation (PSO) method with multi-

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ple swarms helps improving transfer learning methods
in [36], while an ensemble of five particle swarm opti-
misation strategies is applied to designing the structure
of echo state networks in [37]. Another PSO-based
method with selective search helps to find good solu-
tions to the university course scheduling problem [38].

There is also an extensive record of successful ap-
plications of different metaheuristic methods, most of
them nature-inspired, to solving complex engineering
problems. For instance, modified versions of the ant
colony optimisation algorithm have been proposed to
solve high-speed railway alignment and vertical align-
ment within highway geometric design [39, 40]. A hy-
brid metaheuristic algorithm that combines harmony
search, flower pollination, teaching-learning-based op-
timisation and Jaya algorithm has been used for the op-
timization process of active tuned mass dampers, used
in structures in the reduction of structural responses re-
sulted from earthquakes [41]. A coronavirus optimisa-
tion algorithm combined with long short term memory
deep learning has served to forecast deformations of a
hydropower dam in [42]. The neural dynamic model of
Adeli and Park has been successful in optimising large
steel structures [43, 44]. More recently, game theory-
based strategies have been incorporated to a Jaya al-
gorithm to improve the computation efficiency and ef-
fectiveness in design optimization of civil engineering
structures [45].

In particular, artificial bee colony (ABC), a swarm
intelligence optimisation template inspired in the for-
aging behaviour of honeybees, has shown very com-
petitive performance on deterministic JSP with makespan
minimisation. For instance, [46] proposes an evolu-
tionary computation algorithm based on ABC that in-
cludes a state transition rule to construct the schedules.
Taking some principles from genetic algorithms, an
improved ABC (IABC) is proposed in [47] that uses
a mutation operation to explore the search space, thus
enhancing the search performance of the algorithm. An
effective ABC approach based on updating the pop-
ulation using the information of the best-so-far food
source can be found in [48]. More recently, [24] intro-
duces the idea of having an elite set of bees instead of
a queen to improve diversification.

In this work, we tackle the JSP with makespan min-
imisation and intervals modelling uncertain durations.
The problem is presented in Section 2. Building upon
our former work in [24], where the employed bee
phase was modified, in Section 3 we propose to include
a new strategy based on the seasonal behaviour of bees.
These variants are compared in Section 4, where the

most successful one is also compared with the state-
of-the-art. In that section, a robustness analysis is con-
ducted to compare different interval ranking methods,
together with a sensitivity analysis on the performance
of the algorithm over scenarios with different levels of
uncertainty.

2. The Job Shop Problem with Interval Durations

In the job shop scheduling problem we have several
machines or resources M = {M1, . . . ,Mm} where a
set of jobs J = {J1, . . . , Jn} need to be processed.
Each job J j is composed of m j tasks (o j,1, . . . , o j,m j)
that must be sequentially executed. We can uniquely
identify every task with a number between 1 and N =∑n

j=1 m j, so task o j,l maps to o = l if j = 1 and
o =

∑ j−1
i=1 mi+l if j > 1. In this way, the set of all tasks

can be denoted as O = {1, . . . ,N}. Besides the prece-
dence constraints within a job, there exist resource
constraints, in the sense that each task o ∈ O needs
to be executed in a machine M(o) ∈ M for its whole
processing time po without interruptions and without
the possibility of simultaneously executing other tasks
in M(o).

A schedule s is an assignment of starting times for
all tasks. The schedule is said to be feasible if it does
not violate any of the constraints. The makespan Cmax

of a schedule is the time span between the start and the
completion of the whole project. A solution to the job
shop is a feasible schedule minimising the makespan.

2.1. Interval Uncertainty

Uncertainty in the processing times of tasks is mod-
elled using closed intervals as done, for instance, in
[20, 22]. This approach is appropriate when the lack of
historical data does not allow to estimate probabilities
and only an upper and lower bound of the likely du-
ration can be provided or when there is uncertainty in
numerical data [9, 10]. Under these circumstances, the
processing time of a task o ∈ O is represented by an
interval po = [p

o
, po], where p

o
and po are the avail-

able lower and upper bounds for the exact but unknown
processing time po. Obviously, any known crisp value
p can be seen as a trivial interval p = [p, p].

The interval JSP (IJSP) with makespan minimisa-
tion requires two arithmetic operations: addition and
maximum. Given two intervals a = [a, a] and b =

4 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[b, b], the addition and the maximum are given by

a + b = [a + b, a + b], (1)

max(a,b) = [max(a, b),max(a, b)]. (2)

Also, given the lack of a natural linear order in the
set of closed intervals, to determine the schedule with
the “minimal” makespan, we need an interval rank-
ing method. We follow [20] and consider the rank-
ings ⩽Lex1,⩽Lex2,⩽YX ,⩽MP described therein. The
first three rankings are admissible orders, that is, they
are linear orders and they extend the partial order of
intervals ⩽2 induced by the usual partial order in R2

defined as [a, a] ⩽2 [b, b] if and only if a ⩽ b ∧ a ⩽
b [49]. The ranking ⩽MP is used in [23, 24] and it
is equivalent to the ranking method used in [18]. It
corresponds to the Hurwicz criterion for interval com-
parisons when γ = 0.5, which can be interpreted as
a comparison halfway between pessimism and opti-
mism [50]. Unlike the rest of rankings it is not an ad-
missible linear order: it is coherent with ⩽2, but it is
only a linear preorder, since it fails to be antisymmet-
ric. It is also interesting to notice that ⩽Lex1 and ⩽Lex2

extend, respectively, the interval preorders Maximim
and Maximax, which can be interpreted as correspond-
ing to pessimistic and optimistic attitudes in a decision
maker [50].

2.2. Interval Schedules

Given a schedule s for the IJSP, there exists a rela-
tive order π for all tasks executed in the same machine.
Conversely, from a processing order of tasks π it is pos-
sible to obtain a schedule s as follows.

For a task o ∈ O, let so(π) and co(π) denote the start-
ing and completion times of o respectively, let PMo(π)
and S Mo(π) denote the tasks immediately preceding
and succeeding o in the machine M(o) according to π,
and let PJo and S Jo denote the tasks immediately pre-
ceding and succeeding o in its job. If o were to be the
first task in its machine or its job, we take its prede-
cessor to be a dummy task 0 with c0(π) = [0, 0]. Then
so(π) and co(π) are given by:

so(π) = max(sPJo + pPJo , sPMo(π) + pPMo(π)) (3)

co(π) = so(π) + po. (4)

The makespan is given by the completion time of
the last task to be processed according to π, that is,
Cmax(π) = maxo∈O{co(π)}. If there is no possible

confusion regarding the processing order, we may sim-
plify notation by writing so, co and Cmax.

2.3. MILP Model

A mixed integer formulation of the IJSP can be de-
rived by introducing a binary decision variable xuv for
each pair of tasks u, v ∈ O requiring the same machine,
that is, such as that M(u) = M(v). Variable xuv speci-
fies whether u precedes v in the machine (in which case
xuv = 1) or not (in which case xuv = 0).

Let W be an arbitrarily large integer, and let S Jo de-
note the immediate successor of any task o ∈ O in its
job, that is, if o = o j,l is the l-th task of job J j for some
j ∈ {1, . . . , n} with 1 ⩽ l ⩽ m j−1, then S Jo = o j,l+1.
Then the IJSP can be formulated as follows:

min[Cmax,Cmax] (5)

s.t.

so ⩾ 0 ∀o ∈ O (6)

so ⩾ 0 ∀o ∈ O (7)

so ⩽ so ∀o ∈ O (8)

so + p
o
⩽ Cmax ∀o ∈ O (9)

so + po ⩽ Cmax ∀o ∈ O (10)

su + p
u
⩽ sv ∀u, v ∈ O, v = S Ju

(11)

su + pu ⩽ sv ∀u, v ∈ O, v = S Ju

(12)

su + p
u
− W(1− xuv) ⩽ sv ∀u, v ∈ O,M(u) = M(v)

(13)

su + pu − W(1− xuv) ⩽ sv ∀u, v ∈ O,M(u) = M(v)
(14)

sv + p
v
− Wxuv ⩽ su ∀u, v ∈ O,M(u) = M(v)

(15)

sv + pv − Wxuv ⩽ su ∀u, v ∈ O,M(u) = M(v)
(16)

xuv ∈ {0, 1} ∀u, v ∈ O,M(u) = M(v)
(17)

The first constraints (6) and (7) ensure that it is
not possible for the starting time of each task to
take negative values, while constraint (8) ensures that
the starting time so = [so, so] is an interval. Con-
straints (9) and (10) determine the interval makespan

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Cmax = [Cmax,Cmax]. Constraints (11) and (12) ensure
the precedence relations between consecutive tasks of
the same job, while constraints (13) to (16) prevent the
overlapping of tasks on the machine where they are to
be executed: the first two constraints ensure that task v
starts after u has finished if u is to be processed before
v in their machine while the second pair of constraints
ensure that task u starts after v is finished in the case
that u is not to be processed before v in their machine.
Finally, notice that the minimization of the objective
function in (5) should be understood with respect to
one of the ranking methods described in Section 2.1.

2.4. Robustness of solutions

The makespan obtained for the IJSP under uncer-
tainty is an interval Cmax = [Cmax,Cmax]. This inter-
val contains all the possible values for the makespan
if tasks are executed in the relative order established
by the schedule. In fact, when the solution is executed
on a real scenario we obtain exact processing times for
tasks Pex = {pex

o ∈ [p
o
, po], o ∈ O} so after the exe-

cution the actual makespan Cex
max ∈ [Cmax,Cmax] can

be known. Clearly, it is desirable that this executed
makespan Cex

max does not differ much from the estima-
tion provided by the a-priori makespan Cmax, and in
particular, from its expected value.

This is the idea underlying the concept of ϵ-robustness,
first proposed in [51] in the context of stochastic
scheduling and adapted to the IJSP in [23]. For a given
ϵ ⩾ 0, a schedule with makespan Cmax is said to be ϵ-
robust in a real scenario Pex if the relative error made
by the expected makespan E[Cmax] with respect to the
executed makespan Cex

max is bounded by ϵ, that is:

|Cex
max − E[Cmax]|

E[Cmax]
⩽ ϵ, (18)

where E[Cmax] is the expected value of the uniform
distribution on the interval Cmax, given by E[Cmax] =
0.5(Cmax+Cmax). Clearly, the interval schedule is con-
sidered to be more robust with a tighter bound ϵ.

