
Received: 7 July 2022 | Revised: 24 April 2023 | Accepted: 29 April 2023

DOI: 10.1002/cae.22640

RE S EARCH ART I C L E

An empirical evaluation of the formative feedback
supportedbydashboard in the context of compilation error

Miguel Sanchez‐Santillan | Carlos Fernandez‐Medina | Juan R. Perez‐Perez |

MPuerto Paule‐Ruiz

Department Computer Science,
University of Oviedo, Oviedo, Asturias,
Spain

Correspondence
MPuerto Paule‐Ruiz, Federico García
Lorca, 18 Office 39, Oviedo, 33007,
Asturias, Spain.
Email: paule@uniovi.es

Funding information
Universidad de Oviedo,
Grant/Award Number: GR‐2011‐0040;
Spanish Department of Science,
Innovation and Universities,
Grant/Award Number: RTI2018‐099235‐
B‐I00

Abstract

Formative feedback is one of the most recognized types of feedback in

academics. However, for feedback to be effective it must be task‐specific,
immediate, corrective and positive. At present, automatic feedback is far from

these characteristics and leaves the instructor as a fundamental agent in the

teaching‐learning process of programming. Faced with this scenario, the

lecturer needs support tools that help them to give formative feedback in

educational scenarios with many students and little time. In this paper, we

have demonstrated that, by using a tool called COLMENA, any lecturer may

give students effective formative feedback which is task‐specific, immediate

and corrective. COLMENA is a system that combines real‐time Eclipse IDE

data retrieval on compilation errors and analytical dashboards in a webapp

solution for lecturers and students. In this study, two different approaches

have been compared, considering two academic courses with and without

COLMENA feedback, respectively. The results indicate that novice students

receiving feedback from the lecturer via COLMENA reduced their errors,

demonstrating that feedback generated from compilation errors is effective.

KEYWORD S

analytics, errors, feedback, novice students

1 | INTRODUCTION

Novice learners spend a lot of time correcting compila-
tion errors that the development environment hands
back to them [3]. For them, the environment becomes a
proxy for the instructors, with students taking time to
correct mistakes and learn the programming language
depending on the formative feedback provided by the
development environment throughout their particular
learning process.

To provide formative feedback, much research has
been conducted on an automatic generation [18] based
on the measurement of parameters during software

development. Feedback from development environments
with code examples to correct errors is one of the most
empirically validated guidelines. Research has shown
that learners perceive the examples as an assistance to
them [24, 32, 36]. Nonetheless, the feedback of the
example‐based development environment to the student
has proven to be pedagogically questionable, as there is
no guarantee that the student can relate the generic
example to a specific code error or that they have
sufficient knowledge to make sense of the example [3].
Furthermore, on a practical level, Prather et al. [27]
noted that showing code samples to novice learners to
correct errors confused them because they spent a

Comput Appl Eng Educ. 2023;31:1289–1305. wileyonlinelibrary.com/journal/cae | 1289

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2023 The Authors. Computer Applications in Engineering Education published by Wiley Periodicals LLC.

https://orcid.org/0000-0003-0286-5430
mailto:paule@uniovi.es
https://wileyonlinelibrary.com/journal/cae
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcae.22640&domain=pdf&date_stamp=2023-05-17

substantial amount of time searching for that code
sample in their files.

Another approach to formative feedback in develop-
ment environments is that of giving suggestions or hints
that offer solutions as to how errors can be corrected.
This feedback has been proven to be effective when
suggestions or hints are used in situations where there is
a high certainty that the proposed suggestion corrects the
specific error [26], otherwise the effect of “leading a user
down the wrong path…” may occur [22]. Motivated in
part by the disadvantages of this type of feedback, some
research has opted to mix examples with suggestions or
hints [32]. This second way fails in the same way as the
first, that is the feedback can be ineffective because it is
not task‐specific [30, 33], and if the proposed solution
does not correct the specific error, the feedback will not
be corrective and, of course, not positive.

Recent research have included some improvements
regarding feedback given by development environments,
thus allowing it to be both formative and immediate [10,
20]. Despite this progress, the authors of said research have
confirmed that the nature of said feedback is minimum, as
it assists the programmer in correcting errors, but does not
inform them of the reasons why the error occurs, which
turns it more difficult to be construed and understood [3].
As a consequence, feedback is not completely formative
because it does not become task‐specific, corrective, and
positive [30, 33]. In fact, this feedback will be determined by
the quality and quantity of relevant information provided
by said environment. This relevant information is obtained
when the environment detects an error in the code,
accesses the contextual information of the error and the
context in which it has been found. From this relevant
information, the environment generates feedback based on
examples or hints, and we have already seen the drawbacks
of both approaches.

Thus, automatic feedback is still far from being
sufficiently mature. In the meantime, the lecturer
remains a fundamental agent in the teaching–learning
process of programming. Still, the instructor has to cope
with teaching error correction in a classroom with many
students and little time to do so. In most cases, their
feedback is based on their years of teaching experience. It
is worth remembering that novice instructors are
inexperienced and provide feedback based on their
experience as students or professionals, not as lecturers.
Faced with this reality, they need support tools to give
formative feedback to their students. With this in mind,
we have developed COLMENA, which offers feedback
based on two concepts:

• Analytics of the errors made by students. Through
dashboards, the instructor can find out which are the

most common errors in each session, which user has
made them, and how many times they have appeared.

• Examples of errors in the code with their solution and
suggestions on how to solve them, as well as the cause
behind the error.

As opposed to automatic feedback, our work focuses
on enhancing the instructional feedback of the lecturer
with support tools such as COLMENA. Using the
analytics, the lecturer is aware of the most common
errors in the session and which user has committed
them, and can therefore specifically explain the error and
its cause, allowing for immediate, task‐specific and
contextualized formative feedback. The examples of the
errors in the code with their solution, together with
suggestions or hints on how to solve them, enhance the
corrective and positive nature of the feedback. We
therefore hypothesize that a support tool will reinforce
the formative feedback given by the lecturer, allowing it
to be more effective.

To corroborate this hypothesis, the research method-
ology we apply is a case study of novice students enrolled
in a Computer Science degree. Specifically, we compare
two academic years. During the first year, the same
instructor gives formative feedback based on their own
experience, and in the second year they rely on
COLMENA to give formative feedback. The results
demonstrated that tools such as COLMENA enhance
the lecturer's formative feedback on students and errors.

To achieve the proposed contribution, it is necessary
to know the effect of the lecturer's formative feedback
with COLMENA on the students, although we also want
to assess this effect on the errors. That is why we pose the
following questions:

1. Per error message, is the feedback effective?
2. Per student, is the feedback effective?

The rest of the paper is organized in the following
way. The following section details the related work and,
in Section 3, we define COLMENA. The work methodol-
ogy is included in Section 4. Section 5 includes the results
and Section 6 includes their discussion. Conclusions and
future work are included in Section 7.

2 | RELATED WORK

COLMENA's formative feedback is sustained by analyses
of the errors that students make with the development
environment, examples of errors in the code with their
solution, and suggestions on how to resolve them, as well
as the cause that produces the error. Hence, the state of

1290 | SANCHEZ‐SANTILLAN ET AL.

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the art is focused on research that offers error analysis as
well as studies based on the generation of formative
feedback.

