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3

4

3 Necessary and sufficient conditions for realising supersymmetry 7

4 Classification of osp(n|2) AdS3 vacua on ĈP
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1 Introduction and summary

Warped AdS3 solutions of supergravity in 10 and 11 dimensions, “AdS3 string vacua”,
play an important role in string theory in a wide variety of contexts. AdS3 appears in the
near horizon limit of black-strings solution, so the embedding of such solutions into higher
dimensions enables one to employ string theory to count the micro states making up the
Bekenstein-Hawking entropy a la Strominger-Vafa [1]. Through the AdS-CFT correspon-
dence they are dual to the strong coupling limit of CFTs in 2 dimensions. This avatar of
the correspondence promises to be the most fruitful as more powerful techniques are avail-
able to probe CFT2s and there is better understanding of how to quantise strings on AdS3
than in higher dimensional cases. AdS3 vacua also commonly appear in duals to compact-
ifications of CFT4 on Riemann surfaces [2–9], a topic of rekindled interest in recent years
with improved understanding of compactifications on surfaces of non-constant curvature
such as spindles. Some other venues in which AdS3 vacua have played a prominent role
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are geometric duals to c-extremisation [10, 11] and dual descriptions of surface defects in
higher dimensional CFTs [12–16].

Given the above listed wealth of applications, a broad effort towards classifying su-
persymmetric AdS3 vacua is clearly well motivated, but at this time many gaps remain.
Generically such AdSd+1 vacua can support the same superconformal algebras as CFTs in d
dimensions. The possible d= 2 superconformal algebras are far more numerous than their
higher dimensional counterparts, which partially accounts for these gaps. For comparison
d> 2 the possible (simple) superconformal algebras typically1 come in series depending on
a parameter which varies as the number of super charges increase; for instance in d= 3 one
has osp(n|4) for CFTs preserving N = (n,0) supersymmetry, where n= 1, . . . ,8. CFTs in
d= 2 buck this trend, being consistent with several such series as well as isolated examples
such as f(4) and g(3) — see [17] for a classification of these algebras and [18] for those that
can be supported by string vacua. The focus of this work will be AdS3 vacua supporting
the algebra osp(n|2) (the d= 2 analogue of the d= 3 algebra).

The N = (n,0) superconformal algebra osp(n|2) for arbitrary n was first derived, in-
dependently, in [19] and [20] — they are characterised by an so(n) R-symmetry with
supercurrents transforming in the fundamental representation and central charge

c= k

2
n2 + 6k− 10
k+n− 3 . (1.1)

A free field relation was presented in [21] (see also [22]) in terms of a free scalar, n real
fermions, and an SO(n) current algebra of level k− 1. There are in fact many examples of
AdS3 vacua realising osp(n|2) for n= 1,2 as these are the unique ways to realise (1,0) and
(2,0) superconformal symmetries — see for instance respectively [23–32] and [11, 33–43]
. Similarly n= 3 is unique for N = (3,0), examples are more sparse [44–46], but this is
likely not a reflection of their actual rarity. The case of n= 4 is in fact a degenerate case
of the large N = (4,0) superconformal algebra d(2,1,α), where the continuous parameter
is tuned to α= 1 — examples of vacua allowing such a tuning include [47–50], there is also
a Janus solution preserving osp(4|2)⊕ osp(n|2) specifically in [13]. The case of n= 8 was
addressed in [51] where it was shown that the only solution is the embedding of AdS3 into
AdS4×S7. The status of AdS3 vacua realising osp(n|2) for n= 5,6,7 has been up to this
time unknown — a main aim of this work is to fill in this gap, we will now explain the
broad strokes of how we approach this problem.

For the case of osp(7|2), with a little group theory [51], it is not hard to establish that
the required so(7) R-symmetry can only be realised geometrically on the co-set SO(7)/G2.
The metric on this space is simply the round 7-sphere, which possesses an SO(8) isometry,
but the co-set also comes equipped with a weak G2 structure with associated 3 and 4-forms
that are invariant under SO(7), but charged under SO(8)/SO(7). If these forms appear
in the fluxes of a solution then only SO(7) is preserved. Our results prove that all such
solutions are locally AdS4 × S7.

To realise the requisite so(6) R-symmetry of osp(6|2) one might naively consider in-
cluding a 5-sphere in solutions, however this supports Killing spinors in the 4 of SU(4),

1d = 5 is an exception with only one possibility, f(4).
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which is not the representation associated to the desired algebra. A space supporting both
the correct isometry and spinors transforming in its fundamental representation is of course
round CP3, as famously exemplified by the AdS4 ×CP3 vacua of type IIA supergravity dual
to N = 6 Chern-Simons matter theory [53]. This is the smallest space with the desired fea-
tures, and given that a string vacua has to live in d=10 or 11, it does not take long to realise
that the only additional option is to fiber a U(1) over CP3. Such solutions were ruled out
in type II supergravity at the level of the equations of motion in [51] and those that exist
in M-theory can always be reduced to IIA.2 As such we seek to classify solutions of type
II supergravity that are foliations of AdS3 ×CP3 over an interval, we leave the status of
d=11 vacua containing similar foliations over Riemann surfaces to be resolved elsewhere.

For the algebra osp(5|2) the 4-sphere is as much of a non-starter to realise the so(5)
R-symmetry as the 5-sphere was previously. One way to realise this algebra is to start with
an existing osp(6|2) solution, then orbifold CP3 by one of the discrete groups D̂k (the binary
dihedral group) or Z2, as discussed in the context of AdS4 ×CP3 in [57].3 This however
only breaks supersymmetry globally, locally such solutions still preserve osp(6|2). One way,
perhaps the only way4 to break to osp(5|2) locally is to proceed as follows: if one expresses
CP3 as a fibration of S2 over S4 and then pinches the fiber, one breaks the SO(6) isometry
down to SO(5) locally. The 6 of SO(6) branches as 5⊕1 under its SO(5) subgroup thereby
furnishing us with both the representation and R-symmetry that osp(5|2) demands. We
shall thus also classify N = (5,0) AdS3 vacua of type II supergravity on squashed CP3 by
generalising the previous ansatz to included additional warp factors and SO(5) invariant
terms in the flux. We shall in fact classify both these vacua and those supporting osp(6|2),
or orbifolds there of, in tandem as the latter are special cases of the former.

We find two classes of solutions preserving respectively osp(5|2) (locally) and osp(6|2)
superconformal algebras. We also find for each case that it is possible to construct solutions
with bounded internal spaces, which should provide good dual descriptions of CFTs through
the AdS/CFT correspondence. The existence of backgrounds manifestly realising exactly
the superconformal algebra osp(5|2) is interesting in the light of [52], which claims that
all CFTs supporting such global superconformal algebras experience an enhancement to
osp(6|2). Our results cast some doubt of the veracity of the claims of [52], at least naively.
It would be interesting to explore what leads to this apparent contradiction and whether
this can be resolved, that however lies outside the scope of this work.

The layout of this paper is as follows.
In section 2 we consider AdS3 vacua of type II supergravity that preserve an SO(5)

isometry in terms of squashed CP3, without making reference to supersymmetry. On
symmetry grounds alone we are able to give the local form that the NS and RR fluxes
must take in regular regions of their internal space, which we found useful when deriving
the results in the subsequent sections.

2Either the spinors are not charged under the additional U(1), or some algebra other than osp(6|2) is
being realised.

3See section 3 therein.
4One can realise an so(5) R-symmetry on a squashing of S3 → S7 → S4, but AdS3 vacua containing this

factor only exists in d = 11 and, when they support osp(5|2), they can always be reduced to IIA within the
7-sphere resulting in squashed CP3 (ĈP

3
) and preserving N = (5,0).
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In section 3 we explain our method for solving the supersymmetry constraints. We
reduce the problem to solving for a single N = 1 sub-sector of the full (5,0) as the remaining
4 N = 1 sub-sectors are shown to be implied by this and the action of osp(5|2) which the
spinors transform in. This enables us to employ an existing minimally supersymmetric
AdS3 bi-spinor classification [27, 28, 31] to the case at hand.

In section 4 we classify N = (5,0) vacua of type II supergravities realising the algebra
osp(5|2) in terms of a foliation of AdS3 solutions of type II supergravity that are foliations
of AdS3 × ĈP

3
over an interval, we are actually able to find the local form of all of them.

They only exist in type IIA, generically have all possible fluxes turned on and are governed
by two ODEs. The first of these takes the form h′′′ =−2πF0, where F0 is the Romans
mass, making h locally an order 3 linear polynomial highly reminiscent of the AdS7 vacua
of [54, 55]. The second ODE defines a linear function u which essentially controls the
squashing of CP3 and hence the breaking of osp(6|2) to osp(5|2). For generic values of
u one has N = (5,0) supersymmetry, but if one fixes u= constant this is enhanced to
N = (6,0)

In section 5 we perform a regularity analysis of the local vacua establishing exactly
what boundary behaviour are possible for the interval. We focus on N = (6,0) in section 5.1
where we find that fixing F0 = 0 always gives rise to AdS4 ×CP3 locally, while for F0 ̸= 0
it is possible to bound the interval at one end with several physical singularities but that
the other end is always at infinite proper distance, at least when F0 is fixed globally. We
study the N = (5,0) case in section 5.2 were conversely we find no AdS4 limit and that a
globally constant F0 is no barrier to constructing bounded solutions. Many more physical
boundary behaviours are possible in this case.

Up to this point in the paper we have assumed F0 is constant, globally it need only
be so piece-wise which allows for D8 branes along the interior of the interval — we explore
this possibility in section 6. We establish under what conditions such interior D8s are
supersymmetric and explain how they can be used to construct broad classes of globally
bonded solutions. We illustrate the point with some explicit examples. All of this points
the way to broad classes of duals interesting superconformal quiver we shall report on
in [63].

The work is supplemented by several appendices. In appendix A we provide technical
details of the construction of spinors on the internal space transforming in the fundamental
representation of SO(5) and SO(6). In appendix B we present details of the d= 6 bi-linears
that feature during computations in section 4. Finally in appendix C we additionally show
that all osp(7|2) preserving AdS3 vacua experience a local enhancement to AdS4×S7 —
SO(7) preserving orbifolds of this are a possibility, but such constructions are AdS4 rather
than AdS3 vacua.

2 SO(2,2)×SO(5) invariant type II supergravity on AdS3 × ĈP
3

In this section we consider the most possible vacua of type II supergravity that preserve the
full SO(2,2)×SO(5) isometries of a warped product containing AdS3 and a squashed CP3

(ĈP
3
). Specifically we construct the full set of SO(5) invariant forms and use them to find
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the general form of NS and RR fluxes that are consistent with their source free (magnetic)
Bianchi identities. Let us stress that this section makes no use of supersymmetry only
symmetry, it is none the less useful when we choose to impose the former in the following
sections.

In general AdS3 solutions of type II supergravity admit a decomposition in the following
form

ds2 = e2Ads2(AdS3) + ds2(M7), H = e3Ah0vol(AdS3) +H3,

F = f± + e3Avol(AdS3) ⋆7 λ(f±),
(2.1)

where (e2A,f,H3) and the dilaton Φ have support on M7 so as to preserve the SO(2,2)
symmetry of AdS3. The d= 10 NS and RR fluxes are H and F respectively, the latter
expressed as a polyform of even/odd degree in IIA/IIB. The function λ acts on a p-form
as λ(Xp) = (−1)[ p2 ]Xp — this ensures the self duality constraint F = ⋆10λ(F ).

