AdS_{3} vacua realising $\mathfrak{o s p}(n \mid 2)$ superconformal symmetry

Niall T. Macpherson ${ }^{a, b}$ and Anayeli Ramirez ${ }^{c}$
${ }^{a}$ Department of Physics, University of Oviedo, Avda. Federico Garcia Lorca s/n, 33007 Oviedo, Spain
${ }^{b}$ Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Calle de la Independencia 13, 33004 Oviedo, Spain
${ }^{c}$ Dipartimento di Fisica, Università di Milano-Bicocca and INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
E-mail: macphersonniall@uniovi.es, Anayeli.Ramirez@mib.infn.it

Abstract: We consider $\mathcal{N}=(n, 0)$ supersymmetric AdS_{3} vacua of type II supergravity realising the superconformal algebra $\mathfrak{o s p}(n \mid 2)$ for $n>4$. For the cases $n=6$ and $n=5$, one can realise these algebras on backgrounds that decompose as foliations of $\mathrm{AdS}_{3} \times \mathbb{C P}^{3}$ (squashed $\mathbb{C P}^{3}$ for $n=5$) over an interval. We classify such solutions with bi-spinor techniques and find the local form of each of them: they only exist in (massive) IIA and are defined locally in terms of an order 3 polynomial h similar to the AdS_{7} vacua of (massive) IIA. Many distinct local solutions exist for different tunings of h that give rise to bounded (or semi infinite) intervals bounded by physical behaviour. We show that it is possible to glue these local solutions together by placing D8 branes in the interior of the interval without breaking supersymmetry, which expands the possibilities for global solutions immensely. We illustrate this point with some simple examples. Finally we also show that AdS_{3} vacua for $n=7,8$ only exist in $d=11$ supergravity and are all locally $\operatorname{AdS}_{4} \times \mathrm{S}^{7}$.

Keywords: Extended Supersymmetry, Flux Compactifications, Superstring Vacua, AdSCFT Correspondence

ArXiv ePrint: 2304.12207

Contents

1 Introduction and summary 1
$2 \mathrm{SO}(2,2) \times \mathrm{SO}(5)$ invariant type II supergravity on $\mathrm{AdS}_{3} \times \widehat{\mathbb{C P}}^{3}$ 4
3 Necessary and sufficient conditions for realising supersymmetry 7
4 Classification of $\mathfrak{o s p}(n \mid 2) \operatorname{AdS}_{3}$ vacua on $\widehat{\mathbb{C P}}^{3}$ for $n=5,6$ 9
5 Local analysis of $\mathfrak{o s p}(n \mid 2)$ vacua for $n>4$ 13
5.1 Analysis of $\mathfrak{o s p}(6 \mid 2)$ vacua 14
5.1.1 Local solutions and regularity 14
5.2 Analysis of $\mathfrak{o s p}(5 \mid 2)$ vacua 17
5.2.1 Local solutions and regularity 18
6 Global solutions with interior D8 branes 22
6.1 Some simple examples with internal D8 branes 24
A Derivation of spinors on $\widehat{\mathbb{C P}}^{3}$ 26
A. 1 Killing spinors and vectors on $\mathrm{S}^{7}=\mathrm{SP}(2) / \mathrm{SP}(1)$ 27
A. 2 Reduction to $\mathbb{C P}^{3}$ 28
B The $\mathrm{SO}(3)_{L} \times \mathrm{SO}(3)_{D}$ invariant $\mathcal{N}=5$ bi-linears 30
C Ruling out $\mathfrak{o s p}(7 \mid 2) \mathrm{AdS}_{3}$ vacua 31

1 Introduction and summary

Warped AdS_{3} solutions of supergravity in 10 and 11 dimensions, "AdS 3_{3} string vacua", play an important role in string theory in a wide variety of contexts. AdS_{3} appears in the near horizon limit of black-strings solution, so the embedding of such solutions into higher dimensions enables one to employ string theory to count the micro states making up the Bekenstein-Hawking entropy a la Strominger-Vafa [1]. Through the AdS-CFT correspondence they are dual to the strong coupling limit of CFTs in 2 dimensions. This avatar of the correspondence promises to be the most fruitful as more powerful techniques are available to probe CFT_{2} s and there is better understanding of how to quantise strings on AdS_{3} than in higher dimensional cases. AdS_{3} vacua also commonly appear in duals to compactifications of CFT_{4} on Riemann surfaces [2-9], a topic of rekindled interest in recent years with improved understanding of compactifications on surfaces of non-constant curvature such as spindles. Some other venues in which AdS_{3} vacua have played a prominent role
are geometric duals to c-extremisation [10, 11] and dual descriptions of surface defects in higher dimensional CFTs [12-16].

Given the above listed wealth of applications, a broad effort towards classifying supersymmetric AdS_{3} vacua is clearly well motivated, but at this time many gaps remain. Generically such AdS_{d+1} vacua can support the same superconformal algebras as CFTs in d dimensions. The possible $d=2$ superconformal algebras are far more numerous than their higher dimensional counterparts, which partially accounts for these gaps. For comparison $d>2$ the possible (simple) superconformal algebras typically ${ }^{1}$ come in series depending on a parameter which varies as the number of super charges increase; for instance in $d=3$ one has $\mathfrak{o s p}(n \mid 4)$ for CFTs preserving $\mathcal{N}=(n, 0)$ supersymmetry, where $n=1, \ldots, 8$. CFTs in $d=2$ buck this trend, being consistent with several such series as well as isolated examples such as $\mathfrak{f}(4)$ and $\mathfrak{g}(3)$ - see [17] for a classification of these algebras and [18] for those that can be supported by string vacua. The focus of this work will be AdS_{3} vacua supporting the algebra $\mathfrak{o s p}(n \mid 2)$ (the $d=2$ analogue of the $d=3$ algebra).

The $\mathcal{N}=(n, 0)$ superconformal algebra $\mathfrak{o s p}(n \mid 2)$ for arbitrary n was first derived, independently, in [19] and [20] - they are characterised by an $\mathfrak{s o}(n)$ R-symmetry with supercurrents transforming in the fundamental representation and central charge

$$
\begin{equation*}
c=\frac{k}{2} \frac{n^{2}+6 k-10}{k+n-3} . \tag{1.1}
\end{equation*}
$$

A free field relation was presented in [21] (see also [22]) in terms of a free scalar, n real fermions, and an $\operatorname{SO}(n)$ current algebra of level $k-1$. There are in fact many examples of AdS_{3} vacua realising $\mathfrak{o s p}(n \mid 2)$ for $n=1,2$ as these are the unique ways to realise $(1,0)$ and $(2,0)$ superconformal symmetries - see for instance respectively [23-32] and [11, 33-43] . Similarly $n=3$ is unique for $\mathcal{N}=(3,0)$, examples are more sparse [44-46], but this is likely not a reflection of their actual rarity. The case of $n=4$ is in fact a degenerate case of the large $\mathcal{N}=(4,0)$ superconformal algebra $\mathfrak{d}(2,1, \alpha)$, where the continuous parameter is tuned to $\alpha=1$ - examples of vacua allowing such a tuning include [47-50], there is also a Janus solution preserving $\mathfrak{o s p}(4 \mid 2) \oplus \mathfrak{o s p}(n \mid 2)$ specifically in [13]. The case of $n=8$ was addressed in [51] where it was shown that the only solution is the embedding of AdS_{3} into $\operatorname{AdS}_{4} \times \mathrm{S}^{7}$. The status of AdS_{3} vacua realising $\mathfrak{o s p}(n \mid 2)$ for $n=5,6,7$ has been up to this time unknown - a main aim of this work is to fill in this gap, we will now explain the broad strokes of how we approach this problem.

For the case of $\mathfrak{o s p}(7 \mid 2)$, with a little group theory [51], it is not hard to establish that the required $\mathfrak{s o}(7)$ R-symmetry can only be realised geometrically on the co-set $\mathrm{SO}(7) / \mathrm{G}_{2}$. The metric on this space is simply the round 7 -sphere, which possesses an $\mathrm{SO}(8)$ isometry, but the co-set also comes equipped with a weak G_{2} structure with associated 3 and 4 -forms that are invariant under $\mathrm{SO}(7)$, but charged under $\mathrm{SO}(8) / \mathrm{SO}(7)$. If these forms appear in the fluxes of a solution then only $\mathrm{SO}(7)$ is preserved. Our results prove that all such solutions are locally $\operatorname{AdS}_{4} \times S^{7}$.

To realise the requisite $\mathfrak{s o (6)}$ R-symmetry of $\mathfrak{o s p}(6 \mid 2)$ one might naively consider including a 5 -sphere in solutions, however this supports Killing spinors in the 4 of $\operatorname{SU}(4)$,

[^0]which is not the representation associated to the desired algebra. A space supporting both the correct isometry and spinors transforming in its fundamental representation is of course round $\mathbb{C P}^{3}$, as famously exemplified by the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ vacua of type IIA supergravity dual to $\mathcal{N}=6$ Chern-Simons matter theory [53]. This is the smallest space with the desired features, and given that a string vacua has to live in $d=10$ or 11 , it does not take long to realise that the only additional option is to fiber a $U(1)$ over $\mathbb{C P}^{3}$. Such solutions were ruled out in type II supergravity at the level of the equations of motion in [51] and those that exist in M-theory can always be reduced to IIA. ${ }^{2}$ As such we seek to classify solutions of type II supergravity that are foliations of $\mathrm{AdS}_{3} \times \mathbb{C P}^{3}$ over an interval, we leave the status of $\mathrm{d}=11$ vacua containing similar foliations over Riemann surfaces to be resolved elsewhere.

For the algebra $\mathfrak{o s p}(5 \mid 2)$ the 4 -sphere is as much of a non-starter to realise the $\mathfrak{s o}(5)$ R-symmetry as the 5 -sphere was previously. One way to realise this algebra is to start with an existing $\mathfrak{o s p}(6 \mid 2)$ solution, then orbifold $\mathbb{C P}^{3}$ by one of the discrete groups \hat{D}_{k} (the binary dihedral group) or \mathbb{Z}_{2}, as discussed in the context of $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ in [57]. ${ }^{3}$ This however only breaks supersymmetry globally, locally such solutions still preserve $\mathfrak{o s p}(6 \mid 2)$. One way, perhaps the only way ${ }^{4}$ to break to $\mathfrak{o s p}(5 \mid 2)$ locally is to proceed as follows: if one expresses $\mathbb{C P}^{3}$ as a fibration of S^{2} over S^{4} and then pinches the fiber, one breaks the $\mathrm{SO}(6)$ isometry down to $\mathrm{SO}(5)$ locally. The $\mathbf{6}$ of $\mathrm{SO}(6)$ branches as $\mathbf{5} \oplus \mathbf{1}$ under its $\mathrm{SO}(5)$ subgroup thereby furnishing us with both the representation and R-symmetry that osp(5|2) demands. We shall thus also classify $\mathcal{N}=(5,0) \mathrm{AdS}_{3}$ vacua of type II supergravity on squashed $\mathbb{C P}^{3}$ by generalising the previous ansatz to included additional warp factors and $\mathrm{SO}(5)$ invariant terms in the flux. We shall in fact classify both these vacua and those supporting $\mathfrak{o s p}(6 \mid 2)$, or orbifolds there of, in tandem as the latter are special cases of the former.

We find two classes of solutions preserving respectively $\mathfrak{o s p}(5 \mid 2)$ (locally) and $\mathfrak{o s p}(6 \mid 2)$ superconformal algebras. We also find for each case that it is possible to construct solutions with bounded internal spaces, which should provide good dual descriptions of CFTs through the AdS/CFT correspondence. The existence of backgrounds manifestly realising exactly the superconformal algebra $\mathfrak{o s p}(5 \mid 2)$ is interesting in the light of [52], which claims that all CFTs supporting such global superconformal algebras experience an enhancement to $\mathfrak{o s p}(6 \mid 2)$. Our results cast some doubt of the veracity of the claims of [52], at least naively. It would be interesting to explore what leads to this apparent contradiction and whether this can be resolved, that however lies outside the scope of this work.

The layout of this paper is as follows.
In section 2 we consider AdS_{3} vacua of type II supergravity that preserve an $\mathrm{SO}(5)$ isometry in terms of squashed $\mathbb{C P}^{3}$, without making reference to supersymmetry. On symmetry grounds alone we are able to give the local form that the NS and RR fluxes must take in regular regions of their internal space, which we found useful when deriving the results in the subsequent sections.

[^1]In section 3 we explain our method for solving the supersymmetry constraints. We reduce the problem to solving for a single $\mathcal{N}=1$ sub-sector of the full $(5,0)$ as the remaining $4 \mathcal{N}=1$ sub-sectors are shown to be implied by this and the action of $\mathfrak{o s p}(5 \mid 2)$ which the spinors transform in. This enables us to employ an existing minimally supersymmetric AdS_{3} bi-spinor classification $[27,28,31]$ to the case at hand.

In section 4 we classify $\mathcal{N}=(5,0)$ vacua of type II supergravities realising the algebra $\mathfrak{o s p}(5 \mid 2)$ in terms of a foliation of AdS_{3} solutions of type II supergravity that are foliations of $\mathrm{AdS}_{3} \times \widehat{\mathbb{C P}}^{3}$ over an interval, we are actually able to find the local form of all of them. They only exist in type IIA, generically have all possible fluxes turned on and are governed by two ODEs. The first of these takes the form $h^{\prime \prime \prime}=-2 \pi F_{0}$, where F_{0} is the Romans mass, making h locally an order 3 linear polynomial highly reminiscent of the AdS_{7} vacua of $[54,55]$. The second ODE defines a linear function u which essentially controls the squashing of $\mathbb{C P}^{3}$ and hence the breaking of $\mathfrak{o s p}(6 \mid 2)$ to $\mathfrak{o s p}(5 \mid 2)$. For generic values of u one has $\mathcal{N}=(5,0)$ supersymmetry, but if one fixes $u=$ constant this is enhanced to $\mathcal{N}=(6,0)$

In section 5 we perform a regularity analysis of the local vacua establishing exactly what boundary behaviour are possible for the interval. We focus on $\mathcal{N}=(6,0)$ in section 5.1 where we find that fixing $F_{0}=0$ always gives rise to $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ locally, while for $F_{0} \neq 0$ it is possible to bound the interval at one end with several physical singularities but that the other end is always at infinite proper distance, at least when F_{0} is fixed globally. We study the $\mathcal{N}=(5,0)$ case in section 5.2 were conversely we find no AdS_{4} limit and that a globally constant F_{0} is no barrier to constructing bounded solutions. Many more physical boundary behaviours are possible in this case.

Up to this point in the paper we have assumed F_{0} is constant, globally it need only be so piece-wise which allows for D8 branes along the interior of the interval - we explore this possibility in section 6. We establish under what conditions such interior D8s are supersymmetric and explain how they can be used to construct broad classes of globally bonded solutions. We illustrate the point with some explicit examples. All of this points the way to broad classes of duals interesting superconformal quiver we shall report on in [63].

The work is supplemented by several appendices. In appendix A we provide technical details of the construction of spinors on the internal space transforming in the fundamental representation of $\mathrm{SO}(5)$ and $\mathrm{SO}(6)$. In appendix B we present details of the $d=6$ bi-linears that feature during computations in section 4 . Finally in appendix C we additionally show that all $\mathfrak{o s p}(7 \mid 2)$ preserving AdS_{3} vacua experience a local enhancement to $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ — $\mathrm{SO}(7)$ preserving orbifolds of this are a possibility, but such constructions are AdS_{4} rather than AdS_{3} vacua.

$2 \mathrm{SO}(2,2) \times \mathrm{SO}(5)$ invariant type II supergravity on $\mathrm{AdS}_{3} \times \widehat{\mathbb{C P}}^{3}$

In this section we consider the most possible vacua of type II supergravity that preserve the full $\mathrm{SO}(2,2) \times \mathrm{SO}(5)$ isometries of a warped product containing AdS_{3} and a squashed $\mathbb{C P}^{3}$ $\left(\widehat{\mathbb{C P}}^{3}\right)$. Specifically we construct the full set of $\mathrm{SO}(5)$ invariant forms and use them to find
the general form of NS and RR fluxes that are consistent with their source free (magnetic) Bianchi identities. Let us stress that this section makes no use of supersymmetry only symmetry, it is none the less useful when we choose to impose the former in the following sections.

In general AdS_{3} solutions of type II supergravity admit a decomposition in the following form

$$
\begin{align*}
d s^{2} & =e^{2 A} d s^{2}\left(\operatorname{AdS}_{3}\right)+d s^{2}\left(\mathrm{M}_{7}\right), \quad H=e^{3 A} h_{0} \operatorname{vol}\left(\operatorname{AdS}_{3}\right)+H_{3}, \\
F & =f_{ \pm}+e^{3 A} \operatorname{vol}\left(\operatorname{AdS}_{3}\right) \star_{7} \lambda\left(f_{ \pm}\right), \tag{2.1}
\end{align*}
$$

where $\left(e^{2 A}, f, H_{3}\right)$ and the dilaton Φ have support on M_{7} so as to preserve the $\mathrm{SO}(2,2)$ symmetry of AdS_{3}. The $d=10 \mathrm{NS}$ and RR fluxes are H and F respectively, the latter expressed as a polyform of even/odd degree in IIA/IIB. The function λ acts on a p-form as $\lambda\left(X_{p}\right)=(-1)^{\left[\frac{p}{2}\right]} X_{p}$ - this ensures the self duality constraint $F=\star_{10} \lambda(F)$.

We are interested in solutions where M_{7} preserve an additional $\mathrm{SO}(5)$ isometry that can be identified with the R-symmetry of the $\mathcal{N}=(5,0)$ superconformal algebra $\mathfrak{o s p}(5 \mid 2)$. The 4 -sphere comes to mind as the obvious space realising an $\mathrm{SO}(5)$ isometry, however this supports Killing spinors in the $\mathbf{4}$ of $\mathrm{SP}(2)$, where as we require spinor in the $\mathbf{5}$ of $\mathrm{SO}(5)$ so we will need to be more inventive.

The coset space $\mathbb{C P}^{3}$ is a 6 dimensional compact manifold that can be generated by dimensionally reducing S^{7} on its Hopf fiber - it appears most famously in the $\mathcal{N}=6$ $\operatorname{AdS}_{4} \times \mathbb{C P}^{3}$ solution dual to Chern-Simons matter theory. The 7 -sphere supports spinors transforming in the $\mathbf{8}$ of $\mathrm{SO}(8)$ and the reduction to $\mathbb{C P}^{3}$ preserves the portion of these preserving the $\mathbf{6}$ of $\mathrm{SO}(6)$. Advantageously $\mathbb{C P}^{3}$ has a parametrisation as an S^{2} fibration over S^{4} that allows a squashing breaking $\mathrm{SO}(6) \rightarrow \mathrm{SO}(5)$ by pinching the fiber - we will refer to this space as $\widehat{\mathbb{C P}}^{3}$. As the $\mathbf{6}$ branches as $\mathbf{1} \oplus \boldsymbol{5}$ under $\mathrm{SO}(5) \subset \mathrm{SO}(6)$ clearly $\widehat{\mathbb{C P}}^{3}$ supports both the isometry group and spinors we seek. Embedding this $\mathrm{SO}(5)$ invariant space into M_{7} leads to a metric ansatz of the form

$$
\begin{align*}
d s^{2}\left(\mathrm{M}_{7}\right) & =e^{2 k} d r^{2}+d s^{2}\left(\widehat{\mathbb{C P}}^{3}\right) \tag{2.2}\\
d s^{2}\left(\widehat{\mathbb{C P}}^{3}\right) & =\frac{1}{4}\left[e^{2 C}\left(d \alpha^{2}+\frac{1}{4} \sin ^{2} \alpha\left(L_{i}\right)^{2}\right)+e^{2 D}\left(D y_{i}\right)^{2}\right], \quad D y_{i}=d y_{i}+\cos ^{2}\left(\frac{\alpha}{2}\right) \epsilon_{i j k} y_{j} L_{k},
\end{align*}
$$

where y_{i} are embedding coordinates on the unit radius 2 -sphere, L_{i} are a set of $\mathrm{SU}(2)$ left invariant forms and ($e^{2 A}, e^{2 C}, e^{2 D}, e^{2 k}, \Phi$) have support on r only.