2.1 | Error analysis

There are systems that offer error analytics in different
formats (i.e., dashboards). We will classify them into
commercial and academic tools. Within the commercial
ones, we consider two representatives and related to our
research: Rollbar (https://rollbar.com) and Newrelic
(https://newrelic.com/). Both tools offer error classifica-
tion, error tracking, the ability to analyze a number of
occurrences or even generate conversations to carry out
solutions. The analysis of these tools allows us to state
that they are very powerful and helpful for the software
development process, but they are not well suited for
novice students due to their complexity when it comes to
showing and explaining both the error and the solution
to it.

It is in the academic field where we find tools that are
best aimed at novice learners. These tools have evolved over
time. In this way, initial works, such as those developed by
Jadud [16] or by Luke [21], are contextualized in a specific
university and are plugins on a development IDE. The
DevEventTracker [18] is a software system that interfaces
with existing Web‐CAT services to track student develop-
ment data continuously, without any student effort.
Development and compilation events are tracked within
the Eclipse IDE through a plugin and sent to a Web‐CAT
server. The system provides a dashboard as a set of
instructor‐visible web pages that display useful data in
generated charts and tables. Data are presented in both
class overview and individual student summaries. Jadud
[16] has undertaken a quantitative, empirical analysis of
introductory programmer compilation behaviors using an
extension to BlueJ. Jadud is more focused on compilation
events while DevEventTracker tracks event data. In
addition, DevEvenTracker monitors students in the devel-
opment of projects and Jadud focuses on student sessions
with BlueJ.

Recently, a more detailed approach of error analysis
carried out by BlueJ is included in Karvelas and Becker
[17], in which the authors compare the error analysis and
production made by BlueJ 3 with that of BlueJ 4. In said
work, the authors have underlined the importance of
automatic compilation of Blue J4 against the manual one
of BlueJ3. They said that automatic compilation gives the
possibility to show errors to students one by one based on
the compilation made by the environment. This
approach has the advantage of avoiding students' over-
loading with many errors. Nevertheless, automatic

compilation has the problem that the error may be due
to the fact that the student has not finished writing the
sentence.

These previous works lead to systems that are more
focused on large‐scale data collection from heteroge-
neous sources. For instance, Blackbox [4] is a perpetual
data collection project that collects data from worldwide
users of the BlueJ IDE‐a programming environment
designed for novice programmers. The collected data is
anonymous and is available to other researchers to use in
their own studies, thus benefiting the larger research
community. Since 2018, it has recorded more than 306
million build events, including all error and warning
messages. The authors, in the 19 published papers,
propose examples of data analysis, highlighting in the
same vein as Jadud, the top 10 most frequent compilation
errors as a feedback tool.

COLMENA is aligned with Jadud's or Luke's approach
and we depart from BlackBox's philosophy. We believe that
large‐scale data processing is appropriate for making
predictions associated with performance, but not for
providing feedback that is task‐specific, corrective, positive,
and immediate. Jadud's or Luke's approach to collecting
and processing student events in the IDE is the basis of
COLMENA, but in this case, our system is more associated
to the error‐specific concept, that is, it collects the error
associated to a session in which the lecturer delivers a
specific content at a specific time, not to an Eclipse project
that the lecturer analyzes afterwards.

2.2 | Automatic formative feedback

As we noted in the introduction, the automatic formative
feedback is primarily based on code examples to correct
errors and on suggestions which provide solutions as to
how the errors can be corrected.

Regarding examples of error‐correcting code,
research is inconclusive on this type of feedback. Denny
et al. [8] developed a system that provides enhanced error
messages (ECMs), including concrete examples that
illustrate the kind of error that has occurred and how
that type of error could be corrected. They evaluated the
effectiveness of the enhanced error messages with a
controlled empirical study and found no significant
effect. In contrast, Becker [2] similarly enhanced error
messages in the automated assessment tool, Decaf, also
used for Java programming. His findings showed that
these enhanced messages did change student behavior.
After viewing an enhanced error message, students were
less likely to generate the same error in the future. Pettit
et al. [25] enhanced compiler error messages in an
automated tool, Athene, used for C++ programming.

SANCHEZ‐SANTILLAN ET AL. | 1291

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://rollbar.com
https://newrelic.com/

They could not find conclusive results that the enhanced
compiler error messages were more helpful than
standard compiler error messages. Finally, recent studies
such as the one made by Denny et al. [9] have shown the
difficulty novice students have when understanding and
construing the ECMs, considering error messages as
notoriously problematic, due to their lack of readability.

The formative feedback provided by suggesting
solutions or hints has a problem, it fails to be task‐
specific, that is, it fails to determine whether the
proposed suggestion corrects the specific error. This
problem has been tackled by different techniques [14, 36]
with unsatisfactory results. In this way, HelpMeOut [14]
is a social recommender system that aids the debugging
of error messages by suggesting solutions that peers have
applied in the past. Hartmann et al. [14] conducted an
evaluation with novice students and concluded that the
system can suggest useful fixes for 47% of errors after 39
person‐hours of programming in an instrumented
environment. BlueFix, an online tool currently integrated
into the BlueJ IDE which is designed to assist program-
ming students with error diagnosis and repair [36].
BlueFix suggests methods to resolve syntax errors using a
database of crowd‐sourced error fixes. They have
conducted an evaluation of BlueFix, which revealed that
11 students viewed the tool positively as a support to help
correct errors, and an initial evaluation of BlueFix
precision suggests an improvement of 19.52% over
HelpMeOut system [14].

Recently, a third way of dealing with feedback has
appeared, based on mixing code examples to solve
compilation errors with suggestions or hints [32]. Hence,
Thiselton and Treude [32] developed two software tools,
one to augment errors with formal documentation
providing examples of the correct use of a Python
feature, and one providing suggested solutions to identify
errors using highly ranked responses on Stack Overflow.
Thiselton and Treude's evaluation involves 16 partici-
pants (14 professional programmers and 2 students
whose level is not indicated). Most of the participants
rate Stack Overflow's answers very positively, but it is
worth bearing in mind that it is a very small sample and
basically made up of professionals who already have an
advanced understanding of programming errors.

Using the advantage of large‐scale data collection
with tools such as MOOCS, works have emerged
addressing the challenge of providing fully automated,
personalized feedback to students for introductory
programming exercises without requiring any instructor
effort [35]. It has been tackled using the following
techniques: formal methods, programming languages,
and machine learning. Most of these techniques model
the problem as a program repair problem: repair an

incorrect student submission to make it functionally
equivalent. The result, in most cases, is that these tools
are not very effective, impractical and, to achieve good
results, a minimal repair is required. Other techniques
are based on error detection and solution [1]. Never-
theless, as the authors say, “correctness of a fix that
differs from a user's fix requires manual examination,
and it is not practical to do it at a large scale.” Finally, the
large‐scale application of hint generation is proposed by
Phothilimthana and Sridhara [26]. The advantage of this
approach is that the vast amount of data allows them to
apply different techniques to the generation of hints,
offering up hints for any programmer and no matter how
far away from a correct solution it is.

None of the three ways of providing automatic formative
feedback have solved the problem of feedback being task‐
specific, let alone corrective or positive. The primary reason
lies in a twofold technical difficulty: On the one hand, the
generation is neither efficient nor practical, and on the other
hand, there is a difficulty in correcting an error or generating
an appropriate suggestion or hint because it is difficult to
provide an appropriate context for the error [23]. Never-
theless, the student needs the formative feedback to be able
to continue with his or her learning on programming, and
development environments are not able to provide such
feedback because, from a technical point of view, they do not
provide an error analysis focused on the context of the
specific task within which error takes place. This technical
impossibility does not provide effective formative feedback
because both the examples as well as the suggestions or hints
are not contextualized with the specific error. Taking into
account this situation, the responsibility of the teaching and
learning process of programming falls on the lecturer who
must frequently work with groups made up of several
students with a learning process that is specific for each
student. Therefore, it is necessary for the lecturer to have
supporting tools, such as COLMENA, that strengthen the
task‐specific and contextualized formative feedback, allowing
it to be corrective and positive as well. Besides, formative
feedback must be effective and this is the reason why we
have compared two academic courses given by the same
lecturer with the only difference that, during one academic
course, said lecturer used COLMENA as supporting tool
and, in the other course, this lecturer did not use any tool
that might strengthen the feedback given in class.