We are interested in solutions where M7 preserve an additional SO(5) isometry that
can be identified with the R-symmetry of the N = (5,0) superconformal algebra osp(5|2).
The 4-sphere comes to mind as the obvious space realising an SO(5) isometry, however this
supports Killing spinors in the 4 of SP(2), where as we require spinor in the 5 of SO(5) —
so we will need to be more inventive.

The coset space CP3 is a 6 dimensional compact manifold that can be generated by
dimensionally reducing S7 on its Hopf fiber — it appears most famously in the N = 6
AdS4 ×CP3 solution dual to Chern-Simons matter theory. The 7-sphere supports spinors
transforming in the 8 of SO(8) and the reduction to CP3 preserves the portion of these
preserving the 6 of SO(6). Advantageously CP3 has a parametrisation as an S2 fibration
over S4 that allows a squashing breaking SO(6)→SO(5) by pinching the fiber — we will
refer to this space as ĈP

3
. As the 6 branches as 1⊕5 under SO(5) ⊂ SO(6) clearly ĈP

3

supports both the isometry group and spinors we seek. Embedding this SO(5) invariant
space into M7 leads to a metric ansatz of the form

ds2(M7) = e2kdr2 + ds2(ĈP
3
) (2.2)

ds2(ĈP
3
) = 1

4

[
e2C

(
dα2 + 1

4 sin2α(Li)2
)

+ e2D(Dyi)2
]
, Dyi = dyi + cos2

(
α

2

)
ϵijkyjLk,

where yi are embedding coordinates on the unit radius 2-sphere, Li are a set of SU(2) left
invariant forms and (e2A,e2C ,e2D,e2k,Φ) have support on r only.

To write an ansatz for the fluxes on this space we need to construct the SO(5) invariant
forms on ĈP

3
. As explained in appendix A, the S4 base of this fiber bundle contains an

SO(4)=SO(3)L×SO(3)R isometry in the 3-sphere spanned by Li. In the full space SO(3)R
is lifted to the diagonal SO(3) formed of SO(3)R and the SO(3) of the 2-sphere. As such
the invariants of SO(5) can be expanded in a basis of the SO(3)L×SO(3)D invariants on
the S2×S3 fibration (see for instance [56]), namely

ω1 = 1
2Liyi, ω1

2 = 1
2ϵijkyiDyj ∧Dyk, ω2

2 = 1
2Li ∧Dyi,

ω3
2 = 1

2ϵijkyiLj ∧Dyk, ω4
2 = 1

8ϵijkyiLj ∧Lk, (2.3)
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and wedge products there off, leaving only the α dependence of the SO(5) invariants to fix
via consistency with the remaining SO(5)/(SO(3)L×SO(3)D) subgroup.

First off when e2C = e2D = 1 we regain unit radius round CP3, which is a Kähler Ein-
stein manifold with an SO(6) invariant Kähler form J2, so we have the following SO(6)
invariants on CP3

CP3 : e2C = e2D = 1 ⇒ SO(6) invariants : J2, J2 ∧ J2, J2 ∧ J2 ∧ J2 = 6vol(CP3). (2.4)

where specifically

J2 = 1
4

(
sinαdα∧ω1 − sin2αω4

2 −ω1
2

)
. (2.5)

It is not hard to show that the remaining SO(5) invariants, which are not invariant under
the full SO(6) of CP3, may be expressed in terms of the SU(3)-structure spanned by

J̃2 = 1
4

(
sinαdα∧ω1 − sin2αω4

2 +ω1
2

)
, Ω3 =−1

8 sinα
(

sinαω1 + idα

)
∧
(
ω3

2 + iω2
2

)
,

(2.6)
These invariant forms obey the following identities

J2 ∧Ω3 = J̃2 ∧Ω3 = 0, J2 ∧ J2 ∧ J2 = J̃2 ∧ J̃2 ∧ J̃2 = 3i
4 Ω3 ∧Ω3,

J2 ∧ J2 + J̃2 ∧ J̃2 = 2J̃2 ∧ J2,

dJ2 = 0, dJ̃2 = 4ReΩ3, dImΩ3 = 6J̃2 ∧ J2 − 2J2 ∧ J2, (2.7)

and as such, they form a closed set under the exterior product and derivative. This is all
that is needed to construct the fluxes.

The general form of an SO(5) invariant H3 obeying dH3 = 0 is given by

H3 = dB2, B2 = b(r)J2 + b̃(r)J̃2, (2.8)

The general SO(5) invariant f± obeying df± =H3 ∧ f± can be expressed as

f+ =
[
F0 + c1J2 + c2J2 ∧ J2 + c3

1
3!J2 ∧ J2 ∧ J2 + d

(
p(r)ImΩ3 + q(r)ReΩ3

)]
∧ eB2 ,

f− = d

[
a1(r) + a2(r)J2 + a3(r)1

2J2 ∧ J2 + a4(r)J2 ∧ J̃2 + a5(r) 1
3!J2 ∧ J2 ∧ J2

]
∧ eB2 , (2.9)

giving us an SO(5) invariant ansatz for the flux in IIA/IIB which is valid away from the
loci of localised sources.5 In IIA this depends locally on 4 constants (F0, c1, c2, c3) and 4
functions of r (b, b̃,p,q) — there is an enhancement to SO(6) when b̃= p= q= 0. If we
also consider d(e3A ⋆7 f±) = e3AH3 ∧ ⋆7f± we find we must in general fix q= 0. In IIB this
depends on 7 functions of r, with an enhancement to SO(6) when b̃= a4 = 0.

5These need to be generalised in scenarios which allow for sources smeared over all their co-dimensions.

– 6 –



J
H
E
P
0
8
(
2
0
2
3
)
0
2
4

3 Necessary and sufficient conditions for realising supersymmetry

In this section we present the method by which we shall impose supersymmetry on SO(5)
invariant ansatz of the previous section.

Geometric conditions for N = (1,0) AdS3 solutions with purely magnetic NS flux (ie
h0 = 0) were derived first in massive IIA in [27], then generalised to IIB in [28] with the
assumption that h0 = 0, this assumption was then relaxed in [31] whose conventions we
shall follow. These conditions are defined in terms of two non vanishing Majorana spinors
(χ̂1, χ̂2) on the internal M7 which without loss of generality obey

|χ̂1|2 + |χ̂2|2 = 2eA, |χ̂1|2 − |χ̂2|2 = ce−A, (3.1)

for c an arbitrary constant. One can solve these constraints in general in terms of two unit
norm spinors (χ1,χ2) and a point dependent angle θ as

χ̂1 = e
A
2
√

1− sinθχ1, χ̂2 = e
A
2
√

1 + sinθχ2, c=−2e2A sinθ. (3.2)

Plugging this into the necessary and sufficient conditions for supersymmetry in [31] (see
appendix B therein), we find they become6

e3Ah0 = 2me2A sinθ, d(e2A sinθ) = 0, (3.3a)

dH3(e2A−Φ cosθΨ∓) =±1
8e

2A sinθf±, (3.3b)

dH3(e3A−Φ cosθΨ±)∓ 2me2A−Φ cosθΨ∓ = e3A

8 ⋆7 λ(f±), (3.3c)

eA(Ψ∓, f±)7 =∓m2 e
−Φ cosθvol(M7), (3.3d)

where (Ψ∓, f±)7 is the 7-form part of Ψ∓ ∧λ(f±) and the real even/odd bi-linears Ψ± are
defined via

χ1 ⊗χ†
2 = 1

8

7∑
n=0

1
n!χ

†
2γan...a1χ1e

a1...an = Ψ+ + iΨ− (3.4)

for ea a vielbein on M7. In the above m is the inverse AdS3 radius, in particular when
m= 0 we have Mink3 while when m ̸= 0 its precise value is immaterial as it can be absorbed
into the AdS3 warp factor, thus going forward we fix

m= 1 (3.5)

without loss of generality.
In this work we will construct explicit solutions preserving (5,0) and (6,0) supersym-

metries and for the cases of extended supersymmetry (3.3a)–(3.3d) is not on its own suf-
ficient. If one has N = (n,0) supersymmetry one has n independent N = (1,0) sub-sectors

6These do not represent a set of necessary and sufficient conditions when cosθ = 0. However as this limit
turns off one of (χ̂1, χ̂2) the NS 3-form is the only flux that can be non trivial. The common NS sector of
type II supergravity is S-dual to classes of IIB solution with the RR 3-form the only non trivial flux which
are contained in the conditions we quote.
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that necessarily come with their corresponding n independent bi-linears Ψ(n)
± . These must

all solve (3.3a)–(3.3d) for the same bosonic fields of supergravity. However the AdS3 vacua
we are interested in realise the superconformal algebra osp(n|2) which means the internal
spinors which define these bi-linears transform in the n of so(n) while the bosonic fields
are so(n) singlets. Thus the bi-linears decompose into parts transforming in irreducible
representations of the tensor product n⊗n. Specifically this contains a singlet part that
is common to all Ψ(n)

± and a charged part in the symmetric representation.7 The charged
parts of Ψ(n)

± are mapped into each other by taking the Lie derivative with respect to
the SO(n) Killing vectors, and in particular the bi-linears of a single (1,0) sub-sector +
the action of SO(n) is enough to generate the whole set. Then, since the Lie and exterior
derivatives commute, it follows that if a single pair of bi-linears, Ψ1

± say, solve (3.3a)–(3.3d)
then they all do.

In summary to know that extended supersymmetry holds on (2.2) it is sufficient to
construct an n-tuplet of spinors that transform in the n of so(n), and then solve (3.3a)–
(3.3d) for the Ψ± following from any N = (1,0) sub-sector whilst imposing that the bosonic
fields are all so(n) singlets. In particular this means that we must solve (3.3a)–(3.3d) under
the assumption that the warp factors and dilaton only depend on r and the fluxes only
depend on r and SO(n) invariant forms. We deal with the bulk of the construction of these
SO(n) spinors in appendix A where we construct spinors in relevant representations on
CP3. Below we present the embedding of these spinors into (2.2).

N = 6 spinors in d= 7 can be expressed in terms of 4 real functions of r (f1,f2,g1,g2)
and the spinors in the 6 of SO(6) on CP3 in (A.23)

χI
1 = cos

(
β1 +β2

2

)
ξI6 + isin

(
β1 +β2

2

)
γ7ξ

I
6 ,

χI
2 = cos

(
β1 −β2

2

)
ξI6 + isin

(
β1 −β2

2

)
γ7ξ

I
6 , (3.6)

where I = 1, . . . ,6 and β1,2 =β1,2(r). These are only valid on round CP3, ie when e2B = e2C

and the fluxes depend on CP3 through the SO(6) invariant 2-form J2. We will not actually
make explicit use of these spinors as it turns out that general class of N = (6,0) is actually
simply one of 2 branching classes of solution following from the N = (5,0) spinors below.