To write an ansatz for the fluxes on this space we need to construct the $\mathrm{SO}(5)$ invariant forms on $\widehat{\mathbb{C P}}^{3}$. As explained in appendix A , the S^{4} base of this fiber bundle contains an $\mathrm{SO}(4)=\mathrm{SO}(3)_{L} \times \mathrm{SO}(3)_{R}$ isometry in the 3 -sphere spanned by L_{i}. In the full space $\mathrm{SO}(3)_{R}$ is lifted to the diagonal $\mathrm{SO}(3)$ formed of $\mathrm{SO}(3)_{R}$ and the $\mathrm{SO}(3)$ of the 2 -sphere. As such the invariants of $\mathrm{SO}(5)$ can be expanded in a basis of the $\mathrm{SO}(3)_{L} \times \mathrm{SO}(3)_{D}$ invariants on the $S^{2} \times S^{3}$ fibration (see for instance [56]), namely

$$
\begin{array}{ll}
\omega_{1}=\frac{1}{2} L_{i} y_{i}, & \omega_{2}^{1}=\frac{1}{2} \epsilon_{i j k} y_{i} D y_{j} \wedge D y_{k}, \\
\omega_{2}^{3}=\frac{1}{2} \epsilon_{i j k} y_{i} L_{j} \wedge D y_{k}, & \omega_{2}^{4}=\frac{1}{8} \epsilon_{i j k} y_{i} L_{j} \wedge L_{k},
\end{array}
$$

and wedge products there off, leaving only the α dependence of the $\mathrm{SO}(5)$ invariants to fix via consistency with the remaining $\mathrm{SO}(5) /\left(\mathrm{SO}(3)_{L} \times \mathrm{SO}(3)_{D}\right)$ subgroup.

First off when $e^{2 C}=e^{2 D}=1$ we regain unit radius round $\mathbb{C P}^{3}$, which is a Kähler Einstein manifold with an $\mathrm{SO}(6)$ invariant Kähler form J_{2}, so we have the following $\mathrm{SO}(6)$ invariants on $\mathbb{C P}^{3}$

$$
\begin{equation*}
\mathbb{C P}^{3}: e^{2 C}=e^{2 D}=1 \Rightarrow \mathrm{SO}(6) \text { invariants : } J_{2}, \quad J_{2} \wedge J_{2}, \quad J_{2} \wedge J_{2} \wedge J_{2}=6 \operatorname{vol}\left(\mathbb{C P}^{3}\right) \tag{2.4}
\end{equation*}
$$

where specifically

$$
\begin{equation*}
J_{2}=\frac{1}{4}\left(\sin \alpha d \alpha \wedge \omega_{1}-\sin ^{2} \alpha \omega_{2}^{4}-\omega_{2}^{1}\right) . \tag{2.5}
\end{equation*}
$$

It is not hard to show that the remaining $\mathrm{SO}(5)$ invariants, which are not invariant under the full $\mathrm{SO}(6)$ of $\mathbb{C P}^{3}$, may be expressed in terms of the $\mathrm{SU}(3)$-structure spanned by

$$
\begin{equation*}
\tilde{J}_{2}=\frac{1}{4}\left(\sin \alpha d \alpha \wedge \omega_{1}-\sin ^{2} \alpha \omega_{2}^{4}+\omega_{2}^{1}\right), \quad \Omega_{3}=-\frac{1}{8} \sin \alpha\left(\sin \alpha \omega_{1}+i d \alpha\right) \wedge\left(\omega_{2}^{3}+i \omega_{2}^{2}\right) \tag{2.6}
\end{equation*}
$$

These invariant forms obey the following identities

$$
\begin{align*}
J_{2} \wedge \Omega_{3} & =\tilde{J}_{2} \wedge \Omega_{3}=0, & J_{2} \wedge J_{2} \wedge J_{2}=\tilde{J}_{2} \wedge \tilde{J}_{2} \wedge \tilde{J}_{2}=\frac{3 i}{4} \Omega_{3} \wedge \bar{\Omega}_{3}, \\
J_{2} \wedge J_{2}+\tilde{J}_{2} \wedge \tilde{J}_{2} & =2 \tilde{J}_{2} \wedge J_{2}, & \\
d J_{2} & =0, \quad d \tilde{J}_{2}=4 \operatorname{Re} \Omega_{3}, & d \operatorname{Im} \Omega_{3}=6 \tilde{J}_{2} \wedge J_{2}-2 J_{2} \wedge J_{2}, \tag{2.7}
\end{align*}
$$

and as such, they form a closed set under the exterior product and derivative. This is all that is needed to construct the fluxes.

The general form of an $\mathrm{SO}(5)$ invariant H_{3} obeying $d H_{3}=0$ is given by

$$
\begin{equation*}
H_{3}=d B_{2}, \quad B_{2}=b(r) J_{2}+\tilde{b}(r) \tilde{J}_{2}, \tag{2.8}
\end{equation*}
$$

The general $\mathrm{SO}(5)$ invariant $f_{ \pm}$obeying $d f_{ \pm}=H_{3} \wedge f_{ \pm}$can be expressed as

$$
\begin{align*}
& f_{+}=\left[F_{0}+c_{1} J_{2}+c_{2} J_{2} \wedge J_{2}+c_{3} \frac{1}{3!} J_{2} \wedge J_{2} \wedge J_{2}+d\left(p(r) \operatorname{Im} \Omega_{3}+q(r) \operatorname{Re} \Omega_{3}\right)\right] \wedge e^{B_{2}}, \\
& f_{-}=d\left[a_{1}(r)+a_{2}(r) J_{2}+a_{3}(r) \frac{1}{2} J_{2} \wedge J_{2}+a_{4}(r) J_{2} \wedge \tilde{J}_{2}+a_{5}(r) \frac{1}{3!} J_{2} \wedge J_{2} \wedge J_{2}\right] \wedge e^{B_{2}}, \tag{2.9}
\end{align*}
$$

giving us an SO(5) invariant ansatz for the flux in IIA/IIB which is valid away from the loci of localised sources. ${ }^{5}$ In IIA this depends locally on 4 constants ($F_{0}, c_{1}, c_{2}, c_{3}$) and 4 functions of $r(b, \tilde{b}, p, q)$ - there is an enhancement to $\mathrm{SO}(6)$ when $\tilde{b}=p=q=0$. If we also consider $d\left(e^{3 A} \star_{7} f_{ \pm}\right)=e^{3 A} H_{3} \wedge \star_{7} f_{ \pm}$we find we must in general fix $q=0$. In IIB this depends on 7 functions of r, with an enhancement to $\mathrm{SO}(6)$ when $\tilde{b}=a_{4}=0$.

[^2]
3 Necessary and sufficient conditions for realising supersymmetry

In this section we present the method by which we shall impose supersymmetry on $\mathrm{SO}(5)$ invariant ansatz of the previous section.

Geometric conditions for $\mathcal{N}=(1,0) \mathrm{AdS}_{3}$ solutions with purely magnetic NS flux (ie $h_{0}=0$) were derived first in massive IIA in [27], then generalised to IIB in [28] with the assumption that $h_{0}=0$, this assumption was then relaxed in [31] whose conventions we shall follow. These conditions are defined in terms of two non vanishing Majorana spinors ($\hat{\chi}_{1}, \hat{\chi}_{2}$) on the internal M_{7} which without loss of generality obey

$$
\begin{equation*}
\left|\hat{\chi}_{1}\right|^{2}+\left|\hat{\chi}_{2}\right|^{2}=2 e^{A}, \quad\left|\hat{\chi}_{1}\right|^{2}-\left|\hat{\chi}_{2}\right|^{2}=c e^{-A}, \tag{3.1}
\end{equation*}
$$

for c an arbitrary constant. One can solve these constraints in general in terms of two unit norm spinors (χ_{1}, χ_{2}) and a point dependent angle θ as

$$
\begin{equation*}
\hat{\chi}_{1}=e^{\frac{A}{2}} \sqrt{1-\sin \theta} \chi_{1}, \quad \hat{\chi}_{2}=e^{\frac{A}{2}} \sqrt{1+\sin \theta} \chi_{2}, \quad c=-2 e^{2 A} \sin \theta \tag{3.2}
\end{equation*}
$$

Plugging this into the necessary and sufficient conditions for supersymmetry in [31] (see appendix B therein), we find they become ${ }^{6}$

$$
\begin{align*}
& e^{3 A} h_{0}=2 m e^{2 A} \sin \theta, \quad d\left(e^{2 A} \sin \theta\right)=0, \tag{3.3a}\\
& d_{H_{3}}\left(e^{2 A-\Phi} \cos \theta \Psi_{\mp}\right)= \pm \frac{1}{8} e^{2 A} \sin \theta f_{ \pm}, \tag{3.3b}\\
& d_{H_{3}}\left(e^{3 A-\Phi} \cos \theta \Psi_{ \pm}\right) \mp 2 m e^{2 A-\Phi} \cos \theta \Psi_{\mp}=\frac{e^{3 A}}{8} \star_{7} \lambda\left(f_{ \pm}\right), \tag{3.3c}\\
& e^{A}\left(\Psi_{\mp}, f_{ \pm}\right)_{7}=\mp \frac{m}{2} e^{-\Phi} \cos \theta \operatorname{vol}\left(\mathrm{M}_{7}\right), \tag{3.3d}
\end{align*}
$$

where $\left(\Psi_{\mp}, f_{ \pm}\right)_{7}$ is the 7 -form part of $\Psi_{\mp} \wedge \lambda\left(f_{ \pm}\right)$and the real even/odd bi-linears $\Psi_{ \pm}$are defined via

$$
\begin{equation*}
\chi_{1} \otimes \chi_{2}^{\dagger}=\frac{1}{8} \sum_{n=0}^{7} \frac{1}{n!} \chi_{2}^{\dagger} \gamma_{a_{n} \ldots a_{1}} \chi_{1} e^{a_{1} \ldots a_{n}}=\Psi_{+}+i \Psi_{-} \tag{3.4}
\end{equation*}
$$

for e^{a} a vielbein on M_{7}. In the above m is the inverse AdS_{3} radius, in particular when $m=0$ we have Mink ${ }_{3}$ while when $m \neq 0$ its precise value is immaterial as it can be absorbed into the AdS_{3} warp factor, thus going forward we fix

$$
\begin{equation*}
m=1 \tag{3.5}
\end{equation*}
$$

without loss of generality.
In this work we will construct explicit solutions preserving $(5,0)$ and $(6,0)$ supersymmetries and for the cases of extended supersymmetry (3.3a)-(3.3d) is not on its own sufficient. If one has $\mathcal{N}=(n, 0)$ supersymmetry one has n independent $\mathcal{N}=(1,0)$ sub-sectors

[^3]that necessarily come with their corresponding n independent bi-linears $\Psi_{ \pm}^{(n)}$. These must all solve (3.3a)-(3.3d) for the same bosonic fields of supergravity. However the AdS_{3} vacua we are interested in realise the superconformal algebra $\mathfrak{o s p}(n \mid 2)$ which means the internal spinors which define these bi-linears transform in the \mathbf{n} of $\mathfrak{s o}(n)$ while the bosonic fields are $\mathfrak{s o}(n)$ singlets. Thus the bi-linears decompose into parts transforming in irreducible representations of the tensor product $\mathbf{n} \otimes \mathbf{n}$. Specifically this contains a singlet part that is common to all $\Psi_{ \pm}^{(n)}$ and a charged part in the symmetric representation. ${ }^{7}$ The charged parts of $\Psi_{ \pm}^{(n)}$ are mapped into each other by taking the Lie derivative with respect to the $\mathrm{SO}(\mathrm{n})$ Killing vectors, and in particular the bi-linears of a single $(1,0)$ sub-sector + the action of $\mathrm{SO}(\mathrm{n})$ is enough to generate the whole set. Then, since the Lie and exterior derivatives commute, it follows that if a single pair of bi-linears, $\Psi_{ \pm}^{1}$ say, solve (3.3a)-(3.3d) then they all do.

In summary to know that extended supersymmetry holds on (2.2) it is sufficient to construct an n-tuplet of spinors that transform in the \mathbf{n} of $\mathfrak{s o}(n)$, and then solve (3.3a)(3.3d) for the $\Psi_{ \pm}$following from any $\mathcal{N}=(1,0)$ sub-sector whilst imposing that the bosonic fields are all $\mathfrak{s o}(n)$ singlets. In particular this means that we must solve (3.3a)-(3.3d) under the assumption that the warp factors and dilaton only depend on r and the fluxes only depend on r and $\mathrm{SO}(\mathrm{n})$ invariant forms. We deal with the bulk of the construction of these $\mathrm{SO}(\mathrm{n})$ spinors in appendix A where we construct spinors in relevant representations on $\mathbb{C P}^{3}$. Below we present the embedding of these spinors into (2.2).
$\mathcal{N}=6$ spinors in $d=7$ can be expressed in terms of 4 real functions of $r\left(f_{1}, f_{2}, g_{1}, g_{2}\right)$ and the spinors in the $\mathbf{6}$ of $\mathrm{SO}(6)$ on $\mathbb{C P}^{3}$ in (A.23)

$$
\begin{align*}
& \chi_{1}^{\mathcal{I}}=\cos \left(\frac{\beta_{1}+\beta_{2}}{2}\right) \xi_{6}^{\mathcal{I}}+i \sin \left(\frac{\beta_{1}+\beta_{2}}{2}\right) \gamma_{7} \xi_{6}^{\mathcal{I}}, \\
& \chi_{2}^{\mathcal{I}}=\cos \left(\frac{\beta_{1}-\beta_{2}}{2}\right) \xi_{6}^{\mathcal{I}}+i \sin \left(\frac{\beta_{1}-\beta_{2}}{2}\right) \gamma_{7} \xi_{6}^{\mathcal{I}}, \tag{3.6}
\end{align*}
$$

where $\mathcal{I}=1, \ldots, 6$ and $\beta_{1,2}=\beta_{1,2}(r)$. These are only valid on round $\mathbb{C P}^{3}$, ie when $e^{2 B}=e^{2 C}$ and the fluxes depend on $\mathbb{C P}^{3}$ through the $\mathrm{SO}(6)$ invariant 2 -form J_{2}. We will not actually make explicit use of these spinors as it turns out that general class of $\mathcal{N}=(6,0)$ is actually simply one of 2 branching classes of solution following from the $\mathcal{N}=(5,0)$ spinors below.
$\mathcal{N}=5$ spinors in $d=7$ can be decomposed in terms the spinors in the $\mathbf{5}$ of $\mathrm{SO}(5)$ on $\mathbb{C P}^{3}$ in (A.21) and 4 constraints as

$$
\begin{align*}
\chi_{1}^{\alpha} & =a_{11}\left(\xi_{5}^{\alpha}+Y_{\alpha} i \gamma_{7} \xi_{0}\right)+b_{11}\left(i \gamma_{7} \xi_{5}^{\alpha}-Y_{\alpha} \xi_{0}\right)+a_{12} Y_{\alpha} \xi_{0}+i b_{12} Y_{\alpha} \gamma_{7} \xi_{0}, \\
\chi_{2}^{\alpha} & =a_{21}\left(\xi_{5}^{\alpha}+Y_{\alpha} i \gamma_{7} \xi_{0}\right)+b_{21}\left(i \gamma_{7} \xi_{5}^{\alpha}-Y_{\alpha} \xi_{0}\right)+a_{22} Y_{\alpha} \xi_{0}+i b_{22} Y_{\alpha} \gamma_{7} \xi_{0}, \\
a_{11}^{2}+b_{11}^{2} & =a_{12}^{2}+b_{12}^{2}=a_{21}^{2}+b_{21}^{2}=a_{22}^{2}+b_{22}^{2}=1 . \tag{3.7}
\end{align*}
$$

where $\alpha=1, \ldots, 5$, the 8 parameters a_{11}, b_{11}, \ldots are all real and have support on r alone, we have parameterised things in this fashion to make the unit norm constraints simple. These spinors are valid for squashed $\mathbb{C P}^{3}$.

[^4]Finally a set of $\mathcal{N}=1$ spinors can also be defined in $d=7$, they are given by

$$
\begin{align*}
& \chi_{1}^{(0)}=\cos \left(\frac{\beta_{1}+\beta_{2}}{2}\right) \xi_{0}+i \sin \left(\frac{\beta_{1}+\beta_{2}}{2}\right) \gamma_{7} \xi_{0}, \\
& \chi_{2}^{(0)}=\cos \left(\frac{\beta_{1}-\beta_{2}}{2}\right) \xi_{0}+i \sin \left(\frac{\beta_{1}-\beta_{2}}{2}\right) \gamma_{7} \xi_{0}, \tag{3.8}
\end{align*}
$$

where again $\beta_{1,2}=\beta_{1,2}(r)$ and these spinors are valid on squashed $\mathbb{C P}^{3}$. The 0 superscript refers to the fact that these are $\mathrm{SO}(5) \subset \mathrm{SO}(6)$ singlets. These are in fact nothing more than the 6th component of (3.6), however unlike the $\mathcal{N}=(6,0)$ case $e^{2 C} \neq e^{2 B}$ and the flux can depend on more than merely r and J_{2}. These spinors can be used to construct $\mathcal{N}=(1,0)$ AdS_{3} solutions with $\mathrm{SO}(5)$ flavour symmetry, something we will report on elsewhere [64].

4 Classification of $\mathfrak{o s p}(n \mid 2) \operatorname{AdS}_{3}$ vacua on $\widehat{\mathbb{C P}}^{3}$ for $n=5,6$

In this section we classify AdS_{3} solutions preserving $\mathcal{N}=(5,0)$ supersymmetry on squashed $\mathbb{C P}^{3}$. Such solutions only exist in type IIA supergravity and experience an enhancement to $\mathcal{N}=(6,0)$ when a function is appropriately fixed. We summarise our results between (4.22) and (4.25).