This robustness measure depends on a particular
configuration Pex of task durations obtained in one ex-
ecution of the predictive schedule s. If no real data are
available, as is the case with the usual synthetic bench-
mark instances for job shop, we may turn to Monte-
Carlo simulations. We simulate K possible configu-
rations Pk = {pk

o ∈ [p
o
, po], o ∈ O} using uniform

probability distributions to sample durations for every
task. For each configuration k = 1, . . . ,K we compute

the exact makespan Ck
max that results from executing

tasks according to the ordering provided by s. Then,
we can calculate the average ϵ-robustness of the pre-
dictive schedule across the K possible configurations,
denoted ϵ, as follows:

ϵ =
1

K

K∑
k=1

|Ck
max − E[Cmax]|

E[Cmax]
, (19)

This provides an estimate of the robustness of the solu-
tion s across different processing times configurations.

Simulation techniques such as the one proposed to
compute the average robustness are not rare in com-
plex optimisation settings. Simulation allows for mod-
elling and artificially reproducing complex systems
in a natural way within affordable computational ef-
fort [52]. In particular, our proposal is related to the
dominant use of simulation in management science
and operations research as a means for system anal-
ysis, where the intent is to mimic behaviour to under-
stand or improve system performance [53].

3. ESABC: An Elitist Seasonal Artificial Bee
Colony Algorithm

The Artificial Bee Colony (ABC) algorithm is a
swarm-based metaheuristic search schema based on
the foraging behaviour of honey bees which has been
successfully applied with different modifications to a
variety of optimisation problems [54]. However, when
applied in its standard form to the interval job shop
with makespan minimisation, it seems to lead to pre-
mature convergence, so a modification was introduced
in [24] to improve its diversification capabilities and
hence avoid this phenomenon. This method, denoted
ABCE3, has become the state-of-the-art method for this
problem.

In the following we build on ABCE3 to obtain fur-
ther diversity in the search process which will eventu-
ally result in better solutions. This improvement is in-
spired by the influence of the season of the year and the
temperature on the honeybees’ behaviour. It also bears
similarities with the mechanism used to escape from
local optima in simulated annealing, one of the most
popular metaheuristic search techniques with multiple
applications in engineering [29].

In standard ABC, a hive of bees exploits a chang-
ing set of food sources (representing solutions to the

6 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 1 Pseudocode of the Elitist Seasonal ABC
Require: An IJSP instance
Ensure: A schedule

Generate a pool P0 of food sources
Best← Best solution in P0

numIter ← 0
k← 0
while numIter < maxIter do

/* Employed bee phase */
E ← B best solutions in Pk

for each food source fs in Pk do
fs′ ← Select a solution from E at random
fsnew ← Combine fs and fs′ with probability pemp

if fsnew is better than f s and f snew ̸= Best then
fs← fsnew
if f snew is better than Best then

Best← fsnew
numIter ← 0

else
fs.numTrials← fs.numTrials + 1

/* Onlooker bee phase */
for each food source f s in Pi do

if fs.numTrials ⩽ NTmax then
fsnew ← Apply onlooker op. to fs with prob. pon

if fsnew is better than f s and f snew ̸= Best then
f s← new f s

if fsnew is better than Best then
Best← fsnew
numIter ← 0

else
Tk ←Monotonic(k, α, NC, T0) /* see Section 3.4.1 */
µ← Adaptive(fs, fsnew) /* see Section 3.4.2 */
T ← µ · Tk

r ∼ U(0, 1)
if r < T then

f s← fsnew
else

fs.numTrials← fs.numTrials + 1

/* Scout bee phase */
for each food source fs in Pi do

if fs.numTrials > NTmax then
fs← create new random food source
fs.numTrials← 0
if fsnew is better than Best then

Best← fsnew;
numIter ← 0

numIter ← numIter + 1
k← k + 1

return Best

problem) with two leading models of behaviour: re-
cruiting rich food sources (i.e. keeping promising so-
lutions) and abandoning poor ones (i.e. discarding bad
solutions). It starts by generating and evaluating an ini-

tial pool P0 of random food sources, and the best food
source in the pool is assigned to the hive queen. Then,
it iterates over a number of cycles, each consisting of
three phases mimicking the behaviour of three types of

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

foraging bees: employed, onlooker and scout bees. In
the employed bee phase, each food source is assigned
to an employed bee. This bee explores a new candi-
date food source between its current one and the best
food source found so far, which is always assigned to
the queen. After evaluating the candidate food source,
if it is equivalent to the queen’s one, it is discarded by
the bee in order to maintain diversity in the pool. If
the employed bee does not discard the candidate food
source and it is better than the bee’s current one, then
the bee moves to the new food source. Otherwise, the
number of improvement trials fs.numTrials of the orig-
inal food source is increased by one. In the next phase,
each onlooker bee chooses a food source and tries to
find a better neighbouring one. The newly found food
source receives the same treatment as in the previous
phase. In the scout bee phase, if the number of im-
provement trials of a food source reaches a maximum
number NTmax, a scout bee finds a new food source to
replace the former one in the pool. Finally, the algo-
rithm terminates after a specific stopping criterion is
met.

In our proposal, each food source fs encodes an IJSP
solution using permutations with repetition [55]. The
decoding of a food source follows an insertion strat-
egy, consisting in iterating along the permutation and
scheduling each task at its earliest feasible insertion
position [23]. Thus, the creation of the initial pool of
food sources P0, or initial hive, consists on generating
a set of random permutations with repetition that lead
to feasible solutions according to the encoding and de-
coding strategies from [23]. The nectar amount of each
food source, representing the quality of that solution,
is inversely proportional to the makespan of the sched-
ule it represents, so in terms of comparisons, a food
source f s is considered to be better than another f s′

if Cmax(f s) ⩽R Cmax(f s′) for a given ranking R on
intervals. As stopping criterion, the search terminates
after a number maxIter of consecutive iterations with-
out finding a food source that improves the queen’s one
(denoted Best). The pseudo-code of the resulting ABC
is given in Algorithm 1. The following subsections ex-
plain each of the three phases in more detail.

3.1. Employed Bee Phase

Originally, the employed bees’ search is always
guided by the queen’s food source. That is, each bee
combines its food source with the best one in the hive
to find a new one. However, this strategy may in some

occasions cause a lack of diversity and lead to prema-
ture convergence [48]. To address this issue, a modifi-
cation of the original strategy was proposed in [24] so
the guiding food source was instead selected from an
elite group. Three different ways of defining the elite
group were considered and evaluated. Elite1 consists
in selecting only the best food source in the hive, thus
representing the standard employed bee phase. Elite2

selects the best food source from those food sources
with the highest number of trials, which represent lo-
cal optima and therefore promising areas to explore.
In Elite3, the elite group is made up of the best B food
sources in the current hive and, for each employed bee,
a guiding solution from this group is chosen at ran-
dom. This strategy is equivalent to the standard ABC
if B = 1 and chooses a random food source from the
hive if B is as large as the maximum number of food
sources. Therefore, B is a parameter of the algorithm
ranging between 1 and the maximum number of food
sources that allows to adjust the diversity. The experi-
mental results presented in [24] suggest that the third
strategy is the most interesting one.

Once an elite solution fs′ is selected, a recombina-
tion operator is applied with probability pemp to the
bee’s current food source fs and the selected elite one
fs′. In our case, we use three well-known operators for
our encoding: Generalised Order Crossover (GOX),
Job-Order Crossover (JOX) and Precedence Preserva-
tive Crossover (PPX). If the resulting food source fsnew
is better than the bee’s current one fs and distinct from
the best-so-far source Best, the bee leaves its current
food source and adopts the new one for the next itera-
tion. Otherwise, the bee remains at its original source,
increasing in one the counter fs.numTrials of improve-
ment trials.

3.2. Onlooker Bee Phase with Seasonal Behaviour

In this phase, onlooker bees with a food source that
is not exhausted (i.e. it has not reached the maximum
number of improvement trials) search in the neigh-
bourhood of their food source with a probability pon.
Typically, the neighbouring food sources are obtained
by performing a small change on the original one. In
our case, food sources encode solutions as permuta-
tions, so we use one of the following operators for per-
mutations: Swap, Inversion or Insertion. In the original
ABC, if the neighbour is better than the original food
source, it will replace it becoming the new food source.
Otherwise, the onlooker bee will remain in the original
food source, increasing in one the counter fs.numTrials

8 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

of improvement trials. If fs.numTrials reaches a maxi-
mum NTmax, then the food source fs will be considered
as exhausted.

However, a behaviour where bees only move to im-
proving food sources is likely to reduce the search abil-
ity of onlooker bees by getting them stuck in local op-
tima. The Scout Bee Phase (Section 3.3) is supposed to
solve this issue by discarding those food sources that
have not improved after a number of attempts, and re-
placing them by new random ones. Consequently, new
diversity is introduced in the population, but it is a
diversity which initial quality might not be adequate
to make an effective contribution to the resolution of
the problem. Therefore, it seems advisable to allow for
certain moves to worsen food sources in the onlooker
bee phase with the goal of escaping local optima and
avoiding premature convergence.

In nature, honeybees already have this mechanism
in place. Seasons have an influence on the honey-
bees’ thermal behaviour, which might be connected
with seasonal shifts of temperature regulated by the
honeybee colony. When spring comes, new sources of
nectar become available. At that moment, the bees in-
crease their activity to explore larger areas and find
the best food sources. This is the time when they ac-
cumulate nectar in big amounts and reproduce. By
summer, when the daylight period is the longest, bees
have already located the best food sources and they
make use of the longer days for maximum foraging
of nectar. In this period, they focus on honey produc-
tion and prepare for winter. When freezing tempera-
tures arrive in winter, bees cease their activity in wait
for the new spring. In an optimisation context, this re-
sembles a dynamic strategy: at the first stages (spring
and reproduction) the swarm focuses on exploration,
and as time advances the focus shifts towards exploita-
tion (summer) until it reaches a freezing state (win-
ter). This is analogous to simulated annealing, where
a temperature parameter allows for more exploration
at the beginning and reduces it as the algorithm ad-
vances. The inertia in particle swarm optimisation also
has a similar effect, enabling more movement in the
first stages, and slowing down when the particles con-
verge to promising areas. A similar idea is also found
in memetic algorithms, where local search is combined
with population-based evolutionary algorithms and ap-
plied with certain probability to balance exploration
and exploitation [29, 56].

To mimic this behaviour in our algorithm, we take
the food source fs of an onlooker bee and a neighbour-
ing one fsnew currently being explored. As in the stan-

dard onlooker bee phase, if fsnew is better than fs, it will
automatically replace it. However, if fsnew is equal or
worse than fs, the replacement will depend on a prob-
ability that is proportional to the quality of fsnew and
the environment’s temperature, which decreases with
each new iteration or temperature cycle k (from spring
to winter). This replacement strategy is similar to the
Metropolis algorithm for simulation of physical sys-
tems subject to a heat source [57]. As a side effect, al-
lowing for more substitutions and with higher quality
solutions in the second phase of ABC implies less re-
placements in the Scout Bee Phase, with a positive im-
pact on the average quality of the new solutions. The
different seasonal models considered for temperature
changes are discussed in Section 3.4.