N = 5 spinors in d= 7 can be decomposed in terms the spinors in the 5 of SO(5) on
CP3 in (A.21) and 4 constraints as

χα1 = a11(ξα5 +Yαiγ7ξ0) + b11(iγ7ξ
α
5 −Yαξ0) + a12Yαξ0 + ib12Yαγ7ξ0,

χα2 = a21(ξα5 +Yαiγ7ξ0) + b21(iγ7ξ
α
5 −Yαξ0) + a22Yαξ0 + ib22Yαγ7ξ0,

a2
11 + b2

11 = a2
12 + b2

12 = a2
21 + b2

21 = a2
22 + b2

22 = 1. (3.7)

where α= 1, . . . ,5, the 8 parameters a11, b11, . . . are all real and have support on r alone, we
have parameterised things in this fashion to make the unit norm constraints simple. These
spinors are valid for squashed CP3.

7Of course n ⊗ n decomposes into singlet, symmetric traceless and anti-symmetric representations, how-
ever to see the anti-symmetric representation one would need to construct bi-linears that mix the internal
spinors χ1 and χ2 that belong to different (1,0) sub-sectors — this is not needed for our purposes.
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Finally a set of N = 1 spinors can also be defined in d= 7, they are given by

χ
(0)
1 = cos

(
β1 +β2

2

)
ξ0 + isin

(
β1 +β2

2

)
γ7ξ0,

χ
(0)
2 = cos

(
β1 −β2

2

)
ξ0 + isin

(
β1 −β2

2

)
γ7ξ0, (3.8)

where again β1,2 =β1,2(r) and these spinors are valid on squashed CP3. The 0 superscript
refers to the fact that these are SO(5) ⊂ SO(6) singlets. These are in fact nothing more than
the 6th component of (3.6), however unlike the N = (6,0) case e2C ̸= e2B and the flux can
depend on more than merely r and J2. These spinors can be used to construct N = (1,0)
AdS3 solutions with SO(5) flavour symmetry, something we will report on elsewhere [64].

4 Classification of osp(n|2) AdS3 vacua on ĈP
3

for n = 5,6

In this section we classify AdS3 solutions preserving N = (5,0) supersymmetry on squashed
CP3. Such solutions only exist in type IIA supergravity and experience an enhancement to
N = (6,0) when a function is appropriately fixed. We summarise our results between (4.22)
and (4.25).

We take our representative N = 1 sub-sector to be

χ1 =χ5
1, χ2 =χ5

2, (4.1)

which has the advantage that the bi-linears decompose in terms of the SO(3)L×SO(3)D
invariant forms on the S2×S3 fibration. We find the d= 7 bi-linears are given by

Ψ+ = (S1)+.(ϕ)+ + ek(S2)−.(ϕ)− ∧ dr, Ψ− = (S1)−.(ϕ)− + ek(S2)+.(ϕ)+ ∧ dr (4.2)

where we define

(ϕ)± = (ϕ1
±, ϕ

2
±, Y5ϕ

3
±, Y5ϕ

4
±, Y5ϕ

5
±, Y5ϕ

6
±, Y

2
5 ϕ

7
±, Y

2
5 ϕ

8
±), Y5 = cosα, (4.3)

for ϕ1
± real even/odd bi-linears on ĈP

3
decomposing in a basis of (2.3) — their explicit

form is given in (B.3). We also define

(S1)+ =



a11a21 + b11b21
a11b21 − a21b11
a11a22 + b11b22
a11b22 − a22b11
a12a21 + b12b21
a21b12 − a12b21
a12a22 + b12b22
a22b12 − a12b22


, (S2)− =



a21b11 + a11b21
b11b22 − a11a21
a11b22 + a22b11
b11b22 − a11a22
a21b12 + a12b21
b12b21 − a12a21
a22b12 + a12b22
b12b22 − a12a22


,
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(S1)− =



a21b11 − a11b21
a11a21 + b11b21
a22b11 − a11b22
a11a22 + b11b22
a21b12 − a12b21
−a12a21 − b12b21
a22b12 − a12b22
−a12a22 − b12b22


, (S2)+ =



a11a21 − b11b21
a21b11 + a11b21
a11a22 − b11b22
a22b11 + a11b22
a12a21 − b12b21
a21b12 + a12b21
a12a22 − b12b22
a22b12 + a12b22


. (4.4)

We begin by solving the constraints in (3.7) by parametrising the functions of the spinor
ansatz as

a11 + ib11 = e
i
2 (X1+X3), a12 + ib12 = e

i
2 (X2+X4),

a21 + ib21 = e
i
2 (X1−X3), a22 + ib22 = e

i
2 (X2−X4), (4.5)

for X1 . . .X4 functions of r only. We shall take the magnetic component of the NS 3-form
as in (2.8) and allow the RR fluxes to depend on r and all the SO(5) invariant forms, ie

dr, J2, J̃2, ReΩ3, ImΩ3, (4.6)

and the wedge products one can form out of these. One then proceed to substitute (4.2)
into the necessary conditions for supersymmetry (3.3a)–(3.3d) to fix the r dependence of
the ansatz.

In IIB supergravity there are no solutions: one arrives at a set of algebraic constraints
by solving for the parts of (3.3b)–(3.3c) orthogonal to dr which without loss of generality
fix the phases as

X1 =−π2 + 2β(r), X2 = π

2 , θ=X3 =X4 = 0. (4.7)

and several parts of the metric and NS 2-form as

eC = 5eA sinβ, eD = 5eA sinβ cosβ, b̃= 0. (4.8)

Unfortunately if one then tries to solve the dr dependent terms in (3.3b) one finds the
constraint

cosβ= 0, (4.9)

which cannot be solved without setting eD = 0, so no N = (5,0) or (6,0) solutions exist on
this space in type IIB.

Moving onto type IIA supergravity: some conditions one may extract from (3.3b),
which simplify matters considerably going forward, are the following

sinθ= 0, sinX1 =−sinX2 = 1, (4.10)

which we can solve without loss of generality as

θ= 0 ⇒ h0 = 0, X1 =−X2 = π

2 . (4.11)
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We then choose to further refine the phases as

X3 =β1 +β2, X4 =−β1 +β2. (4.12)

Plugging these into (3.3b)–(3.3d) we find the following simple definitions of various func-
tions in the ansatz

eC = 2eA sinβ2, eD = 2eA sin(β1 +β2),
b′ = 4eA+k + 2∂r(e2A cosβ1 sin(β1 + 2β2)), b̃=−2e2A cos(β1 + 2β2)sinβ1, (4.13)

and the following ODEs that need to be actively solved

∂r(e3A−Φ sinβ1 sinβ2) + 2me2A+k−Φ sinβ1 cosβ2 = 0,
∂r(e5A−Φ sin2β2 sin(β1 +β2)) +me4A+k−Φ sinβ2 sin(β1 + 2β2) = 0,

∂r(e2A tanβ2) +meA+k(2tanβ2 cot(β1 +β2)− (cosβ2)−2) = 0. (4.14)

We also extract expressions for the RR fluxes, though we delay presenting them explicitly
until we have simplified the above. To make progress we find it useful to use diffeomorphism
invariance in r to fix8

eA+k =−π, (4.15)

and introduce local functions of r (h,g,u) such that

e5A−Φ sin2β2 sin(β1 +β2) =π2h, e2A tanβ2 = g,
tanβ2

tan(β1 +β2) =
h′ +hu

′

u

h′−hu
′

u

. (4.16)

This simplifies the system of ODEs in (4.14) to

u′′ = 0, g= 2π hu

uh′−hu′
, tanβ1 = sign(uh)u′

√
∆1

u′(uh′−hu′) +u2h′′
, tanβ2 = sign(uh)

√
∆1

uh′−hu′

∆1 = 2hh′′u2 − (uh′−hu′)2. (4.17)

which imply supersymmetry and require ∆1> 0. What remains is the explicit form of the
magnetic components of the RR fluxes. These can be expressed most succinctly in terms of
their Page flux avatars, ie f̂+ = f+ ∧ e−B2 , however to compute these we must first integrate
b′. Combining (4.16), (4.17) and (4.13) we find

b=−b̃+ 4π
(
−(r− k) + uh′−hu′

uh′′

)
, b̃=−2π u

′

h′′

(
h

u
+ hh′′− 2(h′)2

2h′u′ +uh′′

)
, (4.18)

where k is an integration constant. We then find for the magnetic Page fluxes

f̂0 =F0 =− 1
2πh

′′′,

f̂2 = 2(h′′− (r− k)h′′′)J,
8The reason for the factors of π, taken here and elsewhere without loss of generality, is that they make

the Page charges of the RR fluxes simple.
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f̂4 =−4π
[
(2h′ + (r− k)(−2h′′ + (r− k)h′′′))J2 ∧ J2 + d

(
hu′

u
ImΩ3

)]
,

f̂6 = 16π2

3 (6h− (r− k)(6h′ + (r− k)(−3h′′ + (r− k)h′′′)))J2 ∧ J2 ∧ J2, (4.19)

where we have made extensive use of the conditions derived earlier to simply these expres-
sions. In order to have a solution we must impose that Bianchi identities of the RR flux
hold (that of the NS 3-form is implied), away from sources this is equivalent to imposing
that df̂2n = 0 for n= 0,1,2,3, we find

df̂2n =− 1
2π (4π)n 1

n! (r− k)nh′′′′dr∧ Jn2 , (4.20)

which tells us that the Bianchi identities in regular parts of the internal space demand

h′′′′ = 0, (4.21)

or in other words that h is an order 3 polynomial (at least locally). This completes our
local derivation of the class of solutions.

In summary the local form of solutions in this class take the following form: NS sector

ds2

2π = |hu|√
∆1

ds2(AdS3) +
√

∆1
4|u|

[ 2
|h′′|

(
ds2(S4) + 1

∆2
(Dyi)2

)
+ 1

|h|
dr2
]
,

e−Φ =
√
|u||h′′|

3
2
√

∆2

2
√
π∆

1
4
1

, ∆1 = 2hh′′u2 − (uh′−hu′)2, ∆2 = 1 + 2h′u′

uh′′
, H = dB2,

B2 = 4π
[(

−(r− k) + uh′−hu′

uh′′

)
J2 + u′

2h′′

(
h

u
+ hh′′− 2(h′)2

2h′u′ +uh′′

)(
J2 − J̃2

)]
, (4.22)

where (u,h) are functions of r and k is a constant. Note that positivity of the metric and
dilaton holds whenever ∆1 ≥ 0.9 The d= 10 RR fluxes are given by

F0 =− 1
2πh

′′′, F2 =B2F0 + 2(h′′− (r− k)h′′′)J2,

F4 =πd

(
h′ + hh′′u(uh′ +hu′)

∆1

)
∧ vol(AdS3) +B2 ∧F2 −

1
2B2 ∧B2F0

− 4π
[
(2h′ + (r− k)(−2h′′ + (r− k)h′′′))J2 ∧ J2 + d

(
hu′

u
ImΩ3

)]
. (4.23)

Solutions within this class are defined locally by 2 ODEs: first supersymmetry demands

u′′ = 0, (4.24)

which must hold globally. Second the Bianchi identities of the fluxes demand that in regular
regions of the internal space

h′′′′ = 0, (4.25)
9Specifically reality of the metric demands ∆1 ≥ 0 and that (h,u) are real. This in turn implies hh′′ ≥ 0

and it then follows that ∆2 ≥ 0. Note that one needs to use that hh′′ ≥ 0 to bring the metric to this form.
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which one can integrate as

h= c0 + c1r+ 1
2c2r

2 + 1
3!c3r

3, (4.26)

where ci are integration constants here and elsewhere. However the r.h.s. of (4.25) can
contain δ-function sources globally, as we shall explore in section 6. Before moving on
to analyse solutions within this class it is important to stress a few things. First off
that (4.24) must hold globally, and given how u,u′ appear in the class means that really u
is parametrising two branching possibilities — either u′ = 0 or u′ ̸= 0.