We take our representative $\mathcal{N}=1$ sub-sector to be

$$
\begin{equation*}
\chi_{1}=\chi_{1}^{5}, \quad \chi_{2}=\chi_{2}^{5}, \tag{4.1}
\end{equation*}
$$

which has the advantage that the bi-linears decompose in terms of the $\mathrm{SO}(3)_{L} \times \mathrm{SO}(3)_{D}$ invariant forms on the $\mathrm{S}^{2} \times \mathrm{S}^{3}$ fibration. We find the $d=7$ bi-linears are given by

$$
\begin{equation*}
\Psi_{+}=\left(\underline{\mathcal{S}}^{1}\right)_{+} \cdot(\underline{\phi})_{+}+e^{k}\left(\underline{\mathcal{S}}^{2}\right)_{-} \cdot(\underline{\phi})_{-} \wedge d r, \quad \Psi_{-}=\left(\underline{\mathcal{S}}^{1}\right)_{-} \cdot(\underline{\phi})_{-}+e^{k}\left(\underline{\mathcal{S}}^{2}\right)_{+} \cdot(\underline{\phi})_{+} \wedge d r \tag{4.2}
\end{equation*}
$$

where we define

$$
\begin{equation*}
(\underline{\phi})_{ \pm}=\left(\phi_{ \pm}^{1}, \phi_{ \pm}^{2}, Y_{5} \phi_{ \pm}^{3}, Y_{5} \phi_{ \pm}^{4}, Y_{5} \phi_{ \pm}^{5}, Y_{5} \phi_{ \pm}^{6}, Y_{5}^{2} \phi_{ \pm}^{7}, Y_{5}^{2} \phi_{ \pm}^{8}\right), \quad Y_{5}=\cos \alpha, \tag{4.3}
\end{equation*}
$$

for $\phi_{ \pm}^{1}$ real even/odd bi-linears on $\widehat{\mathbb{C P}}^{3}$ decomposing in a basis of (2.3) - their explicit form is given in (B.3). We also define

$$
\left(\underline{\mathcal{S}}^{1}\right)_{+}=\left(\begin{array}{c}
a_{11} a_{21}+b_{11} b_{21} \\
a_{11} b_{21}-a_{21} b_{11} \\
a_{11} a_{22}+b_{11} b_{22} \\
a_{11} b_{22}-a_{22} b_{11} \\
a_{12} a_{21}+b_{12} b_{21} \\
a_{21} b_{12}-a_{12} b_{21} \\
a_{12} a_{22}+b_{12} b_{22} \\
a_{22} b_{12}-a_{12} b_{22}
\end{array}\right), \quad\left(\underline{\mathcal{S}}^{2}\right)_{-}=\left(\begin{array}{c}
a_{21} b_{11}+a_{11} b_{21} \\
b_{11} b_{22}-a_{11} a_{21} \\
a_{11} b_{22}+a_{22} b_{11} \\
b_{11} b_{22}-a_{11} a_{22} \\
a_{21} b_{12}+a_{12} b_{21} \\
b_{12} b_{21}-a_{12} a_{21} \\
a_{22} b_{12}+a_{12} b_{22} \\
b_{12} b_{22}-a_{12} a_{22}
\end{array}\right),
$$

$$
\left(\underline{\mathcal{S}}^{1}\right)_{-}=\left(\begin{array}{c}
a_{21} b_{11}-a_{11} b_{21} \tag{4.4}\\
a_{11} a_{21}+b_{11} b_{21} \\
a_{22} b_{11}-a_{11} b_{22} \\
a_{11} a_{22}+b_{11} b_{22} \\
a_{21} b_{12}-a_{12} b_{21} \\
-a_{12} a_{21}-b_{12} b_{21} \\
a_{22} b_{12}-a_{12} b_{22} \\
-a_{12} a_{22}-b_{12} b_{22}
\end{array}\right), \quad\left(\underline{\mathcal{S}}^{2}\right)_{+}=\left(\begin{array}{c}
a_{11} a_{21}-b_{11} b_{21} \\
a_{21} b_{11}+a_{11} b_{21} \\
a_{11} a_{22}-b_{11} b_{22} \\
a_{22} b_{11}+a_{11} b_{22} \\
a_{12} a_{21}-b_{12} b_{21} \\
a_{21} b_{12}+a_{12} b_{21} \\
a_{12} a_{22}-b_{12} b_{22} \\
a_{22} b_{12}+a_{12} b_{22}
\end{array}\right) .
$$

We begin by solving the constraints in (3.7) by parametrising the functions of the spinor ansatz as

$$
\begin{array}{ll}
a_{11}+i b_{11}=e^{\frac{i}{2}\left(X_{1}+X_{3}\right)}, & a_{12}+i b_{12}=e^{\frac{i}{2}\left(X_{2}+X_{4}\right)}, \\
a_{21}+i b_{21}=e^{\frac{i}{2}\left(X_{1}-X_{3}\right)}, & a_{22}+i b_{22}=e^{\frac{i}{2}\left(X_{2}-X_{4}\right)}, \tag{4.5}
\end{array}
$$

for $X_{1} \ldots X_{4}$ functions of r only. We shall take the magnetic component of the NS 3 -form as in (2.8) and allow the RR fluxes to depend on r and all the $\mathrm{SO}(5)$ invariant forms, ie

$$
\begin{equation*}
d r, \quad J_{2}, \quad \tilde{J}_{2}, \quad \operatorname{Re} \Omega_{3}, \quad \operatorname{Im} \Omega_{3}, \tag{4.6}
\end{equation*}
$$

and the wedge products one can form out of these. One then proceed to substitute (4.2) into the necessary conditions for supersymmetry (3.3a)-(3.3d) to fix the r dependence of the ansatz.

In IIB supergravity there are no solutions: one arrives at a set of algebraic constraints by solving for the parts of (3.3b)-(3.3c) orthogonal to $d r$ which without loss of generality fix the phases as

$$
\begin{equation*}
X_{1}=-\frac{\pi}{2}+2 \beta(r), \quad X_{2}=\frac{\pi}{2}, \quad \theta=X_{3}=X_{4}=0 . \tag{4.7}
\end{equation*}
$$

and several parts of the metric and NS 2-form as

$$
\begin{equation*}
e^{C}=5 e^{A} \sin \beta, \quad e^{D}=5 e^{A} \sin \beta \cos \beta, \quad \tilde{b}=0 . \tag{4.8}
\end{equation*}
$$

Unfortunately if one then tries to solve the $d r$ dependent terms in (3.3b) one finds the constraint

$$
\begin{equation*}
\cos \beta=0, \tag{4.9}
\end{equation*}
$$

which cannot be solved without setting $e^{D}=0$, so no $\mathcal{N}=(5,0)$ or $(6,0)$ solutions exist on this space in type IIB.

Moving onto type IIA supergravity: some conditions one may extract from (3.3b), which simplify matters considerably going forward, are the following

$$
\begin{equation*}
\sin \theta=0, \quad \sin X_{1}=-\sin X_{2}=1, \tag{4.10}
\end{equation*}
$$

which we can solve without loss of generality as

$$
\begin{equation*}
\theta=0 \quad \Rightarrow \quad h_{0}=0, \quad X_{1}=-X_{2}=\frac{\pi}{2} . \tag{4.11}
\end{equation*}
$$

We then choose to further refine the phases as

$$
\begin{equation*}
X_{3}=\beta_{1}+\beta_{2}, \quad X_{4}=-\beta_{1}+\beta_{2} . \tag{4.12}
\end{equation*}
$$

Plugging these into (3.3b)-(3.3d) we find the following simple definitions of various functions in the ansatz

$$
\begin{align*}
e^{C} & =2 e^{A} \sin \beta_{2}, & e^{D} & =2 e^{A} \sin \left(\beta_{1}+\beta_{2}\right), \\
b^{\prime} & =4 e^{A+k}+2 \partial_{r}\left(e^{2 A} \cos \beta_{1} \sin \left(\beta_{1}+2 \beta_{2}\right)\right), & \tilde{b} & =-2 e^{2 A} \cos \left(\beta_{1}+2 \beta_{2}\right) \sin \beta_{1},
\end{align*}
$$

and the following ODEs that need to be actively solved

$$
\begin{align*}
\partial_{r}\left(e^{3 A-\Phi} \sin \beta_{1} \sin \beta_{2}\right)+2 m e^{2 A+k-\Phi} \sin \beta_{1} \cos \beta_{2} & =0, \\
\partial_{r}\left(e^{5 A-\Phi} \sin ^{2} \beta_{2} \sin \left(\beta_{1}+\beta_{2}\right)\right)+m e^{4 A+k-\Phi} \sin \beta_{2} \sin \left(\beta_{1}+2 \beta_{2}\right) & =0, \\
\partial_{r}\left(e^{2 A} \tan \beta_{2}\right)+m e^{A+k}\left(2 \tan \beta_{2} \cot \left(\beta_{1}+\beta_{2}\right)-\left(\cos \beta_{2}\right)^{-2}\right) & =0 . \tag{4.14}
\end{align*}
$$

We also extract expressions for the RR fluxes, though we delay presenting them explicitly until we have simplified the above. To make progress we find it useful to use diffeomorphism invariance in r to fix ${ }^{8}$

$$
\begin{equation*}
e^{A+k}=-\pi, \tag{4.15}
\end{equation*}
$$

and introduce local functions of $r(h, g, u)$ such that

$$
\begin{equation*}
e^{5 A-\Phi} \sin ^{2} \beta_{2} \sin \left(\beta_{1}+\beta_{2}\right)=\pi^{2} h, \quad e^{2 A} \tan \beta_{2}=g, \quad \frac{\tan \beta_{2}}{\tan \left(\beta_{1}+\beta_{2}\right)}=\frac{h^{\prime}+h \frac{u^{\prime}}{u}}{h^{\prime}-h \frac{u^{\prime}}{u}} . \tag{4.16}
\end{equation*}
$$

This simplifies the system of ODEs in (4.14) to

$$
\begin{align*}
& u^{\prime \prime}=0, \quad g=2 \pi \frac{h u}{u h^{\prime}-h u^{\prime}}, \quad \tan \beta_{1}=\frac{\operatorname{sign}(u h) u^{\prime} \sqrt{\Delta_{1}}}{u^{\prime}\left(u h^{\prime}-h u^{\prime}\right)+u^{2} h^{\prime \prime}}, \quad \tan \beta_{2}=\frac{\operatorname{sign}(u h) \sqrt{\Delta_{1}}}{u h^{\prime}-h u^{\prime}} \\
& \Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2} . \tag{4.17}
\end{align*}
$$

which imply supersymmetry and require $\Delta_{1}>0$. What remains is the explicit form of the magnetic components of the RR fluxes. These can be expressed most succinctly in terms of their Page flux avatars, ie $\hat{f}_{+}=f_{+} \wedge e^{-B_{2}}$, however to compute these we must first integrate b^{\prime}. Combining (4.16), (4.17) and (4.13) we find

$$
\begin{equation*}
b=-\tilde{b}+4 \pi\left(-(r-k)+\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}\right), \quad \tilde{b}=-2 \pi \frac{u^{\prime}}{h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right), \tag{4.18}
\end{equation*}
$$

where k is an integration constant. We then find for the magnetic Page fluxes

$$
\begin{aligned}
& \hat{f}_{0}=F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime}, \\
& \hat{f}_{2}=2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J,
\end{aligned}
$$

[^5]\[

$$
\begin{align*}
& \hat{f}_{4}=-4 \pi\left[\left(2 h^{\prime}+(r-k)\left(-2 h^{\prime \prime}+(r-k) h^{\prime \prime \prime}\right)\right) J_{2} \wedge J_{2}+d\left(\frac{h u^{\prime}}{u} \operatorname{Im} \Omega_{3}\right)\right] \\
& \hat{f}_{6}=\frac{16 \pi^{2}}{3}\left(6 h-(r-k)\left(6 h^{\prime}+(r-k)\left(-3 h^{\prime \prime}+(r-k) h^{\prime \prime \prime}\right)\right)\right) J_{2} \wedge J_{2} \wedge J_{2} \tag{4.19}
\end{align*}
$$
\]

where we have made extensive use of the conditions derived earlier to simply these expressions. In order to have a solution we must impose that Bianchi identities of the RR flux hold (that of the NS 3 -form is implied), away from sources this is equivalent to imposing that $d \hat{f}_{2 n}=0$ for $n=0,1,2,3$, we find

$$
\begin{equation*}
d \hat{f}_{2 n}=-\frac{1}{2 \pi}(4 \pi)^{n} \frac{1}{n!}(r-k)^{n} h^{\prime \prime \prime \prime} d r \wedge J_{2}^{n} \tag{4.20}
\end{equation*}
$$

which tells us that the Bianchi identities in regular parts of the internal space demand

$$
\begin{equation*}
h^{\prime \prime \prime \prime}=0, \tag{4.21}
\end{equation*}
$$

or in other words that h is an order 3 polynomial (at least locally). This completes our local derivation of the class of solutions.

In summary the local form of solutions in this class take the following form: NS sector

$$
\begin{align*}
\frac{d s^{2}}{2 \pi} & =\frac{|h u|}{\sqrt{\Delta_{1}}} d s^{2}\left(\mathrm{AdS}_{3}\right)+\frac{\sqrt{\Delta_{1}}}{4|u|}\left[\frac{2}{\left|h^{\prime \prime}\right|}\left(d s^{2}\left(\mathrm{~S}^{4}\right)+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}\right)+\frac{1}{|h|} d r^{2}\right] \\
e^{-\Phi} & =\frac{\sqrt{|u|}\left|h^{\prime \prime}\right|^{\frac{3}{2}} \sqrt{\Delta_{2}}}{2 \sqrt{\pi} \Delta_{1}^{\frac{1}{4}}}, \quad \Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime} u^{\prime}}{u h^{\prime \prime}}, \quad H=d B_{2} \\
B_{2} & =4 \pi\left[\left(-(r-k)+\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}\right) J_{2}+\frac{u^{\prime}}{2 h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right] \tag{4.22}
\end{align*}
$$

where (u, h) are functions of r and k is a constant. Note that positivity of the metric and dilaton holds whenever $\Delta_{1} \geq 0 .{ }^{9}$ The $d=10 \mathrm{RR}$ fluxes are given by

$$
\begin{align*}
F_{0}= & -\frac{1}{2 \pi} h^{\prime \prime \prime}, \quad F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2} \\
F_{4}= & \pi d\left(h^{\prime}+\frac{h h^{\prime \prime} u\left(u h^{\prime}+h u^{\prime}\right)}{\Delta_{1}}\right) \wedge \operatorname{vol}\left(\operatorname{AdS}_{3}\right)+B_{2} \wedge F_{2}-\frac{1}{2} B_{2} \wedge B_{2} F_{0} \\
& -4 \pi\left[\left(2 h^{\prime}+(r-k)\left(-2 h^{\prime \prime}+(r-k) h^{\prime \prime \prime}\right)\right) J_{2} \wedge J_{2}+d\left(\frac{h u^{\prime}}{u} \operatorname{Im} \Omega_{3}\right)\right] \tag{4.23}
\end{align*}
$$

Solutions within this class are defined locally by 2 ODEs: first supersymmetry demands

$$
\begin{equation*}
u^{\prime \prime}=0 \tag{4.24}
\end{equation*}
$$

which must hold globally. Second the Bianchi identities of the fluxes demand that in regular regions of the internal space

$$
\begin{equation*}
h^{\prime \prime \prime \prime}=0 \tag{4.25}
\end{equation*}
$$

[^6]which one can integrate as
\[

$$
\begin{equation*}
h=c_{0}+c_{1} r+\frac{1}{2} c_{2} r^{2}+\frac{1}{3!} c_{3} r^{3}, \tag{4.26}
\end{equation*}
$$

\]

where c_{i} are integration constants here and elsewhere. However the r.h.s. of (4.25) can contain δ-function sources globally, as we shall explore in section 6. Before moving on to analyse solutions within this class it is important to stress a few things. First off that (4.24) must hold globally, and given how u, u^{\prime} appear in the class means that really u is parametrising two branching possibilities - either $u^{\prime}=0$ or $u^{\prime} \neq 0$.

For the first case notice that if $u^{\prime}=0$ then u actually completely drops out of the bosonic fields, so its precise value doesn't matter. Further the warping of the 4 -sphere and fibered 2 -sphere becomes equal, making the metric on $\mathbb{C P}^{3}$ the round one, and only J_{2} now appears in the fluxes. There is thus an enhancement of the global symmetry of the internal space to $\operatorname{SO}(6)$ - indeed supersymmetry is likewise enhanced to $\mathcal{N}=(6,0)$. We shall study this limit in section 5.1.

When $u^{\prime} \neq 0$ then u is an order 1 polynomial, however the class is invariant under ($r \rightarrow r+l, k \rightarrow k+l$) which one can use to set the constant term in u to zero without loss of generality, the specific value of the constant u^{\prime} then also drops out of the bosonic fields. Thus for the second class, preserving only $\mathcal{N}=(5,0)$ supersymmetry, one can fix $u=r$ without loss of generality. We shall study this limit in section 5.2.

Having a classes of solutions defined in terms of the ODE $h^{\prime \prime \prime}=-2 \pi F_{0}$ is very reminiscent of AdS_{7} vacua in massive IIA, which obey essentially the same constraint [55]. For the $(6,0)$ case the formal similarities become more striking as both this and the AdS_{7} vacua are of the form $\mathrm{AdS}_{2 p+1} \times \mathbb{C P}^{4-p}$ foliated over an interval in terms of an order 3 polynomial and it's derivatives - however we should stress these functions do not appear in the same way in each case. None the less this apparent series of local solutions does beg the question, what about $\mathrm{AdS}_{5} \times \mathbb{C P}^{2}$?. Establishing whether this also exists, and how much if any supersymmetry it may preserve, is beyond the scope of this work but would be interesting to pursue.

5 Local analysis of $\mathfrak{o s p}(n \mid 2)$ vacua for $n>4$

In this section we perform a local analysis of the $\mathfrak{o s p}(6 \mid 2)$ and $\mathfrak{o s p}(5 \mid 2) \mathrm{AdS}_{3}$ vacua derived in the previous sections in 5.1 and 5.2. We begin with some comments about the non existence of $\mathfrak{o s p}(n \mid 2) \operatorname{AdS}_{3}$ for $n>6$ and on the generality of classes we do find.

In the previous section we derived classes of solutions in IIA supergravity that realise the super conformal algebras $\mathfrak{o s p}(n \mid 2)$ for $n=5,6$ on a warped product space consisting of a foliation of $\mathrm{AdS}_{3} \times \widehat{\mathbb{C P}}^{3}$ foliated over an interval such that either $\mathrm{SO}(5)$ or $\mathrm{SO}(6)$ is preserved. In appendix C we prove that the case of $n=7$ is locally $\operatorname{AdS}_{4} \times S^{7}$, and the same is proved for the case of $n=8$ in [51]. Thus one only has true AdS_{3} solutions for $n=5,6$ (or lower) and we have found them only in type IIA.

The class of $\mathfrak{o s p}(6 \mid 2) \mathrm{AdS}_{3}$ vacua we find are exhaustive for type II supergravities: spinors transforming in the $\mathbf{6}$ of $\mathfrak{s o}(6)$ necessitate either a round $\mathbb{C P}^{3}$ factor in the metric
or $\mathbb{C P}^{3}$ with a $\mathrm{U}(1)$ fibered over it. This latter possibility can easily be excluded at the level of the equations of motion [51]. For the case of $\mathfrak{o s p}(5 \mid 2) \operatorname{AdS}_{3}$ vacua we suspect the same is true, but are not completely certain of that.

5.1 Analysis of $\mathfrak{o s p}(6 \mid 2)$ vacua

The $\mathfrak{o s p}(6 \mid 2) \mathrm{AdS}_{3}$ solutions are given by the class of the previous section specialised to the case $u=1$. We find for the NS sector

$$
\begin{align*}
& \frac{d s^{2}}{2 \pi}=\frac{|h|}{\sqrt{2 h h^{\prime \prime}-\left(h^{\prime}\right)^{2}}} d s^{2}\left(\operatorname{AdS}_{3}\right)+\sqrt{2 h h^{\prime \prime}-\left(h^{\prime}\right)^{2}}\left[\frac{1}{4|h|} d r^{2}+\frac{2}{\left|h^{\prime \prime}\right|} d s^{2}\left(\mathbb{C P}^{3}\right)\right], \\
& e^{-\Phi}=\frac{\left(\left|h^{\prime \prime}\right|\right)^{\frac{3}{2}}}{2 \sqrt{\pi}\left(2 h h^{\prime \prime}-\left(h^{\prime}\right)^{2}\right)^{\frac{1}{4}}}, \quad H=d B_{2}, \quad B_{2}=4 \pi\left(-(r-k)+\frac{h^{\prime}}{h^{\prime \prime}}\right) J_{2}, \tag{5.1}
\end{align*}
$$

and the RR sector

$$
\begin{align*}
F_{0}= & -\frac{1}{2 \pi} h^{\prime \prime \prime}, \quad F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}, \\
F_{4}= & \pi d\left(h^{\prime}+\frac{h h^{\prime} h^{\prime \prime}}{2 h h^{\prime \prime}-\left(h^{\prime}\right)^{2}}\right) \wedge \operatorname{vol}\left(\mathrm{AdS}_{3}\right)+B_{2} \wedge F_{2}-\frac{1}{2} B_{2} \wedge B_{2} F_{0} \\
& -4 \pi\left(2 h^{\prime}+(r-k)\left(-2 h^{\prime \prime}+(r-k) h^{\prime \prime \prime}\right)\right) J_{2} \wedge J_{2}, \tag{5.2}
\end{align*}
$$

where k is a constant and h is a function of r obeying $h^{\prime \prime \prime \prime}=0$ in regular regions of a solution.

5.1.1 Local solutions and regularity

There are several distinct physical behaviours one can realise locally by solving $h^{\prime \prime \prime}=-2 \pi F_{0}$ (for $F_{0}=$ constant) in different ways, in this section we shall explore them.

The distinct local solutions the class contains can be characterised as follows. First off the domain of r should be ascertained, in principle it can be one of the following: periodic, bounded (from above and below), semi infinite or unbounded. For a well defined AdS_{3} vacua dual to a $d=2 \mathrm{CFT} r$ must be one of the first 2 . In the case at hand the r dependence of h does not allow for periodic r so we seek bounded solutions. In general a solution can be bounded by either a regular zero or a physical singularity.

At a regular zero we must have that $e^{-\Phi}$ and the AdS warp factor becomes constant. The internal space should then decompose as a direct product of two sub manifolds with the first tending to the behaviour of a Ricci flat cone of radius r and the second r independent.