3 | COLMENA: SUPPORT TOOL
FOR LECTURER'S FEEDBACK

The COLMENA System (colmena means hive in
Spanish) is the system developed to provide an answer
to our research questions and constitutes the support tool

1292 | SANCHEZ‐SANTILLAN ET AL.

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

used by the lecturer to provide feedback. It has been
developed as a plugin on Eclipse to collect compilation
events along the same lines as previous works such as
those of Luke or Jadud. Furthermore, it is based on the
principles of learning analytics [11] and on the perspec-
tive of HCI [34]. In so doing, the analytics allow the
lecturer to be aware of the situation of the students and
the HCI approach suggests that to be most effective,
compiler feedback should be divided into three increas-
ing levels of elaboration: 1. Provide the programmer with
a short message about the problem. Provide brief
explanations or examples. 3. Provide a further level of
support based upon potential corrective actions. COL-
MENA is composed of a set of applications that interact
with each other and form part of the system architecture:

• COLMENA Plug‐in: A plug‐in for the Eclipse IDE that
identifies, detects code changes, and collects errors
produced during compile time, for later storage in a
persistent environment (relational database or file
system).

• COLMENA Management: A content manager that
allows you to create, delete, and edit the subjects, their
practice calendars and their topics. It also facilitates
the association of the errors captured in the practical
sessions of the courses.

• COLMENA Platform: A web application that provides
real‐time feedback on the errors stored by the
COLMENA plug‐in and which has been developed

with the aim of supporting the immediacy component
associated with the feedback to ensure its effectiveness.

These three systems mentioned above are involved
throughout the entire learning process of programming
(Figure 1). This process starts with a student attending a
programming practice class to develop code and ends
with the feedback the lecturer provides to students from
the errors generated in that practice class.

3.1 | COLMENA plug‐in

The life cycle of the plug‐in begins when the user, a
student in our case study, starts to develop code in the
Eclipse IDE and saves or compiles the source code of the
program. In this “edit‐compile” cycle, the plug‐in is in
charge of collecting the existing errors, analyzing them to
see if they should be stored and, if so, using the selected
persistence system (database or log files).

COLMENA analyzes sets of successive compilation
pairings for each file that a student attempted to compile
during a session [37], counting the appearance of new
errors that occur in the code blocks. To do so, the plug‐in
includes a cache (COLMENA tree) that goes through the
file and determines whether a fragment of the source
code has been modified as compared to its previous
version (Figure 2). If an error appears in the code block
for the first time, it is counted and associated with an

FIGURE 1 Timeline representing student or lecturer interactions with the different applications within the COLMENA System.

SANCHEZ‐SANTILLAN ET AL. | 1293

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

error message obtained from Eclipse. In successive
compilations, if the same error occurs again in the same
code block, it is not counted, but it will be taken into
account if it appears in another code fragment or if the
original block has been modified. This approach helps
the lecturer to identify which errors the students are
trying to solve during the session. The advantage of the
COLMENA cache is that it favors a targeted approach to
the specific error associated with the context in the code.

3.2 | COLMENA management

The purpose of this application is to define the set of subjects,
timetables and available sessions, automatically locating the
errors shown by the plug‐in in the relevant subject and
session, according to the date and time detected.

3.3 | COLMENA platform

The COLMENA platform is the application in charge of
providing the lecturer with feedback on the errors
collected by the plug‐in in real time. The purpose of
the application is that the lecturer, during and after a
practice session, can evaluate the typology of the errors to
be able to explain in class and in subsequent sessions, if

necessary, the causes and reasons underlying the error.
In view of this, we suggest as an example the following
scenarios of use where the lecturer can take advantage of
the benefits provided by the tool:

1. A repository of bugs that can be carefully analyzed
from one session to the next. In this scenario, if there
has not been enough time to solve all the errors in one
session, for whatever reason, it is possible to start the
next session by solving those errors in the following
practice class.

2. Have an up‐to‐date situation of the errors in each
practical class. In this scenario, the lecturer is able to see
the most common mistakes and solve them. If there
were specific errors, they could already deal with them
in a particular way for each case of student‐error.

In both scenarios, the context of the code where the
error occurs is present, which makes the feedback
specific‐error, immediate, positive and corrective. Along
the lines of Prather et al. [27] who demonstrated the
effectiveness of feedback tools outside the context of
development tools, COLMENA is developed as a web
platform and not as an integrated system within the IDE.
Thus, the platform is a web application, accessible via
username and password, and offers different screens
with information (on subjects, practice sessions, errors,

FIGURE 2 Visual representation of a Java class and the corresponding mapping that COLMENA Tree performs on the code.

1294 | SANCHEZ‐SANTILLAN ET AL.

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

examples, student profile) depending on the type of user
accessing it (Table 1). For the students, the 10 most
frequent student errors are visualized in the same line as
Jadud [16] and Luke [21]. In addition to this, the first
three and the three most frequent errors are displayed.
The number 3 is chosen so that the lecturer is able to
remember them following the research proposed by
Gobet et al. [12].

4 | METHODOLOGY

It is therefore necessary to prove that our proposal to
enhance the lecturer's formative feedback with support tools
such as COLMENA is really effective for both students and
errors. To do so, we follow a control group–experimental
group comparison that allows us to address our hypothesis
and its associated research questions.

4.1 | Sample

The present study was conducted on a sample of 155
students. The sample was obtained from novice students
enrolled in a Computer Science degree for two academic
years. The distribution of students between the years is

77 students analyzed in the first year and 78 in the
second one. Among other things, the learning outcomes
of the subject are for the students to acquire knowledge
and skills in the implementation techniques of algo-
rithms such as Divide and Conquer (D&C), Backtracking
(BT), Dynamic Programming (DP), or branch and bound.
In relation to the number and duration of the practical
sessions, four practical sessions of 120min each, com-
mon to both courses, were taken as a reference. In the
present study, the four sessions selected were: D&C,
Greedy Algorithms (Greedy), DP, and BT.

To establish the study groups, all first‐year students
are part of the control group and the COLMENA tool was
used exclusively to gather the compilation errors that
were generated in each of the practical sessions analyzed.
The feedback provided by the lecturer was based on
maintaining a dialog with the students during the session
to find out how they were making progress during the
session and answering any questions raised by them, but
in no case any information provided by COLMENA was
used. At the end of the first year, a total of 5136 errors
were gathered, related to 40 different compilation error
messages. Using this set, a subset of 4389 errors (85.46%
of the total) was selected, related to 18 error messages
common to all 4 practice sessions. The information about
these 18 errors (Table 2) provided the knowledge
foundation for the lecturer, used as a fundamental tool
to generate feedback for students during the second year.

The second academic year was defined as an experi-
mental group and the same working conditions were
maintained as in the previous year: the practical classes
were taught by the same lecturer; the same theoretical and
practical content was used; and the same four sessions were
analyzed as in the previous year. The only exception was
the approach to providing feedback. In this second course,
the lecturer used the information generated from the
selection of the errors found during the first year.