3.3. Scout Bee Phase

In this last phase, a scout bee is assigned to each
food source that has reached the maximum number
of improvement trials. Since this food source has not
been improved after the given number of attempts, it
is discarded and the scout bee is in charge of finding
a replacement. To implement this phase, every food
source fs having fs.numTrials > NTmax is replaced
by a random one fs′ with fs′.numTrials = 0. Random
food sources are generated by creating a random per-
mutation with repetitions that leads to feasible solu-
tions according to the encoding and decoding strategy
from [23], as explained above for the initial population.

3.4. Seasonal Strategies

To model how temperatures change in our seasonal
environment, we get inspiration from simulated an-
nealing algorithms, where temperature is also used to
lead the system from states of high energy to states
of low energy. To simulate that behaviour, these meth-
ods start from an initial temperature T0, which then
decreases along the evolution of the algorithm follow-
ing a predefined cooling strategy. It is desirable that T0

is set to a high enough value, so that solutions gener-
ated in the first iterations of the algorithm have a high
probability of being accepted independently of their
quality, thus encouraging exploration. Regarding the
decrease in temperature, several strategies have been
proposed in the literature [29, 58, 59]. In this work we
apply two types of strategy: monotonic and adaptive,
selected from the most promising ones from [60]. This
is reflected in Algorithm 1 with two functions used
to update the temperature at each iteration, Monotonic
and Adaptive.

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3.4.1. Monotonic Strategies
We consider two subcategories of monotonic cool-

ing strategies: multiplicative and additive. In multi-
plicative strategies, the temperature Tk at iteration k is
obtained as the product of the initial temperature T0

and a decreasing factor ∆k. This factor starts with a
value equal to 1, so the system starts with temperature
T0 and decreases over time depending on a parameter
α. The following four cooling strategies belong in this
category (in each case, we indicate the most typical α
values between brackets):

– Exponential multiplicative cooling (ExpM):

Tk = α
k · T0 (0.8 ⩽ α ⩽ 0.9) (20)

– Logarithmic multiplicative cooling (LogM):

Tk =
1

1 + α log(1 + k)
· T0 (α ⩾ 1) (21)

– Linear multiplicative cooling (LinM):

Tk =
1

1 + αk
· T0 (α ⩾ 0) (22)

– Quadratic multiplicative cooling (QadM):

Tk =
1

1 + αk2
· T0 (α ⩾ 0) (23)

In additive strategies, two new values need to be
taken into account: the number of cooling cycles NC
and the final temperature TNC . To find the value of
Tk at each iteration k, a value ∆k that decreases over
time is added to the final temperature TNC . Ideally,
∆0 = (T0−TNC), so the algorithm starts with temper-
ature T0 and decreases over time until it reaches TNC .
In this category, we consider three cooling strategies.

– Linear additive cooling (LinAd):

Tk = TNC + (T0 − TNC)(
NC − k

NC
) (24)

– Quadratic additive cooling (QadAd):

Tk = TNC + (T0 − TNC)(
NC − k

NC
)2 (25)

– Trigonometric additive cooling (TrigAd):

Tk = TNC +
1

2
(T0 − TNC)(1 + cos(

kπ
NC

)) (26)

Independently of the strategy type, values k and T0

are necessary. In addition, a parameter α is needed for
multiplicative strategies and a parameter NC, for addi-
tive ones. This is indicated in Algorithm 1 by including
these 4 values as parameters of Monotonic function. In
the experimental analysis, we shall determine which
monotonic strategy works better for our problem.

3.4.2. Adaptive strategies
Monotonic cooling strategies only take into account

the number of iterations of the algorithm. In our case,
the temperature of the environment and, with it, the
bees behaviour will only depend on the time of the
year if a monotonic strategy is used. However, it is
reasonable to assume that onlooker bees will be more
willing to explore if the food sources around them are
poor and they will be more conservative if their neigh-
bourhood is reasonably rich. This would correspond
to a non-monotonic adaptive cooling where the tem-
perature Tk is multiplied by an adaptive factor µ that
depends on the difference between the amount of nec-
tar in the current food source and the nectar of the best
food source found so far. In our case, µ will depend on
the difference between the quality of the neighbouring
food source fsnew and the current food source fs of the
bee. The introduction of µ implies that onlooker bees
whose neighbouring food sources are much worse that
their current one will have a higher temperature, and
therefore more exploration capabilities than those that
are already in promising neighbourhoods. Typically,
the µ factor is calculated as follows, so (1 ⩽ µ ⩽ 2):

T = µTk = (1 +
f (S)− f ∗

f (S)
)Tk, (27)

where f (S) denotes the fitness of the new solution
(fsnew in our case) and f ∗ is the best fitness found by
the bee so far (fs in our case). The need of these val-
ues is expressed in Algorithm 1 by including them as
parameters of Adaptive function.

To enhance this feature, we propose a new variant of
the previous one where (1 ⩽ µ ⩽ 4), meaning that the
temperature can get even higher if the quality of the
current solution is too bad in comparison with the best
achieved solution:

T = µTk = (1 +
f (S)− f ∗

f (S)
)2Tk (28)

In the experimental analysis, we shall determine
which adaptive strategy works better for our problem.

10 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4. Experimental Results

In this section, the different seasonal strategies are
evaluated and compared with respect to the best-
known solutions in the literature. Also, a study is car-
ried out to determine the advantage (if any) of con-
sidering uncertainty during the optimisation process.
Different ranking methods for intervals are compared
to assess which one yields more robust solutions. Fi-
nally, a sensitivity analysis tries to assess the impact of
having larger intervals on the solutions.

The experimental analysis is performed on bench-
mark instances from the literature. Two sets of bench-
mark instances for IJSP have been proposed in the
past: 17 instances in [22] and 12 instances in [23]. The
first set of instances is an extension to the IJSP of the
well-known crisp instances ORB1 to ORB5 (size 10×
10), La16 to La20 (10× 10), La21 to La25 (15× 10),
and ABZ5, ABZ6 (10× 10). Here, the values between
brackets of the form n × m refer to the instance size,
where n is the number of jobs and m is the number of
resources. To adapt the instances to the interval frame-
work, an interval po = [po, po + δo] was generated
from each original deterministic processing time po by
adding a number δo ∈ [3, 8]. However, the original de-
terministic instances (with the exception of La21, La24
and La25) were already labelled as easy more than
thirty years ago [61]. More recently, fuzzy versions of
these instances have also proved to be easy to solve
with current metaheuristic techniques [62]. The second
set of instances from [23] is also obtained by extend-
ing classical deterministic benchmark instances to the
interval framework. However, in this case it contains
larger instances: FT10 (10×10), FT20 (20×5), La21,
La24, La25 (15 × 10), La27, La29 (20 × 10), La38,
La40 (15 × 15), ABZ7, ABZ8, and ABZ9 (20 × 15).
The interval po = [(1− δo)po, (1 + δo)po] was gener-
ated from each deterministic processing time po, with
δo a random value in the interval [0, 0.15]. This set con-
tains the 10 instances considered as tough in [61], mak-
ing it more suitable for evaluating our solving method.
Thus we shall use this second set in the following ex-
perimental analysis.

All experiments are done using a C++ implemen-
tation on a PC with Intel Xeon Gold 6240 processor
at 2.6 Ghz and 128 Gb RAM with Linux (CentOS
v6.10). For every experiment, we consider 30 runs of
the method on each instance, so the resulting data are
representative of the method’s performance.

4.1. Parameter analysis

A preliminary parametric study is conducted to find
the best parameter configuration for ES ABC. To com-
pare the behaviour of the seven proposed monotonic
seasonal strategies, we consider seven different vari-
ants of ES ABC, namely ES ABCExpM , ES ABCLogM ,
ES ABCLinM , ES ABCQadM , ES ABCLinAd, ES ABCQadAd

and ES ABCTrigAd. The stopping criterion for all vari-
ants is set to maxIter = 25 consecutive iterations with-
out improving the best solution found so far. Following
the results obtained in [24] for ABCE3, the hive size is
set to 250 food sources. For fairer comparisons, we use
the ⩽MP ranking method, which is the ranking used
in [22–24]. The following values are tested for each
parameter:

– Employed bee phase operator: GOX, JOX, PPX
– Employed bee phase probability: 0.5, 0.75, 1.0
– Onlooker bee phase operator: Insertion, Inver-

sion, Swap
– Onlooker bee probability: 0.5, 0.75, 1.0
– Max. number of tries: 10, 15, 20
– Size of the elite: 40, 50, 60

In addition, every seasonal strategy has its own spe-
cific parameters that need to be tuned: the cooling
constant α for multiplicative strategies, the number of
cooling cycles NC for additive ones and the initial tem-
perature T0 for all of them. Since these parameters
have different impact on the seasonal strategies (i.e.
logarithmic vs. quadratic), the range of values to test is
chosen accordingly and disclosed in Table 1. Each row
corresponds to the variant of ES ABC obtained by in-
corporating a seasonal strategy as explained above and
each column indicates the range of values considered
in the parametric analysis for each parameter of the
seasonal strategy (in the table, the acronym “N.A.” in
a cell indicates that the parameter labelling the corre-
sponding column is not applicable to the seasonal strat-
egy labelling the row).

Finally, the adaptive strategies from Section 3.4.2
are also tested on each variant of ES ABC. Table 2
reports the best parameter values for each variant of
ES ABC. Each row corresponds to one parameter and
each column, to one variant of the algorithm. The
values in the sixth row, corresponding to the adap-
tive strategy, are S tandard if equation (27) is used,
Quadratic, if equation (28) is used, or Disabled, if
no adaptive strategy is used. It would seem that the
Quadratic adaptive strategy proposed in this work as
a variant of the one in [59] finds better results when

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Range of parameter values for each seasonal strategy.

ES ABC Variant α NC T0

ES ABCExpM 0.80, 0.85, 0.90 N.A. 1.0, 2.0, 10.0
ES ABCLogM 1.50, 2.00, 2.50 N.A. 1.0, 1.5, 2.0
ES ABCLinM 0.02, 0.50, 1.00 N.A. 1.0, 1.5, 2.0
ES ABCQadM 0.02, 0.05, 0.10 N.A. 1.0, 1.5, 2.0
ES ABCLinAd N.A. 100, 150, 200 0.9, 1.0, 1.1
ES ABCQadAd N.A. 100, 150, 200 0.9, 1.0, 1.1
ES ABCTrigAd N.A. 25, 50, 100 0.8, 1.0, 1.2

combined with the different multiplicative monotonic
cooling variants, appearing to be the best option for all
of them.