There are many ways to realise physical singularities that bound the space at some loci. The most simple is with D branes and O-planes: for a generic solution these objects are characterised by a metric and dilaton which decompose as

$$
\begin{equation*}
d s^{2}=\frac{1}{\sqrt{h_{p}}} d s_{\|}^{2}+\sqrt{h_{p}} d s_{\perp}^{2}, \quad e^{-\Phi} \propto h_{p}^{\frac{p-3}{4}} \tag{5.3}
\end{equation*}
$$

where $d s_{\|}^{2}$ is the $p+1$ dimensional metric on the world volume of this object and $d s_{\perp}^{2}$ is the $9-p$ dimensional metric on its co-dimensions. We will consider only solutions whose
metric is a foliation over an interval r. A Dp brane singularity (for $p<7$) is then signaled by the leading order behaviour

$$
\begin{equation*}
d s_{\perp}^{2} \propto d r^{2}+r^{2} d s^{2}\left(\mathrm{~B}^{8-p}\right), \quad h_{p} \propto \frac{1}{r^{7-p}} \tag{5.4}
\end{equation*}
$$

for B^{8-p} the base of a Ricci flat cone (for instance $\mathrm{B}^{8-p}=\mathrm{S}^{8-p}$). The case of $p=8$ is different as while the solution is singular at such a loci, the metric neither blows up nor tends to zero so a D8 brane does not bound the solution ($p=7$ will not be relevant to our analysis). The Op plane singularity (for $p \neq 7$) on the other hand yields

$$
\begin{equation*}
d s_{\perp}^{2} \propto d r^{2}+\alpha_{0}^{2} d s^{2}\left(\mathrm{~B}^{8-p}\right), \quad h_{p} \propto r, \tag{5.5}
\end{equation*}
$$

for α_{0} some constant. Our task then is to first establish which of these behaviours can be realised by the class of solutions in this section, then whether any of these behaviours can coexist in the same local solution. Let us reiterate: D-brane and O-plane singularities do not exhaust the possible physical singularities, indeed we will find a more complicated object later in this section which we will describe when it becomes relevant.

The most obvious thing one can try is to fix $F_{0}=h^{\prime \prime \prime}=0$, it is not hard to see that one then has $H_{3}=0$ and F_{4} becomes purely electric. One can integrate h as

$$
\begin{equation*}
h=c_{1}+r c_{2}+\frac{1}{2} \tilde{k} r^{2} \tag{5.6}
\end{equation*}
$$

and then upon making the redefinitions

$$
\begin{equation*}
c_{1}=\frac{\tilde{k} L^{4}+c_{2}^{2} \pi^{2}}{2 \tilde{k} \pi^{2}}, \quad-r=\frac{c_{2}}{\tilde{k}^{2}}+\frac{L^{2}}{\pi} \sinh x \tag{5.7}
\end{equation*}
$$

one finds the solution is mapped to

$$
\begin{align*}
\frac{d s^{2}}{L^{2}} & =\left(\cosh ^{2} x d s^{2}\left(\operatorname{AdS}_{3}\right)+d x^{2}\right)+4 d s^{2}\left(\mathbb{C P}^{3}\right), & e^{-\Phi} & =\frac{\tilde{k}}{2 L}, \tag{5.8}\\
F_{2} & =2 \tilde{k} J_{2}, & F_{4} & =\frac{3}{2} \tilde{k} L^{2} \cosh ^{3} x \operatorname{vol}\left(\operatorname{AdS}_{3}\right) \wedge d x .
\end{align*}
$$

This is of course $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$, dual to $\mathcal{N}=6, \mathrm{U}(\mathrm{N})_{\tilde{k}} \times \mathrm{U}(\mathrm{N})_{-\tilde{k}}$ Chern-Simons matter theory (where $N=2 \tilde{k} L^{4}$) [53]. Thus there is only one local solution when $F_{0}=0$ and it is an AdS_{4} vacua preserving twice the supersymmetries of generic solutions within this class. This is the only regular solution preserving $(6,0)$ supersymmetry.

Next we consider the sort of physical singularities the metric and dilaton in (5.1) can support for $F_{0} \neq 0$. At the loci of such singularities the space terminates so the interval spanned by r becomes bounded at one end. We shall use diffeomorphism invariance to assume this bound is at $r=0$.

First off $\Delta_{1}=2 h h^{\prime \prime}-\left(h^{\prime}\right)^{2}$ appears in the metric and dilaton where one would expect the warp factor of a co-dimension 7 source to appear. Thus if Δ_{1} has an order 1 zero at a loci where $h, h^{\prime \prime}$ have no zero one has the behaviour of O2 planes extended in AdS_{3} at the
tip of a G_{2} cone over $\mathbb{C P}^{3}$. We now choose the loci of this O2 plane to be $r=0$, meaning that the constant part of Δ_{1} has to vanish which forces

$$
\begin{equation*}
\mathrm{O} 2 \text { at } r=0: h=c_{1}+c_{2} r+\frac{c_{2}^{2}}{4 c_{1}} r^{2}+\frac{1}{3!} c_{3} r^{3}, \quad c_{1}, c_{2}, c_{3} \neq 0, \tag{5.9}
\end{equation*}
$$

where $r \in \mathbb{R}^{ \pm}$when $\operatorname{sign}\left(c_{1} c_{4}\right)= \pm 1$.
Another type of singularity this solution is consistent with is a D8/O8 system of world volume $\mathrm{AdS}_{3} \times \mathbb{C P}^{3}$. Such a singularity is characterised by O8 brane like behaviour in the metric and dilaton. We realise this behaviour by choosing h such that $\left(h^{\prime \prime}, \Delta_{1}\right)$ both have an order 1 zero at a loci where h has no zero. After using diffeomorphism invariance to place the D8/O8 at $r=0$ this is equivalent to taking h as

$$
\begin{equation*}
\mathrm{D} 8 / \mathrm{O} 8 \text { at } r=0: \quad h=c_{1}+\frac{1}{3!} c_{2} r^{3}, \quad c_{1,2} \neq 0 \tag{5.10}
\end{equation*}
$$

where $r \in \mathbb{R}^{ \pm}$for $\operatorname{sign}\left(c_{1} c_{2}\right)= \pm 1$.
We are yet to find a D brane configuration, given that we have a $\mathbb{C P}^{3}$ factor the obvious thing to naively aim for is D 2 branes at the tip of a G_{2} cone similar to the O 2 plane realised above. However the warp factor of a D2 brane blows up like $\lim _{r \rightarrow 0} r^{-5}$ its loci, and this is not possible to achieve for (5.1) such that h is an order 3 polynomial. It is however possible to realise a more exotic object: it is well known that if one takes $d=11$ supergravity on the orbifold $\mathbb{R}^{1,6} \times \mathbb{C}^{2} / \mathbb{Z}_{\tilde{k}}$ then reduces on the Hopf fibre of the Lens space (equivalently squashed 3 -sphere) inside $\mathbb{C}^{2} / \mathbb{Z}_{\tilde{k}}$ one generates a D6 brane singularity in type IIA. One can generate the entire flat space D6 brane geometry by replacing $\mathbb{C}^{2} / \mathbb{Z}_{\tilde{k}}$ in the above with a Taub-Nut space and likewise reducing to IIA. One can perform an analogous procedure for $\mathbb{R}^{1,2} \times \mathbb{C}^{4} / \mathbb{Z}_{\tilde{k}}$, reducing this time on the Hopf fibration (over $\mathbb{C P}^{3}$) of a squashed 7 -sphere. The resulting solution in IIA takes the from

$$
\begin{equation*}
d s^{2}=\frac{\sqrt{r}}{\tilde{k}} d s^{2}\left(\operatorname{Mink}_{3}\right)+\frac{1}{4 \tilde{k} \sqrt{r}}\left(d r^{2}+4 r^{2} d s^{2}\left(\mathbb{C P}^{3}\right)\right), \quad e^{-\Phi}=\frac{\tilde{k}^{\frac{3}{2}}}{r^{\frac{3}{4}}}, \quad F_{2}=2 \tilde{k} J_{2}, \quad r \geq 0, \tag{5.11}
\end{equation*}
$$

and is singular at $r=0$. Notice that the r dependence of the dilaton and metric is the same as one gets at the loci of flat space D6 branes, but the co-dimensions no longer span a regular cone as they do in that case, indeed $d r^{2}+c r^{2} d s^{2}\left(\mathbb{C P}^{3}\right)$ is only Ricci flat for unit radius round $\mathbb{C P}^{3}$ when $c=\frac{2}{5}$. It is argued in [53] that the singularity in (5.11) corresponds to a coincident combination of a KK monopole and $\tilde{k} \mathrm{D} 6$ branes (T-dual of an $(1, \tilde{k})-5$ brane) that partially intersect another KK monopole. For simplicity we shall refer to this rather complicated composite object as a $\widetilde{\mathrm{D} 6}$ brane. We can find the behaviour of this object, now extended in AdS_{3}, within this class - assuming it is located at $r=0$ one need only tune

$$
\begin{equation*}
\widetilde{\mathrm{D} 6} \text { at } r=0: h=r^{2}\left(c_{1}+c_{2} r\right), \quad c_{1,2} \neq 0, \tag{5.12}
\end{equation*}
$$

with the caveat that as this only exists when $F_{0} \neq 0$, we can no longer lift to $d=11$. Again $r \in \mathbb{R}^{ \pm}$for $\operatorname{sign}\left(c_{1} c_{2}\right)= \pm 1$.

The above exhausts the physical singularities we are able to identify, we do however find one final further singularity. By tuning $h=c r^{3}$ for $r, c>0$, the metric and dilaton then become

$$
\begin{equation*}
d s^{2}=\frac{\pi}{2 \sqrt{3} r}\left(4 r^{2}\left(d s^{2}\left(\operatorname{AdS}_{3}\right)+d s^{2}\left(\mathbb{C P}^{3}\right)\right)+3 d r^{2}\right), \quad e^{-\Phi}=\frac{3 \sqrt{2} 3^{\frac{1}{4}} c}{\sqrt{\pi}} \sqrt{r} \tag{5.13}
\end{equation*}
$$

which is singular about $r=0$ in a way we do not recognise.
All the previously discussed physical singularities bound the interval spanned by r at one end. In order to have a true AdS_{3} vacuum we need to bound a solution between 2 of them separated by a finite proper distance. However assuming that the space starts at $r=0$ with any of an $\mathrm{O} 2, \mathrm{D} 8 / \mathrm{O} 8$ or $\widetilde{\mathrm{D} 6}$ singularity, we find that none of the warp factors appearing in metric or dilaton (5.1), (ie ($h, \Delta_{1}, h^{\prime \prime}$)) either blow up or vanish until $r \rightarrow \infty$. For each case (assuming $r \geq 0$ for simplicity) the metric and dilaton as $r \rightarrow \infty$ tend to (5.13). By computing the curvature invariants it is possible to show that the metric is actually flat at this loci, hence it tends to Mink ${ }_{10}$, however as $e^{\Phi} \rightarrow \infty$ the solution is still singular. Worse still the singularity as $r \rightarrow \infty$ is at infinity proper distance from $r=0$, so in all cases the internal space is semi infinite.

Naively one might now conclude that there are no $\mathfrak{o s p}(6 \mid 2) \mathrm{AdS}_{3}$ vacua with bounded internal space (true vacua), however as we will show explicitly in section 6 , this is not the case. The missing ingredient is the inclusion of D 8 branes on the interior of r which allow one to glue local solutions of $h^{\prime \prime \prime \prime}=0$, depending on different integration constants, together.

5.2 Analysis of $\mathfrak{o s p}(5 \mid 2)$ vacua

The $\mathfrak{o s p}(5 \mid 2) \operatorname{AdS}_{3}$ solutions are given by the class of section 4 for $u^{\prime} \neq 0$, one can use diffemorphism invariance to fix $u=r$ for such solutions without loss of generality. The resulting NS sector takes the form

$$
\begin{align*}
\frac{d s^{2}}{2 \pi} & =\frac{|h r|}{\sqrt{\Delta_{1}}} d s^{2}\left(\operatorname{AdS}_{3}\right)+\frac{\sqrt{\Delta_{1}}}{4|r|}\left[\frac{2}{\left|h^{\prime \prime}\right|}\left(d s^{2}\left(\mathrm{~S}^{4}\right)+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}\right)+\frac{1}{|h|} d r^{2}\right] \\
e^{-\Phi} & =\frac{\left|h^{\prime \prime}\right|^{\frac{3}{2}} \sqrt{|r|} \sqrt{\Delta_{2}}}{2 \sqrt{\pi} \Delta_{1}^{\frac{1}{4}}}, \quad \Delta_{1}=2 h h^{\prime \prime} r^{2}-\left(r h^{\prime}-h\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime}}{r h^{\prime \prime}}, \quad H=d B_{2}, \\
B_{2} & =4 \pi\left[\left(-(r-k)+\frac{r h^{\prime}-h}{r h^{\prime \prime}}\right) J_{2}+\frac{1}{2 h^{\prime \prime}}\left(\frac{h}{r}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime}+r h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right], \tag{5.14}
\end{align*}
$$

while the $d=10 \mathrm{RR}$ fluxes are then given by

$$
\begin{align*}
F_{0}= & -\frac{1}{2 \pi} h^{\prime \prime \prime}, \quad F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}, \\
F_{4}= & \pi d\left(h^{\prime}+\frac{h h^{\prime \prime} r\left(r h^{\prime}+h\right)}{\Delta_{1}}\right) \wedge \operatorname{vol}\left(\operatorname{AdS}_{3}\right)+B_{2} F_{2}-\frac{1}{2} B_{2} \wedge B_{2} F_{0} \\
& -4 \pi\left[\left(2 h^{\prime}+(r-k)\left(-2 h^{\prime \prime}+(r-k) h^{\prime \prime \prime}\right)\right) J_{2} \wedge J_{2}+d\left(\frac{h}{r} \operatorname{Im} \Omega_{3}\right)\right] \tag{5.15}
\end{align*}
$$

where h is defined as before and k is a constant.

5.2.1 Local solutions and regularity

In this section we will explore the physically distinct local $\mathfrak{o s p}(5 \mid 2)$ solution that follow from solving $h^{\prime \prime \prime}=-2 \pi F_{0}$ in various ways.

Let us begin by commenting on the massless limit $F_{0}=h^{\prime \prime \prime}=0$: unlike the class of $\mathfrak{o s p}(6 \mid 2)$ solutions the result is no longer locally $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ — it is instructive to lift the class to $d=11$. We find the metric of the solution can be written as ${ }^{10}$

$$
\begin{align*}
\frac{d s_{11}^{2}}{2^{\frac{1}{3}} \pi^{\frac{2}{3}}\left|h^{\prime \prime}\right|} & =\Delta_{2}^{\frac{1}{3}}\left[\frac{|h||r|^{\frac{4}{3}}}{\Delta_{1}^{\frac{2}{3}}} d s^{2}\left(\mathrm{AdS}_{3}\right)+\frac{\Delta_{1}^{\frac{1}{3}}}{|r|^{\frac{2}{3}}}\left(\frac{1}{4|h|} d r^{2}+\frac{2}{\left|h^{\prime \prime}\right|} d s^{2}\left(\widehat{\mathrm{~S}}^{7}\right)\right)\right] \\
d s^{2}\left(\widehat{\mathrm{~S}}^{7}\right) & =\frac{1}{4}\left[d s^{2}\left(\mathrm{~S}^{4}\right)+\frac{1}{\Delta_{2}}\left(L_{2}^{i}-\cos ^{2}\left(\frac{\alpha}{2}\right) L_{1}^{i}\right)^{2}\right] \tag{5.16}
\end{align*}
$$

where $L_{1,2}^{i}$ are two sets of $\mathrm{SU}(2)$ left invariant forms defined as in appendix (A.2), so that the internal space is a foliation of an $\mathrm{SP}(2) \times \mathrm{SP}(1)$ preserving squashed 7 -sphere over an interval. This enhancement of symmetry is also respected by the $d=11$ flux, to see this we need to define the $\operatorname{SP}(2) \times \operatorname{SP}(1)$ invariant form on this squashed 7 -sphere, fortuitously these were already computed in [51], they are

$$
\begin{equation*}
\Lambda_{3}^{0}=\frac{1}{8}\left(L_{2}^{1}+\mathcal{A}^{1}\right) \wedge\left(L_{2}^{2}+\mathcal{A}^{2}\right) \wedge\left(L_{2}^{3}+\mathcal{A}^{3}\right), \quad \tilde{\Lambda}_{3}^{0}=\frac{1}{8}\left(L_{2}^{i}+\mathcal{A}^{i}\right) \wedge\left(d \mathcal{A}^{i}+\frac{1}{2} \epsilon_{j k}^{i} \mathcal{A}^{j} \wedge \mathcal{A}^{k}\right) \tag{5.17}
\end{equation*}
$$

where $\mathcal{A}^{i}=-\cos ^{2}\left(\frac{\alpha}{2}\right) L_{1}^{i}$, and their exterior derivatives. One can then show that the $d=11$ flux decompose as

$$
\begin{equation*}
\frac{G_{4}}{\pi}=d\left(h^{\prime}+\frac{r h h^{\prime \prime}\left(r h^{\prime}+h\right)}{\Delta_{1}}\right) \wedge \operatorname{vol}\left(\mathrm{AdS}_{3}\right)+4 d\left(\frac{2\left(r\left(h^{\prime}\right)^{2}-h\left(h^{\prime}+r h^{\prime \prime}\right)\right)}{r\left(2 h^{\prime}+r h^{\prime \prime}\right)} \Lambda_{3}^{0}+\frac{h}{r}\left(\Lambda_{3}^{0}-\tilde{\Lambda}_{3}^{0}\right)\right) \tag{5.18}
\end{equation*}
$$

For such solutions we can in general integrate $h^{\prime \prime \prime}=0$ in terms of an order 2 polynomial. As we shall see shortly it is possible to bound r at one end of the space in several physical ways, but when $F_{0}=0$ it always remains semi-infinite. Given that the massless limit of $\mathcal{N}=(6,0)$ is always locally $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ in IIA, it is reasonable to ask whether the massless solutions here approach this asymptotically. Such a solution preserving $\mathcal{N}=(8,0)$ was found on this type of squashing of the 7 -sphere in [51] and can be interpreted as a holographic dual to a surface defect. In this case, as $r \rightarrow \infty$ the curvature invariants (5.16) all vanish, (for instance $R \sim r^{-\frac{2}{3}}$). This makes the behaviour at infinite r that of Mink_{11}, so such an interpretation is not possible here.

Let us now move back to IIA and focus on more generic solutions: by studying the zeros of $\left(r, h, h^{\prime \prime}, \Delta_{1}, \Delta_{2}\right)$ we are able to identify a plethora of boundary behaviours for $\mathfrak{o s p}(5 \mid 2)$ solutions. The vast majority we are able to identify as physical and most exist for arbitrary values of F_{0}. We already used up translational invariance of this class to align $u=r$ so we can non longer assume that $r=0$ is a boundary of solutions in this class, rather we must consider possible boundaries at $r=0$ and $r=r_{0}$ for $r_{0} \neq 0$ separately.

[^7]We have two physical boundary behaviours that only exist for $F_{0} \neq 0$: the first of these is a regular zero for which the warp factors of AdS_{3} and S^{4} become constant while the $\left(r, S^{2}\right)$ directions approach the origin of \mathbb{R}^{3} in polar coordinates. This is given by tuning

$$
\begin{equation*}
\text { Regular zero at } r=0: \quad h=c_{1} r+\frac{1}{3!} c_{2} r^{3}, \quad c_{1,2} \neq 0, \quad \operatorname{sign}\left(c_{1} c_{2}\right)=1 \tag{5.19}
\end{equation*}
$$

where one can take either of $r \in \mathbb{R}^{ \pm}$. This is the only regular boundary behaviour that is possible.

Next it is possible to realise a fully localised O 6 plane of world volume $\left(\mathrm{AdS}_{3}, \mathrm{~S}^{4}\right)$ at $r=r_{0}$ by tuning

$$
\begin{equation*}
\text { O6 plane at } r=r_{0}: \quad h=c_{1} r_{0}+c_{1}\left(r-r_{0}\right)+\frac{1}{3!} c_{2}\left(r-r_{0}\right)^{3}, \quad c_{1}, c_{2}, r_{0} \neq 0 \tag{5.20}
\end{equation*}
$$

The domain of r in this case depends more intimately on the tuning of c_{1}, c_{2}, r_{0} than we have thus far seen: when $r_{0}<0$ one has $r \in\left(-\infty, r_{0}\right]$ for $\operatorname{sign}\left(c_{1} c_{2}\right)=1$ while for $\operatorname{sign}\left(c_{1} c_{2}\right)=-1$ one finds that $r_{0} \leq r \leq r_{1}<0$ for $r_{1}=r_{1}\left(c_{1}, c_{2}\right)$. Conversely for $r_{0}>0, \operatorname{sign}\left(c_{1} c_{2}\right)=1$ implies $r \in\left[r_{0}, \infty\right)$ while $\operatorname{sign}\left(c_{1} c_{2}\right)=-1$ implies $0<r_{1} \leq r \leq r_{0}$.