4.2 | Feedback procedure

The process of incorporating and providing feedback was
the fundamental difference between the second and the
first year. Using COLMENA, the procedure followed
consists of two phases: before the start of the experi-
mental group's course and the actual practice session.

4.2.1 | Before the start of the experimental
group course

From the information obtained in the control group, the
18 errors are added to the COLMENA Platform,

TABLE 1 Summary of functionalities offered by COLMENA
Platform.

Action

Information about the subject

Visualization of general information about the course.
Visualization of the sessions that make up the course.
Visualization of the top of errors.

Visualization of the students of the course

Information about the practice session

Visualization of general information about the session.
Visualization of the session's error information.
Comparison of two sessions simultaneously.
Visualization of students in the session.

Information about the students

Visualization of the subjects in which they participated.
Visualization of the 10 most frequent errors of the student.

Visualization of the three most frequent errors of the student in
the practice class.

Visualization of the three first errors of the student in the
practice class.

Information about the errors

Visualization of information about an error and its examples.
Creation of a new example.

SANCHEZ‐SANTILLAN ET AL. | 1295

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

completing the necessary information to understand the
reason why the error appears: compilation error message
produced by the Java compiler, comprehensive descrip-
tion of the error, references to additional bibliography on
the error and the subject of the error (types, variables,
constructors, syntax, structural, methods, or import).

For each error message (18) and for each session (4),
the lecturer generates an explanation on why the error
occurs, a suggested solution to the error and examples of
the Java code (2) that produces the error in question, as
well as the code proposed to solve the error, resulting in
144 examples. The decision to generate this specific
information in each session it is explained because the
feedback must be specific‐error to be corrective and
positive, therefore, it needs to be as closely related to the
context of the specific practice as possible. We do
understand that this way of generating the error is very
manual, yet we would like to point out that the lecturer
only does it once and that, in case more errors appear,
they will be in small numbers.

4.2.2 | At the beginning of each
experimental group session

The lecturer presents, using the COLMENA Platform
through the projector, how they occur and how a possible
solution to the most frequent errors for that particular
session can be found, with specific examples of implementa-
tion. It is important to note that the lecturer knows which
are the most frequent errors in each session from the
experience in the control group. If the student demands it,
the lecturer assists him/her individually, in the same way as
they did during the first year, but using the errors and the
explanation of the COLMENA Platform.

To exemplify how feedback is incorporated in a class, we
explain below the case of Miguel, a student in the
experimental group. In the practice session, the lecturer
introduces the objectives of the session as well as a script of
the practice to be carried out and an explanation of the errors
of the previous session with the support of COLMENA. After
this explanation, Miguel starts programming. Additionally,

TABLE 2 The code field is used throughout the document to refer to a specific error message.

Code Error message
Compilation errors
(control group)

CE_1 [PLACEHOLDER] cannot be resolved to a variable. 1337

CE_2 Syntax error, insert [PLACEHOLDER] to complete ReturnStatement. 406

CE_3 [PLACEHOLDER] cannot be resolved to a type. 403

CE_4 The method contains ([PLACEHOLDER]) in the type [PLACEHOLDER] is not applicable for the
arguments ([PLACEHOLDER]).

368

CE_5 Type mismatch: cannot convert from [PLACEHOLDER] to [PLACEHOLDER]. 295

CE_6 The declared package [PLACEHOLDER] does not match the expected package [PLACEHOLDER]. 280

CE_7 Cannot make a static reference to the non‐static field [PLACEHOLDER]. 229

CE_8 This method must return a result of type [PLACEHOLDER]. 174

CE_9 Syntax error on token [PLACEHOLDER], delete this token. 159

CE_10 Syntax error on token [PLACEHOLDER], Statement expected after this token. 151

CE_11 The constructor [PLACEHOLDER] is undefined. 148

CE_12 Syntax error on token [PLACEHOLDER], [PLACEHOLDER] expected. 114

CE_13 The local variable [PLACEHOLDER] may not have been initialized. 87

CE_14 Duplicate local variable [PLACEHOLDER]. 84

CE_15 Cannot make a static reference to the non‐static method [PLACEHOLDER] from the type
[PLACEHOLDER].

63

CE_16 Syntax error on token(s), misplaced construct(s). 35

CE_17 Syntax error on token [PLACEHOLDER], invalid Type. 34

CE_18 Return type for the method is missing. 22

Note: Compilation error messages common to the four practice sessions performed by the control group (first year) and whose feedback was applied to the
experimental group (second year).

1296 | SANCHEZ‐SANTILLAN ET AL.

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the monitoring of the students indicates that Miguel makes
errors, such as “Cannot be resolved to a type” (a very
frequent error concerning types). The lecturer, using the
error file in the COLMENA Platform (Figure 3), explains the
examples in which this error might occur. This information,
new to Miguel, helps him to understand the reason behind

the error, with the aim of generating it on fewer occasions,
and in the case of doing so, to know how to interpret the
error message in the IDE. Furthermore, the lecturer can
access this error and any other error documented on the
platform whenever they want to explain its solution
(Figure 4).

FIGURE 3 Screen with example of error displayed by the lecturer at the beginning of the practice session.

SANCHEZ‐SANTILLAN ET AL. | 1297

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

FIGURE 4 List of errors of a specific type that the lecturer could consult.

FIGURE 5 Percentage coverage of compilation error messages for the control group and the experimental group, both for each session
and in total. The number of compilation errors covered out of the total is shown between brackets.

4.3 | Data analysis

In the present study, the COLMENA tool gathered 7786
compilation errors, grouped into 40 error messages. In the
control group, 5136 compilation errors were gathered, while
2650 compilation errors were gathered in the experimental
group. The 18 compilation error messages on which feedback
was provided represent 85.41% of the total number of errors
made by the students, 2261 for the experimental group and
4389 for the control group. The volumetry of compilation
errors made for each of the groups in each session, as well as
those covered by feedback, is presented in Figure 5.

To answer the research questions, we used statistical
methods with SPSS v26. For data that can be paired, we
used the Wilcoxon‐rank test. For unpaired data, we used
the Mann–Whitney U tests. For all cases we used

two‐tailed tests with an α level of .05 indicating
significance. The effect size was calculated for all tests,
expressed as r [28]. The interpretation of the size has been
done following the criteria established by Cohen [5, 6],
who said that: r= .10 is a small effect size, r= .30 is a
medium effect size and r= .50 is a large effect size.

5 | RESULTS

Figure 6 shows the distribution of each of the 18 error
messages studied for both the control and experimental
groups. A preliminary glance seems to indicate that the
distribution of the error messages is very similar for both
groups, finding the maximum variation in CE_2
with 2.14%.

1298 | SANCHEZ‐SANTILLAN ET AL.

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

According to the 18 error messages studied, Table 3
presents the descriptive statistics of the compilation
errors collected for each group, both for each session and
in total. In the same way, Table 4 presents the descriptive
statistics of the compilation errors per student for each
group, for each session and in total. The descriptive
statistics of the compilation errors made by the students
in each error message (from CE_1 to CE_18), both in
total and in each session, are presented in the
Appendices S1.

5.1 | RQ 1: Per message error, is
feedback effective?

The Wilcoxon signed‐rank test (two‐tails) showed that
the experimental group (median [Mdn] = 99.50) made
significantly fewer compilation errors than the control
group (Mdn = 155), z=−3.73, p< .001, large effect
size (r= .62).