The results obtained with the best setup of each vari-
ant are detailed in Table 3. Each row corresponds to
one of the instances; the first column contains the name
of the instance and the remaining seven columns cor-
respond to the results obtained by ES ABC using the
different seasonal strategies presented in Section 3.4,
so for each seasonal strategy se, the heading of the
column ES ABCse denotes the variant of ES ABC us-
ing se. For each variant, the average E[Cmax] across
30 runs is reported. Values in bold highlight the best
variant for each instance. An automated statistical test
is performed to find significant differences between
the variants. If the samples pass a Shapiro-Wilk test
of normality, an analysis of variance model (ANOVA)
is carried out, followed by Tukey’s Honest Signifi-
cant Difference to display the results of all pairwise
comparisons in the tested groups. If the test of nor-
mality is not passed, a Kruskall-Wallis rank sum test
is performed followed by a multiple comparison to
determine which groups are different. The tests are
configured with a p-value of 0.05. The results show
no significant differences between the different vari-
ants, except on instance ABZ8 where ES ABCQadM and
ES ABCQadAd are significantly different than the oth-
ers. For the sake of choosing one of the variants for fur-
ther tests, ES ABCLinM obtains the best average result
in 5 out of 12 instances, so it is the one we shall con-
sider in the following sections. For the sake of clarity,
in further sections we will refer to ES ABCLinM simply
as ES ABC.

4.2. Comparison with the state of the art

Table 4 reports the comparison of our method with
the GA and ABCE3 methods from [23] and [24] re-
spectively, which to the best of our knowledge rep-
resents the most successful methods in the literature

for our problem. GA was shown in [23] to outperform
the population-based neighbourhood search algorithm
from [22], which was the most competitive method for
this problem up to that moment. Regarding ABCE3, the
experimental results from [24] already showed that it
obtained better results than a standard ABC and was
comparable, if not better, than GA. We therefore con-
clude that GA and ABCE3 can be considered to be the
state of the art for IJSP.

The comparison is made in terms of Relative Errors
(RE) with respect to the best-known lower bound of
the problem, shown in the second column of the ta-
ble. For the sake of clarity, Table 4 shows these errors
as percentages. Columns Best and Avg. show the best
and average relative errors obtained in 30 runs of each
method w.r.t. the given lower bound. Values in brack-
ets represent the standard deviation (SD). Finally, the
column Time contains the average runtime of each al-
gorithm. Best average values of each instance are in
bold. In terms of the best found values, ABCE3 is out-
performed or matched by ES ABC on every instance
except La24 and La40. However, what is more rep-
resentative is the average behaviour of each method.
In this case, ES ABC obtains the best results in 11
out of 12 instances, reducing the Relative Error w.r.t.
LB in 13% when compared to ABCE3 and 43% when
compared to GA. Following the procedure explained
in Section 4.1 for statistical tests, a Kruskal-Wallis
test reveals that the differences between ES ABC and
the other methods are significant in all instances ex-
cept FT20, La38 and La40, where there is no signifi-
cant difference between ES ABC ad ABCE3. Regarding
the runtime, ES ABC appears to take a bit longer than
ABCE3 to converge, which in turn takes longer than
GA. One may think that the different runtimes come
from a difference in algorithmic complexity, but the
three approaches have similar asymptotic complexity,
which is given by the most costly operation. In this
case, the evaluation of a new solution, that being an
individual (GA) or a food source (ABC). So time dif-
ferences might be related to the algorithm’s behaviour.
This is expected, and good in a sense, since the main
idea of including seasonal strategies is to avoid prema-
ture convergence and therefore spend more time ex-
ploring to reach more promising areas of the search
space. ES ABC seems to achieve this, taking slightly
more time but reaching better solutions than ABCE3.
This is illustrated on Figure 1, where both ABCE3 and
ES ABC are left to converge for 150 iterations on in-
stance ABZ7. We can see that ABCE3 converges too
quickly and stops improving, while ES ABC takes a

12 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Best parameter setup for variants of ES ABC with different seasonality strategies.

Parameter/Variant ES ABCExpM ES ABCLogM ES ABCLinM ES ABCQadM ES ABCLinAd ES ABCQadAd ES ABCTrigAd

Employed operator JOX JOX JOX JOX JOX JOX JOX
Employed prob. pemp 1 1 1 1 1 1 1
Onlooker operator Insertion Insertion Insertion Insertion Insertion Insertion Swap
Onlooker prob. pon 0.5 1 0.75 0.5 0.75 0.5 0.75
Max. tries 20 20 20 20 15 20 10
Elite size 40 50 50 50 50 40 40
Adaptive strategy Quadratic Quadratic Quadratic Quadratic Quadratic Disabled Standard
α 0.9 2 0.5 0.02 N.A. N.A. N.A.
NC N.A. N.A N.A. N.A. 150 150 100
T0 1 2 1 1 0.9 1 1
TNC N.A. N.A. N.A. N.A. 0 0 0

Table 3
Average E[Cmax] values obtained with different seasonality strategies for ES ABC.

Instance ES ABCExpM ES ABCLogM ES ABCLinM ES ABCQadM ES ABCLinAd ES ABCQadAd ES ABCTrigAd

ABZ7 698.55 702.23 700.12 699.75 703.67 698.90 700.88
ABZ8 717.37 719.47 715.62 716.45 716.07 720.18 717.13
ABZ9 733.82 734.67 734.98 734.73 734.35 737.85 736.28
FT10 959.42 957.57 957.97 956.23 957.82 962.43 960.83
FT20 1186.78 1184.08 1185.73 1184.68 1185.73 1187.68 1185.72
La21 1089.48 1088.05 1087.47 1087.57 1087.70 1090.80 1090.98
La24 977.90 977.50 981.28 980.07 981.35 978.57 978.98
La25 1004.58 1003.90 1003.78 1004.12 1005.78 1004.58 1007.38
La27 1288.57 1285.87 1285.85 1289.03 1288.18 1288.05 1294.13
La29 1237.50 1239.30 1232.98 1233.93 1235.80 1231.98 1235.70
La38 1272.57 1271.95 1265.68 1272.63 1274.27 1271.50 1273.85
La40 1271.98 1270.85 1272.23 1273.55 1273.98 1271.87 1271.88

bit longer, but reaches better results. In any case, the
elapsed time can be considered reasonable taking into
account that it remains below 10 seconds for all in-
stances.

4.3. Comparison between different ranking methods

After comparing the different versions of ES ABC
among themselves and with a state-of-the-art method,
we study the effect of using different ranking meth-
ods for intervals during the optimisation process. For
this study, we focus on ES ABC and create four vari-
ants of it using the four rankings introduced in sec-
tion 2.1. A crisp version of ES ABC, ES ABCc is also
considered, where the algorithm is fed a version of the
instances where the intervals are replaced by their ex-
pected value, thus becoming crisp instances. The idea

is to see if it is worth considering the uncertainty dur-
ing the optimisation process, or if solving the asso-
ciated crisp instance yields similar results. For a fair
comparison, ES ABC parameter values are tuned to ob-
tain the best setup for each ranking method following
the same process than in Section 4.1. Table 5 contains
the final parameter values that result from this process.
Each row corresponds to one parameter and there are
five columns, the first one corresponding to the param-
eter setting for the crisp version of EAS BC and the
remaining four, to the parameter setting for ES ABC
using each of the four ranking methods (indicated as
sub-index of the name of the variant). The table shows
that despite the change of ranking, the best values for
the seasonal strategies are the same, as well as the op-
erator for the employed bee phase. Only the elite size

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Comparison between GA, ABCE3 and ES ABC in terms of best and average RE (%) w.r.t. LB and runtime

GA ABCE3 ES ABC
Instance LB Best Avg. (SD) Time Best Avg. (SD) Time Best Avg. (SD) Time

ABZ7 656 6.33 12.50 (1.96) 1.8 5.26 7.32 (1.11) 4.5 4.19 6.73 (1.74) 6.5
ABZ8 645 11.32 18.48 (2.14) 1.8 8.99 12.06 (1.16) 4.2 8.68 10.95 (1.74) 7.7
ABZ9 661 13.01 17.97 (2.41) 2.2 9.68 13.13 (1.57) 6.0 8.55 11.19 (1.55) 8.7
FT10 930 1.83 5.23 (2.12) 0.5 1.08 4.11 (1.28) 1.6 0.59 3.01 (1.21) 1.8
FT20 1165 1.46 4.35 (1.36) 0.7 0.69 1.73 (0.66) 2.7 0.69 1.78 (0.63) 2.9
La21 1046 3.15 5.01 (1.29) 1.1 2.58 5.01 (1.29) 1.8 2.06 3.96 (0.72) 2.9
La24 935 4.06 6.34 (1.57) 0.8 2.25 5.06 (1.25) 2.7 3.53 4.95 (0.96) 2.6
La25 977 1.94 5.11 (2.39) 1.0 1.94 3.88 (0.89) 2.4 1.33 2.74 (0.95) 3.0
La27 1235 4.57 10.22 (2.00) 1.3 2.75 4.66 (0.99) 4.1 2.75 4.12 (1.02) 5.8
La29 1152 11.11 14.23 (1.62) 1.1 5.51 8.65 (1.31) 4.4 4.99 7.03 (1.09) 6.7
La38 1196 6.02 9.16 (2.28) 1.4 4.52 6.88 (1.47) 6.0 3.01 5.83 (1.40) 7.2
La40 1222 5.07 8.74 (2.33) 1.2 1.88 4.21 (1.13) 3.0 2.74 4.11 (0.91) 3.7

650

700

750

800

850

900

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

E
x

p
ec

te
d

 M
ak

es
p

an

Iterations

ABC_{E3} ESABC

Fig. 1. Best solution found by ABCE3 and ES ABC at each iteration
on instance ABZ7

and the onlooker bee phase operators get a finer tuning
depending on the ranking method in use.

To establish a comparison between all variants, we
must take into account that comparisons between in-
tervals depend on the chosen ranking. Since we are
comparing the different rankings themselves, choos-
ing a specific one as basis for comparison would be
unfair and favour the ES ABC variant that used that
ranking during the optimisation process. To avoid this
problem, the ϵ-robustness measure is adopted to com-
pare solutions based on their quality as predictive
schedules. Every variant of ES ABC returns an ex-
pected makespan value and a task processing order
per instance and run. This order can then be evalu-
ated on 1000 deterministic realisations of the instance

to find the ϵ value. Table 6 reports the ϵ robustness
value obtained with ES ABC using the different rank-
ing method on each instance. Next to the average ϵ,
it also reports the standard deviation between brack-
ets. To improve the clarity of the table, the original
ϵ values are rescaled multiplying them by 1000. For
each instance, values in bold highlight the most robust
method (that is, that with the smallest ϵ) and grey cells
correspond to methods with no significant differences
with the best method after running a Kruskal-Wallis
statistical test as explained above.