The remaining boundary behaviour exist whether F_{0} is non trivial or not: we find the behaviour of D 6 branes extended in $\left(\mathrm{AdS}_{3}, \mathrm{~S}^{4}\right)$ by tuning

$$
\begin{equation*}
\text { D6 brane at } r=0: \quad h=c_{1} r+\frac{1}{2} c_{2} r^{2}+\frac{1}{3!} c_{3} r^{3}, \quad c_{1,2} \neq 0 \tag{5.21}
\end{equation*}
$$

When $\operatorname{sign}\left(c_{1} c_{2}\right)= \pm 1 r=0$ is a lower/upper bound. Given this, r is also bounded from above/below when $\operatorname{sign}\left(c_{1} c_{3}\right)=-1$ and is semi-infinite for $\operatorname{sign}\left(c_{1} c_{3}\right)=1$ and $c_{3}=0$.

As with the $\mathfrak{o s p}(6 \mid 2)$ class it is possible to realise a $\widetilde{\mathrm{D6}}$ singularity (see the discussion below (5.10)), this time at $r=r_{0}$ by tuning

$$
\begin{equation*}
\widetilde{\text { D6 }} \text { brane at } r=r_{0}: \quad h=\frac{1}{2} c_{1}\left(r-r_{0}\right)^{2}+\frac{1}{3!} c_{2}\left(r-r_{0}\right)^{3}, \quad r_{0}, c_{2} \neq 0, \quad c_{2} \neq-3 \frac{c_{1}}{r_{0}} . \tag{5.22}
\end{equation*}
$$

For $\operatorname{sign}\left(r_{0} c_{1} c_{2}\right)=1$ the domain of r is semi infinite bounded from above/below when $\operatorname{sign}\left(r_{0}\right)=\mp 1$. When $\operatorname{sign}\left(r_{0} c_{1} c_{2}\right)=-1$ we find that r is bounded between r_{0} and some constant $r_{1}=r_{1}\left(r_{0}, c_{1}, c_{2}\right)$. Given the later behaviour, when $\operatorname{sign}\left(r_{0}\right)= \pm 1$ one finds that r is strictly positive/negative with r_{0} the upper/lower of the 2 bounds when $\left|c_{2} r_{0}\right|>3\left|c_{1}\right|$ and the lower/upper when $\left|c_{2} r_{0}\right|<3\left|c_{1}\right|$.

Next we find the behaviour of an O 4 plane extended in $\mathrm{AdS}_{3} \times \mathrm{S}^{2}$ by tuning

$$
\begin{align*}
& \text { O4 plane at } r=r_{0}: \quad h=\frac{1}{2} c_{1}\left(r_{0}^{2}-r_{0}\left(r-r_{0}\right)+\left(r-r_{0}\right)^{2}\right)+\frac{1}{3!} c_{2}\left(r-r_{0}\right)^{3}, \\
& \tag{5.23}\\
& c_{1}, r_{0} \neq 0, \quad c_{2} \neq-\frac{3 c_{1}}{r_{0}}
\end{align*}
$$

In this solution the domain of r has the same qualitative dependence on the signs of c_{1}, c_{2}, r_{0} and whether $\left|c_{2} r_{0}\right|>3\left|c_{1}\right|$ or $\left|c_{2} r_{0}\right|<3\left|c_{1}\right|$ as the previous example, though the precise value of $r_{1}\left(c_{1}, c_{2}, r_{0}\right)$ is different.

Likewise we find the behaviour of an O 2 plane extended in AdS_{3} and back-reacted on a G_{2} cone whose base is round $\mathbb{C P}^{3}$, this is achieved by tuning

$$
\begin{equation*}
\text { O2 plane at } r=r_{0}: \quad h=2 r_{0} c_{1}+\frac{1}{2} c_{1}\left(r-r_{0}\right)^{2}+\frac{1}{3!} c_{2}\left(r-r_{0}\right)^{3}, \quad r_{0}, c_{1} \neq 0, \quad c_{2} \neq-\frac{3 c_{1}}{r_{0}}, \tag{5.24}
\end{equation*}
$$

where the domain of r is qualitatively related to the parameters as it was for the $\widetilde{\mathrm{D} 6}$.
Finally we find the behaviour of an O2' plane extended in AdS_{3} and back-reacted on a G_{2} cone whose base is a squashed $\mathbb{C P}^{3}$ (ie $4 d s^{2}\left(\mathrm{~B}^{6}\right)=2 d s^{2}\left(\mathrm{~S}^{4}\right)+d s^{2}\left(\mathrm{~S}^{2}\right)$) at $r=r_{0}$ by tuning

$$
\begin{equation*}
\text { O2' plane at } r=r_{0}: \quad h=2 c_{1} r_{0}^{2}+2 c_{1} b\left(r-r_{0}\right)+\frac{1}{2} c_{1}(b-1)^{2}\left(r-r_{0}\right)^{2}+\frac{1}{3!} c_{2}\left(r-r_{0}\right)^{3}, \tag{5.25}
\end{equation*}
$$

where we must additionally impose $r_{0}, c_{1} \neq 0$. This gives behaviour similar to the O 2 plane, ie $e^{2 A} \sim\left(r-r_{0}\right)^{-\frac{1}{2}}$ with the rest of the warp factors scaling as the reciprocal of this. However in general $e^{2(C-D)}=\left(\frac{b+1}{b-1}\right)^{2}$ at leading order about $r=r_{0}$ and the internal space only spans a Ricci flat cone for $e^{2(C-D)}=1,2$, with the former yielding (5.24). As such for the O2' plane we must additionally tune

$$
\begin{equation*}
\left(\frac{b+1}{b-1}\right)^{2}=2, \tag{5.26}
\end{equation*}
$$

which has two solutions $b_{ \pm}=3 \pm 2 \sqrt{2}$ and we must have $c_{2} r_{0} \neq-12 b_{ \pm}$. Again the domain of r has the same qualitative dependence as the $\widetilde{\mathrm{D}} 6$, though this time the relevant equalities that determine whether r_{0} is an upper or lower bound are $\left|c_{2} r_{0}\right|>12 b_{ \pm}\left|c_{1}\right|$ or $\left|c_{2} r_{0}\right|<$ $12 b_{ \pm}\left|c_{1}\right|$. This exhausts the physical singularities we have been able to identify.

As with the case of $\mathfrak{o s p}(6 \mid 2)$ vacua we have been able to identify several local solution for which the domain of r is semi infinite. For these the metric as $r \rightarrow \pm \infty$ is once again flat, but at infinite distance and with a non constant dilaton. For the $\mathfrak{o s p}(5 \mid 2)$ solutions however it is possible to bound the majority of the solutions for suitable tunings of the parameters on which they depend - this necessitates $F_{0} \neq 0$. A reasonable question to ask then is which physical singularities can reside in the same local solution? There are actually 7 distinct local solutions bounded between two physical singularities, we provide details of these in table 1. Note that the solution with regular zero is unbounded while the D6 solution can only be bounded by a singularity of the type given in (5.25), but without (5.26) being satisfied so is thus non-physical.

In this section, and the preceding one we have analysed the possible local solutions preserving $\mathcal{N}=(5,0)$ and $(6,0)$ supersymmetry that follow from various tunings of the (local) order 3 polynomial h. We found many different possibilities, many of which can give rise to a bounded interval in the $(5,0)$ case, but non of which do in the $(6,0)$ case. This is not the end of the story, in this section we have assumed that F_{0} is a constant which excludes the presence of D8 branes along the interior of the interval. In the next section we shall relax this assumption allowing for much wider classes of global solution, and in particular $(6,0)$ solutions with bounded internal space.

Bound at $r=r_{0}$	Bound at $r=\tilde{r}_{0}$	Additional tuning and comments	
O6 (5.20)	O4 \| O2	O2'	$\begin{aligned} c_{1} & =\frac{\left(\tilde{r}_{0}-r_{0}\right)^{3}\left(r_{0}^{2}+4 r_{0} \tilde{r}_{0}-8 \tilde{r}_{0}^{2}\right)}{72 \tilde{r}_{0}} c_{2}, \\ & r_{0}=\frac{\left(\sqrt{3} \sqrt{11+8 \sqrt{b_{0}}}-1\right) \tilde{r}_{0}}{2} \end{aligned} b_{0}=0\|1\| 2$
D6 (5.21)	Non-physical	\tilde{r}_{0} : Middle of 3 real roots of (5.25) like but for $e^{2 C-2 D}>2$	
D6 (5.22)	O2'	$\begin{gathered} c_{1}=\frac{5-4 \sqrt{2}-\sqrt{120+86 \sqrt{2}}}{21} c_{2} r_{0} \\ \tilde{r}_{0}=\frac{\sqrt{4+3 \sqrt{2}} r_{0}}{2} \end{gathered}$	
O4 (5.23)	O2	$\begin{array}{cc} c_{1}=c_{2} b_{-} r_{0}, & b_{ \pm}: \pm \text {tive real roots of } \\ \tilde{r}_{0}=b_{+} r_{0}, & 13 b_{+}^{3}-29 b_{+}^{2}+10 b_{+}=6 \\ 1287 b_{-}^{3}+610 b_{-}^{2}-1287 b_{-}+144=0 \end{array}$	
O4 (5.23)	O2'	$\begin{array}{cc} c_{1}=c_{2} b_{-} r_{0}, & b_{ \pm}: \pm \text {tive real roots of } \\ \tilde{r}_{0}=b_{+} r_{0}, & 2 b_{+}^{6}-8 b_{+}^{5}+40 b_{+}^{3}-49 b_{+}^{2}+6 b_{+}=9 \\ 81 b_{-}^{6}-18 b_{-}^{5}+37 b_{-}^{4}+12 b_{-}^{3}-93 b_{-}^{2}+54 b_{-}=9 \end{array}$	
O2 (5.24)	O2'	$\begin{array}{cc} c_{1}=c_{2} b_{-} r_{0}, & b_{ \pm}: \pm \text {tive real roots of } \\ \tilde{r}_{0}=b_{+} r_{0}, & 8 b_{+}^{6}-16 b_{+}^{5}-8 b_{+}^{4}+224 b_{+}^{3}-209 b_{+}^{2}+26 b_{+}=169 \\ 711 b_{-}^{6}-2388 b_{-}^{5}+2858 b_{-}^{4}-972 b_{-}^{3}-705 b_{-}^{2}+648 b_{-}=144 \end{array}$	

Table 1. A list of distinct local $\mathfrak{o s p}(5 \mid 2)$ solutions with bounded internal space. Note that we do not include solutions with the singularities at $r=r_{0}$ and $r=\tilde{r}_{0}$ inverted, as they are physically equivalent.

6 Global solutions with interior D8 branes

In this section we show that it is possible to glue the local solutions of section 5 together with D 8 branes placed along the interior of the interval spanned by r. This opens the way for constructing many more global solutions with bounded internal spaces.

In the previous section we studied what types of local $\mathcal{N}=(5,0)$ and $(6,0)$ it is possible to realise with various tunings of the order 3 polynomial h. The assumption we made before was that $F_{0}=$ constant was fixed globally, but this is not necessary, all that is actually required is that F_{0} is piecewise constant. A change in F_{0} gives rise to a delta function sources as

$$
\begin{equation*}
d F_{0}=\frac{\Delta F_{0}}{2 \pi} \delta\left(r-r_{0}\right) d r, \tag{6.1}
\end{equation*}
$$

where ΔF_{0} is the difference between the values F_{0} for $r>r_{0}$ and $r<r_{0}$. D8 branes give rise to a comparatively mild singularity for which the Bosonic fields neither blow up nor tend to zero so do not represent a boundary of a solution, indeed the solution continues passed them unless they appear coincident to an O8 plane. As one crosses a D8 brane the metric and dilaton and NS 3 -form are continuous, but the RR sector can experience a shift. To accommodate such an object within the class of solutions of section 4 one needs to do so in terms of h, so it can lie along r. If we wish to place a D8 at $r=r_{0}$ one should have

$$
\begin{equation*}
h^{\prime \prime \prime \prime}=-N_{8} \delta\left(r-r_{0}\right) . \tag{6.2}
\end{equation*}
$$

While the conditions that the NS sector should be continuous amounts to demanding the continuity of

$$
\begin{array}{ll}
\mathcal{N}=(6,0): & \left(h,\left(h^{\prime}\right)^{2}, h^{\prime \prime}\right), \tag{6.3}\\
\mathcal{N}=(5,0): & \left(h, h^{\prime}, h^{\prime \prime}\right),
\end{array}
$$

recall that $u^{\prime \prime}=0$ is a requirement for supersymmetry so u cannot change as one crosses the D8. The source corrected Bianchi identities in general take the form

$$
\begin{equation*}
(d-H \wedge) f_{+}=\frac{1}{2 \pi} \delta\left(r-r_{0}\right) d r \wedge e^{\mathcal{F}} \quad \Rightarrow \quad d \hat{f}_{+}=\frac{1}{2 \pi} \delta\left(r-r_{0}\right) d r \wedge e^{2 \pi \tilde{f}} \tag{6.4}
\end{equation*}
$$

where $\mathcal{F}=B_{2}+2 \pi \tilde{f}$ for \tilde{f} a world volume gauge field on the D 8 brane and where \hat{f}_{+}are the magnetic Page fluxes, (4.19) for the solution at hand. If \tilde{f} is non zero then the D 8 is actually part of a bound state involving every brane whose flux receives a source correction in $d \hat{f}_{+}$Recalling the Bianchi identities (4.20), we have for the specific case at hand that

$$
\begin{equation*}
d \hat{f}_{n}=\frac{1}{2 \pi}(4 \pi)^{n} \frac{1}{n!}(r-k)^{n} N_{8} \delta\left(r-r_{0}\right) d r \wedge J_{2}^{n} \tag{6.5}
\end{equation*}
$$

We thus see that it is consistent to set the world volume flux on the D 8 brane to zero by tuning r_{0}, ie

$$
\begin{equation*}
\tilde{f}=0 \quad \Rightarrow \quad r_{0}=k . \tag{6.6}
\end{equation*}
$$

This means only F_{0} receives a delta function source, the rest vanishing as $\left(r-r_{0}\right)^{n} \delta(r-$ $\left.r_{0}\right) \rightarrow 0$ for $n>0$. So we have shown that it is possible to place D8 branes, that do not come
as a bound state, at $r=k$ and solve the Bianchi identities - but how should one interpret this? The origin of k in our classification was as an integration constant, but one can view it as the result of performing a large gauge transformation, ie shifting the NS 2-form by an exact form as $B_{2} \rightarrow B_{2}+\Delta B_{2}$ such that $b_{0}=\frac{1}{(2 \pi)^{2}} \int_{\Sigma_{2}} B_{2}$ is quantised over some 2-cycle Σ_{2}. Clearly squashed $\mathbb{C P}^{3}$ contains an S^{2} which B_{2} as support on, that of the fiber, one finds

$$
\begin{equation*}
\frac{1}{(2 \pi)^{2}} \int_{\mathrm{S}^{2}} B_{2}-\left.\frac{1}{(2 \pi)^{2}} \int_{\mathrm{S}^{2}} B_{2}\right|_{k=0}=\frac{k}{4 \pi} \int_{\mathrm{S}^{2}} \operatorname{vol}\left(\mathrm{~S}^{2}\right)=k, \tag{6.7}
\end{equation*}
$$

so provided k is quantised ${ }^{11}$ its addition to the minimal potential giving rise to the NS 3 -form is indeed the action of a large gauge transformation. The key point is that because k follows from a large gauge transformation, it does not need to be fix globally, indeed in many situations where B_{2} depends on a function of the internal space it is necessary to perform such large gauge transformations as one move through the internal space to bound b_{0} to with some quantised range. We conclude that the Bianchi identities are consistent with placing D8 branes at quantised $r=k$ loci provided that they are accompanied by the appropriate number of large gauge transformations of the NS 2-form.

Of course to be able claim a supersymmetric vacua the sources themselves need to have a supersymmetric embedding, further if this is the case the integrability arguments of $[58,59]$ imply that the remaining type II equations of motion of the Bosonic supergravity are implied by the Bianchi identities we have already established hold. The existence of a supersymmetric brane embedding can be phrased in the language of (generalised) calibrations [60]: a source extended in AdS_{3} and wrapping some n-cycle Σ is supersymmetric if it obeys the following condition

$$
\begin{equation*}
\Psi_{n}^{\text {cal }}=\left.8 \Psi_{+} \wedge e^{-\mathcal{F}}\right|_{\Sigma}=\left.\sqrt{\operatorname{det}(g+\mathcal{F})} d \Sigma\right|_{\Sigma} \tag{6.8}
\end{equation*}
$$

where Ψ_{+}is the bi-linear appearing in (4.2), g is the metric on the internal space and where the pull back onto Σ is understood. For a D 8 brane placed along r we take $\tilde{f}=0$, $d \Sigma=\sin ^{3} \alpha d \alpha \wedge \operatorname{vol}\left(\mathrm{~S}^{3}\right) \wedge \operatorname{vol}\left(\mathrm{S}^{2}\right)$ and B_{2} defined as in (4.22) — we find

$$
\begin{align*}
\Psi_{6}^{\text {cal }}=\frac{\pi^{3}}{2 \sqrt{2} u^{3} h^{\prime \prime} \sqrt{h h^{\prime \prime}} \sqrt{\Delta_{2}}} & {\left[u\left(h\left(2 u-r_{k} u^{\prime}\right)-r_{k} u h^{\prime}\right)\left(2 h\left(u+r_{k} u^{\prime}\right)-u\left(2 h^{\prime}-h^{\prime \prime} r_{k}\right) r_{k}\right)\right.} \\
& \left.+2 \cos ^{2} \alpha u^{\prime} \Delta_{1} r_{k}^{3}\right] d \Sigma, \\
\left.\sqrt{\operatorname{det}(g+\mathcal{F})} d \Sigma\right|_{\Sigma}=\frac{\pi^{3}}{8\left(u h^{\prime \prime}\right)^{\frac{3}{2}} \sqrt{\Delta_{2}}} & \sqrt{2\left(h-h^{\prime} r_{k}\right)\left(u-u^{\prime} r_{k}\right)+u h^{\prime \prime} r_{k}^{2}} \\
& \times\left(2 h\left(u+u^{\prime} r_{k}\right)-u r_{k}\left(2 h^{\prime}-h^{\prime \prime} r_{k}\right)\right) d \Sigma \tag{6.9}
\end{align*}
$$

where we use the shorthand $r_{k}=r-k$. It is simple to then show that (6.8) is indeed satisfied for a D8 brane at $r=k$, and so supersymmetry is preserved.

[^8]In summary we have shown that D 8 branes can be placed along the interior of r at the loci $r=k$, for quantised k, without breaking supersymmetry provided an appropriate large gauge transformation of the NS 2 -form is performed. This allows one to place a potentially arbitrary number of D8 branes along r and use them to glue the various local solutions of section 5 together provided that the continuity of (6.3) holds across each D8. In the next section we will explicitly show this in action with 2 examples.

6.1 Some simple examples with internal D8 branes

In this section we will construct two global solutions with interior D8 branes and bounded internal spaces, one preserving each of $\mathcal{N}=(6,0)$ and $(5,0)$ supersymmetry. Let us stress that this only scratches the surface of what is possible, we save a more thorough investigation for forthcoming work [63].