For the first case notice that if u′ = 0 then u actually completely drops out of the
bosonic fields, so its precise value doesn’t matter. Further the warping of the 4-sphere and
fibered 2-sphere becomes equal, making the metric on CP3 the round one, and only J2
now appears in the fluxes. There is thus an enhancement of the global symmetry of the
internal space to SO(6) — indeed supersymmetry is likewise enhanced to N = (6,0). We
shall study this limit in section 5.1.

When u′ ̸= 0 then u is an order 1 polynomial, however the class is invariant under
(r→ r+ l, k→ k+ l) which one can use to set the constant term in u to zero without loss
of generality, the specific value of the constant u′ then also drops out of the bosonic fields.
Thus for the second class, preserving only N = (5,0) supersymmetry, one can fix u= r

without loss of generality. We shall study this limit in section 5.2.
Having a classes of solutions defined in terms of the ODE h′′′ =−2πF0 is very rem-

iniscent of AdS7 vacua in massive IIA, which obey essentially the same constraint [55].
For the (6,0) case the formal similarities become more striking as both this and the AdS7
vacua are of the form AdS2p+1 ×CP4−p foliated over an interval in terms of an order 3
polynomial and it’s derivatives — however we should stress these functions do not appear
in the same way in each case. None the less this apparent series of local solutions does
beg the question, what about AdS5 ×CP2?. Establishing whether this also exists, and how
much if any supersymmetry it may preserve, is beyond the scope of this work but would
be interesting to pursue.

5 Local analysis of osp(n|2) vacua for n > 4

In this section we perform a local analysis of the osp(6|2) and osp(5|2) AdS3 vacua derived
in the previous sections in 5.1 and 5.2. We begin with some comments about the non
existence of osp(n|2) AdS3 for n> 6 and on the generality of classes we do find.

In the previous section we derived classes of solutions in IIA supergravity that realise
the super conformal algebras osp(n|2) for n= 5,6 on a warped product space consisting
of a foliation of AdS3 × ĈP

3
foliated over an interval such that either SO(5) or SO(6) is

preserved. In appendix C we prove that the case of n= 7 is locally AdS4×S7, and the same
is proved for the case of n= 8 in [51]. Thus one only has true AdS3 solutions for n= 5,6
(or lower) and we have found them only in type IIA.

The class of osp(6|2) AdS3 vacua we find are exhaustive for type II supergravities:
spinors transforming in the 6 of so(6) necessitate either a round CP3 factor in the metric
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or CP3 with a U(1) fibered over it. This latter possibility can easily be excluded at the
level of the equations of motion [51]. For the case of osp(5|2) AdS3 vacua we suspect the
same is true, but are not completely certain of that.

5.1 Analysis of osp(6|2) vacua

The osp(6|2) AdS3 solutions are given by the class of the previous section specialised to
the case u= 1. We find for the NS sector

ds2

2π = |h|√
2hh′′− (h′)2ds

2(AdS3) +
√

2hh′′− (h′)2
[ 1

4|h|dr
2 + 2

|h′′|
ds2(CP3)

]
,

e−Φ = (|h′′|)
3
2

2
√
π(2hh′′− (h′)2)

1
4
, H = dB2, B2 = 4π

(
−(r− k) + h′

h′′

)
J2, (5.1)

and the RR sector

F0 =− 1
2πh

′′′, F2 =B2F0 + 2(h′′− (r− k)h′′′)J2,

F4 =πd

(
h′ + hh′h′′

2hh′′− (h′)2

)
∧ vol(AdS3) +B2 ∧F2 −

1
2B2 ∧B2F0

− 4π(2h′ + (r− k)(−2h′′ + (r− k)h′′′))J2 ∧ J2, (5.2)

where k is a constant and h is a function of r obeying h′′′′ = 0 in regular regions of a
solution.

5.1.1 Local solutions and regularity

There are several distinct physical behaviours one can realise locally by solving h′′′ =−2πF0
(for F0 = constant) in different ways, in this section we shall explore them.

The distinct local solutions the class contains can be characterised as follows. First
off the domain of r should be ascertained, in principle it can be one of the following:
periodic, bounded (from above and below), semi infinite or unbounded. For a well defined
AdS3 vacua dual to a d= 2 CFT r must be one of the first 2. In the case at hand the r
dependence of h does not allow for periodic r so we seek bounded solutions. In general a
solution can be bounded by either a regular zero or a physical singularity.

At a regular zero we must have that e−Φ and the AdS warp factor becomes constant.
The internal space should then decompose as a direct product of two sub manifolds with the
first tending to the behaviour of a Ricci flat cone of radius r and the second r independent.

There are many ways to realise physical singularities that bound the space at some
loci. The most simple is with D branes and O-planes: for a generic solution these objects
are characterised by a metric and dilaton which decompose as

ds2 = 1√
hp
ds2

∥ +
√
hpds

2
⊥, e−Φ ∝h

p−3
4

p (5.3)

where ds2
∥ is the p+ 1 dimensional metric on the world volume of this object and ds2

⊥ is
the 9− p dimensional metric on its co-dimensions. We will consider only solutions whose
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metric is a foliation over an interval r. A Dp brane singularity (for p< 7) is then signaled
by the leading order behaviour

ds2
⊥∝ dr2 + r2ds2(B8−p), hp∝

1
r7−p (5.4)

for B8−p the base of a Ricci flat cone (for instance B8−p = S8−p). The case of p= 8 is
different as while the solution is singular at such a loci, the metric neither blows up nor
tends to zero so a D8 brane does not bound the solution (p= 7 will not be relevant to our
analysis). The Op plane singularity (for p ̸= 7) on the other hand yields

ds2
⊥∝ dr2 +α2

0ds
2(B8−p), hp∝ r, (5.5)

for α0 some constant. Our task then is to first establish which of these behaviours can
be realised by the class of solutions in this section, then whether any of these behaviours
can coexist in the same local solution. Let us reiterate: D-brane and O-plane singularities
do not exhaust the possible physical singularities, indeed we will find a more complicated
object later in this section which we will describe when it becomes relevant.

The most obvious thing one can try is to fix F0 =h′′′ = 0, it is not hard to see that one
then has H3 = 0 and F4 becomes purely electric. One can integrate h as

h= c1 + rc2 + 1
2 k̃r

2 (5.6)

and then upon making the redefinitions

c1 = k̃L4 + c2
2π

2

2k̃π2 , − r= c2

k̃2 + L2

π
sinhx (5.7)

one finds the solution is mapped to

ds2

L2 =
(

cosh2xds2(AdS3) + dx2
)

+ 4ds2(CP3), e−Φ = k̃

2L, (5.8)

F2 = 2k̃J2, F4 = 3
2 k̃L

2 cosh3xvol(AdS3)∧ dx.

This is of course AdS4 ×CP3, dual to N = 6, U(N)k̃×U(N)−k̃ Chern-Simons matter theory
(where N = 2k̃L4) [53]. Thus there is only one local solution when F0 = 0 and it is an AdS4
vacua preserving twice the supersymmetries of generic solutions within this class. This is
the only regular solution preserving (6,0) supersymmetry.

Next we consider the sort of physical singularities the metric and dilaton in (5.1) can
support for F0 ̸= 0. At the loci of such singularities the space terminates so the interval
spanned by r becomes bounded at one end. We shall use diffeomorphism invariance to
assume this bound is at r= 0.

First off ∆1 = 2hh′′− (h′)2 appears in the metric and dilaton where one would expect
the warp factor of a co-dimension 7 source to appear. Thus if ∆1 has an order 1 zero at a
loci where h,h′′ have no zero one has the behaviour of O2 planes extended in AdS3 at the
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tip of a G2 cone over CP3. We now choose the loci of this O2 plane to be r= 0, meaning
that the constant part of ∆1 has to vanish which forces

O2 at r= 0 : h= c1 + c2r+ c2
2

4c1
r2 + 1

3!c3r
3, c1, c2, c3 ̸= 0, (5.9)

where r∈R± when sign(c1c4) =±1.
Another type of singularity this solution is consistent with is a D8/O8 system of world

volume AdS3 ×CP3. Such a singularity is characterised by O8 brane like behaviour in the
metric and dilaton. We realise this behaviour by choosing h such that (h′′,∆1) both have
an order 1 zero at a loci where h has no zero. After using diffeomorphism invariance to
place the D8/O8 at r= 0 this is equivalent to taking h as

D8/O8 at r= 0 : h= c1 + 1
3!c2r

3, c1,2 ̸= 0., (5.10)

where r∈R± for sign(c1c2) =±1.
We are yet to find a D brane configuration, given that we have a CP3 factor the obvious

thing to naively aim for is D2 branes at the tip of a G2 cone similar to the O2 plane realised
above. However the warp factor of a D2 brane blows up like limr→0 r

−5 its loci, and this is
not possible to achieve for (5.1) such that h is an order 3 polynomial. It is however possible
to realise a more exotic object: it is well known that if one takes d= 11 supergravity on
the orbifold R1,6 ×C2/Zk̃ then reduces on the Hopf fibre of the Lens space (equivalently
squashed 3-sphere) inside C2/Zk̃ one generates a D6 brane singularity in type IIA. One can
generate the entire flat space D6 brane geometry by replacing C2/Zk̃ in the above with a
Taub-Nut space and likewise reducing to IIA. One can perform an analogous procedure for
R1,2 ×C4/Zk̃, reducing this time on the Hopf fibration (over CP3) of a squashed 7-sphere.
The resulting solution in IIA takes the from

ds2 =
√
r

k̃
ds2(Mink3) + 1

4k̃
√
r

(
dr2 + 4r2ds2(CP3)

)
, e−Φ = k̃

3
2

r
3
4
, F2 = 2k̃J2, r≥ 0,

(5.11)
and is singular at r= 0. Notice that the r dependence of the dilaton and metric is the
same as one gets at the loci of flat space D6 branes, but the co-dimensions no longer span
a regular cone as they do in that case, indeed dr2 + cr2ds2(CP3) is only Ricci flat for unit
radius round CP3 when c= 2

5 . It is argued in [53] that the singularity in (5.11) corresponds
to a coincident combination of a KK monopole and k̃ D6 branes (T-dual of an (1, k̃)− 5
brane) that partially intersect another KK monopole. For simplicity we shall refer to this
rather complicated composite object as a D̃6 brane. We can find the behaviour of this
object, now extended in AdS3, within this class — assuming it is located at r= 0 one need
only tune

D̃6 at r= 0 : h= r2(c1 + c2r), c1,2 ̸= 0, (5.12)

with the caveat that as this only exists when F0 ̸= 0, we can no longer lift to d= 11. Again
r∈R± for sign(c1c2) =±1.
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The above exhausts the physical singularities we are able to identify, we do however
find one final further singularity. By tuning h= cr3 for r,c> 0, the metric and dilaton then
become

ds2 = π

2
√

3r

(
4r2

(
ds2(AdS3) + ds2(CP3)

)
+ 3dr2

)
, e−Φ = 3

√
23

1
4 c√
π

√
r (5.13)

which is singular about r= 0 in a way we do not recognise.
All the previously discussed physical singularities bound the interval spanned by r at

one end. In order to have a true AdS3 vacuum we need to bound a solution between 2
of them separated by a finite proper distance. However assuming that the space starts at
r= 0 with any of an O2, D8/O8 or D̃6 singularity, we find that none of the warp factors
appearing in metric or dilaton (5.1), (ie (h,∆1,h

′′)) either blow up or vanish until r→∞.
For each case (assuming r≥ 0 for simplicity) the metric and dilaton as r→∞ tend to (5.13).
By computing the curvature invariants it is possible to show that the metric is actually
flat at this loci, hence it tends to Mink10, however as eΦ →∞ the solution is still singular.
Worse still the singularity as r→∞ is at infinity proper distance from r= 0, so in all cases
the internal space is semi infinite.