It is clear that the solutions to the associated deter-
ministic problem are considerably less robust than the
solutions obtained incorporating the knowledge about
interval uncertainty to the search. In comparison with
ES ABCLex2, which can be seen as the most robust of
ES ABC variants, solving the crisp instance gets solu-
tions that are 28% less robust. When comparing the
use of different ranking methods, ES ABCLex2 obtains
the most robust solutions, reaching the best values in
11 out of the 12 analysed instances. ES ABCYX obtains
very similar results, not having significant differences
with ES ABCLex2 in 9 of the instances. These results
are aligned to the ones obtained by the Genetic Algo-
rithm in [23], showing that independently on the opti-
misation method, using ⩽Lex2 tends to be more robust.
To better illustrate the results, Figure 2 shows the box-
plots of the resulting ϵ values on one representative in-
stance of each group: ABZ7, where no significant dif-
ference is found between the ranking methods, ABZ9
where ES ABCLex2 is significantly better than the oth-

14 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Best parameter setup for ES ABC using different interval ranking methods

Parameter ES ABCc ES ABCMP ES ABCLex1 ES ABCLex2 ES ABCYX

Employed operator JOX JOX JOX JOX JOX
Employed prob. pemp 1 1 1 1 1
Onlooker operator Swap Insertion Swap Insertion Insertion
Onlooker prob. pon 1 0.75 0.5 1 1
Max. tries 20 20 20 20 20
Elite size 60 50 60 60 50
Adaptive strategy Quadratic Quadratic Quadratic Quadratic Quadratic
α 0.5 0.5 0.5 0.5 0.5
T0 1 1 1 1 1

Table 6
Average ϵ(×1000) values for ES ABC using different ranking methods (standard deviation in brackets)

Instance ES ABCc ES ABCMP ES ABCLex1 ES ABCLex2 ES ABCYX

ABZ7 12.26 (1.75) 8.98 (1.29) 8.99 (1.03) 8.03 (1.46) 8.89 (0.99)

ABZ8 9.86 (1.58) 7.67 (1.09) 7.81 (1.06) 7.46 (1.19) 7.37 (1.07)

ABZ9 10.61 (1.38) 7.13 (0.92) 7.67 (0.79) 6.46 (1.02) 7.13 (1.09)

FT10 12.00 (1.81) 9.10 (1.20) 9.81 (1.19) 9.00 (1.11) 9.61 (1.15)

FT20 9.03 (1.05) 7.58 (0.43) 7.80 (0.72) 7.53 (0.44) 7.52 (0.36)

La21 13.64 (1.42) 10.28 (0.94) 10.48 (0.78) 9.12 (0.85) 10.24 (1.23)

La24 15.08 (2.15) 11.94 (1.38) 12.42 (1.30) 11.41 (1.81) 11.97 (1.63)

La25 12.72 (1.71) 10.20 (0.80) 10.57 (0.66) 9.56 (1.25) 10.07 (1.06)

La27 13.01 (1.83) 9.41 (1.15) 9.70 (1.08) 8.78 (1.15) 9.33 (0.92)

La29 12.35 (1.63) 9.52 (0.91) 9.64 (1.24) 8.57 (1.13) 9.31 (1.26)

La38 13.78 (1.23) 9.74 (1.69) 10.58 (1.17) 8.37 (1.79) 9.30 (1.53)

La40 13.46 (2.24) 10.17 (0.98) 10.04 (0.83) 9.21 (0.99) 10.22 (1.15)

ers and La29, where ES ABCLex2 and ES ABCYX be-
have similarly, but better than the others.

To understand why ES ABCLex2 obtains the most ro-
bust results, Table 7 shows the expected makespan val-
ues across 30 runs of ES ABCLex2 and ES ABCMP. For
each of the obtained makespan intervals, we also mea-
sure the level of uncertainty of the solutions. As ex-
plained in Section 2, the makespan interval Cmax =
[Cmax,Cmax] represents the set of all possible values for
Cmax in a real execution of the solution. In other words,
we can define a possibility measure PosCmax as:

PosCmax(x) =

{
1 if Cmax ⩽ x ⩽ Cmax

0 otherwise
(29)

In that setting, we use the U-uncertainty mea-
sure [63] to evaluate the uncertainty of Cmax:

H(PosCmax) = log2 |Cmax|

= log2 |Cmax − Cmax + 1| (30)

The average H(PosCmax) is also included in Table 7
together with the average runtime. Values in bold high-
light the best E[Cmax] and H(PosCmax) value obtained
for each instance. We can see how the level of un-
certainty obtained by ES ABCLex2 tends to be smaller,
showing that using this ranking can obtain results that
reduce the amount of uncertainty and therefore, real
executions are more predictable. This is illustrated in
Figure 3, where 1000 realisations of the best solu-
tion obtained by ES ABCLex2 and ES ABCMP are de-
picted in an histogram. Thick black lines show the ex-
pected makespan (predictive value) and thinner dotted

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

MP Lex1 Lex2 YX

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

e
−

ro
b
u

s
tn

e
s
s

(a) ABZ7

MP Lex1 Lex2 YX

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

e
−

ro
b
u

s
tn

e
s
s

(b) ABZ9

MP Lex1 Lex2 YX

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

e
−

ro
b
u

s
tn

e
s
s

(c) La29

Fig. 2. ϵ-robustness of schedules obtained with the different variants
of ES ABCLinM on instances ABZ7, ABZ9 and La29.

lines the interval bounds. We can see that reducing
the uncertainty measure translates into a thinner his-
togram in the figure. This eventually means that so-
lutions are more robust, as we had seen in Table 6.
On the other hand, one would expect ES ABCMP to
obtain better results in terms of expected makespan.

Table 7
Average E[Cmax] and H(PosCmax) values obtained by ES ABCLex2
and ES ABCMP.

ES ABCMP ES ABCLex2

Instance E[Cmax] H(PosCmax) Time E[Cmax] H(PosCmax) Time

ABZ7 700.1 (11.4) 6.50 (0.07) 6.5 699.7 (13.3) 6.39 (0.14) 9.4
ABZ8 715.6 (11.2) 6.29 (0.06) 7.7 717.0 (11.6) 6.25 (0.07) 9.9
ABZ9 735.0 (10.2) 6.26 (0.11) 8.7 739.3 (14.7) 6.13 (0.15) 10.2
FT10 958.0 (11.3) 6.86 (0.16) 1.8 955.6 (12.0) 6.82 (0.12) 2.3
FT20 1185.7 (7.3) 7.16 (0.04) 2.9 1186.9 (8.6) 7.15 (0.06) 3.7
LA21 1087.5 (7.5) 7.42 (0.13) 2.9 1084.3 (10.8) 7.19 (0.16) 4.1
LA24 981.3 (9.0) 7.29 (0.06) 2.6 974.9 (8.3) 7.22 (0.07) 3.4
LA25 1003.8 (9.2) 7.10 (0.06) 3.0 1003.9 (10.9) 6.99 (0.11) 3.5
LA27 1285.9 (12.6) 7.38 (0.07) 5.8 1288.5 (20.0) 7.31 (0.10) 8.1
LA29 1233.0 (12.5) 7.36 (0.07) 6.7 1232.1 (23.2) 7.26 (0.13) 7.6
LA38 1265.7 (16.7) 7.47 (0.09) 7.2 1263.1 (16.0) 7.33 (0.14) 5.6
LA40 1272.2 (11.1) 7.56 (0.07) 3.7 1271.2 (12.1) 7.46 (0.12) 5.6

Surprisingly, the results obtained by ES ABCLex2 are
quite similar to those of ES ABCMP. In fact, a Kruskal-
Wallis statistical test shows no significant difference
between them. By paying attention to the runtime, we
see that ES ABCLex2 also takes longer to converge,
which leads us to believe that it explores more of the
search space before converging and therefore it even-
tually finds more promising solutions.

4.4. Sensitivity analysis

Here we asses the output of the proposed algorithm
in environments with different degrees of uncertainty.
In our setting, this would translate into having wider or
narrower intervals, which would correspond to larger
or smaller values of the measure of U-uncertainty. We
propose a sensitivity analysis where, for each instance,
two new variants are generated by modifying interval
widths by +20% and +40%. Considering the impor-
tance of the middle point, the modifications are ap-
plied symmetrically making sure that no negative val-
ues are found in the intervals. Since ES ABCLex2 pro-
vides similar result to ES ABCMP in terms of expected
makespan, but it obtains more robust solutions, it will
be the tested variant. As a reference point, we also run
ES ABCc to check if, when uncertainty increases, mod-
elling it during the optimisation process loses meaning.
As before, the solutions obtained by each method are
evaluated over K = 1000 deterministic realisations for
each instance to find average ϵ values. Table 8 sum-
marizes the obtained results. For each increment in the
interval widths, average ϵ values obtained by ES ABCc

and ES ABCLex2 are reported. The best result for each
instance and interval increment is highlighted in bold.
Based on the results, it is worth mentioning that in both

16 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

F
re

q
u

en
cy

1150 1200 1250 1300 1350

0
1

0
2

0
3

0
4

0

(a) ES ABCMP

F
re

q
u

en
cy

1150 1200 1250 1300 1350

0
1

0
2

0
3

0
4

0

(b) ES ABCLex2

Fig. 3. 1000 deterministic realisations of the best solutions obtained
by ES ABCMP and ES ABCLex2 on instance La38.

cases, increasing the interval widths in 20 and 40% re-
spectively, ES ABCLex2 keeps yielding the most robust
solutions. Moreover, in 10 of the instances the solu-
tions obtained by ES ABCLex2 when the intervals are
enlarged a 40% are still more robust than those ob-
tained by ES ABCc in the scenario with the unaltered
intervals. As expected for both methods, the more un-
certainty is present in the problem, the worse are the
predictive schedules and therefore the robustness val-
ues get worse. However, there is also a difference in
this aspect between considering uncertainty in the op-
timisation or not. For instance, average ϵ values ob-
tained with ES ABCLex2 get 8.5% and 24.3% worse in
average when intervals increase in 20 and 40% respec-
tively. In the case of ES ABCc, these values get 14.0%
and 39.4% worse respectively.