We shall first construct a solution preserving $\mathcal{N}=(6,0)$, meaning that we need to impose the continuity of $\left(h,\left(h^{\prime}\right)^{2}, h^{\prime \prime}\right)$ as we cross a D8. Probably the simplest thing one can do is to place a stack of D8 branes at the origin $r=0$ and bound r between D8/O8 brane singularities which are symmetric about this point. As such we can take h to be globally defined as

$$
h= \begin{cases}-c_{1}-\frac{c_{2}}{3!}\left(r+r_{0}\right)^{3} & r<0 \tag{6.10}\\ -c_{1}-\frac{c_{2}}{3!}\left(r_{0}-r\right)^{3} & r>0\end{cases}
$$

This bounds the interval to $-r_{0}<r<r_{0}$ between D8/O8 singularities at $r= \pm r_{0}$ and gives rise to a source for the F_{0} of charge $2 c_{2}$, ie

$$
\begin{equation*}
h^{\prime \prime \prime \prime}=-2 c_{2} \delta(r) \quad \Rightarrow \quad d F_{0}=2 c_{2} \frac{1}{2 \pi} \delta(r) d r \tag{6.11}
\end{equation*}
$$

The form that the warp factors and metric take for this solution is depicted in figure 1. Given the Page fluxes in (4.19) (with $u=1$), and that we simply have round $\mathbb{C P}^{3}$ for this solution for which we can take $\int_{\mathbb{C P}} J^{n}=\pi^{n}$, it is a simple matter to compute the Page charges of the fluxes over the $\mathbb{C P}^{n}$ sub-manifolds of $\mathbb{C P}^{3}$. By tuning

$$
\begin{equation*}
c_{1}=N_{2}-\frac{N_{5}^{3} N_{8}}{6}, \quad c_{2}=N_{8}, \quad r_{0}=N_{5}, \tag{6.12}
\end{equation*}
$$

we find that these are given globally by

$$
\begin{align*}
2 \pi F_{0} & =N_{8}^{\mp}= \pm N_{8}, & \frac{1}{2 \pi} \int_{\mathbb{C P}^{1}} \hat{f}_{2} & =N_{5} N_{8}, \quad \frac{1}{(2 \pi)^{3}} \int_{\mathbb{C P}^{2}} \hat{f}_{4}=\frac{N_{5}^{2} N_{8}^{\mp}}{2}, \\
-\frac{1}{(2 \pi)^{5}} \int_{\mathbb{C P}^{3}} \hat{f}_{6} & =N_{2}, & -\frac{1}{(2 \pi)^{2}} \int_{\left(r, \mathbb{C P}^{1}\right)} H & =N_{5} \tag{6.13}
\end{align*}
$$

where the \mp superscript indicates that we are on the side of the interior D8 with $r \in \mathbb{R}^{\mp}$ and we have assumed for simplicity that $k=0$ globally in the NS 2 -form.

With the expressions for the brane charges we can compute the holographic charge via the string frame analogue of the formula presented in [61], namely

$$
\begin{equation*}
c_{h o l}=\frac{3}{2^{4} \pi^{6}} \int_{M_{7}} e^{A-2 \Phi} \operatorname{vol}\left(\mathrm{M}_{7}\right), \tag{6.14}
\end{equation*}
$$

Figure 1. Plot of the warp factors in the metric and dilaton for an $\mathcal{N}=(6,0)$ solution with D 8 at $r=0$ bounded between $\mathrm{D} 8 / \mathrm{O} 8$ singularities at $r= \pm 3$ with the remaining constants in h tuned as $c_{1}=2, c_{2}=5$.
which gives the leading order contribution to the central charge of the putative dual CFT. Given the class of solution is section 4 we find this expression reduces to

$$
\begin{equation*}
c_{\text {hol }}=\frac{1}{2} \int \frac{\Delta_{1}}{u^{2}} d r . \tag{6.15}
\end{equation*}
$$

For the case at hand one then finds that

$$
\begin{equation*}
c_{\text {hol }}=N_{2} N_{5}^{2} N_{8}-\frac{3 N_{5}^{5} N_{8}^{2}}{20} . \tag{6.16}
\end{equation*}
$$

The central charge of CFTs with $\mathfrak{o s p}(n \mid 2)$ superconformal symmetry takes the form of (1.1), which in the limit of large level k becomes $c=3 k$. The holographic central charge is not obviously of this form, however that doesn't mean it is necessarily not the leading contribution to something that is. ${ }^{12}$ We leave recovering this result from a CFT computation for future work.

We will now construct a globally bounded solution with interior D8 branes that preserves $\mathcal{N}=(5,0)$ - this time we will be more brief. There are many options for gluing local solutions together for this less supersymmetric case. We will choose to place a D8 brane in one of the bounded behaviour we already found in section 5.2 in the absence of interior D8 branes (see table 1), namely will insert a D8 in the solution bounded between O6 and O4 places. We remind the reader that we get local solutions containing these singularities by tuning h as

$$
h_{\mathrm{O} 4}=\frac{1}{2} c_{1}\left(r_{0}^{2}-r_{0}\left(r-r_{0}\right)+\left(r-r_{0}\right)^{2}\right)+\frac{1}{3!} c_{2}\left(r-r_{0}\right)^{3},
$$

[^9]

Figure 2. Plot of the warp factors in the metric and dilaton for an $\mathcal{N}=(5,0)$ solution bounded between an O4 plane at $r=2$ and an O6 plane at $r=8$ with a stack of D8 branes at $r=4$. The remaining parameter is tuned as $b_{2}=-6$.

$$
\begin{equation*}
h_{\mathrm{O} 6}=b_{1} \tilde{r}_{0}+b_{1}\left(r-\tilde{r}_{0}\right)+\frac{1}{3!} b_{2}\left(r-\tilde{r}_{0}\right)^{3} . \tag{6.17}
\end{equation*}
$$

where the singularity are located at $\left(r_{0}, \tilde{r}_{0}\right)$ respectively. We will assume $r_{0}, \tilde{r}_{0}>0$ and place a stack of D 8 s at a point $r=r_{s}$ between the two O plane loci. The condition that the NS sector should be continuous in this case amounts to imposing that

$$
\begin{equation*}
\left.\left(h_{\mathrm{O} 4}, h_{\mathrm{O} 4}^{\prime}, h_{\mathrm{O} 4}^{\prime \prime}\right)\right|_{r=r_{s}}=\left.\left(h_{\mathrm{O} 6}, h_{\mathrm{O} 6}^{\prime}, h_{\mathrm{O} 6}^{\prime \prime}\right)\right|_{r=r_{s}} \tag{6.18}
\end{equation*}
$$

of course we also need the value of F_{0} to change as we cross the D8. It is indeed possible to solve the continuity condition in this case, which fixes 3 parameters, $\left(c_{1}, c_{2}, b_{1}\right)$ say, leaving $\left(r_{0}, \tilde{r}_{0}, b_{2}\right)$ as free parameters. A plot of this solution for a choice of $\left(r_{0}, \tilde{r}_{0}, b_{2}\right)$ is given in figure 2 .

Acknowledgments

We thank Yolanda Lozano, Noppadol Mekareeya and Alessandro Tomasiello for useful discussions. The work of NM is supported by the Ramón y Cajal fellowship RYC2021-033794-I, and by grants from the Spanish government MCIU-22-PID2021-123021NB-I00 and principality of Asturias SV-PA-21-AYUD/2021/52177. AR is partially supported by the INFN grant "Gauge Theories, Strings and Supergravity" (GSS).

A Derivation of spinors on $\widehat{\mathbb{C P}}^{3}$

In this appendix we derive all spinors transforming in the $\mathbf{5}$ and $\mathbf{1}$ of $\mathfrak{s o}(5)$ on squashed $\mathbb{C P}^{3}$. We achieve this by reducing a set of Killing spinors on in the $\mathbf{3}$ of $\mathfrak{s o}(3)$ and $\mathbf{5}$ of $\mathfrak{s o}(5)$ on the 7 -sphere, and then reducing them to $\mathbb{C P}^{3}$.

A. 1 Killing spinors and vectors on $S^{7}=\operatorname{SP}(2) / \operatorname{SP}(1)$

The 7 -sphere admits a parametrisation as an $\mathrm{SP}(2)$ bundle over $\mathrm{SP}(1)$, ie the $\mathrm{SP}(2) / \mathrm{SP}(1)$ co-set. For a unit radius 7 -sphere this has the metric

$$
\begin{equation*}
d s^{2}\left(\mathrm{~S}^{7}\right)=\frac{1}{4}\left[d \alpha^{2}+\frac{1}{4} \sin ^{2} \alpha\left(L_{1}^{i}\right)^{2}+\left(L_{2}^{i}-\cos ^{2}\left(\frac{\alpha}{2}\right) L_{1}^{i}\right)^{2}\right] \tag{A.1}
\end{equation*}
$$

where we take the following basis of $\mathrm{SU}(2)$ Left invariant 1-forms

$$
\begin{equation*}
L_{1,2}^{1}+i L_{1,2}^{2}=e^{i \psi_{1,2}\left(i d \theta_{1,2}+\sin \theta_{1,2} d \phi_{1,2}\right), \quad L_{1,2}^{3}=d \psi_{1,2}+\cos \theta_{1,2} d \phi_{1,2} ~} \tag{A.2}
\end{equation*}
$$

The 7-sphere admits two sets of Killing spinors obeying the relations

$$
\begin{equation*}
\nabla_{a} \xi_{ \pm}= \pm \frac{i}{2} \gamma_{a} \xi_{ \pm} \tag{A.3}
\end{equation*}
$$

With respect to the vielbein and flat space gamma matrices

$$
\begin{array}{lll}
e^{1}=\frac{1}{2} d \alpha, & e^{2,3,4}=\frac{1}{4} \sin \alpha L_{1}^{1,2,3}, & e^{5,6,7}=L_{2}^{1,2,3}-\cos ^{2}\left(\frac{\alpha}{2}\right) L_{1}^{1,2,3}, \\
\gamma_{1}=\sigma_{1} \otimes \mathbb{I}_{2} \otimes \mathbb{I}_{2}, & \gamma_{2,3,4}=\sigma_{2} \otimes \sigma_{1,2,3} \otimes \mathbb{I}_{2} & \gamma_{5,6,7}=\sigma_{3} \otimes \mathbb{I}_{2} \otimes \sigma_{1,2,3} \tag{A.4}
\end{array}
$$

where $\sigma_{1,2,3}$ are the Pauli-matrices, the Killing spinor equation (A.3) is solved by

$$
\begin{align*}
\xi_{ \pm} & =\mathcal{M}_{ \pm} \xi_{ \pm}^{0} \tag{A.5}\\
\mathcal{M}_{ \pm} & =e^{\frac{\alpha}{4}\left(\pm i \gamma_{1}+Y\right)} e^{\mp i \frac{\psi_{1}}{2} \gamma_{7} P_{\mp}} e^{\mp i \frac{\theta_{1}}{2} \gamma_{6} P_{\mp}} e^{\mp i \frac{\phi_{1}}{2} \gamma_{7} P_{\mp}} e^{\frac{\psi_{2}}{4}\left(\pm i \gamma_{7}+X\right)} e^{\frac{\theta_{2}}{2}\left(\gamma_{13} P_{+} \pm \gamma_{6} P_{ \pm}\right)} e^{\frac{\phi_{2}}{2}\left(\gamma_{14} P_{+} \pm i \gamma_{7} P_{ \pm}\right)}
\end{align*}
$$

where $\xi_{ \pm}^{0}$ are unconstrained constant spinors and

$$
\begin{equation*}
P_{ \pm}=\frac{1}{2}\left(\mathbb{I}_{4} \pm \gamma_{1234}\right), \quad X=\gamma_{14}-\gamma_{23}-\gamma_{56}, \quad Y=-\gamma_{25}-\gamma_{36}-\gamma_{47} \tag{A.6}
\end{equation*}
$$

It was shown in [51] that ξ_{-}transform in the $(\mathbf{2}, \mathbf{4})$ of $\mathfrak{s p}(1) \oplus \mathfrak{s p}(2)$ and ξ_{+}in the $\mathbf{3} \oplus \mathbf{5}$ of $\mathfrak{s o}(3) \oplus \mathfrak{s o}(5)$ - it is the latter that will be relevant to us here. Denoting the $\mathbf{3}$ and 5 as ξ_{3}^{i} for $i=1, \ldots, 3$ and ξ_{5}^{α} for $\alpha=1, \ldots, 5$ and defining the 8 independent supercharges contained in ξ_{+}as

$$
\begin{equation*}
\xi_{+}^{I}=\mathcal{M}_{+} \hat{\eta}^{I}, \quad I=1, \ldots, 8 \tag{A.7}
\end{equation*}
$$

where the $I^{t h}$ entry of $\hat{\eta}^{I}$ is 1 and the rest zero, these are given specifically by

$$
\hat{\xi}_{3}^{i}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
i\left(-\xi_{+}^{5}+\xi_{+}^{8}\right) \tag{A.8}\\
\xi_{+}^{5}+\xi_{+}^{8} \\
i\left(\xi_{+}^{6}+\xi_{+}^{7}\right)
\end{array}\right)^{i}, \quad \hat{\xi}_{5}^{\alpha}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-i\left(\xi_{+}^{1}+\xi_{+}^{4}\right) \\
\xi_{+}^{1}-\xi_{+}^{4} \\
-i\left(\xi_{+}^{2}-\xi_{+}^{3}\right) \\
\xi_{+}^{2}+\xi_{+}^{3} \\
\xi_{+}^{6}-\xi_{+}^{7}
\end{array}\right)^{\alpha}
$$

which obey

$$
\begin{equation*}
\xi_{3}^{i \dagger} \xi_{3}^{j}=\delta^{i j}, \quad \xi_{5}^{\alpha \dagger} \xi_{5}^{\beta}=\delta^{\alpha \beta}, \quad \xi_{3}^{i \dagger} \xi_{5}^{\beta}=0 \tag{A.9}
\end{equation*}
$$

and are Majorana with respect to the intertwiner $B=\sigma_{3} \otimes \sigma_{2} \otimes \sigma_{2}$. The specific Killing vectors that make up the relevant $\mathrm{SO}(3)$ and $\mathrm{SO}(5)$ in the full space are made up of the following isometries of the base and fibre metrics

$$
\begin{align*}
& K_{1,2}^{1 L}+i K_{1,2}^{2 L}=e^{i \phi_{1,2}}\left(i \partial_{\theta_{1,2}}+\frac{1}{\sin \theta_{1,2}} \partial_{\psi_{1,2}}-\frac{\cos \theta_{1,2}}{\sin \theta_{1,2}} \partial_{\phi_{1,2}}\right), \quad K_{1,2}^{3 L}=-\partial_{\phi_{1,2}}, \tag{A.10a}\\
& K_{1,2}^{1 R}+i K_{1,2}^{2 R}=e^{i \psi_{1,2}}\left(i \partial_{\theta_{1,2}}+\frac{1}{\sin \theta_{1,2}} \partial_{\phi_{1,2}}-\frac{\cos \theta_{1,2}}{\sin \theta_{1,2}} \partial_{\psi_{1,2}}\right), \quad K_{1,2}^{3 R}=\partial_{\psi_{1,2}}, \tag{A.10b}\\
& \hat{K}_{\mathrm{SO}(5) / \mathrm{SO}(4)}^{A}=-\left(\mu_{A} \partial_{\alpha}+\cot \alpha \partial_{x_{i}} \mu_{A} g_{3}^{i j} \partial_{x_{j}}\right), \quad A=1, \ldots, 4 \tag{A.10c}
\end{align*}
$$

where μ_{A} are embedding coordinates for the $\mathrm{S}^{3} \subset \mathrm{~S}^{4}, g_{3}^{i j}$ is the inverse metric of this 3 -sphere and $x_{i}=\left(\theta_{1}, \phi_{1}, \psi_{1}\right)_{i}$, we have specifically
$\mu_{A}=\left(\sin \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\phi_{-}}{2}\right), \sin \left(\frac{\theta_{1}}{2}\right) \sin \left(\frac{\phi_{-}}{2}\right), \cos \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\phi_{+}}{2}\right),-\cos \left(\frac{\theta_{1}}{2}\right) \sin \left(\frac{\phi_{+}}{2}\right)\right)_{A}$, for $\phi_{ \pm}=\phi_{1} \pm \psi_{1}$. In terms of the isometries on the base and fibre we define the following Killing vectors on the 7 -sphere

$$
\begin{equation*}
K^{i D}=K_{1}^{i R}+K_{2}^{i R}, \quad K_{\mathrm{SO}(5) / \mathrm{SO}(4)}^{A}=\hat{K}_{\mathrm{SO}(5) / \mathrm{SO}(4)}^{A}+\cot \left(\frac{\alpha}{2}\right) \mu_{B}\left(\kappa_{A}\right)_{i}^{B} K_{2}^{i R} . \tag{A.11}
\end{equation*}
$$

where

$$
\kappa_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad \kappa_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad \kappa_{3}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), \quad \kappa_{4}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

The isometry groups in the full space are spanned by

$$
\begin{align*}
& \mathrm{SO}(3): K_{2}^{i L} \\
& \mathrm{SO}(5):\left(K_{1}^{i L}, K^{i D}, K_{\mathrm{SO}(5) / \mathrm{SO}(4)}^{A}\right) \tag{A.12}
\end{align*}
$$

Another Killing vector on S^{7} that will be relevant is

$$
\begin{equation*}
\tilde{K}=x_{i} K_{1}^{i R}, \quad y_{i}=\left(\cos \psi_{2} \sin \theta_{2}, \sin \psi_{2} \sin \theta_{2}, \cos \theta_{2}\right) . \tag{A.13}
\end{equation*}
$$

In terms of this one can define Killing vectors that together with the $\mathrm{SO}(5)$ Killing vectors span $\operatorname{SO}(6)$, namely

$$
\begin{equation*}
\mathrm{SO}(6) / \mathrm{SO}(5):\left(\left[K_{\mathrm{SO}(5) / \mathrm{SO}(4)}^{A}, \tilde{K}\right], \tilde{K}\right) \tag{A.14}
\end{equation*}
$$

A. 2 Reduction to $\mathbb{C P}^{3}$

It is possible to rewrite (A.1) as fibration of $\partial_{\phi_{2}}$ over $\mathbb{C P}^{3}$ as

$$
d s^{2}\left(\mathrm{~S}^{7}\right)=d s^{2}\left(\mathbb{C P}^{3}\right)+\frac{1}{4}\left(d \phi_{2}+\cos \theta_{2} d \psi_{2}-\cos ^{2}\left(\frac{\alpha}{2}\right) x_{i} L_{1}^{i}\right)^{2}
$$

$$
\begin{equation*}
d s^{2}\left(\mathbb{C P}^{3}\right)=\frac{1}{4}\left[d \alpha^{2}+\frac{1}{4} \sin ^{2} \alpha\left(L_{1}^{i}\right)^{2}+D y_{i}^{2}\right], \quad D y_{i}=d y_{i}+\cos ^{2}\left(\frac{\alpha}{2}\right) \epsilon_{i j k} y_{j} L_{1}^{k} \tag{A.15}
\end{equation*}
$$

This can be achieved by rotating the $5,6,7$ components of the vielbein in (A.4) by

$$
e^{i} \rightarrow \Lambda_{j}^{i} e^{j}, \quad \Lambda=\left(\begin{array}{ccc}
-\sin \psi_{2} & \cos \psi_{2} & 0 \tag{A.16}\\
-\cos \theta_{2} \cos \psi_{2} & -\cos \theta_{2} \sin \psi_{2} & \sin \theta_{2} \\
\sin \theta_{2} \cos \psi_{2} & \sin \psi_{2} \sin \theta_{2} & \cos \theta_{2}
\end{array}\right)
$$

The corresponding action on the spinors is defined through the matrix

$$
\begin{equation*}
\Omega=e^{\frac{\theta_{2}}{2} \gamma_{67}} e^{\left(\frac{\psi_{2}}{2}+\frac{\pi}{4}\right) \gamma_{56}} \tag{A.17}
\end{equation*}
$$

The $\mathbf{3}$ and $\mathbf{5}$ in the rotated frame then take the form

$$
\begin{equation*}
\xi_{3}^{i}=\Omega \hat{\xi}_{3}^{i}, \quad \xi_{5}^{\alpha}=\Omega \hat{\xi}_{5}^{\alpha} \tag{A.18}
\end{equation*}
$$