Naively one might now conclude that there are no osp(6|2) AdS3 vacua with bounded
internal space (true vacua), however as we will show explicitly in section 6, this is not
the case. The missing ingredient is the inclusion of D8 branes on the interior of r which
allow one to glue local solutions of h′′′′ = 0, depending on different integration constants,
together.

5.2 Analysis of osp(5|2) vacua

The osp(5|2) AdS3 solutions are given by the class of section 4 for u′ ̸= 0, one can use
diffemorphism invariance to fix u= r for such solutions without loss of generality. The
resulting NS sector takes the form

ds2

2π = |hr|√
∆1

ds2(AdS3) +
√

∆1
4|r|

[ 2
|h′′|

(
ds2(S4) + 1

∆2
(Dyi)2

)
+ 1

|h|
dr2
]
,

e−Φ = |h′′|
3
2
√
|r|

√
∆2

2
√
π∆

1
4
1

, ∆1 = 2hh′′r2 − (rh′−h)2, ∆2 = 1 + 2h′

rh′′
, H = dB2,

B2 = 4π
[(

−(r− k) + rh′−h

rh′′

)
J2 + 1

2h′′

(
h

r
+ hh′′− 2(h′)2

2h′ + rh′′

)(
J2 − J̃2

)]
, (5.14)

while the d= 10 RR fluxes are then given by

F0 =− 1
2πh

′′′, F2 =B2F0 + 2(h′′− (r− k)h′′′)J2,

F4 =πd

(
h′ + hh′′r(rh′ +h)

∆1

)
∧ vol(AdS3) +B2F2 −

1
2B2 ∧B2F0

− 4π
[
(2h′ + (r− k)(−2h′′ + (r− k)h′′′))J2 ∧ J2 + d

(
h

r
ImΩ3

)]
, (5.15)

where h is defined as before and k is a constant.
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5.2.1 Local solutions and regularity

In this section we will explore the physically distinct local osp(5|2) solution that follow
from solving h′′′ =−2πF0 in various ways.

Let us begin by commenting on the massless limit F0 =h′′′ = 0: unlike the class of
osp(6|2) solutions the result is no longer locally AdS4 ×CP3 — it is instructive to lift the
class to d= 11. We find the metric of the solution can be written as10

ds2
11

2
1
3π

2
3 |h′′|

= ∆
1
3
2

[ |h||r| 4
3

∆
2
3
1

ds2(AdS3) + ∆
1
3
1

|r|
2
3

( 1
4|h|dr

2 + 2
|h′′|

ds2(Ŝ7)
)]
,

ds2(Ŝ7) = 1
4

[
ds2(S4) + 1

∆2

(
Li2 − cos2

(
α

2

)
Li1

)2 ]
, (5.16)

where Li1,2 are two sets of SU(2) left invariant forms defined as in appendix (A.2), so that
the internal space is a foliation of an SP(2)×SP(1) preserving squashed 7-sphere over an
interval. This enhancement of symmetry is also respected by the d= 11 flux, to see this
we need to define the SP(2)×SP(1) invariant form on this squashed 7-sphere, fortuitously
these were already computed in [51], they are

Λ0
3 = 1

8(L1
2 +A1)∧ (L2

2 +A2)∧ (L3
2 +A3), Λ̃0

3 = 1
8(Li2 +Ai)∧ (dAi + 1

2ϵ
i
jkAj ∧Ak),

(5.17)
where Ai =−cos2 (α

2
)
Li1, and their exterior derivatives. One can then show that the d= 11

flux decompose as

G4
π

= d

(
h′ + rhh′′(rh′ +h)

∆1

)
∧ vol(AdS3) + 4d

(2(r(h′)2 −h(h′ + rh′′))
r(2h′ + rh′′) Λ0

3 + h

r
(Λ0

3 − Λ̃0
3)
)
.

(5.18)
For such solutions we can in general integrate h′′′ = 0 in terms of an order 2 polynomial. As
we shall see shortly it is possible to bound r at one end of the space in several physical ways,
but when F0 = 0 it always remains semi-infinite. Given that the massless limit of N = (6,0)
is always locally AdS4 ×CP3 in IIA, it is reasonable to ask whether the massless solutions
here approach this asymptotically. Such a solution preserving N = (8,0) was found on this
type of squashing of the 7-sphere in [51] and can be interpreted as a holographic dual
to a surface defect. In this case, as r→∞ the curvature invariants (5.16) all vanish, (
for instance R∼ r−

2
3 ). This makes the behaviour at infinite r that of Mink11, so such an

interpretation is not possible here.
Let us now move back to IIA and focus on more generic solutions: by studying the

zeros of (r, h, h′′, ∆1, ∆2) we are able to identify a plethora of boundary behaviours for
osp(5|2) solutions. The vast majority we are able to identify as physical and most exist for
arbitrary values of F0. We already used up translational invariance of this class to align
u= r so we can non longer assume that r= 0 is a boundary of solutions in this class, rather
we must consider possible boundaries at r= 0 and r= r0 for r0 ̸= 0 separately.

10Note that to get to this form one must rescale the canonical 11’th direction, ie if this is z and Li1,2 are
defined as in (A.2) then ϕ2 = 2

h′′ z.
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We have two physical boundary behaviours that only exist for F0 ̸= 0: the first of these
is a regular zero for which the warp factors of AdS3 and S4 become constant while the
(r,S2) directions approach the origin of R3 in polar coordinates. This is given by tuning

Regular zero at r= 0 : h= c1r+ 1
3!c2r

3, c1,2 ̸= 0, sign(c1c2) = 1 (5.19)

where one can take either of r∈R±. This is the only regular boundary behaviour that is
possible.

Next it is possible to realise a fully localised O6 plane of world volume (AdS3, S4) at
r= r0 by tuning

O6 plane at r= r0 : h= c1r0 + c1(r− r0) + 1
3!c2(r− r0)3, c1, c2, r0 ̸= 0. (5.20)

The domain of r in this case depends more intimately on the tuning of c1, c2, r0 than we have
thus far seen: when r0< 0 one has r∈ (−∞, r0] for sign(c1c2) = 1 while for sign(c1c2) =−1
one finds that r0 ≤ r≤ r1< 0 for r1 = r1(c1, c2). Conversely for r0> 0, sign(c1c2) = 1 implies
r∈ [r0, ∞) while sign(c1c2) =−1 implies 0<r1 ≤ r≤ r0.

The remaining boundary behaviour exist whether F0 is non trivial or not: we find the
behaviour of D6 branes extended in (AdS3, S4) by tuning

D6 brane at r= 0 : h= c1r+ 1
2c2r

2 + 1
3!c3r

3, c1,2 ̸= 0. (5.21)

When sign(c1c2) =±1 r= 0 is a lower/upper bound. Given this, r is also bounded from
above/below when sign(c1c3) =−1 and is semi-infinite for sign(c1c3) = 1 and c3 = 0.

As with the osp(6|2) class it is possible to realise a D̃6 singularity (see the discussion
below (5.10)), this time at r= r0 by tuning

D̃6 brane at r= r0 : h= 1
2c1(r− r0)2 + 1

3!c2(r− r0)3, r0, c2 ̸= 0, c2 ̸=−3c1
r0
. (5.22)

For sign(r0c1c2) = 1 the domain of r is semi infinite bounded from above/below when
sign(r0) =∓1. When sign(r0c1c2) =−1 we find that r is bounded between r0 and some
constant r1 = r1(r0, c1, c2). Given the later behaviour, when sign(r0) =±1 one finds that
r is strictly positive/negative with r0 the upper/lower of the 2 bounds when |c2r0|> 3|c1|
and the lower/upper when |c2r0|< 3|c1|.

Next we find the behaviour of an O4 plane extended in AdS3×S2 by tuning

O4 plane at r= r0 : h= 1
2c1

(
r2

0 − r0(r− r0) + (r− r0)2)+ 1
3!c2(r− r0)3,

c1, r0 ̸= 0, c2 ̸=−3c1
r0
.

(5.23)

In this solution the domain of r has the same qualitative dependence on the signs of c1, c2, r0
and whether |c2r0|> 3|c1| or |c2r0|< 3|c1| as the previous example, though the precise value
of r1(c1, c2, r0) is different.
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Likewise we find the behaviour of an O2 plane extended in AdS3 and back-reacted on
a G2 cone whose base is round CP3, this is achieved by tuning

O2 plane at r= r0 : h= 2r0c1 + 1
2c1(r− r0)2 + 1

3!c2(r− r0)3, r0, c1 ̸= 0, c2 ̸=−3c1
r0
,

(5.24)
where the domain of r is qualitatively related to the parameters as it was for the D̃6.

Finally we find the behaviour of an O2’ plane extended in AdS3 and back-reacted on
a G2 cone whose base is a squashed CP3 (ie 4ds2(B6) = 2ds2(S4) + ds2(S2)) at r= r0 by
tuning

O2’ plane at r= r0 : h= 2c1r
2
0 + 2c1b(r− r0) + 1

2c1(b− 1)2(r− r0)2 + 1
3!c2(r− r0)3,

(5.25)
where we must additionally impose r0, c1 ̸= 0. This gives behaviour similar to the O2
plane, ie e2A∼ (r− r0)−

1
2 with the rest of the warp factors scaling as the reciprocal of this.

However in general e2(C−D) =
(
b+1
b−1

)2
at leading order about r= r0 and the internal space

only spans a Ricci flat cone for e2(C−D) = 1,2, with the former yielding (5.24). As such for
the O2’ plane we must additionally tune(

b+ 1
b− 1

)2
= 2, (5.26)

which has two solutions b± = 3± 2
√

2 and we must have c2r0 ̸=−12b±. Again the domain of
r has the same qualitative dependence as the D̃6, though this time the relevant equalities
that determine whether r0 is an upper or lower bound are |c2r0|> 12b±|c1| or |c2r0|<
12b±|c1|. This exhausts the physical singularities we have been able to identify.