Next, we studied whether the feedback was effective
in reducing the total number of compilation errors in
each of the sessions in an independent way. At this point,
it is worth remembering that the feedback was applied to
the 18 compilation messages common to all sessions.

FIGURE 6 Distribution of the 18 error messages studied for both the control and experimental groups at completion of the case study.

TABLE 3 Descriptive statistics of the compilation errors for
each session.

Mean SD Median Min. Max.

Total

Control 243.83 300.6 155 22 1337

Experimental 125.61 144.59 99.50 14 637

D&C

Control 75.22 83.25 46.50 2 363

Experimental 68.39 71.63 60.50 2 319

Greedy

Control 83.39 98.38 53 7 424

Experimental 23.72 24.61 17.50 2 88

DP

Control 25 35.55 16.5 4 155

Experimental 6.67 6.80 4 0 23

BT

Control 60.22 89.80 34 3 395

Experimental 26.83 51.06 15 2 224

Abbreviations: BT, Backtracking; D&C, Divide and Conquer; DP, Dynamic
Programming; Greedy, Greedy Algorithms; Max., maximum; Min.,
minimum.

SANCHEZ‐SANTILLAN ET AL. | 1299

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In the first session (D&C), no statistically significant
differences were found in the number of compilation errors
on which feedback was applied between the experimental
group (Mdn=60.50) and the control group (Mdn=46.50),
z=−1.138, p= .25. Therefore, in this first session, students
in both groups behaved similarly. In the second session
(Greedy), the Wilcoxon‐rank test (two‐tail) found that the
experimental group (Mdn=17.50) made significantly fewer
compilation errors than the control group (Mdn=53),
z=−3.681, p< .001, with a large effect size (r= .61). In
the third session (DP), the Wilcoxon‐rank test (two‐tailed)
found that the experimental group (Mdn=4) made
significantly fewer compilation errors than the control group
(Mdn=16.50), z=−3.681, p< .001, with a large effect size
(r= .61). In the fourth and final session (BT), the Wilcoxon‐
rank test (two‐tail) found that the experimental group
(Mdn=15) made significantly fewer compilation errors than
the control group (Mdn=34), z=3.680, p< .001, with a
large effect size (r= .61).

5.2 | RQ 2: Per student, is feedback
effective?

Analysing the total number of compilation errors on
which feedback was provided (18 error messages), the

Mann–Whitney U test found that the experimental group
(Mdn= 20) made significantly fewer compilation errors
per student than the control group (Mdn = 45.50),
U= 1889, z=−3.99, p< .001, medium effect
size (r= .32).

For each of the 18 error messages on which feedback
was applied, the total number of compilation error
messages per student was then analyzed. As it is shown
in Table 5, the Mann–Whitney U test found that the
experimental group made significantly fewer compilation
errors per student than the control group for 8 of the 18
error messages: CE_1, CE_2, CE_4, CE_5, CE_6, CE_7,
CE_10, and CE_16.

To further explore the previous point, the number of
compilation errors per student made in each of the
sessions was analyzed, both for the total number of errors
in that session and for each of the 18 error messages
studied using the Mann–Whitney U test.

In the case of the first session (D&C), no significant
differences were found in the number of errors per
student between the experimental group and the control
group, neither for the total of the 18 error messages, nor
for each of them.

In the case of the second session (Greedy), the
experimental group made significantly fewer compi-
lation errors per student (Mdn = 1) than the control
group (Mdn = 10.50), U = 1917, z = −3.99, p < .001,
medium effect size (r = .32). In the individual analy-
sis, as it is shown in Table 6, the experimental group
made significantly fewer compilation errors per
student in 12 of the 18 errors: CE_1, CE_4, CE_5,
CE_6, CE_7, CE_8, CE_10, CE_11, CE_12, CE_13,
CE_14, and CE_16.

In the case of the third session (DP), the experi-
mental group made significantly fewer compilation
errors per student (Mdn = 0) than the control group
(Mdn = 1), U = 1878, z = −4.7, p < .001, medium effect
size (r = .38). In the individual analysis, the experi-
mental group made significantly fewer compilation
errors per student in 6 of the 18 errors (all Mdn = 0):
CE_1 (U = 2250, z = −3.77, p < .001, medium effect
size [r = .30]), CE_2 (U = 2435, z = −2.91, p = .004,
small effect size [r = .23]), CE_3 (U = 2660.50,
z = −2.55, p = .011, small effect size [r = .20]), CE_5
(U = 2699, z = −2.19, p = .029, small effect size
[r = .18]), CE_8 (U = 2616.50, z = −2.62, p = .009,
small effect size [r = .21]), CE_16 (U = 2810.50,
z = −2.25, p = .024, small effect size [r = .18]).

For the fourth and final session (BT), the experi-
mental group made significantly fewer compilation
errors per student (Mdn = 0) than the control group
(Mdn = 5.50), U = 4812.50, z = −4.47, p < .001,
medium effect size (r = .36). In the individual

TABLE 4 Descriptive statistics of compilation errors per
student.

Mean SD Median Min. Max.

Total

Control 56.27 49.58 45.5 2 267

Experimental 29.36 28.88 20 0 123

D&C

Control 17.36 18.22 13 0 67

Experimental 15.99 18.66 11 0 111

Greedy

Control 19.24 25.71 10.5 0 120

Experimental 5.55 7.89 1 0 40

DP

Control 5.77 8.88 1 0 42

Experimental 1.56 4.46 0 0 21

BT

Control 13.9 21.33 5.5 0 120

Experimental 6.27 15.59 0 0 99

Abbreviations: BT, Backtracking; D&C, Divide and Conquer; DP, Dynamic
Programming; Greedy, Greedy Algorithms; Max., maximum; Min.,
minimum.

1300 | SANCHEZ‐SANTILLAN ET AL.

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

analysis, the experimental group made significantly
fewer compilation errors per student in 5 of the 18
errors: CE_1 (Mdnexp = 0, Mdnctrl = 1, U = 2159,
z = −3.36, p < .001, small effect size [r = .27]), CE_2
(U = 2489.50, z = −2. 46, p = .014, small effect size
[r = .20]), CE_3 (U = 2553.50, z = −2.36, p = .018,
small effect size [r = .19]), CE_6 (U = 2481.50,
z = −2.87, p = .004, small effect size [r = .23]), CE_11
(U = 2661, z = −2.06, p = .039, small effect
size [r = .17]).

The table below shows the effect sizes for each
session, both for total errors and for each error,
where “↑” is large effect, “↓” is small effect, “↔” is
medium effect y “.” means no significant differences
(Table 7).

6 | DISCUSSION

The aim of the present study was to determine whether
the formative feedback provided by the lecturer using
COLMENA dash‐boards helps to reduce the number of
compilation errors made by students in a face‐to‐face
learning context. In the subsequent section, we will
discuss each of the research questions formulated on the
basis of the results obtained.

6.1 | RQ 1: Per message error, is
feedback effective?

The quick answer to this question is simply that the
formative feedback provided by the lecturer with the help
of COLMENA is effective. We approached the study of
this question from two perspectives. Firstly, in the total
sum of errors committed, there is a significant reduction
in the number of errors, close to 50%, with the
experimental group having done the same work and
with the same lecturer as the control group. Secondly, in

TABLE 5 Mann–Whitney U test significant results obtained
for the 18 error messages analyzed.