To graphically illustrate these different behaviours,
Figures 4 and 5 show the histograms corresponding to
the 1000 makespan values reached with the execution
of the best solutions from ES ABCc and ES ABCLex2 on

Table 8
Average ϵ values (×1000) for ES ABCc and ES ABCLex2 increasing
processing times’ interval width in +0%, +20% and +40%

+0% +20% +40%

Instance ES ABCc ES ABCLex2 ES ABCc ES ABCLex2 ES ABCc ES ABCLex2

ABZ7 12.26 8.03 12.51 8.03 15.39 8.92
ABZ8 9.86 7.46 11.07 6.98 13.59 7.93
ABZ9 10.61 6.46 10.85 6.33 13.35 7.21
FT10 12.00 9.00 13.79 10.10 16.72 11.53
FT20 9.03 7.53 10.18 8.28 12.26 9.98
La21 13.64 9.12 16.08 10.34 19.56 11.46
La24 15.08 11.41 18.17 12.60 22.14 15.45
La25 12.72 9.56 14.48 9.74 17.84 11.52
La27 13.01 8.78 15.66 10.27 19.14 11.34
La29 12.35 8.57 14.00 9.61 17.08 11.10
La38 13.78 8.37 16.30 9.83 19.98 10.85
La40 13.46 9.21 16.11 10.74 19.88 12.13

instance La27 with increasing interval width. We can
see that the predictive makespan, represented by the
thick black line, is usually located on the left side of
the histogram in both cases; this suggests that the pre-
dictive is an optimistic estimate of the makespan on
real executions. However, in the case of ES ABCLex2

it is more centred in the histogram. As the width of
the intervals increase in the instance, the histogram
starts expanding rightwards, reaching almost 1350 in
LA27(+40%) for ES ABCc. This movement is much
less obvious with the solutions from ES ABCLex2. In
that case, real executions expand significantly less to
the right and remain concentrated in a smaller range
closer to the black thick line, showing that these solu-
tions are more robust.

4.5. Additional results on larger instances

After comparing the algorithm using the instances
previously defined in the literature for IJSP, we carry
out a new set of experiments on a new set of in-
stances of varied sizes. Our goal is to check the per-
formance of the variant ES ABCLinM , selected as the
one with best behaviour in the previous set of experi-
ments. To achieve this goal we use Taillard’s instances,
consisting of 8 sets of 10 instances, with sizes rang-
ing from 15 jobs and 15 machines to 100 jobs and 20
machines [64]. These are crisp instances for the Job
Shop Problem, so we adapt them to the IJSP using the
method from [23] described at the beginning of this
section. Due to the significant difference in number of
instances and sizes, a new parameter configuration has
been obtained both for ABCE3 and ES ABCLinM fol-
lowing the same methodology as in Section 4.1. For
both algorithms, the best parameter setup regarding the
operators present in both methods is the following:

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

F
re

q
u

en
cy

1150 1200 1250 1300 1350 1400

0
1

0
2

0
3

0
4

0

(a) ES ABCc on LA27

F
re

q
u

en
cy

1150 1200 1250 1300 1350 1400

0
1

0
2
0

3
0

4
0

(b) ES ABCc on LA27(+20%)

F
re

q
u

en
cy

1150 1200 1250 1300 1350 1400

0
1

0
2
0

3
0

4
0

(c) ES ABCc on LA27(+40%)

Fig. 4. Histograms of Cex
max values for ES ABCc

– Employed operator: GOX with probability pemp =
1.0

– Onlooker operator: Swap with probability pon =
1.0

– Max. tries: 20
– Elite size: 60

For the parameters that are specific for ES ABCLinM ,
the best found values are as follows:

F
re

q
u

en
cy

1150 1200 1250 1300 1350 1400

0
1

0
2

0
3

0
4
0

5
0

(a) ES ABCLex2 on LA27

F
re

q
u

en
cy

1150 1200 1250 1300 1350 1400

0
1
0

2
0

3
0

4
0

(b) ES ABCLex2 on LA27(+20%)

F
re

q
u

en
cy

1150 1200 1250 1300 1350 1400

0
1

0
2
0

3
0

4
0

(c) ES ABCLex2 on LA27(+40%)

Fig. 5. Histograms of Cex
max values for ES ABCLex2

– Adaptive cooling: Quadratic
– α = 0.02
– T0 = 1.5

As with the previous set of instances, the best re-
sults are obtained with the quadratic adaptive cool-
ing scheme. Detailed results on all 80 instances ob-
tained after the parameter tuning can be found in the
Appendix. There, Tables 9 and 10 report the best

18 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and average E[Cmax] values together with the aver-
age runtime in seconds. Values in bold highlight the
best average behaviour on each instance. In summary,
ES ABC obtains better average results on 71 of the 80
instances, with an improvement in average RE w.r.t.
LB of 8.92%. Figure 6 shows the average RE values
grouped by instance size. We can see that the best re-
sults are obtained for the largest instances, suggesting
that the algorithm’s efficiency increases with problem
size. For instance, for the 100 × 20 instances RE de-
creases from 3.99% to 2.91%, with an improvement
of 26.97%, and in the 50 × 15 instances, RE drops
from 5.71% to 4.55%, with a decrease of 20.33%. Con-
versely, the lowest improvements are obtained in the
15× 15 and 20× 20 instances, where the average RE
is reduced by 0.13% and 4.06% respectively.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

100 x 20 50 x 20 50 x 15 30 x 20 30 x 15 20 x 20 20 x 15 15 x 15

R
el

at
iv

e
er

ro
r

w
.r

.t
 l

o
w

er
 b

o
u

n
d

Instances grouped by size

ABC_{E3} ESABC

Fig. 6. Average relative error obtained by ABCE3 and ES ABC w.r.t
LB on Taillard’s instances depending on the instances size.

5. Conclusions

In this work we have confronted the IJSP, a version
of the JSP that uses intervals to model the uncertainty
on task durations often appearing in real-world prob-
lems, with the goal of minimising the makespan. In
[24] we used an ABC approach as solving method,
adapting the general scheme to our problem, and we
tackled the problem of lack of diversity in the swarm
by proposing a new ABC variant, ABCE3 that enhances
diversity in the employed bee phase. Now we have
pointed out and addressed a new issue in the scout bee
phase, where the discarded food sources are replaced
by random new ones in an attempt to increase diversity.
We have argued that the nectar amount or initial quality
of these new food sources is not good enough to make

an effective contribution to the search. Therefore, we
have modified the onlooker bee phase incorporating a
diversification strategy similar to the one used in simu-
lated annealing and inspired in the seasonal behaviour
of bees. This modification has a double effect. On the
one hand, it allows the swarm to explore neighbouring
food sources with lower nectar amount, thus prevent-
ing the algorithm from being prematurely trapped in
local optima. On other hand, it has as a consequence a
lower ratio of discarded food sources and replacements
in the scout bee phase.

An experimental analysis has shown the potential
of the seven variants of seasonal behaviour combined
with ABCE3, outperforming the state-of-the-art results
from the literature. Particularly good results are ob-
tained with the multiplicative monotonic cooling vari-
ants using the quadratic adaptive cooling scheme pro-
posed for first time in this work. Also, one of the best
performing variants, ES ABCLinM , has been selected to
conduct a robustness analysis with different ranking
operators. This has shown that ranking ⩽Lex2 yields
the most robust solutions for makespan minimisation,
a result that concurs with previous experiments using
tardiness as objective function [20]. Finally, we have
performed a sensitivity analysis increasing the ampli-
tudes of the uncertain durations in problem instances,
showing a better behaviour towards the increase in un-
certainty in the interval version of ES ABC using the
⩽Lex2 ranking operator, than in its crisp counterpart.

In the future, the novel search strategy of ES ABC
could be applied to combinatorial optimisation prob-
lems other than the IJSP. This could be achieved by
changing the problem-specific components of the algo-
rithm, that is, the coding of solutions as food sources
and their decoding to evaluate the nectar amount, as
well as the operators for food-source combination in
the employed bee phase and for finding neighbouring
food sources in the onlooker bee phase. The general
search schema, including the seasonal strategy would
remain unchanged.

Also, now that greater diversity is achieved with
the seasonal strategy in the search, it would be possi-
ble to hybridise the population-based ABC with local
search without risking premature convergence to local
optima. In this way, the hybrid method could benefit
from the synergies between global and local search, as
is the case with memetic algorithms, to obtain solu-
tions with higher quality [56].

Finally, it would be interesting to study the effect on
the robustness of the solutions obtained with different
ranking methods if the Monte-Carlo simulations where

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

obtained using non-symmetric distributions, simulat-
ing more extreme scenarios where shorter or larger
processing times than expected are more likely to oc-
cur.

Acknowledgements

Supported by the Spanish Government under re-
search grant PID2019-106263RB-I00 and by the As-
turias Government under research grant Severo Ochoa.

References

[1] Xiong H, Shi S, Ren D, Hu J. A survey of job shop schedul-
ing problem: The types and models. Computers & Operations
Research. 2022;142:105731.

[2] Pinedo ML. Scheduling. Theory, Algorithms, and Systems. 5th
ed. Springer; 2016.

[3] Pinedo ML. Planning and Scheduling in Manufacturing and
Services. 2nd ed. Springer; 2009.

[4] Brucker P. The job-shop problem: Old and new challenges. In:
3rd Multidisciplinary International Conference on Scheduling:
Theory and Applications, Paris, France; 2007. p. 15-22.

[5] Meeran S, Morshed MS. A hybrid genetic tabu search algo-
rithm for solving job shop scheduling problems: a case study.
Journal of Intelligent Manufacturing. 2012;23:1063-78.

[6] Guo ZX, Wong WK, Leung SYS, Fan JT, Chan SF. Mathemati-
cal model and genetic optimization for the job shop scheduling
problem in a mixed- and multi-product assembly environment:
A case study based on the apparel industry. Computers & In-
dustrial Engineering. 2006;50(3):202-19.

[7] Xie J, Gao L, Peng K, Li X, Li H. Review on flexible job
shop scheduling. IET Collaborative Intelligent Manufacturing.
2019;1(3):67-77.

[8] Allahverdi A, Aydilek H, Aydilek A. Single machine schedul-
ing problem with interval processing times to minimize mean
weighted completion time. Computers & Operations Research.
2014;51:200-7.

[9] Allahverdi A. A survey of scheduling problems with uncertain
interval/bounded processing/setup times. Journal of Project
Management. 2022;7(4):255-64.

[10] Bustince H, Pagola M, Barrenechea E, Fernandez J, Melo-
Pinto P, Couto P, et al. Ignorance functions. An application to
the calculation of the threshold in prostate ultrasound images.
Fuzzy Sets and Systems. 2010;161(1):20-36. Special section:
New Trends on Pattern Recognition with Fuzzy Models.

[11] Behnamian J. Survey on fuzzy shop scheduling. Fuzzy Opti-
mization and Decision Making. 2016;15:331-66.

[12] Dubois D, Prade H, Sandri S. On possibility/probability trans-
formations. In: Fuzzy Logic. vol. 12 of Theory and Decision
Library. Kluwer Academic; 1993. p. 103-12.

[13] Lodwick WA, Jamison KD. Special issue: interfaces between
fuzzy set theory and interval analysis. Fuzzy Sets and Systems.
2003;135(1):1-3.