As with the case of osp(6|2) vacua we have been able to identify several local solution
for which the domain of r is semi infinite. For these the metric as r→±∞ is once again
flat, but at infinite distance and with a non constant dilaton. For the osp(5|2) solutions
however it is possible to bound the majority of the solutions for suitable tunings of the
parameters on which they depend — this necessitates F0 ̸= 0. A reasonable question to
ask then is which physical singularities can reside in the same local solution? There are
actually 7 distinct local solutions bounded between two physical singularities, we provide
details of these in table 1. Note that the solution with regular zero is unbounded while
the D6 solution can only be bounded by a singularity of the type given in (5.25), but
without (5.26) being satisfied so is thus non-physical.

In this section, and the preceding one we have analysed the possible local solutions
preserving N = (5,0) and (6,0) supersymmetry that follow from various tunings of the
(local) order 3 polynomial h. We found many different possibilities, many of which can
give rise to a bounded interval in the (5,0) case, but non of which do in the (6,0) case. This
is not the end of the story, in this section we have assumed that F0 is a constant which
excludes the presence of D8 branes along the interior of the interval. In the next section
we shall relax this assumption allowing for much wider classes of global solution, and in
particular (6,0) solutions with bounded internal space.
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6 Global solutions with interior D8 branes

In this section we show that it is possible to glue the local solutions of section 5 together
with D8 branes placed along the interior of the interval spanned by r. This opens the way
for constructing many more global solutions with bounded internal spaces.

In the previous section we studied what types of local N = (5,0) and (6,0) it is possible
to realise with various tunings of the order 3 polynomial h. The assumption we made before
was that F0 = constant was fixed globally, but this is not necessary, all that is actually
required is that F0 is piecewise constant. A change in F0 gives rise to a delta function
sources as

dF0 = ∆F0
2π δ(r− r0)dr, (6.1)

where ∆F0 is the difference between the values F0 for r > r0 and r < r0. D8 branes give rise
to a comparatively mild singularity for which the Bosonic fields neither blow up nor tend
to zero so do not represent a boundary of a solution, indeed the solution continues passed
them unless they appear coincident to an O8 plane. As one crosses a D8 brane the metric
and dilaton and NS 3-form are continuous, but the RR sector can experience a shift. To
accommodate such an object within the class of solutions of section 4 one needs to do so
in terms of h, so it can lie along r. If we wish to place a D8 at r= r0 one should have

h′′′′ =−N8δ(r− r0). (6.2)

While the conditions that the NS sector should be continuous amounts to demanding the
continuity of

N = (6,0) : (h,(h′)2,h′′), (6.3)
N = (5,0) : (h,h′,h′′),

recall that u′′ = 0 is a requirement for supersymmetry so u cannot change as one crosses
the D8. The source corrected Bianchi identities in general take the form

(d−H∧)f+ = 1
2πδ(r− r0)dr∧ eF ⇒ df̂+ = 1

2πδ(r− r0)dr∧ e2πf̃ (6.4)

where F =B2 + 2πf̃ for f̃ a world volume gauge field on the D8 brane and where f̂+ are
the magnetic Page fluxes, (4.19) for the solution at hand. If f̃ is non zero then the D8 is
actually part of a bound state involving every brane whose flux receives a source correction
in df̂+ Recalling the Bianchi identities (4.20), we have for the specific case at hand that

df̂n = 1
2π (4π)n 1

n! (r− k)nN8δ(r− r0)dr∧ Jn2 (6.5)

We thus see that it is consistent to set the world volume flux on the D8 brane to zero by
tuning r0, ie

f̃ = 0 ⇒ r0 = k. (6.6)

This means only F0 receives a delta function source, the rest vanishing as (r− r0)nδ(r−
r0)→ 0 for n> 0. So we have shown that it is possible to place D8 branes, that do not come
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as a bound state, at r= k and solve the Bianchi identities — but how should one interpret
this? The origin of k in our classification was as an integration constant, but one can view
it as the result of performing a large gauge transformation, ie shifting the NS 2-form by
an exact form as B2 →B2 + ∆B2 such that b0 = 1

(2π)2
∫

Σ2
B2 is quantised over some 2-cycle

Σ2. Clearly squashed CP3 contains an S2 which B2 as support on, that of the fiber, one
finds

1
(2π)2

∫
S2
B2 −

1
(2π)2

∫
S2
B2

∣∣∣∣
k=0

= k

4π

∫
S2

vol(S2) = k, (6.7)

so provided k is quantised11 its addition to the minimal potential giving rise to the NS
3-form is indeed the action of a large gauge transformation. The key point is that because
k follows from a large gauge transformation, it does not need to be fix globally, indeed in
many situations where B2 depends on a function of the internal space it is necessary to
perform such large gauge transformations as one move through the internal space to bound
b0 to with some quantised range. We conclude that the Bianchi identities are consistent
with placing D8 branes at quantised r= k loci provided that they are accompanied by the
appropriate number of large gauge transformations of the NS 2-form.

Of course to be able claim a supersymmetric vacua the sources themselves need to
have a supersymmetric embedding, further if this is the case the integrability arguments
of [58, 59] imply that the remaining type II equations of motion of the Bosonic supergravity
are implied by the Bianchi identities we have already established hold. The existence of a
supersymmetric brane embedding can be phrased in the language of (generalised) calibra-
tions [60]: a source extended in AdS3 and wrapping some n-cycle Σ is supersymmetric if
it obeys the following condition

Ψcal
n = 8Ψ+ ∧ e−F

∣∣∣∣
Σ

=
√

det(g+F)dΣ
∣∣∣∣
Σ

(6.8)

where Ψ+ is the bi-linear appearing in (4.2), g is the metric on the internal space and
where the pull back onto Σ is understood. For a D8 brane placed along r we take f̃ = 0,
dΣ = sin3αdα∧ vol(S3)∧ vol(S2) and B2 defined as in (4.22) — we find

Ψcal
6 = π3

2
√

2u3h′′
√
hh′′

√
∆2

[
u
(
h(2u− rku

′)− rkuh
′)(2h(u+ rku

′)−u
(
2h′−h′′rk

)
rk
)

+ 2cos2αu′∆1r
3
k

]
dΣ,√

det(g+F)dΣ
∣∣∣∣
Σ

= π3

8(uh′′)
3
2
√

∆2

√
2(h−h′rk)(u−u′rk) +uh′′r2

k

×
(
2h(u+u′rk)−urk(2h′−h′′rk)

)
dΣ (6.9)

where we use the shorthand rk = r− k. It is simple to then show that (6.8) is indeed
satisfied for a D8 brane at r= k, and so supersymmetry is preserved.

11Note: usually one means integer by quantised, by in the presence of fractional branes, such as in
ABJ [57] which shares a CP3 in its internal space, it is possible for parameters such as k to merely be
rational.
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In summary we have shown that D8 branes can be placed along the interior of r at the
loci r= k, for quantised k, without breaking supersymmetry provided an appropriate large
gauge transformation of the NS 2-form is performed. This allows one to place a potentially
arbitrary number of D8 branes along r and use them to glue the various local solutions of
section 5 together provided that the continuity of (6.3) holds across each D8. In the next
section we will explicitly show this in action with 2 examples.

6.1 Some simple examples with internal D8 branes

In this section we will construct two global solutions with interior D8 branes and bounded
internal spaces, one preserving each of N = (6,0) and (5,0) supersymmetry. Let us stress
that this only scratches the surface of what is possible, we save a more thorough investi-
gation for forthcoming work [63].

We shall first construct a solution preserving N = (6,0), meaning that we need to
impose the continuity of (h,(h′)2,h′′) as we cross a D8. Probably the simplest thing one
can do is to place a stack of D8 branes at the origin r= 0 and bound r between D8/O8
brane singularities which are symmetric about this point. As such we can take h to be
globally defined as

h=
{
−c1 − c2

3! (r+ r0)3 r < 0
−c1 − c2

3! (r0 − r)3 r > 0
(6.10)

This bounds the interval to −r0<r<r0 between D8/O8 singularities at r=±r0 and gives
rise to a source for the F0 of charge 2c2, ie

h′′′′ =−2c2δ(r) ⇒ dF0 = 2c2
1

2πδ(r)dr (6.11)

The form that the warp factors and metric take for this solution is depicted in figure 1.
Given the Page fluxes in (4.19) (with u= 1), and that we simply have round CP3 for this
solution for which we can take

∫
CPn J

n =πn, it is a simple matter to compute the Page
charges of the fluxes over the CPn sub-manifolds of CP3. By tuning

c1 =N2 −
N3

5N8
6 , c2 =N8, r0 =N5, (6.12)

we find that these are given globally by

2πF0 =N∓
8 =±N8,

1
2π

∫
CP1

f̂2 =N5N8,
1

(2π)3

∫
CP2

f̂4 = N2
5N

∓
8

2 ,

− 1
(2π)5

∫
CP3

f̂6 =N2, − 1
(2π)2

∫
(r,CP1)

H =N5 (6.13)

where the ∓ superscript indicates that we are on the side of the interior D8 with r∈R∓

and we have assumed for simplicity that k= 0 globally in the NS 2-form.
With the expressions for the brane charges we can compute the holographic charge via

the string frame analogue of the formula presented in [61], namely

chol =
3

24π6

∫
M7
eA−2Φvol(M7), (6.14)
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Figure 1. Plot of the warp factors in the metric and dilaton for an N = (6,0) solution with D8 at
r= 0 bounded between D8/O8 singularities at r=±3 with the remaining constants in h tuned as
c1 = 2, c2 = 5.

which gives the leading order contribution to the central charge of the putative dual CFT.
Given the class of solution is section 4 we find this expression reduces to

chol =
1
2

∫ ∆1
u2 dr. (6.15)

For the case at hand one then finds that

chol =N2N
2
5N8 −

3N5
5N

2
8

20 . (6.16)

The central charge of CFTs with osp(n|2) superconformal symmetry takes the form of (1.1),
which in the limit of large level k becomes c= 3k. The holographic central charge is not
obviously of this form, however that doesn’t mean it is necessarily not the leading contri-
bution to something that is.12 We leave recovering this result from a CFT computation
for future work.