U Z p r

CE_1 2061.50 −3.38 .002 .27 (medium)

CE_2 2441 −2.03 .043 .16 (small)

CE_4 2168.50 −3.05 .002 .24 (small)

CE_5 2113 −3.30 .001 .026 (small)

CE_6 2169.50 −3.11 .002 .24 (small)

CE_7 2342 −2.66 .008 .21 (small)

CE_10 2408.50 −2.23 .026 .18 (small)

CE_16 2595 −2.02 .043 .16 (small)

TABLE 6 Mann–Whitney U test significant results obtained
for the second session (Greedy).

U Z p r

CE_1 2029 −3.82 <.001 .31 (medium)

CE_4 2064.50 −4.05 <.001 .32 (medium)

CE_5 2021.50 −4.18 <.001 .34 (medium)

CE_6 2342 −3.98 <.001 .32 (medium)

CE_7 2564 −2.38 .017 .19 (small)

CE_8 2459 −2.66 .008 .21 (small)

CE_10 2575 −1.99 .048 .16 (small)

CE_11 2607 −2.18 .029 .18 (small)

CE_12 2503 −2.80 .005 .22 (small)

CE_13 2651.50 −2.32 .020 .19 (small)

CE_14 2581.50 −3.14 .002 .25 (small)

CE_16 2731.50 −2.18 .29 .18 (small)

TABLE 7 Effect sizes on a per‐session and per‐error basis.

Greedy
Dynamic
Programming Backtracking

Globally ↔ ↔ ↔

CE_1 ↔ ↔ ↓

CE_2 . ↓ ↓

CE_3 . ↓ ↓

CE_4 ↔ . .

CE_5 ↔ ↓ .

CE_6 ↔ . ↓

CE_7 ↓ . .

CE_8 ↓ ↓ .

CE_9 . . .

CE_10 ↓ . .

CE_11 ↓ . ↓

CE_12 ↓ . .

CE_13 ↓ . .

CE_14 ↓ . .

CE_15 . . .

CE_16 ↓ ↓ .

CE_17 . . .

CE_18 . . .

SANCHEZ‐SANTILLAN ET AL. | 1301

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the case of the total sum of errors per session, the results
obtained indicate a large reduction in three of the four
sessions.

These results demonstrate that the approach followed
by COLMENA—which is focused on the error‐specific
concept—is more suitable than the approaches followed
by Jadud [16] and Luke [21]. Thus, error collection
related with a specific session during which the lecturer
gives specific contents on a specific moment gives rise to
a more efficient formative feedback as its nature is more
immediate than the further analysis the lecturer may
carry out about errors in a final delivery. The immediate
nature COLMENA has allows corrective feedback and,
therefore, it helps to be positive. Besides, error reduction
of about 50% in the experimental group, confirms the
need of having tools such as COLMENA which fosters
the lecturer's formative feedback if compared with other
approaches based on enhanced error message [9],
automatic error detection and solving [1], repairing of
programs [35] which have proved not to be practical for
automatic generation of feedback because feedback
nature is minimal [10].

A more detailed analysis by sessions allows us to go
deeper into this question. Therefore, in the first session
(D&C), where the students implement the D&C algorithm,
no significant differences were found. In this session, the
lecturer makes the first contact with the students, and for
students in both groups is the first session. The data indicate
the large amount of errors that exist in both groups for that
first session, where the students are acquainting themselves
with the subject, the lecturer and the working environment.
Besides, students need knowledge to implement the D&C
algorithm, such as recursion, which is one of the most
difficult concepts to teach [7, 13, 15, 31] and understand,
hence the high number of errors in both groups. It is
noteworthy that in the experimental group there are fewer
errors than in the control group, which is indicative of the
help offered by COLMENA to the instructor, although it is
true that this help is not significant.

The absence of significant differences in this first
session and the large number of errors is in the same
direction as previous work in which it was concluded
that students do not possess the necessary background
knowledge [8]. The lack of this knowledge makes it
difficult for students to make critical connections
between the feedback and the work done [29]. This is
precisely what may be happening comparatively between
the D&C and BT sessions, explaining why in the former
there is no significant reduction in compilation errors
and in the latter there is. In the BT session, the students
may have already assimilated the knowledge discussed in
D&C and, therefore, were able to interpret and apply the
feedback received more easily.

6.2 | RQ 2: Per student, is feedback
effective?

In this research question, we analyzed whether the
feedback helped to reduce the errors in compilation per
student, both globally and for each session. Overall, in 8
of the 18 messages studied (60.37% of the total number of
errors made), we found a significant reduction in the
number of errors made by each student. Thus, the
feedback provided to the experimental group seems to be
more effective than that provided to the control group,
especially in the most frequent error messages
(CE_1–CE_7). An exception is the error message CE_3
(Figure 3) whose frequency represents 6.75% of the total
errors made by the experimental group. This error
message generally appears when students try to use a
class that is not imported or not accessible from the code
fragment in which it is referenced. While the examples
provided by COLMENA (Figure 3) detail how to handle
the error at the code level, it is likely that students are
failing to import external libraries through the IDE. We
consider this relevant because COLMENA does not
provide information on how to work with the IDE, so
the error CE_3 is a good example that indicates the need
to add complementary explanations in the tools on how
to use the IDE. These explanations would be part of the
more elaborate feedback [19] that might be included in
feedback tools. Nevertheless, at present, this more
elaborated feedback is not considered as automatic
generation because, as it was explained in Section 2,
none of the ways mentioned to generate formative
feedback has solved the problem of feedback being
task‐specific, even less, being corrective or positive.

Taking each session individually, feedback helped
reduce the number of errors per student in the same
sessions as the previous research question, thus repeating
the effect of the D&C session, where feedback did not
help reduce the number of errors per student. In the
sessions where feedback was effective, the reduction in
errors per student occurred unevenly depending on the
error message. The first time the reduction for some of
the most frequent error messages (CE_1, CE_4, CE_5,
and CE_6) occurred, we observe that it is comparatively
much larger in the first few sessions than in later
sessions, moving from a medium effect size to a small
effect size. This seems to indicate that the experimental
group's feedback is especially effective in the first
sessions, reducing its effectiveness in later sessions. The
fact that these differences are becoming smaller and
smaller may be due to the positive and corrective effect of
the feedback. That is, after seeing the error and fixing it
because of the feedback received, students were less
likely to generate the same error in the future [8].

1302 | SANCHEZ‐SANTILLAN ET AL.

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Along the same lines as other authors [8] we observed
the existence of errors associated with a lack of knowledge.
Thus, in four errors, CE_9, CE_15, CE_17, and CE_18, there
is no difference between the control group and the
experimental group. We believe that there is no behavioral
change in the students in these four cases for the two groups,
because a prior knowledge background is needed, which, if
missing, leads to the occurrence of these errors. For instance,
the error message CE_18 (return type for the method is
missing) in our view, is an error typical of a novice student
who probably does not fully understand the functionality of
such a method and what it returns as a result. Another
example is error CE_9 (Syntax error on token [PLACE-
HOLDER], delete this token). The appearance of this error
can be due to multiple causes, from the absence of the “=”
operator in the assignment of variables to the misuse of
tokens in logical operations. Indeed, the proper use of logical
expressions in the Greedy, PD, and BT techniques allows the
algorithms to work properly. Specifically, in BT they are
necessary to explore the tree of solutions to a problem, while
in Greedy and PD certain values are selected, specific to the
algorithm, which allow it to function correctly. If the student
does not understand these techniques, it is very difficult for
them to make proper use of logical expressions. This
information confirms the need for immediate corrective
feedback given by the lecturer, thanks to COLMENA. Even
in the case of feedback related to a specific session, it has a
positive effect as it reduces the presence of such errors in the
future.