[14] Dubois D, Kerre E, Mesiar R, Prade H. Fuzzy Inter-
val Analysis. In: Dubois D, Prade H, editors. Funda-
mentals of Fuzzy Sets. The Handbooks of Fuzzy Sets.
Boston/London/Dordrecht: Kluwer Academic Publishers;
2000. p. 483-583.

[15] Bustince H, Barrenechea E, Pagola M, Fernandez J, Xu Z,
Bedregal B, et al. A Historical Account of Types of Fuzzy Sets
and Their Relationships. IEEE Transactions on Fuzzy Systems.
2016;24(1):179-94.

[16] Lin FT. Fuzzy Job-Shop Scheduling Based on Ranking Level
(λ, 1) Interval-Valued Fuzzy Numbers. IEEE Transactions on
Fuzzy Systems. 2002;10(4):510-22.

[17] Dorfeshan Y, Tavakkoli-Moghaddam R, Mousavi SM, Vahedi-
Nouri B. A new weighted distance-based approximation
methodology for flow shop scheduling group decisions under
the interval-valued fuzzy processing time. Applied Soft Com-
puting. 2020;91:106248.

[18] Lei D. Interval job shop scheduling problems. Inter-
national Journal of Advanced Manufacturing Technology.
2012;60:291-301.

[19] Díaz H, Palacios JJ, Díaz I, Vela CR, González-Rodríguez I.
Tardiness Minimisation for Job Shop Scheduling with Inter-
val Uncertainty. In: de la Cal EA, Villar Flecha JR, Quintián
H, Corchado E, editors. Hybrid Artificial Intelligent Systems.
Springer International Publishing; 2020. p. 209-20.

[20] Díaz H, Palacios JJ, Díaz I, Vela CR, González-Rodríguez I.
Robust schedules for tardiness optimization in job shop with
interval uncertainty. Logic Journal of the IGPL. 2022.

[21] Li X, Gao L, Wang W, Wang C, Wen L. Particle swarm
optimization hybridized with genetic algorithm for uncer-
tain integrated process planning and scheduling with inter-
val processing time. Computers & Industrial Engineering.
2019;235:1036-46.

[22] Lei D. Population-based neighborhood search for job shop
scheduling with interval processing time. Computers & In-
dustrial Engineering. 2011;61:1200-8.

[23] Díaz H, González-Rodríguez I, Palacios JJ, Díaz I, Vela CR.
A Genetic Approach to the Job Shop Scheduling Problem
with Interval Uncertainty. In: Lesot MJ, Vieira S, Reformat
MZ, Carvalho JP, Wilbik A, Bouchon-Meunier B, et al., edi-
tors. Information Processing and Management of Uncertainty
in Knowledge-Based Systems. Springer; 2020. p. 663-76.

[24] Díaz H, Palacios JJ, González-Rodríguez I, Vela CR. Elite
Artificial Bee Colony for Makespan Optimisation in Job Shop
with Interval Uncertainty. In: Ferrández Vicente JM, Álvarez-
Sánchez JR, de la Paz López F, Adeli H, editors. Bio-inspired
Systems and Applications: from Robotics to Ambient Intelli-
gence. Springer International Publishing; 2022. p. 98-108.

[25] Siddique NH, Adeli H. Nature Inspired Computing: An
Overview and Some Future Directions. Cognitive Computa-
tion. 2015;7(6):706-14.

[26] Slowik A, Kwasnicka H. Evolutionary algorithms and their
applications to engineering problems. Neural Computing and
Applications. 2020;32(16):12363-79.

[27] Slowik A, Kwasnicka H. Nature Inspired Methods and Their
Industry Applications—Swarm Intelligence Algorithms. IEEE
Transactions on Industrial Informatics. 2018;14(3):1004-15.

[28] Siddique N, Adeli H. Physics-Based Search and Op-
timization: Inspirations from Nature. Expert Systems.
2016;33(6):607–623.

20 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[29] Siddique NH, Adeli H. Simulated Annealing, Its Variants and
Engineering Applications. International Journal on Artificial
Intelligence Tools. 2016;25(6):1630001.

[30] Siddique N, Adeli H. Harmony Search Algorithm and its Vari-
ants. International Journal of Pattern Recognition and Artificial
Intelligence. 2015;29(08):1539001.

[31] Siddique N, Adeli H. Gravitational Search Algorithm and Its
Variants. International Journal of Pattern Recognition and Ar-
tificial Intelligence. 2016;30(08):1639001.

[32] Siddique N, Adeli H. Water Drop Algorithms. International
Journal on Artificial Intelligence Tools. 2014;23(06):1430002.

[33] Siddique N, Adeli H. Nature-inspired chemical reaction op-
timisation algorithms. Cognitive computation. 2017;9(4):411-
22.

[34] Siqueira H, Santana C, Macedo M, Figueiredo E, Gokhale A,
Bastos-Filho C. Simplified binary cat swarm optimization. In-
tegrated Computer-Aided Engineering. 2021;28(1):35-50.

[35] Akhand MAH, Ayon SI, Shahriyar SA, Siddique N, Adeli H.
Discrete Spider Monkey Optimization for Travelling Salesman
Problem. Applied Soft Computing. 2020;86:105887.

[36] Liu H, Gu F, Lin Z. Auto-sharing parameters for transfer
learning based on multi-objective optimization. Integrated
Computer-Aided Engineering. 2021;28(3):295-307.

[37] Xue Y, Zhang Q, Neri F. Self-Adaptive Particle Swarm
Optimization-Based Echo State Network for Time Se-
ries Prediction. International Journal of Neural Systems.
2021;31(12):2150057.

[38] Imran Hossain S, Akhand MAH, Shuvo MIR, Siddique N,
Adeli H. Optimization of University Course Scheduling Prob-
lem using Particle Swarm Optimization with Selective Search.
Expert Systems with Applications. 2019;127:9-24.

[39] Roy S, Maji A. Sampling-based modified ant colony op-
timization method for high-speed rail alignment develop-
ment. Computer-Aided Civil and Infrastructure Engineering.
2022;37(11):1417-33.

[40] Sushma MB, Roy S, Maji A. Exploring and exploiting ant
colony optimization algorithm for vertical highway alignment
development. Computer-Aided Civil and Infrastructure Engi-
neering. 2022;37(12):1582-601.

[41] Kayabekir AE, Nigdeli SM, Bekdaş G. A hybrid meta-
heuristic method for optimization of active tuned mass
dampers. Computer-Aided Civil and Infrastructure Engineer-
ing. 2022;37(8):1027-43. Available from: https://onlinelibrary.
wiley.com/doi/abs/10.1111/mice.12790.

[42] Bui KTT, Torres JF, Gutiérrez-Avilés D, Nhu VH, Bui
DT, Martínez-Álvarez F. Deformation forecasting of a hy-
dropower dam by hybridizing a long short-term memory
deep learning network with the coronavirus optimization algo-
rithm. Computer-Aided Civil and Infrastructure Engineering.
2022;37(11):1368-86. Available from: https://onlinelibrary.
wiley.com/doi/abs/10.1111/mice.12810.

[43] Adeli HS Hojjat andPark. Optimization of space structures by
neural dynamics. Neural Networks. 1995;8(5):769-81.

[44] Park HS, Adeli H. Distributed Neural Dynamics Algorithms
for Optimization of Large Steel Structures. Journal of Struc-
tural Engineering. 1997;123(7):880-8.

[45] Mahjoubi S, Bao Y. Game theory-based metaheuristics for
structural design optimization. Computer-Aided Civil and In-
frastructure Engineering. 2021;36(10):1337-53.

[46] Wong LP, Puan CY, Low MYH, Chong CS. Bee Colony Opti-
mization algorithm with Big Valley landscape exploitation for
Job Shop Scheduling problems. In: 2008 Winter Simulation
Conference; 2008. p. 2050-8.

[47] Yao B, Yang C, Hu J, Yin G, Yu B. An Improved Artificial Bee
Colony Algorithm for Job Shop Problem. Applied Mechanics
and Materials. 2010;26-28:657-60.

[48] Banharnsakun A, Sirinaovakul B, Achalakul T. Job Shop
Scheduling with the Best-so-far ABC. Engineering Applica-
tions of Artificial Intelligence. 2012;25(3):583-93.

[49] Bustince H, Fernandez J, Kolesárová A, Mesiar R. Generation
of linear orders for intervals by means of aggregation func-
tions. Fuzzy Sets and Systems. 2013;220:69-77.

[50] Destercke S, Couso I. Ranking of fuzzy intervals seen through
the imprecise probabilistic lens. Fuzzy Sets and Systems.
2015;278:20-39.

[51] Bidot J, Vidal T, Laboire P. A theoretic and practical frame-
work for scheduling in stochastic environment. Journal of
Scheduling. 2009;12:315-44.

[52] Juan AA, Faulin J, Grasman SE, Rabe M, Figueira G. A re-
view of simheuristics: Extending metaheuristics to deal with
stochastic combinatorial optimization problems. Operations
Research Perspectives. 2015;2:62-72.

[53] Nance RE, Sargent RG. Perspectives on the Evolution of Sim-
ulation. Operations Research. 2002;50(1):161-72.

[54] Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A compre-
hensive survey: artificial bee colony (ABC) algorithm and ap-
plications. Artificial Intelligence Review. 2014;42:21-57.

[55] Bierwirth C. A Generalized Permutation Approach to Job-
shop Scheduling with Genetic Algorithms. OR Spectrum.
1995;17:87-92.

[56] Gendreau M, Potvin JY, editors. Handbook of Metaheuristics.
vol. 272 of International Series in Operations Research & Man-
agement Science. 3rd ed. Springer; 2019.

[57] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH,
Teller E. Equation of state calculation by fast computing ma-
chines. Journal of Chemistry Physics. 1953;21:1087-91.

[58] Van Laarhoven P, Aarts E, Lenstra K. Job shop scheduling by
simulated annealing. Operations Research. 1992;40:113-25.

[59] Locatelli M. Convergence of a Simulated Annealing Algo-
rithm for Continuous Global Optimization. Journal of Global
Optimization. 2000 01;18:219-33.

[60] Díaz Martín JF, Riaño Sierra JM. A comparison of cooling
schedules for simulated annealing. In: Encyclopedia of Artifi-
cial Intelligence. IGI Global; 2009. p. 344-52.

[61] Applegate D, Cook W. A computational study of the job-
shop scheduling problem. ORSA Journal of Computing.
1991;3:149-56.

[62] Palacios JJ, Puente J, Vela CR, González-Rodríguez I. Bench-
marks for fuzzy job shop problems. Information Sciences.
2016;329:736-52.

[63] Klir GJ, Smith RM. On measuring uncertainty and uncertainty-
based information: Recent developments. Annals of Mathe-
matics and Artificial Intelligence. 2001;32:5-33.

[64] Taillard E. Benchmarks for basic scheduling problems. Euro-
pean Journal of Operational Research. 1993;64:278-85.