We will now construct a globally bounded solution with interior D8 branes that pre-
serves N = (5,0) — this time we will be more brief. There are many options for gluing local
solutions together for this less supersymmetric case. We will choose to place a D8 brane
in one of the bounded behaviour we already found in section 5.2 in the absence of interior
D8 branes (see table 1), namely will insert a D8 in the solution bounded between O6 and
O4 places. We remind the reader that we get local solutions containing these singularities
by tuning h as

hO4 = 1
2c1

(
r2

0 − r0(r− r0) + (r− r0)2)+ 1
3!c2(r− r0)3,

12Such scenarios are actually quite common, see for instance [62].
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Figure 2. Plot of the warp factors in the metric and dilaton for an N = (5,0) solution bounded
between an O4 plane at r= 2 and an O6 plane at r= 8 with a stack of D8 branes at r= 4. The
remaining parameter is tuned as b2 =−6.

hO6 = b1r̃0 + b1(r− r̃0) + 1
3!b2(r− r̃0)3. (6.17)

where the singularity are located at (r0, r̃0) respectively. We will assume r0, r̃0> 0 and
place a stack of D8s at a point r= rs between the two O plane loci. The condition that
the NS sector should be continuous in this case amounts to imposing that

(hO4,h
′
O4,h

′′
O4)
∣∣∣∣
r=rs

= (hO6,h
′
O6,h

′′
O6)
∣∣∣∣
r=rs

, (6.18)

of course we also need the value of F0 to change as we cross the D8. It is indeed possible to
solve the continuity condition in this case, which fixes 3 parameters, (c1, c2, b1) say, leaving
(r0, r̃0, b2) as free parameters. A plot of this solution for a choice of (r0, r̃0, b2) is given in
figure 2.
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A Derivation of spinors on ĈP
3

In this appendix we derive all spinors transforming in the 5 and 1 of so(5) on squashed
CP3. We achieve this by reducing a set of Killing spinors on in the 3 of so(3) and 5 of
so(5) on the 7-sphere, and then reducing them to CP3.
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A.1 Killing spinors and vectors on S7= SP(2)/SP(1)

The 7-sphere admits a parametrisation as an SP(2) bundle over SP(1), ie the SP(2)/SP(1)
co-set. For a unit radius 7-sphere this has the metric

ds2(S7) = 1
4

[
dα2 + 1

4 sin2α(Li1)2 +
(
Li2 − cos2

(
α

2

)
Li1
)2] (A.1)

where we take the following basis of SU(2) Left invariant 1-forms

L1
1,2 + iL2

1,2 = eiψ1,2(idθ1,2 + sinθ1,2dϕ1,2), L3
1,2 = dψ1,2 + cosθ1,2dϕ1,2. (A.2)

The 7-sphere admits two sets of Killing spinors obeying the relations

∇aξ± =± i

2γaξ±. (A.3)

With respect to the vielbein and flat space gamma matrices

e1 = 1
2dα, e2,3,4 = 1

4 sinαL1,2,3
1 , e5,6,7 =L1,2,3

2 − cos2
(
α

2

)
L1,2,3

1 ,

γ1 =σ1 ⊗ I2 ⊗ I2, γ2,3,4 =σ2 ⊗σ1,2,3 ⊗ I2 γ5,6,7 =σ3 ⊗ I2 ⊗σ1,2,3, (A.4)

where σ1,2,3 are the Pauli-matrices, the Killing spinor equation (A.3) is solved by

ξ± =M±ξ
0
±, (A.5)

M± = e
α
4 (±iγ1+Y )e∓i

ψ1
2 γ7P∓e∓i

θ1
2 γ6P∓e∓i

ϕ1
2 γ7P∓e

ψ2
4 (±iγ7+X)e

θ2
2 (γ13P+±γ6P±)e

ϕ2
2 (γ14P+±iγ7P±),

where ξ0
± are unconstrained constant spinors and

P± = 1
2(I4 ± γ1234), X = γ14 − γ23 − γ56, Y =−γ25 − γ36 − γ47. (A.6)

It was shown in [51] that ξ− transform in the (2,4) of sp(1)⊕ sp(2) and ξ+ in the 3⊕5
of so(3)⊕ so(5) — it is the latter that will be relevant to us here. Denoting the 3 and
5 as ξi3 for i= 1, . . . ,3 and ξα5 for α= 1, . . . ,5 and defining the 8 independent supercharges
contained in ξ+ as

ξI+ =M+η̂
I , I = 1, . . . ,8, (A.7)

where the Ith entry of η̂I is 1 and the rest zero, these are given specifically by

ξ̂i3 = 1√
2

 i(−ξ
5
+ + ξ8

+)
ξ5

+ + ξ8
+

i(ξ6
+ + ξ7

+)


i

, ξ̂α5 = 1√
2


−i(ξ1

+ + ξ4
+)

ξ1
+ − ξ4

+
−i(ξ2

+ − ξ3
+)

ξ2
+ + ξ3

+
ξ6

+ − ξ7
+



α

, (A.8)

which obey
ξi†3 ξ

j
3 = δij , ξα†5 ξβ5 = δαβ , ξi†3 ξ

β
5 = 0, (A.9)
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and are Majorana with respect to the intertwiner B=σ3 ⊗σ2 ⊗σ2. The specific Killing
vectors that make up the relevant SO(3) and SO(5) in the full space are made up of the
following isometries of the base and fibre metrics

K1L
1,2 + iK2L

1,2 = eiϕ1,2

(
i∂θ1,2 + 1

sinθ1,2
∂ψ1,2 −

cosθ1,2
sinθ1,2

∂ϕ1,2

)
, K3L

1,2 =−∂ϕ1,2 , (A.10a)

K1R
1,2 + iK2R

1,2 = eiψ1,2

(
i∂θ1,2 + 1

sinθ1,2
∂ϕ1,2 −

cosθ1,2
sinθ1,2

∂ψ1,2

)
, K3R

1,2 = ∂ψ1,2 , (A.10b)

K̂A
SO(5)/SO(4) =−(µA∂α + cotα∂xiµAg

ij
3 ∂xj ), A= 1, . . . ,4 (A.10c)

where µA are embedding coordinates for the S3 ⊂ S4, gij3 is the inverse metric of this
3-sphere and xi = (θ1,ϕ1,ψ1)i, we have specifically

µA =
(

sin
(
θ1
2

)
cos

(
ϕ−
2

)
,sin

(
θ1
2

)
sin
(
ϕ−
2

)
,cos

(
θ1
2

)
cos

(
ϕ+
2

)
,−cos

(
θ1
2

)
sin
(
ϕ+
2

))
A

,

for ϕ± =ϕ1 ±ψ1. In terms of the isometries on the base and fibre we define the following
Killing vectors on the 7-sphere

KiD =KiR
1 +KiR

2 , KA
SO(5)/SO(4) = K̂A

SO(5)/SO(4) + cot
(
α

2

)
µB(κA)Bi KiR

2 . (A.11)

where

κ1 =


0 0 0
0 0 −1
0 −1 0
−1 0 0

 , κ2 =


0 0 1
0 0 0
−1 0 0
0 1 0

 , κ3 =


0 1 0
1 0 0
0 0 0
0 0 −1

 , κ4 =


1 0 0
0 −1 0
0 0 1
0 0 0

 .

The isometry groups in the full space are spanned by

SO(3) : KiL
2

SO(5) : (KiL
1 , KiD, KA

SO(5)/SO(4)) (A.12)

Another Killing vector on S7 that will be relevant is

K̃ =xiK
iR
1 , yi = (cosψ2 sinθ2, sinψ2 sinθ2, cosθ2). (A.13)

In terms of this one can define Killing vectors that together with the SO(5) Killing vectors
span SO(6), namely

SO(6)/SO(5) : ([KA
SO(5)/SO(4), K̃], K̃) (A.14)

A.2 Reduction to CP3

It is possible to rewrite (A.1) as fibration of ∂ϕ2 over CP3 as

ds2(S7) = ds2(CP3) + 1
4

(
dϕ2 + cosθ2dψ2 − cos2

(
α

2

)
xiL

i
1

)2
,
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ds2(CP3) = 1
4

[
dα2 + 1

4 sin2α(Li1)2 +Dy2
i

]
, Dyi = dyi + cos2

(
α

2

)
ϵijkyjL

k
1. (A.15)

This can be achieved by rotating the 5,6,7 components of the vielbein in (A.4) by

ei→Λijej , Λ =

 −sinψ2 cosψ2 0
−cosθ2 cosψ2 −cosθ2 sinψ2 sinθ2
sinθ2 cosψ2 sinψ2 sinθ2 cosθ2

 . (A.16)

The corresponding action on the spinors is defined through the matrix

Ω = e
θ2
2 γ67e(ψ2

2 +π
4 )γ56 . (A.17)

The 3 and 5 in the rotated frame then take the form

ξi3 = Ωξ̂i3, ξα5 = Ωξ̂α5 . (A.18)

Any component of these spinor multiplets that is un-charged under ∂ϕ2 is spinor on CP3,
as we have rotated to a frame where translational invariance in ϕ2 is manifest, this is
equivalent to choosing the parts of (ξi3, ξα5 ) that are independent of ϕ2. It is not hard to
establish that this is all of ξα5 and ξ3

3 , which being a singlet under SO(5) we now label

ξ0 = ξ3
3 . (A.19)

The chirality matrix on CP3 is identified as γ̂= γ7, which is clearly an SO(5) singlet, so we
can construct an additional SO(5) quintuplet and singlet by acting with this. Additionally
we can define a set of embedding coordinates on S4 via

iξ†0γ7ξ
α
5 =Yα, Yα = (sinαµA, cosα), (A.20)

where µA are embedding coordinates on S3 defined in (A.11) — as the left hand side of this
expression is a quintuplet so too are these embedding coordinates. In summary we have
the following Majorana spinors on CP3 respecting the 5⊕1 branching of SO(6) under its
SO(5) subgroup

5 : (ξα5 , iγ7ξ
α
5 , Yαξ0, iYαγ7ξ0), 1 : (ξ0, iγ7ξ0), (A.21)

which can be used to construct N = (5,0) and N = (1,0) AdS3 solutions respectively. One
might wonder if one can generate additional spinor in the 1 or 5 by acting with the SO(5)
invariant forms one can define on CP3. These are quoted in the main text in (2.5) and (2.6),
one can show that on round unit radius CP3

ν1
2ξ
α
5 =−2Yαξ0 + iγ7ξ

α
5 , ν2

2ξ
α
5 =−2Yαξ0, ReΩ3ξ

α
5 =−4iYαξ0, ImΩ3ξ

α
5 =−4Yαγ7ξ0,

ν1
2ξ0 =−iγ7ξ0, ν2

2ξ0 =−2iξ0, ReΩ3ξ0 =−4γ7ξ0, ImΩ3ξ0 = 4iγ7ξ0, (A.22)

where 2ν1
2 = J̃2 − J2, 2ν2

2 = J̃2 + J2 and the forms should be understood as acting on the
spinors through the Clifford map Xn→ 1

n!(Xn)a1...anγ
a1...an , so (A.21) are in fact exhaus-

tive. The SO(6) Killing vectors on CP3 are given by (A.12) and (A.14) but with the ∂ϕ2
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dependence omitted, the SO(5) vectors are still Killing when one allows the base S4 to have
a different radi to the S2 in the CP3 metric (ie for squashed CP3) this however breaks the
SO(6)/SO(5) isometry. Finally note that ξ0 are actually charged under SO(6)/SO(5), and
more specifically when these isometries are not broken (ie CP3 is not squashed) then we
have the following independent SO(6) sextuplets

6 : ξI6 =
(
ξα5
ξ0

)I

, ξ̂I6 =
(
iγ7ξ

α
5

iγ7ξ0

)I

, (A.23)

which can be used to construct N = (6,0) AdS3 solutions.

B The SO(3)L×SO(3)D invariant N = 5 bi-linears

In the main text we will need to construct N = 5 bi-linears on the space (2.2), the non trivial
part of this computation comes from the bi-linears on squashed CP3 — in this appendix
we shall compute them.