These results are not obtained with the approach of
enhanced error messages [3] that, on some occasions, are
notoriously problematic, especially for novices [9]. They are
neither obtained with tools for detecting errors and repairing
programs that have proved to be not really useful for
achieving their purpose [35]. It is even impossible to get
them by implementing any technique that may allow the
generation of personalized feedback automated for the
student, either for showing hints, suggestions [26] or
examples [8], and that uses large scale samples as it is not
practical to do it at a large scale because, at the end, manual
examination of error solution will be required [1].

7 | CONCLUSIONS

Feedback contributes to reducing errors, but for it to be
effective it has to be error‐specific, immediate, positive,
and corrective. Currently, research is aimed at generating
automatic feedback, which is far from proving its
effectiveness because it does not achieve the aforemen-
tioned characteristics. In this situation, the lecturer still
remains a fundamental agent in the teaching‐ learning
process of programming. Nonetheless, despite their

protagonism, they have limited resources to provide
adequate feedback in educational scenarios with many
students and little time.

In this paper we have shown that by supporting the
instructor's formative feedback with the right tools, such
feedback could be effective. Through a case study with
novice students, we have reached the conclusion that
specific‐error, immediate, corrective, and positive feed-
back reduces compilation errors and helps students to
make fewer errors. Consequently, it is necessary to
support the lecturer with tools such as the one we
developed in this work, which we call COLMENA,
because the generation of automatic feedback is not
sufficiently advanced to offer this feedback to the student
without the intervention of the lecturer.

We have found through a comparative study involving
two groups that the control group (the lecturer gives
formative feedback to the students without any support)
has more errors associated with the 18 error messages than
the experimental group (the lecturer gives formative feed-
back to the students with COLMENA support). The previous
result is complemented by other more exhaustive results that
demonstrate the effectiveness of the lecturer's formative
feedback thanks to COLMENA technology. Therefore, for
each error message, the feedback is effective for several
reasons. Firstly, the number of compilation errors is
significantly lower in the experimental group. Secondly, in
a more detailed study of the four sessions, we found that in
three of them there are significantly fewer compilation errors
in the group of students who receive the formative feedback
from the lecturer with the help of COLMENA. Additionally,
a per‐student study demonstrates the effectiveness of the
lecturer's COLMENA‐supported feedback. Thus, students in
the experimental group make fewer errors than students in
the control group. For the 18 error messages on which
feedback is applied, in 8 of them the number of errors is
significantly lower thanks to the COLMENA support. A
more detailed analysis of the 18 messages in each session
allows us to conclude that, in three of the four sessions, the
feedback with COLMENA was effective, with the reduction
of errors per student being uneven depending on the error
message. From a course‐wide perspective, errors are reduced
for each error message.

Nevertheless, in spite of all the efforts we make to
provide feedback to students, there is still a gap that
needs to be studied in depth. In this research we have
shown that formative feedback helps to correct compila-
tion errors, however, we have also mentioned the
necessity of a more elaborated feedback in two parallel
and complementary lines, that is, the feedback associated
to the use of IDEs and the one associated to compilation
errors related to the lack of specific knowledge of each
session. It is this line of elaborated feedback on which we

SANCHEZ‐SANTILLAN ET AL. | 1303

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

are currently working and which we hope will soon
produce results. Furthermore, more research is needed
with a larger sample, in different contexts and cultures,
with nonsynchronous courses, in online subjects or in
longer courses.

ACKNOWLEDGMENTS
This work has been partially funded by the Spanish
Department of Science, Innovation and Universities:
Project RTI2018‐099235‐B‐I00. The authors have also
received funds from the University of Oviedo through its
support to official research groups (GR‐2011‐0040).

DATA AVAILABILITY STATEMENT
The data set is available to the research community upon
request.

ORCID
MPuerto Paule‐Ruiz https://orcid.org/0000-0003-
0286-5430

REFERENCES
1. T. Ahmed, N. R. Ledesma, and P. Devanbu, SynShine:

Improved fixing of syntax errors, IEEE Trans. Softw. Eng.
49 (2023), no. 4, 2169–2181.

2. B. A. Becker, An effective approach to enhancing compiler error
messages, Proc. 47th ACM Tech. Symp. Comput. Sci. Educ.,
2016, pp. 126–131.

3. B. A. Becker, P. Denny, R. Pettit, D. Bouchard, D. J. Bouvier,
B. Harrington, A. Kamil, A. Karkare, C. McDonald, P.‐M.
Osera, J. L. Pearce, and J. Prather, Compiler error messages
considered unhelpful: The landscape of text‐based programming
error message research, Proc. Work. Group Rep. Innov.
Technol. Comput. Sci. Educ., 2019, pp. 177–210.

4. N. C. C. Brown, A. Altadmri, S. Sentance, and M. Kölling,
Blackbox, five years on: An evaluation of a large‐scale
programming data collection project, Proc. 2018 ACM Conf.
Int. Comput. Educ. Res., 2018, pp. 196–204.

5. J. Cohen, Statistical power analysis for the behavioral sciences,
Routledge, New York, 1988.

6. J. Cohen, A power primer, Psychol. Bull. 112 (1992), no. 1,
155–159.

7. N. B. Dale, Most difficult topics in CS1: Results of an online
survey of educators, ACM SIGCSE Bull. 38 (2006), no. 2, 49–53.

8. P. Dennya, A. Luxton‐Reilly, and D. Carpenter, Enhancing
syntax error messages appears ineffectual, Proc. 2014 Conf.
Innov. Technol. Comput. Sci. Educ., 2014, pp. 273–278

9. P. Denny, J. Prather, B. A. Becker, C. Mooney, J. Homer,
Z. C. Albrecht, and G. B. Powell, On designing programming
error messages for novices: Readability and its constituent
factors, Proc. 2021 CHI Conf. Hum. Factors Comput. Syst.,
2021, pp. 1–15.

10. P. Denny, J. Whalley, and J. Leinonen, Promoting early
engagement with programming assignments using scheduled
automated feedback, Proc. 23rd Australas. Comput. Educ.
Conf., 2021, pp. 88–95.

11. E. Duval, Attention please! Learning analytics for visualization
and recommendation, 2011, pp. 9–17.

12. F. Gobet and G. Clarkson, Chunks in expert memory: Evidence
for the magical number four … or is it two? Memory 12 (2004),
no. 6, 732–747.

13. K. Goldman, P. Gross, L. H. HeerenCinda,
C. L. KaczmarczykLisa, and C. Zilles, Setting the scope of
concept inventories for introductory computing subjects, ACM
Trans. Comput. Educ. TOCE 10 (2010), no. 2, 1–29.

14. B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer,
What would other programmers do: Suggesting solutions to
error messages, Proc. SIGCHI Conf. Hum. Factors Comput.
Syst., 2010, pp. 1019–1028.

15. M. Hertz, and S. M. Ford, Investigating factors of student
learning in introductory courses, Proc. 44th ACM Tech. Symp.
Comput. Sci. Educ., 2013, pp. 195–200.

16. M. C. Jadud, An exploration of novice compilation behaviour in
BlueJ, Ph.D. thesis, University of Kent, 2006.

17. I. Karvelas, and B. A. Becker, Sympathy for the (Novice)
developer: Programming activity when compilation mechanism
varies, Proc. 53rd ACM Tech. Symp. Comput. Sci. Educ. 1
(2022), no. 1, 962–968.