Any component of these spinor multiplets that is un-charged under $\partial_{\phi_{2}}$ is spinor on $\mathbb{C P}^{3}$, as we have rotated to a frame where translational invariance in ϕ_{2} is manifest, this is equivalent to choosing the parts of $\left(\xi_{3}^{i}, \xi_{5}^{\alpha}\right)$ that are independent of ϕ_{2}. It is not hard to establish that this is all of ξ_{5}^{α} and ξ_{3}^{3}, which being a singlet under $\mathrm{SO}(5)$ we now label

$$
\begin{equation*}
\xi_{0}=\xi_{3}^{3} \tag{A.19}
\end{equation*}
$$

The chirality matrix on $\mathbb{C P}^{3}$ is identified as $\hat{\gamma}=\gamma_{7}$, which is clearly an $\operatorname{SO}(5)$ singlet, so we can construct an additional $\mathrm{SO}(5)$ quintuplet and singlet by acting with this. Additionally we can define a set of embedding coordinates on S^{4} via

$$
\begin{equation*}
i \xi_{0}^{\dagger} \gamma_{7} \xi_{5}^{\alpha}=Y_{\alpha}, \quad Y_{\alpha}=\left(\sin \alpha \mu_{A}, \quad \cos \alpha\right) \tag{A.20}
\end{equation*}
$$

where μ_{A} are embedding coordinates on S^{3} defined in (A.11) - as the left hand side of this expression is a quintuplet so too are these embedding coordinates. In summary we have the following Majorana spinors on $\mathbb{C P}^{3}$ respecting the $\mathbf{5} \oplus \mathbf{1}$ branching of $\mathrm{SO}(6)$ under its $\mathrm{SO}(5)$ subgroup

$$
\begin{equation*}
\mathbf{5}:\left(\xi_{5}^{\alpha}, i \gamma_{7} \xi_{5}^{\alpha}, Y_{\alpha} \xi_{0}, i Y_{\alpha} \gamma_{7} \xi_{0}\right), \quad \mathbf{1}:\left(\xi_{0}, i \gamma_{7} \xi_{0}\right) \tag{A.21}
\end{equation*}
$$

which can be used to construct $\mathcal{N}=(5,0)$ and $\mathcal{N}=(1,0) \mathrm{AdS}_{3}$ solutions respectively. One might wonder if one can generate additional spinor in the $\mathbf{1}$ or $\mathbf{5}$ by acting with the $\mathrm{SO}(5)$ invariant forms one can define on $\mathbb{C P}^{3}$. These are quoted in the main text in (2.5) and (2.6), one can show that on round unit radius $\mathbb{C P}^{3}$

$$
\begin{array}{lllll}
\nu_{2}^{1} \xi_{5}^{\alpha}=-2 Y_{\alpha} \xi_{0}+i \gamma_{7} \xi_{5}^{\alpha}, & \nu_{2}^{2} \xi_{5}^{\alpha}=-2 Y_{\alpha} \xi_{0}, & \operatorname{Re} \Omega_{3} \xi_{5}^{\alpha}=-4 i Y_{\alpha} \xi_{0}, & \operatorname{Im} \Omega_{3} \xi_{5}^{\alpha}=-4 Y_{\alpha} \gamma_{7} \xi_{0}, \\
\nu_{2}^{1} \xi_{0}=-i \gamma_{7} \xi_{0}, & \nu_{2}^{2} \xi_{0}=-2 i \xi_{0}, & \operatorname{Re} \Omega_{3} \xi_{0}=-4 \gamma_{7} \xi_{0}, & \operatorname{Im} \Omega_{3} \xi_{0}=4 i \gamma_{7} \xi_{0}, \quad(\mathrm{~A} .22)
\end{array}
$$

where $2 \nu_{2}^{1}=\tilde{J}_{2}-J_{2}, 2 \nu_{2}^{2}=\tilde{J}_{2}+J_{2}$ and the forms should be understood as acting on the spinors through the Clifford map $X_{n} \rightarrow \frac{1}{n!}\left(X_{n}\right)_{a_{1} \ldots a_{n}} \gamma^{a_{1} \ldots a_{n}}$, so (A.21) are in fact exhaustive. The $\mathrm{SO}(6)$ Killing vectors on $\mathbb{C P}^{3}$ are given by (A.12) and (A.14) but with the $\partial_{\phi_{2}}$
dependence omitted, the $\mathrm{SO}(5)$ vectors are still Killing when one allows the base S^{4} to have a different radi to the S^{2} in the $\mathbb{C P}^{3}$ metric (ie for squashed $\mathbb{C P}^{3}$) this however breaks the $\mathrm{SO}(6) / \mathrm{SO}(5)$ isometry. Finally note that ξ_{0} are actually charged under $\mathrm{SO}(6) / \mathrm{SO}(5)$, and more specifically when these isometries are not broken (ie $\mathbb{C P}^{3}$ is not squashed) then we have the following independent $\mathrm{SO}(6)$ sextuplets

$$
\begin{equation*}
\mathbf{6}: \xi_{6}^{\mathcal{I}}=\binom{\xi_{5}^{\alpha}}{\xi_{0}}^{\mathcal{I}}, \quad \hat{\xi}_{6}^{\mathcal{I}}=\binom{i \gamma_{7} \xi_{5}^{\alpha}}{i \gamma_{7} \xi_{0}}^{\mathcal{I}} \tag{A.23}
\end{equation*}
$$

which can be used to construct $\mathcal{N}=(6,0) \mathrm{AdS}_{3}$ solutions.

B The $\mathrm{SO}(3)_{L} \times \mathrm{SO}(3)_{D}$ invariant $\mathcal{N}=5$ bi-linears

In the main text we will need to construct $\mathcal{N}=5$ bi-linears on the space (2.2), the non trivial part of this computation comes from the bi-linears on squashed $\mathbb{C P}^{3}$ - in this appendix we shall compute them.

As explained in the main text it is sufficient to solve the supersymmetry constraints for an $\mathcal{N}=1$ sub-sector of the quintuplet of $\mathrm{SO}(5)$ spinors defined on the internal space. A convenient component to work with is the 5 th as this is a singlet under an $\mathrm{SO}(4)$ subgroup of $\mathrm{SO}(5)$. Specifically with respect to (2.2) and the discussion below it, $\chi_{1,2}^{5}$ are singlets with respect to $\mathrm{SO}(4)=\mathrm{SO}(3)_{L} \otimes \mathrm{SO}(3)_{D}$. As such the bi-linears that follow from $\chi_{1,2}^{5}$ must decompose in a basis of the $\mathrm{SO}(3)_{L} \otimes \mathrm{SO}(3)_{D}$ invariant forms on the $\mathrm{S}^{2} \times \mathrm{S}^{3}$ fibration (2.3) and what one can form from these through taking wedge products. The $d=7$ spinors $\chi_{1,2}^{5}$ depend on $\widehat{\mathbb{C P}}^{3}$ through

$$
\begin{equation*}
\eta_{ \pm}=\xi_{5}^{5} \pm i Y_{5} \hat{\gamma} \xi_{0}, \quad Y_{5} \xi_{0}, \quad Y_{5} i \hat{\gamma} \xi_{0} \tag{B.1}
\end{equation*}
$$

where these are all defined in the previous appendix - it is the bi-linears we can construct out of these that will be relevant to us. One can show that

$$
\begin{align*}
\eta_{ \pm} \otimes \eta_{ \pm}^{\dagger} & =\phi_{+}^{1} \pm i \phi_{-}^{1}, & \eta_{ \pm} \otimes \eta_{-}^{\dagger} & = \pm \phi_{+}^{2}+i \phi_{-}^{2}, \\
\eta_{+} \otimes \xi_{0}^{\dagger} & =\phi_{+}^{3}+i \phi_{-}^{3}, & \eta_{-} \otimes\left(i \hat{\gamma} \xi_{0}\right)^{\dagger} & =\phi_{+}^{3}-i \phi_{-}^{3}, \\
\eta_{+} \otimes\left(i \hat{\gamma} \xi_{0}\right)^{\dagger} & =\phi_{+}^{4}+i \phi_{-}^{4}, & \eta_{-} \otimes \xi_{0}^{\dagger} & =-\phi_{+}^{4}+i \phi_{-}^{4}, \\
\xi_{0} \otimes \eta_{+}^{\dagger} & =\phi_{+}^{5}+i \phi_{-}^{5}, & i \hat{\gamma} \xi_{0} \otimes \eta_{-}^{\dagger} & =\phi_{+}^{5}-i \phi_{-}^{5}, \\
i \hat{\gamma} \xi_{0} \otimes \eta_{+}^{\dagger} & =\phi_{+}^{6}+i \phi_{-}^{6}, & \xi_{0} \otimes \eta_{-}^{\dagger} & =-\phi_{+}^{6}+i \phi_{-}^{6}, \\
\xi_{0} \otimes \xi_{0}^{\dagger} & =\phi_{+}^{7}+i \phi_{-}^{7}, & i \hat{\gamma} \xi_{0} \otimes\left(i \hat{\gamma} \xi_{0}\right)^{\dagger} & =\phi_{+}^{7}-i \phi_{-}^{7}, \\
i \hat{\gamma} \xi_{0} \otimes \xi_{0}^{\dagger} & =\phi_{+}^{8}+i \phi_{-}^{8}, & \xi_{0} \otimes\left(i \hat{\gamma} \xi_{0}\right)^{\dagger} & =-\phi_{+}^{8}+i \phi_{-}^{8},
\end{align*}
$$

where $\phi_{ \pm}^{1 . .8}$ are real bi-linears of even/odd form degree, they take the form

$$
\begin{aligned}
& \phi_{+}^{1}=\frac{1}{8} \sin ^{2} \alpha\left(1-\frac{1}{32} e^{2(C+D)} \sin ^{2} \alpha \omega_{2}^{2} \wedge \omega_{2}^{2}+\frac{1}{16} e^{2 C} \sin \alpha d \alpha \wedge \omega_{1} \wedge\left(e^{2 D} \omega_{2}^{1}-e^{2 C} \sin ^{2} \alpha \omega_{2}^{4}\right)\right), \\
& \phi_{-}^{1}=\frac{1}{64} e^{2 C+D} \sin ^{4} \alpha \omega_{1} \wedge \omega_{2}^{2}, \quad \phi_{-}^{2}=-\frac{1}{64} e^{2 C+D} \sin ^{3} \alpha\left(\sin \alpha \omega_{1} \wedge \omega_{2}^{3}+d \alpha \wedge \omega_{2}^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \phi_{+}^{2}=\frac{1}{32} \sin ^{2} \alpha\left(e^{2 C} \sin ^{2} \alpha \omega_{2}^{4}-e^{2 D} \omega_{2}^{1}+e^{2 C} \sin \alpha d \alpha \wedge \omega_{1} \wedge\left(1-\frac{1}{32} e^{2(C+D)} \sin ^{2} \alpha \omega_{2}^{2} \wedge \omega_{2}^{2}\right)\right), \\
& \phi_{+}^{3}=\frac{1}{32} \sin ^{2} \alpha\left(-e^{C+D} \omega_{2}^{2}+\frac{1}{4} e^{3 C+D} \sin \alpha d \alpha \wedge \omega_{1} \wedge \omega_{2}^{3}\right), \\
& \phi_{-}^{3}=\frac{1}{16} \sin \alpha\left(e^{C} \sin \alpha \omega_{1} \wedge\left(1-\frac{1}{32} e^{2(C+D)} \sin ^{2} \alpha \omega_{2}^{2} \wedge \omega_{2}^{2}\right)+\frac{1}{4} d \alpha \wedge\left(e^{C+2 D} \omega_{2}^{1}-e^{3 C} \sin ^{2} \alpha \omega_{2}^{4}\right)\right), \\
& \phi_{+}^{4}=-\frac{1}{32} e^{C+D} \sin ^{2} \alpha\left(\omega_{2}^{3}+\frac{1}{4} e^{2 C} \sin \alpha d \alpha \wedge \omega_{1} \wedge \omega_{2}^{2}\right), \\
& \phi_{+}^{5}=\frac{1}{32} e^{C+D} \sin ^{2} \alpha\left(\omega_{2}^{2}+\frac{1}{4} e^{2 C} \sin \alpha d \alpha \wedge \omega_{1} \wedge \omega_{2}^{3}\right), \\
& \phi_{-}^{4}=\frac{1}{16} e^{C} \sin \alpha\left(\frac{1}{4} \sin \alpha \omega_{1} \wedge\left(e^{2 D} \omega_{2}^{1}-e^{2 C} \sin ^{2} \alpha \omega_{2}^{4}\right)-d \alpha \wedge\left(1-\frac{1}{32} e^{2(C+D)} \sin ^{2} \alpha \wedge \omega_{2}^{2} \wedge \omega_{2}^{2}\right)\right), \\
& \phi_{-}^{5}=\frac{1}{16} e^{C} \sin \alpha\left(\frac{1}{4} d \alpha \wedge\left(e^{2 D} \omega_{2}^{1}-e^{2 C} \sin ^{2} \alpha \omega_{2}^{4}\right)-\sin \alpha \omega_{1} \wedge\left(1-\frac{1}{32} e^{2(C+D)} \sin ^{2} \alpha \omega_{2}^{2} \wedge \omega_{2}^{2}\right)\right), \\
& \phi_{+}^{6}=\frac{1}{32} e^{C+D} \sin 2 \alpha\left(\omega_{2}^{3}-\frac{1}{4} e^{2 C} \sin \alpha d \alpha \wedge \omega_{1} \wedge \omega_{2}^{2}\right), \\
& \phi_{-}^{6}=\frac{1}{16} e^{C} \sin \alpha\left(d \alpha \wedge\left(1-\frac{1}{32} e^{2(C+D)} \sin ^{2} \alpha \omega_{2}^{2} \wedge \omega_{2}^{2}\right)+\frac{1}{4} \sin \alpha\left(e^{2 D} \omega_{2}^{1}-e^{2 C} \sin ^{2} \alpha \omega_{2}^{4}\right)\right), \\
& \phi_{+}^{7}=\frac{1}{8}\left(1+\frac{1}{16} e^{2 C} \sin \alpha d \alpha \wedge \omega_{1} \wedge\left(-e^{2 D} \omega_{2}^{1}+e^{2 C} \sin ^{2} \alpha \omega_{2}^{4}\right)-\frac{1}{32} e^{2(C+D)} \sin ^{2} \alpha \omega_{2}^{2} \wedge \omega_{2}^{2}\right), \\
& \phi_{-}^{7}=\frac{1}{64} e^{2 C+D} \sin \alpha\left(d \alpha \wedge \omega_{2}^{3}+\sin \alpha \omega^{1} \wedge \omega_{2}^{2}\right), \quad \phi_{-}^{8}=\frac{1}{64} e^{2 C+D} \sin \alpha\left(-d \alpha \wedge \omega_{2}^{2}+\sin ^{\left.2 C \omega_{1} \wedge \omega_{2}^{3}\right)}\right. \\
& \phi_{+}^{8}=-\frac{1}{32}\left(e^{2 C} \sin \alpha d \alpha \wedge \omega_{1} \wedge\left(1-\frac{1}{32} e^{2(C+D)} \sin ^{2} \alpha \omega_{2}^{2} \wedge \omega_{2}^{2}\right)+e^{2 D} \omega_{2}^{1}-e^{2 C} \sin ^{2} \alpha{\omega_{2}^{4}}_{4}^{2}\right) \tag{B.3}
\end{align*}
$$

C Ruling out $\mathfrak{o s p}(7 \mid 2) \mathrm{AdS}_{3}$ vacua

In this appendix we shall prove that all $\mathcal{N}=7 \mathrm{AdS}_{3}$ solutions preserving the algebra $\mathfrak{o s p}(7 \mid 2)$ are locally $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$.
$\mathfrak{o s p}(7 \mid 2)$ necessitates an $\mathrm{SO}(7)$ R-symmetry with spinor transforming in the 7 , there is only one way to achieve this. On needs a round 7 -sphere in the metric with fluxes that break its $\mathrm{SO}(8)$ isometry to $\mathrm{SO}(7)$ in terms of the weak G_{2} structure 3 -forms one can define. Such an ansatz in type II can be ruled out a the level of the equations of motion [51], our focus here then will be on $d=11$ supergravity.

All AdS_{3} solutions of 11 dimensions supergravity admit a decomposition of their bosonic fields as

$$
\begin{equation*}
d s^{2}=e^{2 A} d s^{2}\left(\mathrm{AdS}_{3}\right)+d s^{2}\left(\mathrm{M}_{8}\right), \quad G=e^{3 A} \operatorname{vol}\left(\mathrm{AdS}_{3}\right) \wedge F_{1}+F_{4} \tag{C.1}
\end{equation*}
$$

where F_{1}, F_{4}, A have support on M_{8} only. We take AdS_{3} to have inverse radius m. When a solutions is supersymmetric M_{8} supports (at least one) Majorana spinor χ that one can use to define the following bi-linears

$$
\begin{align*}
2 e^{A} & =|\chi|^{2}, & 2 e^{A} f & =\chi^{\dagger} \hat{\gamma}^{(8)} \chi, \\
2 e^{A} \Psi_{3} & =\frac{1}{3!} \chi^{\dagger} \gamma_{a b c}^{(8)} \hat{\gamma}^{(8)} \chi e^{a b c}, & 2 e^{A} \Psi_{4} & =\frac{1}{4!} \chi^{\dagger} \gamma_{a b c d}^{(8)} \chi e^{a b c d}
\end{align*}
$$

where $\gamma_{a}^{(8)}$ are eight-dimensional flat space gamma matrices, $\hat{\gamma}^{(8)}=\gamma_{12345678}^{(8)}$ is the chirality matrix and e^{a} is a vielbein on M_{8}. Sufficient conditions for $\mathcal{N}=1$ supersymmetry to hold can be caste as the following differential conditions the bi-linears should obey [51]

$$
\begin{array}{r}
d\left(e^{2 A} K\right)=0, \\
d\left(e^{3 A} f\right)-e^{3 A} F_{1}-2 m e^{2 A} K=0, \\
d\left(e^{3 A} \Psi_{3}\right)-e^{3 A}\left(-\star_{8} F_{4}+f F_{4}\right)+2 m e^{2 A} \Psi_{4}=0, \\
d\left(e^{2 A} \Psi_{4}\right)-e^{2 A} K \wedge F_{4}=0, \\
6 \star_{8} d A-2 f \star_{8} F_{1}+\Psi_{3} \wedge F_{4}=0, \\
6 e^{-A} m \star_{8} K-6 f \star_{8} d A+2 \star_{8} F_{1}+\Psi_{3} \wedge \star_{8} F_{4}=0 \tag{C.3f}
\end{array}
$$

where \star_{8} is the hodge dual on the M_{8}. These conditions do not imply all of the equations of motion of 11 dimensional supergravity however. For that to follow one must additionally solve the Bianchi identity and equation of motion of the 4 -form flux G. Away from the loci of sources, this amounts to imposing that

$$
\begin{equation*}
d\left(F_{4}\right)=0, \quad d\left(\star_{8} F_{1}\right)-\frac{1}{2} F_{4} \wedge F_{4}=0 . \tag{C.4}
\end{equation*}
$$

The only way to realise the $\mathrm{SO}(7)$ R-symmetry that $\mathfrak{o s p}(7 \mid 2)$ necessitates on a 8 d space is to take it to be a foliation of the $\mathrm{SO}(7) / \mathrm{G}_{2}$ co-set over an interval. As explained at greater length in section 6.2 of [51], the metric on this co-set is the round one, but the flux can depend also depend on a $\mathrm{SO}(7)$ invariant 3 -form ϕ_{3}^{0} such that (C.1) should be refined as

$$
\begin{equation*}
d s^{2}\left(\mathrm{M}_{8}\right)=e^{2 B} d s^{2}\left(\mathrm{~S}^{7}\right)+e^{2 k} d r^{2}, \quad e^{3 A} F_{1}=f_{1} d r, \quad F_{4}=4 f_{2} \star_{7} \phi_{3}^{0}+f_{3} d r \wedge \phi_{3}^{0} . \tag{C.5}
\end{equation*}
$$

where $\left(e^{2 A}, e^{2 B}, e^{2 k}, f_{i}\right)$ are functions of the interval only. The $\mathrm{SO}(7)$ invariants obey the following relations

$$
\begin{equation*}
d \phi_{3}^{0}=4 \star_{7} \phi_{3}^{0}, \quad \phi_{3}^{0} \wedge \star_{7} \phi_{3}^{0}=7 \operatorname{vol}\left(S^{7}\right), \tag{C.6}
\end{equation*}
$$

ie they define the structure of a manifold of weak G_{2} holonomy. More specifically, decomposing

$$
\begin{equation*}
d s^{2}\left(\mathrm{~S}^{7}\right)=d \alpha^{2}+\sin ^{2} \alpha d s^{2}\left(\mathrm{~S}^{6}\right) \tag{C.7}
\end{equation*}
$$