As explained in the main text it is sufficient to solve the supersymmetry constraints
for an N = 1 sub-sector of the quintuplet of SO(5) spinors defined on the internal space. A
convenient component to work with is the 5th as this is a singlet under an SO(4) subgroup
of SO(5). Specifically with respect to (2.2) and the discussion below it, χ5

1,2 are singlets
with respect to SO(4)=SO(3)L⊗SO(3)D. As such the bi-linears that follow from χ5

1,2 must
decompose in a basis of the SO(3)L⊗SO(3)D invariant forms on the S2×S3 fibration (2.3)
and what one can form from these through taking wedge products. The d= 7 spinors χ5

1,2

depend on ĈP3 through

η± = ξ5
5 ± iY5γ̂ξ0, Y5ξ0, Y5iγ̂ξ0 (B.1)

where these are all defined in the previous appendix — it is the bi-linears we can construct
out of these that will be relevant to us. One can show that

η±⊗ η†± =ϕ1
+ ± iϕ1

−, η±⊗ η†∓ =±ϕ2
+ + iϕ2

−,

η+ ⊗ ξ†0 =ϕ3
+ + iϕ3

−, η−⊗ (iγ̂ξ0)† =ϕ3
+ − iϕ3

−,

η+ ⊗ (iγ̂ξ0)† =ϕ4
+ + iϕ4

−, η−⊗ ξ†0 =−ϕ4
+ + iϕ4

−,

ξ0 ⊗ η†+ =ϕ5
+ + iϕ5

−, iγ̂ξ0 ⊗ η†− =ϕ5
+ − iϕ5

−,

iγ̂ξ0 ⊗ η†+ =ϕ6
+ + iϕ6

−, ξ0 ⊗ η†− =−ϕ6
+ + iϕ6

−,

ξ0 ⊗ ξ†0 =ϕ7
+ + iϕ7

−, iγ̂ξ0 ⊗ (iγ̂ξ0)† =ϕ7
+ − iϕ7

−,

iγ̂ξ0 ⊗ ξ†0 =ϕ8
+ + iϕ8

−, ξ0 ⊗ (iγ̂ξ0)† =−ϕ8
+ + iϕ8

−, (B.2)

where ϕ1...8
± are real bi-linears of even/odd form degree, they take the form

ϕ1
+ = 1

8 sin2α

(
1− 1

32e
2(C+D) sin2αω2

2 ∧ω2
2 + 1

16e
2C sinαdα∧ω1 ∧

(
e2Dω1

2 − e2C sin2αω4
2
))
,

ϕ1
− = 1

64e
2C+D sin4αω1 ∧ω2

2 , ϕ2
− =− 1

64e
2C+D sin3α

(
sinαω1 ∧ω3

2 + dα∧ω2
2

)
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ϕ2
+ = 1

32 sin2α

(
e2C sin2αω4

2 − e2Dω1
2 + e2C sinαdα∧ω1 ∧

(
1− 1

32e
2(C+D) sin2αω2

2 ∧ω2
2
))
,

ϕ3
+ = 1

32 sin2α

(
− eC+Dω2

2 + 1
4e

3C+D sinαdα∧ω1 ∧ω3
2

)
,

ϕ3
− = 1

16 sinα
(
eC sinαω1 ∧

(
1− 1

32e
2(C+D) sin2αω2

2 ∧ω2
2
)

+ 1
4dα∧

(
eC+2Dω1

2 − e3C sin2αω4
2
))
,

ϕ4
+ =− 1

32e
C+D sin2α

(
ω3

2 + 1
4e

2C sinαdα∧ω1 ∧ω2
2

)
,

ϕ5
+ = 1

32e
C+D sin2α

(
ω2

2 + 1
4e

2C sinαdα∧ω1 ∧ω3
2

)
,

ϕ4
− = 1

16e
C sinα

(
1
4 sinαω1 ∧

(
e2Dω1

2 − e2C sin2αω4
2
)
− dα∧

(
1− 1

32e
2(C+D) sin2α∧ω2

2 ∧ω2
2
))
,

ϕ5
− = 1

16e
C sinα

(
1
4dα∧

(
e2Dω1

2 − e2C sin2αω4
2
)
− sinαω1 ∧

(
1− 1

32e
2(C+D) sin2αω2

2 ∧ω2
2
))
,

ϕ6
+ = 1

32e
C+D sin2α

(
ω3

2 −
1
4e

2C sinαdα∧ω1 ∧ω2
2

)
,

ϕ6
− = 1

16e
C sinα

(
dα∧

(
1− 1

32e
2(C+D) sin2αω2

2 ∧ω2
2
)

+ 1
4 sinα

(
e2Dω1

2 − e2C sin2αω4
2
))
,

ϕ7
+ = 1

8

(
1 + 1

16e
2C sinαdα∧ω1 ∧

(
− e2Dω1

2 + e2C sin2αω4
2
)
− 1

32e
2(C+D) sin2αω2

2 ∧ω2
2

)
,

ϕ7
− = 1

64e
2C+D sinα

(
dα∧ω3

2 + sinαω1 ∧ω2
2

)
, ϕ8

− = 1
64e

2C+D sinα
(
− dα∧ω2

2 + sinαω1 ∧ω3
2

)
ϕ8

+ =− 1
32

(
e2C sinαdα∧ω1 ∧

(
1− 1

32e
2(C+D) sin2αω2

2 ∧ω2
2
)

+ e2Dω1
2 − e2C sin2αω4

2

)
(B.3)

C Ruling out osp(7|2) AdS3 vacua

In this appendix we shall prove that all N = 7 AdS3 solutions preserving the algebra osp(7|2)
are locally AdS4×S7.

osp(7|2) necessitates an SO(7) R-symmetry with spinor transforming in the 7, there
is only one way to achieve this. On needs a round 7-sphere in the metric with fluxes that
break its SO(8) isometry to SO(7) in terms of the weak G2 structure 3-forms one can define.
Such an ansatz in type II can be ruled out a the level of the equations of motion [51], our
focus here then will be on d= 11 supergravity.

All AdS3 solutions of 11 dimensions supergravity admit a decomposition of their
bosonic fields as

ds2 = e2Ads2(AdS3) + ds2(M8), G= e3Avol(AdS3)∧F1 +F4 (C.1)

where F1,F4,A have support on M8 only. We take AdS3 to have inverse radius m. When
a solutions is supersymmetric M8 supports (at least one) Majorana spinor χ that one can
use to define the following bi-linears

2eA = |χ|2, 2eAf =χ†γ̂(8)χ, 2eAK =χ†
+γ

(8)
a χ−e

a,

2eAΨ3 = 1
3!χ

†γ
(8)
abcγ̂

(8)χeabc, 2eAΨ4 = 1
4!χ

†γ
(8)
abcdχe

abcd (C.2)

– 31 –



J
H
E
P
0
8
(
2
0
2
3
)
0
2
4

where γ(8)
a are eight-dimensional flat space gamma matrices, γ̂(8) = γ

(8)
12345678 is the chirality

matrix and ea is a vielbein on M8. Sufficient conditions for N = 1 supersymmetry to hold
can be caste as the following differential conditions the bi-linears should obey [51]

d(e2AK) = 0, (C.3a)
d(e3Af)− e3AF1 − 2me2AK = 0, (C.3b)

d(e3AΨ3)− e3A(− ⋆8 F4 + fF4) + 2me2AΨ4 = 0, (C.3c)
d(e2AΨ4)− e2AK ∧F4 = 0, (C.3d)

6 ⋆8 dA− 2f ⋆8 F1 + Ψ3 ∧F4 = 0, (C.3e)
6e−Am⋆8K − 6f ⋆8 dA+ 2 ⋆8 F1 + Ψ3 ∧ ⋆8F4 = 0 (C.3f)

where ⋆8 is the hodge dual on the M8. These conditions do not imply all of the equations
of motion of 11 dimensional supergravity however. For that to follow one must additionally
solve the Bianchi identity and equation of motion of the 4-form flux G. Away from the loci
of sources, this amounts to imposing that

d(F4) = 0, d(⋆8F1)− 1
2F4 ∧F4 = 0. (C.4)

The only way to realise the SO(7) R-symmetry that osp(7|2) necessitates on a 8d space is
to take it to be a foliation of the SO(7)/G2 co-set over an interval. As explained at greater
length in section 6.2 of [51], the metric on this co-set is the round one, but the flux can
depend also depend on a SO(7) invariant 3-form ϕ0

3 such that (C.1) should be refined as

ds2(M8) = e2Bds2(S7) + e2kdr2, e3AF1 = f1dr, F4 = 4f2 ⋆7 ϕ
0
3 + f3dr∧ϕ0

3. (C.5)

where (e2A,e2B,e2k,fi) are functions of the interval only. The SO(7) invariants obey the
following relations

dϕ0
3 = 4 ⋆7 ϕ

0
3, ϕ0

3 ∧ ⋆7ϕ
0
3 = 7vol(S7), (C.6)

ie they define the structure of a manifold of weak G2 holonomy. More specifically, decom-
posing

ds2(S7) = dα2 + sin2αds2(S6) (C.7)

One has

ϕ0
3 = sin2αdα∧ JG2 + sin3αRe(e−iαΩG2),

⋆7ϕ
0
3 =−1

2 sin4αJG2 ∧ JG2 − sin3αdα∧ Im(e−iαΩG2),

JG2 = 1
2CijkY

i
S6dY

j

S6 ∧ dY k
S6 , ΩG2 = 1

3!(1− iιdα⋆6)CijkdY i
S6 ∧ dY j

S6 ∧ dY k
S6 , (C.8)

where Y i
S6 are unit norm embedding coordinates for S6 and Cijk are the structure constants

defining the product between the octonions, ie oioj =−δij + Cijkok. The Killing spinors on
unit radius S7 obeying the equation

∇(7)
a ξ= i

2γ
(7)
a ξ, (C.9)
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branch as 1 + 7 under the SO(7) subgroup of SO(8), we denote the portions of ξ that
transform in these reps as respectively ξ0 and ξI7, they can be extracted from the relations

1 :
(
ϕ0

3 + i

7

)
ξ= 0, 7 : (ϕ0

3 − i)ξ= 0, (C.10)

where both the 1 and 7 are Majorana. Acting with the SO(7) invariants on ξI7 does not
generate any additional spinors in the 7, and we can without loss of generality take

|ξ0|2 = |ξI7|2 = 1, ξ0†ξI7 = 0. (C.11)

Thus we only have 1 spinor in the 7 and the most general Majorana spinors we can write
on M8 are χ=

√
2e

A
2 (χ+ +χ−) where13

χ+ =
(
a+
0

)
⊗ ξI7, χ+ =

(
0
ia−

)
⊗ ξI7 (C.12)

where a± are real functions subject to |a+|2 + |a−|2 = 1 — which are clearly rather con-
strained. The bi-linears of each component of ξI7 give rise to another 7 weak G2 holonomy
3-forms as

ξ
(I)
7 ⊗ ξ

(I)†
7 = 1

8
(
1 + iϕ

(I)
3 + ⋆7ϕ

(I)
3 + vol(S7)

)
. (C.13)

As ϕ(I)
3 are charged under SO(7) they are clearly all independent of ϕ0

3, so there is no way
to generate the invariant forms in the flux in (C.5) from (C.3c)–(C.3f), thus we must have

f2 = f3 = 0, ⇒ F4 = 0. (C.14)

This makes the flux purely electric and it is proved in [23], that for all such solutions
AdS3 experiences an enhancement to AdS4. As there is no longer anything breaking the
isometries of the 7-sphere locally, clearly then this ansatz just leads to local AdS4×S7. The
only global possibility beyond the standard N = 8 M2 brane near horizon is an orbifolding
of the 7-sphere that breaks supersymmetry to N = 7 — in any case this is certainly in no
way an AdS3 vacuum.
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