Appendix A. Additional experimental results

https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12790
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12790
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12810
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12810

H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 9
Best and average E[Cmax] values, and average runtime in seconds obtained by ABCE3 and ES ABC on Taillard’s instances (I)

.

ABCE3 ES ABC
Size Instance LB Best Avg. (SD) Time Best Avg. (SD) Time

15
x

15

TA1 1231 1289.00 1313.82 (12.19) 3.7 1286.50 1320.52 (12.91) 5.4
TA2 1244 1277.00 1296.25 (10.37) 3.9 1284.50 1304.58 (8.99) 5.2
TA3 1218 1262.50 1286.58 (12.40) 4.4 1263.50 1285.88 (13.10) 5.7
TA4 1175 1226.50 1257.17 (17.39) 4.0 1235.50 1256.83 (13.80) 5.9
TA5 1224 1263.00 1283.80 (12.82) 3.5 1254.50 1276.23 (12.93) 5.0
TA6 1238 1280.00 1307.40 (13.05) 4.2 1267.00 1298.55 (13.59) 5.5
TA7 1227 1261.50 1286.60 (13.08) 3.6 1258.50 1281.27 (12.22) 5.3
TA8 1217 1248.00 1282.78 (12.03) 3.9 1241.00 1286.10 (20.72) 5.2
TA9 1274 1331.00 1379.12 (22.65) 4.1 1343.50 1379.18 (20.15) 5.7
TA10 1241 1280.00 1317.42 (17.60) 3.8 1287.00 1320.95 (16.13) 5.3

20
x

15

TA11 1357 1442.00 1484.13 (16.66) 6.6 1448.50 1470.63 (13.75) 9.7
TA12 1367 1428.00 1448.93 (10.93) 5.8 1407.00 1439.20 (11.60) 8.5
TA13 1342 1426.00 1461.22 (17.93) 7.1 1438.50 1466.07 (15.34) 9.8
TA14 1345 1395.50 1412.52 (15.06) 6.3 1378.50 1404.63 (12.01) 8.6
TA15 1339 1418.50 1453.27 (17.80) 6.3 1400.50 1433.42 (16.12) 9.6
TA16 1360 1455.50 1482.08 (15.32) 6.3 1453.00 1485.33 (28.44) 8.6
TA17 1462 1546.00 1589.52 (20.08) 6.1 1525.00 1579.77 (26.83) 8.0
TA18 1377 1506.50 1539.35 (14.83) 6.6 1506.00 1537.18 (12.66) 9.6
TA19 1332 1445.50 1483.32 (18.01) 5.7 1438.00 1461.22 (12.40) 8.9
TA20 1348 1415.00 1457.00 (18.98) 6.2 1419.00 1442.68 (14.96) 10.2

20
x

20

TA21 1642 1749.00 1774.48 (15.46) 6.9 1731.00 1764.58 (19.09) 11.2
TA22 1561 1696.00 1725.35 (17.30) 8.1 1689.50 1713.57 (17.31) 11.8
TA23 1518 1670.00 1693.55 (12.78) 8.0 1662.00 1688.45 (16.61) 11.8
TA24 1644 1728.50 1766.83 (20.59) 7.8 1731.00 1757.65 (16.71) 11.0
TA25 1558 1702.50 1728.90 (17.84) 7.8 1683.50 1732.78 (29.44) 11.2
TA26 1591 1758.00 1798.65 (18.78) 8.4 1750.00 1796.65 (22.87) 11.7
TA27 1652 1793.50 1824.07 (19.29) 8.3 1775.00 1814.17 (21.12) 11.6
TA28 1603 1706.50 1734.60 (17.04) 7.5 1703.00 1723.52 (10.55) 10.9
TA29 1583 1709.50 1744.63 (18.38) 7.6 1704.00 1735.42 (14.39) 12.0
TA30 1528 1677.00 1714.68 (21.00) 7.7 1681.00 1712.03 (15.89) 10.6

30
x

15

TA31 1764 1870.00 1918.87 (21.63) 12.5 1864.50 1901.78 (19.82) 18.7
TA32 1774 1963.50 2005.80 (20.28) 13.4 1943.00 1984.08 (26.79) 19.8
TA33 1788 1956.00 1997.40 (20.46) 13.3 1949.50 1977.20 (14.39) 18.8
TA34 1828 1978.50 2004.02 (16.49) 12.2 1961.00 1988.10 (16.25) 17.3
TA35 2007 2036.50 2072.15 (21.09) 11.7 2039.00 2085.75 (22.44) 13.0
TA36 1819 1963.50 1994.12 (15.63) 12.7 1932.50 1979.67 (19.55) 18.2
TA37 1771 1915.50 1942.83 (17.27) 12.7 1896.00 1932.35 (26.91) 16.4
TA38 1673 1815.50 1851.15 (18.12) 12.1 1795.00 1832.13 (40.40) 18.9
TA39 1795 1905.00 1944.97 (19.65) 13.2 1893.00 1935.37 (35.17) 18.0
TA40 1651 1835.50 1872.52 (17.79) 13.1 1836.00 1860.78 (14.38) 17.8

22 H. Díaz et al. / An Elitist Seasonal ABC Algorithm for the IJSP

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 10
Best and average E[Cmax] values, and average runtime in seconds obtained by ABCE3 and ES ABC on Taillard’s instances (II)

.

ABCE3 ES ABC
Size Instance LB Best Avg. (SD) Time Best Avg. (SD) Time

30
x

20

TA41 1906 2241.00 2297.70 (25.10) 16.1 2217.50 2272.65 (25.48) 22.4
TA42 1884 2150.50 2212.85 (23.41) 15.3 2156.50 2201.58 (30.16) 20.8
TA43 1809 2099.50 2136.97 (20.58) 16.5 2059.50 2111.75 (22.40) 24.2
TA44 1948 2179.50 2228.73 (26.44) 16.8 2152.00 2196.88 (24.03) 25.9
TA45 1997 2136.50 2185.62 (23.61) 17.0 2132.00 2164.72 (17.97) 24.2
TA46 1957 2211.50 2268.27 (29.82) 18.2 2198.00 2248.08 (50.82) 26.2
TA47 1807 2106.00 2176.27 (30.54) 16.3 2084.00 2143.90 (31.96) 24.0
TA48 1912 2139.50 2177.72 (20.44) 15.1 2128.00 2177.45 (44.09) 22.1
TA49 1931 2145.00 2185.63 (24.78) 17.1 2135.00 2181.67 (39.33) 21.3
TA50 1833 2136.50 2206.25 (29.39) 16.3 2135.50 2178.07 (18.96) 22.1

50
x

15

TA51 2760 2912.00 2958.60 (31.68) 27.3 2863.00 2918.87 (31.69) 40.6
TA52 2756 2867.00 2919.47 (26.24) 27.5 2835.00 2879.32 (18.23) 43.2
TA53 2717 2816.50 2863.85 (27.06) 27.5 2793.50 2826.80 (26.49) 37.9
TA54 2839 2857.00 2922.90 (26.70) 24.3 2848.50 2888.57 (24.60) 34.3
TA55 2679 2840.00 2905.17 (26.14) 29.3 2836.50 2880.35 (21.73) 39.2
TA56 2781 2871.50 2921.12 (21.82) 23.7 2864.50 2908.05 (22.78) 36.9
TA57 2943 2991.00 3049.33 (29.99) 26.9 2979.00 3016.08 (26.63) 41.1
TA58 2885 2974.00 3027.40 (24.09) 26.7 2941.00 2988.97 (35.95) 38.4
TA59 2655 2804.50 2854.22 (24.07) 27.8 2780.50 2830.77 (36.58) 38.9
TA60 2723 2843.50 2888.35 (21.77) 24.7 2822.00 2850.28 (19.27) 34.9

50
x

20

TA61 2868 3062.00 3121.43 (29.76) 33.5 3034.50 3090.73 (29.15) 49.2
TA62 2869 3139.00 3205.95 (29.12) 33.7 3117.50 3167.33 (25.91) 44.7
TA63 2755 2965.50 3008.20 (23.92) 30.6 2930.00 2971.88 (27.00) 45.8
TA64 2702 2889.50 2927.90 (20.47) 33.6 2862.50 2885.18 (12.00) 47.0
TA65 2725 2954.50 2996.90 (27.91) 33.8 2924.00 2971.60 (43.21) 47.5
TA66 2845 3038.50 3088.55 (21.51) 32.1 3017.00 3059.80 (42.15) 42.8
TA67 2825 3008.50 3077.80 (27.33) 34.0 3008.50 3057.87 (50.11) 45.4
TA68 2784 2969.50 3007.00 (22.07) 32.7 2919.50 2974.65 (37.91) 46.6
TA69 3071 3227.00 3273.53 (28.63) 29.6 3184.50 3252.13 (48.22) 45.0
TA70 2995 3247.50 3291.77 (20.81) 30.9 3210.50 3256.28 (22.77) 42.9

10
0

x
20

TA71 5464 5645.50 5723.65 (44.87) 94.2 5581.50 5652.82 (36.80) 136.0
TA72 5181 5359.00 5409.03 (30.16) 103.1 5283.50 5347.05 (47.32) 132.4
TA73 5568 5683.00 5735.93 (41.97) 95.3 5631.50 5669.68 (25.46) 134.5
TA74 5339 5434.00 5512.33 (54.56) 99.5 5391.00 5450.30 (26.78) 121.7
TA75 5392 5649.50 5731.18 (33.34) 105.0 5618.00 5700.20 (62.13) 127.7
TA76 5342 5535.00 5586.72 (35.81) 101.2 5481.50 5540.68 (26.52) 126.5
TA77 5436 5529.50 5616.35 (65.01) 107.0 5492.50 5537.63 (27.76) 133.5
TA78 5394 5490.00 5535.08 (29.19) 102.7 5426.00 5487.77 (46.05) 125.5
TA79 5358 5446.00 5502.72 (33.76) 107.8 5418.50 5447.00 (18.40) 125.9
TA80 5183 5373.00 5440.45 (35.15) 107.1 5339.00 5382.85 (27.95) 138.5

	Introduction
	The Job Shop Problem with Interval Durations
	Interval Uncertainty
	Interval Schedules
	MILP Model
	Robustness of solutions

	ESABC: An Elitist Seasonal Artificial Bee Colony Algorithm
	Employed Bee Phase
	Onlooker Bee Phase with Seasonal Behaviour
	Scout Bee Phase
	Seasonal Strategies
	Monotonic Strategies
	Adaptive strategies

	Experimental Results
	Parameter analysis
	Comparison with the state of the art
	Comparison between different ranking methods
	Sensitivity analysis
	Additional results on larger instances

	Conclusions
	Acknowledgements
	References
	Appendix A. Additional experimental results