One has

$$
\begin{align*}
\phi_{3}^{0} & =\sin ^{2} \alpha d \alpha \wedge J_{\mathrm{G}_{2}}+\sin ^{3} \alpha \operatorname{Re}\left(e^{-i \alpha} \Omega_{\mathrm{G}_{2}}\right), \\
\star_{7} \phi_{3}^{0} & =-\frac{1}{2} \sin ^{4} \alpha J_{\mathrm{G}_{2}} \wedge J_{\mathrm{G}_{2}}-\sin ^{3} \alpha d \alpha \wedge \operatorname{Im}\left(e^{-i \alpha} \Omega_{\mathrm{G}_{2}}\right), \\
J_{\mathrm{G}_{2}} & =\frac{1}{2} \mathcal{C}_{i j k} Y_{\mathrm{S}^{6}}^{i} d Y_{\mathrm{S}^{6}}^{j} \wedge d Y_{\mathrm{S}^{6}}^{k}, \quad \Omega_{\mathrm{G}_{2}}=\frac{1}{3!}\left(1-i \iota_{d \alpha} \star_{6}\right) \mathcal{C}_{i j k} d Y_{\mathrm{S}^{6}}^{i} \wedge d Y_{\mathrm{S}^{6}}^{j} \wedge d Y_{\mathrm{S}^{6}}^{k}, \tag{C.8}
\end{align*}
$$

where $Y_{\mathrm{S}^{6}}^{i}$ are unit norm embedding coordinates for S^{6} and $\mathcal{C}_{i j k}$ are the structure constants defining the product between the octonions, ie $o^{i} o^{j}=-\delta^{i j}+\mathcal{C}^{i j k} o_{k}$. The Killing spinors on unit radius S^{7} obeying the equation

$$
\begin{equation*}
\nabla_{a}^{(7)} \xi=\frac{i}{2} \gamma_{a}^{(7)} \xi \tag{C.9}
\end{equation*}
$$

branch as $1+\mathbf{7}$ under the $\mathrm{SO}(7)$ subgroup of $\mathrm{SO}(8)$, we denote the portions of ξ that transform in these reps as respectively ξ^{0} and $\xi_{\boldsymbol{7}}^{I}$, they can be extracted from the relations

$$
\begin{equation*}
\mathbf{1}:\left(\phi_{3}^{0}+\frac{i}{7}\right) \xi=0, \quad \mathbf{7}:\left(\phi_{3}^{0}-i\right) \xi=0 \tag{C.10}
\end{equation*}
$$

where both the $\mathbf{1}$ and $\mathbf{7}$ are Majorana. Acting with the $\mathrm{SO}(7)$ invariants on $\xi_{\mathbf{7}}^{I}$ does not generate any additional spinors in the $\mathbf{7}$, and we can without loss of generality take

$$
\begin{equation*}
\left|\xi^{0}\right|^{2}=\left|\xi_{\boldsymbol{7}}^{I}\right|^{2}=1, \quad \xi^{0 \dagger} \xi_{\boldsymbol{7}}^{I}=0 \tag{C.11}
\end{equation*}
$$

Thus we only have 1 spinor in the 7 and the most general Majorana spinors we can write on M_{8} are $\chi=\sqrt{2} e^{\frac{A}{2}}\left(\chi_{+}+\chi_{-}\right)$where ${ }^{13}$

$$
\begin{equation*}
\chi_{+}=\binom{a_{+}}{0} \otimes \xi_{\mathbf{7}}^{I}, \quad \chi_{+}=\binom{0}{i a_{-}} \otimes \xi_{\mathbf{7}}^{I} \tag{C.12}
\end{equation*}
$$

where $a_{ \pm}$are real functions subject to $\left|a_{+}\right|^{2}+\left|a_{-}\right|^{2}=1$ - which are clearly rather constrained. The bi-linears of each component of ξ_{7}^{I} give rise to another 7 weak G_{2} holonomy 3 -forms as

$$
\begin{equation*}
\xi_{\boldsymbol{7}}^{(I)} \otimes \xi_{\mathbf{7}}^{(I) \dagger}=\frac{1}{8}\left(1+i \phi_{3}^{(I)}+\star_{7} \phi_{3}^{(I)}+\operatorname{vol}\left(\mathrm{S}^{7}\right)\right) \tag{C.13}
\end{equation*}
$$

As $\phi_{3}^{(I)}$ are charged under $\operatorname{SO}(7)$ they are clearly all independent of ϕ_{3}^{0}, so there is no way to generate the invariant forms in the flux in (C.5) from (C.3c)-(C.3f), thus we must have

$$
\begin{equation*}
f_{2}=f_{3}=0, \quad \Rightarrow \quad F_{4}=0 \tag{C.14}
\end{equation*}
$$

This makes the flux purely electric and it is proved in [23], that for all such solutions AdS_{3} experiences an enhancement to AdS_{4}. As there is no longer anything breaking the isometries of the 7 -sphere locally, clearly then this ansatz just leads to local $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$. The only global possibility beyond the standard $\mathcal{N}=8 \mathrm{M} 2$ brane near horizon is an orbifolding of the 7 -sphere that breaks supersymmetry to $\mathcal{N}=7$ - in any case this is certainly in no way an AdS_{3} vacuum.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
[2] J.M. Maldacena and C. Nunez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [inSPIRE].

[^10][3] P. Ferrero et al., D3-Branes Wrapped on a Spindle, Phys. Rev. Lett. 126 (2021) 111601 [arXiv:2011.10579] [INSPIRE].
[4] A. Boido, J.M.P. Ipiña and J. Sparks, Twisted D3-brane and M5-brane compactifications from multi-charge spindles, JHEP 07 (2021) 222 [arXiv:2104.13287] [inSPIRE].
[5] M. Suh, D3-branes and M5-branes wrapped on a topological disc, JHEP 03 (2022) 043 [arXiv:2108.01105] [inSPIRE].
[6] C. Couzens, N.T. Macpherson and A. Passias, $\mathcal{N}=(2,2)$ AdS S_{3} from D3-branes wrapped on Riemann surfaces, JHEP 02 (2022) 189 [arXiv:2107.13562] [INSPIRE].
[7] I. Arav, J.P. Gauntlett, M.M. Roberts and C. Rosen, Leigh-Strassler compactified on a spindle, JHEP 10 (2022) 067 [arXiv:2207.06427] [INSPIRE].
[8] A. Amariti, N. Petri and A. Segati, $T^{1,1}$ truncation on the spindle, JHEP 07 (2023) 087 [arXiv:2304.03663] [INSPIRE].
[9] M. Suh, Baryonic spindles from conifolds, arXiv:2304.03308 [InSPIRE].
[10] C. Couzens, J.P. Gauntlett, D. Martelli and J. Sparks, A geometric dual of c-extremization, JHEP 01 (2019) 212 [arXiv:1810.11026] [inSPIRE].
[11] C. Couzens, N.T. Macpherson and A. Passias, On Type IIA AdS S_{3} solutions and massive GK geometries, JHEP 08 (2022) 095 [arXiv:2203.09532] [InSPIRE].
[12] E. D'Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in M-theory II: Global solutions asymptotic to $\operatorname{AdS}(7) x S^{* *} 4$, JHEP 12 (2008) 044 [arXiv:0810.4647] [INSPIRE].
[13] E. D'Hoker, J. Estes, M. Gutperle and D. Krym, Janus solutions in M-theory, JHEP 06 (2009) 018 [arXiv:0904.3313] [INSPIRE].
[14] F. Faedo, Y. Lozano and N. Petri, Searching for surface defect CFTs within AdS S_{3}, JHEP 11 (2020) 052 [arXiv:2007.16167] [inSPIRE].
[15] Y. Lozano, N.T. Macpherson, N. Petri and C. Risco, New $A d S_{3} / C F T_{2}$ pairs in massive IIA with $(0,4)$ and $(4,4)$ supersymmetries, JHEP 09 (2022) 130 [arXiv:2206.13541] [InSPIRE].
[16] A. Anabalón, M. Chamorro-Burgos and A. Guarino, Janus and Hades in M-theory, JHEP 11 (2022) 150 [arXiv:2207.09287] [inSPIRE].
[17] E.S. Fradkin and V.Y. Linetsky, Results of the classification of superconformal algebras in two-dimensions, Phys. Lett. B 282 (1992) 352 [hep-th/9203045] [InSPIRE].
[18] S. Beck, U. Gran, J. Gutowski and G. Papadopoulos, All Killing Superalgebras for Warped AdS Backgrounds, JHEP 12 (2018) 047 [arXiv:1710.03713] [INSPIRE].
[19] M.A. Bershadsky, Superconformal Algebras in Two-dimensions With Arbitrary N, Phys. Lett. B 174 (1986) 285 [inSPIRE].
[20] V.G. Knizhnik, Superconformal Algebras in Two-dimensions, Theor. Math. Phys. 66 (1986) 68 [INSPIRE].
[21] P. Mathieu, Representation of the $S O(N)$ and $U(N)$ Superconformal Algebras via Miura Transformations, Phys. Lett. B 218 (1989) 185 [iNSPIRE].
[22] Z. Khviengia, H. Lu, C.N. Pope and E. Sezgin, Physical states for nonlinear $S O(n)$ superstrings, Class. Quant. Grav. 13 (1996) 1707 [hep-th/9511161] [inSPIRE].
[23] D. Martelli and J. Sparks, G structures, fluxes and calibrations in M theory, Phys. Rev. D 68 (2003) 085014 [hep-th/0306225] [INSPIRE].
[24] D. Tsimpis, M-theory on eight-manifolds revisited: N=1 supersymmetry and generalized spin(7) structures, JHEP 04 (2006) 027 [hep-th/0511047] [inSPIRE].
[25] E.M. Babalic and C.I. Lazaroiu, Foliated eight-manifolds for M-theory compactification, JHEP 01 (2015) 140 [arXiv:1411.3148] [inSPIRE].
[26] E.M. Babalic and C.I. Lazaroiu, Singular foliations for M-theory compactification, JHEP 03 (2015) 116 [arXiv:1411.3497] [inSPIRE].
[27] G. Dibitetto et al., $A d S_{3}$ Solutions with Exceptional Supersymmetry, Fortsch. Phys. 66 (2018) 1800060 [arXiv:1807.06602] [INSPIRE].
[28] A. Passias and D. Prins, On $A d S_{3}$ solutions of Type IIB, JHEP 05 (2020) 048 [arXiv:1910.06326] [INSPIRE].
[29] A. Passias and D. Prins, On supersymmetric $A d S_{3}$ solutions of Type II, JHEP 08 (2021) 168 [arXiv:2011.00008] [inSPIRE].
[30] F. Farakos, G. Tringas and T. Van Riet, No-scale and scale-separated flux vacua from IIA on G2 orientifolds, Eur. Phys. J. C 80 (2020) 659 [arXiv:2005.05246] [InSPIRE].
[31] N.T. Macpherson and A. Tomasiello, $\mathcal{N}=(1,1)$ supersymmetric $A d S_{3}$ in 10 dimensions, JHEP 03 (2022) 112 [arXiv:2110.01627] [INSPIRE].
[32] V. Van Hemelryck, Scale-Separated AdS3 Vacua from G2-Orientifolds Using Bispinors, Fortsch. Phys. 70 (2022) 2200128 [arXiv:2207.14311] [INSPIRE].
[33] N. Kim, $A d S(3)$ solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094 [hep-th/0511029] [inSPIRE].
[34] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS(3) solutions of type IIB supergravity, Phys. Rev. Lett. 97 (2006) 171601 [hep-th/0606221] [inSPIRE].
[35] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, New supersymmetric AdS(3) solutions, Phys. Rev. D 74 (2006) 106007 [hep-th/0608055] [InSPIRE].
[36] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric $\operatorname{AdS}(3)$, AdS (2) and Bubble Solutions, JHEP 04 (2007) 005 [hep-th/0612253] [inSPIRE].
[37] A. Donos, J.P. Gauntlett and N. Kim, AdS Solutions Through Transgression, JHEP 09 (2008) 021 [arXiv:0807.4375] [inSPIRE].
[38] A. Donos, J.P. Gauntlett and J. Sparks, $A d S_{3} \times\left(S^{3} \times S^{3} \times S^{1}\right)$ Solutions of Type IIB String Theory, Class. Quant. Grav. 26 (2009) 065009 [arXiv:0810.1379] [inSPIRE].
[39] C. Couzens, D. Martelli and S. Schafer-Nameki, F-theory and $\operatorname{AdS} S_{3} / C F T_{2}(2,0)$, JHEP 06 (2018) 008 [arXiv:1712.07631] [InSPIRE].
[40] L. Eberhardt, Supersymmetric AdS S_{3} supergravity backgrounds and holography, JHEP 02 (2018) 087 [arXiv:1710.09826] [INSPIRE].
[41] C. Couzens, $\mathcal{N}=(0,2) A d S_{3}$ solutions of type IIB and F-theory with generic fluxes, JHEP 04 (2021) 038 [arXiv:1911.04439] [inSPIRE].
[42] C. Couzens, H. het Lam and K. Mayer, Twisted $\mathcal{N}=1$ SCFTs and their AdS S_{3} duals, JHEP 03 (2020) 032 [arXiv:1912.07605] [inSPIRE].
[43] A. Ashmore, $N=(2,0) A d S_{3}$ solutions of M-theory, JHEP 05 (2023) 101 [arXiv:2209.10680] [INSPIRE].
[44] P. Figueras, O.A.P. Mac Conamhna and E. O Colgain, Global geometry of the supersymmetric $A d S(3) / C F T(2)$ correspondence in M-theory, Phys. Rev. D 76 (2007) 046007 [hep-th/0703275] [inSPIRE].
[45] A. Legramandi and N.T. Macpherson, AdS S_{3} solutions with from $\mathcal{N}=(3,0)$ from $S^{3} \times S^{3}$ fibrations, Fortsch. Phys. 68 (2020) 2000014 [arXiv:1912.10509] [inSPIRE].
[46] L. Eberhardt and I.G. Zadeh, $\mathcal{N}=(3,3)$ holography on $\mathrm{AdS}_{3} \times\left(\mathrm{S}^{3} \times \mathrm{S}^{3} \times \mathrm{S}^{1}\right) / \mathbb{Z}_{2}$, JHEP 07 (2018) 143 [arXiv:1805.09832] [inSPIRE].
[47] J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2-D N=4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [inSPIRE].
[48] C. Bachas, E. D'Hoker, J. Estes and D. Krym, M-theory Solutions Invariant under $D(2,1 ; \gamma) \oplus D(2,1 ; \gamma)$, Fortsch. Phys. 62 (2014) 207 [arXiv:1312.5477] [inSPIRE].
[49] Ö. Kelekci et al., Large superconformal near-horizons from M-theory, Phys. Rev. D 93 (2016) 086010 [arXiv: 1602.02802] [INSPIRE].
[50] N.T. Macpherson, Type II solutions on $A d S_{3} \times S^{3} \times S^{3}$ with large superconformal symmetry, JHEP 05 (2019) 089 [arXiv:1812.10172] [InSPIRE].
[51] A. Legramandi, G. Lo Monaco and N.T. Macpherson, All $\mathcal{N}=(8,0)$ AdS solutions in 10 and 11 dimensions, JHEP 05 (2021) 263 [arXiv:2012.10507] [INSPIRE].
[52] S. Lee and S. Lee, Notes on superconformal representations in two dimensions, Nucl. Phys. B 956 (2020) 115033 [arXiv:1911.10391] [INSPIRE].
[53] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
[54] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS S_{7} solutions of type II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [inSPIRE].
[55] S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP 05 (2016) 031 [arXiv:1512.02225] [INSPIRE].
[56] G.B. De Luca et al., The geometry of $\mathcal{N}=3 A d S_{4}$ in massive IIA, JHEP 08 (2018) 133 [arXiv:1805.04823] [inSPIRE].
[57] O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].
[58] L. Martucci, Electrified branes, JHEP 02 (2012) 097 [arXiv:1110.0627] [INSPIRE].
[59] D. Prins and D. Tsimpis, IIB supergravity on manifolds with $S U(4)$ structure and generalized geometry, JHEP 07 (2013) 180 [arXiv:1306.2543] [INSPIRE].
[60] J. Gutowski, G. Papadopoulos and P.K. Townsend, Supersymmetry and generalized calibrations, Phys. Rev. D 60 (1999) 106006 [hep-th/9905156] [INSPIRE].
[61] C. Couzens et al., F-theory and $A d S_{3} / C F T_{2}, J H E P 08$ (2017) 043 [arXiv:1705.04679] [INSPIRE].
[62] Y. Lozano, N.T. Macpherson, C. Nunez and A. Ramirez, Two dimensional $\mathcal{N}=(0,4)$ quivers dual to $A d S_{3}$ solutions in massive IIA, JHEP 01 (2020) 140 [arXiv:1909.10510] [INSPIRE].
[63] Y. Lozano, N.T. Macpherson, N. Petri and A. Ramirez, to appear.
[64] N.T. Macpherson and A. Ramirez, to appear.

[^0]: ${ }^{1} d=5$ is an exception with only one possibility, $\mathfrak{f}(4)$.

[^1]: ${ }^{2}$ Either the spinors are not charged under the additional $U(1)$, or some algebra other than $\mathfrak{o s p}(6 \mid 2)$ is being realised.
 ${ }^{3}$ See section 3 therein.
 ${ }^{4}$ One can realise an $\mathfrak{s o}(5)$ R-symmetry on a squashing of $S^{3} \rightarrow S^{7} \rightarrow S^{4}$, but AdS ${ }_{3}$ vacua containing this factor only exists in $d=11$ and, when they support $\mathfrak{o s p}(5 \mid 2)$, they can always be reduced to IIA within the 7 -sphere resulting in squashed $\mathbb{C P}^{3}\left(\widehat{\mathbb{C P}}^{3}\right)$ and preserving $\mathcal{N}=(5,0)$.

[^2]: ${ }^{5}$ These need to be generalised in scenarios which allow for sources smeared over all their co-dimensions.

[^3]: ${ }^{6}$ These do not represent a set of necessary and sufficient conditions when $\cos \theta=0$. However as this limit turns off one of $\left(\hat{\chi}_{1}, \hat{\chi}_{2}\right)$ the NS 3 -form is the only flux that can be non trivial. The common NS sector of type II supergravity is S-dual to classes of IIB solution with the RR 3-form the only non trivial flux which are contained in the conditions we quote.

[^4]: ${ }^{7}$ Of course $\mathbf{n} \otimes \mathbf{n}$ decomposes into singlet, symmetric traceless and anti-symmetric representations, however to see the anti-symmetric representation one would need to construct bi-linears that mix the internal spinors χ_{1} and χ_{2} that belong to different $(1,0)$ sub-sectors - this is not needed for our purposes.

[^5]: ${ }^{8}$ The reason for the factors of π, taken here and elsewhere without loss of generality, is that they make the Page charges of the RR fluxes simple.

[^6]: ${ }^{9}$ Specifically reality of the metric demands $\Delta_{1} \geq 0$ and that (h, u) are real. This in turn implies $h h^{\prime \prime} \geq 0$ and it then follows that $\Delta_{2} \geq 0$. Note that one needs to use that $h h^{\prime \prime} \geq 0$ to bring the metric to this form.

[^7]: ${ }^{10}$ Note that to get to this form one must rescale the canonical 11 'th direction, ie if this is z and $L_{1,2}^{i}$ are defined as in (A.2) then $\phi_{2}=\frac{2}{h^{\prime \prime}} z$.

[^8]: ${ }^{11}$ Note: usually one means integer by quantised, by in the presence of fractional branes, such as in ABJ [57] which shares a $\mathbb{C P}^{3}$ in its internal space, it is possible for parameters such as k to merely be rational.

[^9]: ${ }^{12}$ Such scenarios are actually quite common, see for instance [62].

[^10]: ${ }^{13}$ We define the 8d gamma matrices as $\gamma_{a}^{(8)}=\sigma_{1} \otimes \gamma_{a}^{(7)}$ for $a=1, \ldots, 7$ and $\gamma_{8}^{(8)}=\sigma_{2} \otimes \mathbb{I}$ where the intertwiner defining Majorana conjugation is $B^{(8)}=\sigma_{3} \otimes B^{(7)}$. This is the reason for the form that the interval components of the spinors take.