18. A. M. Kazerouni, Measuring the software development process
to enable formative feedback, Dissertation, Faculty of the
Virginia Polytechnic Institute and State University, 2020.

19. F. van der Kleij, R. Feskens, and T. Eggen, Effects of feedback
in a computer‐based learning environment on students' learning
outcomes: A meta‐analysis, Rev. Educ. Res. 85 (2015), no. 4,
475–511.

20. J. Leinonen, P. Denny, and J. Whalley, A comparison of
immediate and scheduled feedback in introductory program-
ming projects, Proc. 53rd ACM Tech. Symp. Comput. Sci. Educ
Vol. 1 (2022), no. 1, 885–891.

21. J. A. Luke, Continuously collecting software development event
data as students program. 2015.

22. G. Marceau, K. Fisler, and S. Krishnamurthi, Mind your
language: On novices' interactions with error messages, Proc.
10th SIGPLAN Symp. New Ideas New Paradig. Reflect.
Program. Softw., 2011, pp. 03–18.

23. D. McCall, Novice programmer errors—Analysis and diagnos-
tics, PhD thesis, University of Kent, 2016.

24. S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and
A. Bhattacharya, Automatic grading and feedback using program
repair for introductory programming courses, Proc. 2017 ACM
Conf. Innov. Technol. Comput. Sci. Educ., 2017, pp. 92–97.

25. R. S. Pettit, J. Homer, and R. Gee, Do enhanced compiler error
messages help students? results inconclusive, Proc. 2017 ACM
SIGCSE Tech. Symp. Comput. Sci. Educ., 2017, pp. 465–470.

26. P. M. Phothilimthana, and S. Sridhara, High‐coverage hint
generation for massive courses: Do automated hints help CS1
students, Proc. 2017 ACM Conf. Innov. Technol. Comput. Sci.
Educ., 2017, pp. 182–187.

27. J. Prather, R. Pettit, K. H. McMurry, A. Peters, J. Homer,
N. Simone, and M. Cohen, On novices' interaction with
compiler error messages: A human factors approach, Proc.
2017 ACM Conf. Int. Comput. Educ. Res., 2017, pp. 74–82.

28. R. Rosenthal, The handbook of research synthesis, Russell
Sage Foundation, 1994, pp. 231–244.

1304 | SANCHEZ‐SANTILLAN ET AL.

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-0286-5430
https://orcid.org/0000-0003-0286-5430

29. D. R. Sadler, Beyond feedback: Developing student capability in
complex appraisal, Assess. Evaluat. High. Educ. 35 (2010), no.
5, 535–550.

30. M. C. Scheeler, K. L. Ruhl, and J. K. McAfee, Providing
performance feedback to teachers: A review, Teach. Educ. Spec.
Educ. 27 (2004), no. 4, 396–407.

31. A. E. Tew, and M. Guzdial, The FCS1: A language independent
assessment of CS1 knowledge, Proc. 42nd ACM Tech. Symp.
Comput. Sci. Educ., 2011, pp. 111–116.

32. E. Thiselton, and C. Treude, Enhancing Python compiler error
messages via stack overflow, 2019.

33. M. Thurlings, M. Vermeulen, T. Bastiaens, and S. Stijnen,
Understanding feedback: A learning theory perspective, Educ.
Res. Rev. 9 (2013), 1–15.

34. V. J. Traver, On compiler error messages: What they say and
what they mean. Adv. Hum. Comput. Interact. 2010 (2010),
no. 3, 1–10.

35. K. Wang, R. Singh, and Z. Su, Search, align, and repair: Data‐
driven feedback generation for introductory programming
exercises, Proc. 39th ACM SIGPLAN Conf. Program. Lang.
Des. Implement., 2018, pp. 481–495.

36. C. Watson, F. Li, and J. Godwin, BlueFix: Using
crowd‐sourced feedback to support programming students
in error diagnosis and repair, Advances in web‐based
learning (E. Popescu, Q. Li, R. Klamma, H. Leung, and M.
Specht, eds.), vol. 7558, Springer, Berlin, Heidelberg, 2012,
pp. 228–239.

37. C. Watson, F. W. B. Li, and J. L. Godwin, No tests required:
Comparing traditional and dynamic predictors of programming
success, Proc. 45th ACM Tech. Symp. Comput. Sci. Educ.,
2014, pp. 469–474.

AUTHOR BIOGRAPHIES

Miguel Sanchez‐Santillan is a Lecturer
in Department of Computer Science at
the University of Oviedo. He received his
M.Sc. degree in Computer Science and
his Ph.D. from the University of Oviedo
in 2017. He has participated actively in

several national projects related with e‐learning
systems and adaptive systems. His research lines are
addressed to learning analytics and e‐learning sys-
tems. He is the author of several publications of
Journal Citation Report (JCR).

Carlos Fernandez‐Medina was born in
Oviedo, Spain, in 1988. He received the
B.S. degree in computer science from the
University of Oviedo, Oviedo, Spain, in
2009, the M.S. degree in web engineering
from the University of Oviedo, Oviedo,

Spain, in 2011. Currently, he is Teaching Fellow of

computer science at the University of Oviedo, Oviedo,
Spain. His research focuses on learning technologies
and web engineering.

Juan R. Perez‐Perez is a Lecturer in
Department of Computer Science at the
University of Oviedo. He received his
M.Sc. degree in Computer Science in
1996 and his Ph.D. from the University
of Oviedo in 2006. From 1995 to 1999 he

worked for an information technologies company in
the research and development departments, building
specific development environments and database
connectors. He has participated actively in several
national projects related with e‐learning systems and
adaptive systems. His Ph.D. topic is about collabora-
tive development environment on the web.

MPuerto Paule‐Ruiz is Associate Pro-
fessor for the Department of Computer
Science at the University of Oviedo. She
received her M.Sc. degree in Computer
Science in 1997 and her Ph.D. from the
University of Oviedo in 2003. From 1997

to 2000 she worked for several international compa-
nies as software analyst. She has participated actively
in several regional and national projects related with
adaptive systems and e‐learning systems. Her
research lines are addressed to mobile Learning,
learning analytics and e‐learning systems. She is the
author of several publications of Journal Citation
Report (JCR).

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: M. Sanchez‐Santillan, C.
Fernandez‐Medina, J. R. Perez‐Perez, and M. P.
Paule‐Ruiz, An empirical evaluation of the
formative feedback supported by dashboard in the
context of compilation error, Comput. Appl. Eng.
Educ. 2023;31:1289–1305.
https://doi.org/10.1002/cae.22640

SANCHEZ‐SANTILLAN ET AL. | 1305

 10990542, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cae.22640 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/cae.22640

	An empirical evaluation of the formative feedback supported by dashboard in the context of compilation error
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Error analysis
	2.2 Automatic formative feedback

	3 COLMENA: SUPPORT TOOL FOR LECTURER'S FEEDBACK
	3.1 COLMENA plug-in
	3.2 COLMENA management
	3.3 COLMENA platform

	4 METHODOLOGY
	4.1 Sample
	4.2 Feedback procedure
	4.2.1 Before the start of the experimental group course
	4.2.2 At the beginning of each experimental group session

	4.3 Data analysis

	5 RESULTS
	5.1 RQ 1: Per message error, is feedback effective?
	5.2 RQ 2: Per student, is feedback effective?

	6 DISCUSSION
	6.1 RQ 1: Per message error, is feedback effective?
	6.2 RQ 2: Per student, is feedback effective?

	7 CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION

