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A B S T R A C T

The Versatile Video Coding (VVC) standard was released in 2020 to replace the High Efficiency Video Coding
(HEVC) standard, making it necessary to convert HEVC encoded content to VCC to exploit its compression
performance, which was achieved by using a larger block size of 128 × 128 pixels, among other new coding
tools. However, 80.93% of the encoding time is spent on finding a suitable block partitioning. To reduce
this time, this proposal presents an HEVC-to-VVC transcoding algorithm focused on accelerating the CTU
partitioning decisions. The transcoder takes different information from the input bitstream of HEVC, and feeds
it to two Bayes-based models. Experimental results show a time saving in the transcoding process of 45.40%,
compared with the traditional cascade transcoder. This time gain has been obtained on average for all test
sequences in the Random Access scenario, at the expense of only 1.50% BD-rate.
1. Introduction

In recent years, the digital world has experienced an exponential
increase in video transmitted by different sources, such as broadcast
transmissions, social media and video-on-demand platforms. In addi-
tion to the growth in the amount of multimedia content being shared,
this trend is accompanied by an increase in the quality of content,
especially high and ultra-high definition video (HD and UHD), as well
as high frame rate content. Currently, more than 75% of Internet traffic
corresponds to multimedia video, which is predicted to reach 82% next
year [1]. Regarding the quality of content, it is estimated that 66% of
the displays will be UHD by 2023, which doubles the figure of 33%
for 2018 [2]. As a result, the bandwidth to transmit video, as well as
storage needs, will grow exponentially in the coming years.

To provide high-quality content to large numbers of users, video
coding standards need to look for efficient video compression tech-
niques. With this aim, and to replace the market-dominant H.264/
Advanced Video Coding (AVC) [3], the Joint Collaborative Team on
Video Coding (JCT-VC) published the High Efficiency Video Coding
(HEVC) standard [4] in 2013. HEVC has gradually replaced AVC since
it is able to double the compression rate, while the same objective video
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quality [5] is maintained, but at the expense of a large increase in
the computational cost on the encoder side. However, as mentioned
above, with the huge growth in demand for multimedia content it
was to be expected that HEVC would need to be replaced by a new
standard within a few years. Therefore, the international organizations
ITU-T and ISO/IEC, through the Video Coding Expert Group (VCEG)
and the Moving Picture Expert Group (MPEG), respectively, created
the Joint Video Experts Team (JVET) in 2015. After years of work, a
new standard, namely Versatile Video Coding (VVC), was released in
2020 [6].

In the development of VVC, the most promising compression tech-
niques were tested on reference software called the VVC Test Model
(VTM) [7]. Thus, VVC brings new features compared with HEVC,
such as a new partitioning structure, more inter prediction modes and
larger block sizes. With these new features, the compression capabilities
of VVC have significantly improved with respect to those offered by
HEVC for video sequences of different format and content [8]. How-
ever, achieving these compression results introduces significant costs in
terms of computational complexity. As stated in [9], the computational
time of VTM increases by about 300% in the random access (RA), low
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delay P (LP) and low delay B (LB) scenarios with respect to the HEVC
reference software, called the HEVC Test Model (HM) [10]. In the all
intra (AI) scenario, the encoding time increases by 1800%.

In addition to the high computational cost of VVC, another aspect
that emerges when a new standard is developed is that of the con-
version of multimedia content, in this case from HEVC to the new
format. It is evident that many applications are interested in taking
advantage of the lower bit-rate offered by the high compression of
VVC. For this reason, a transcoder that converts HEVC bitstreams to
VVC provides added value to content creators, services and distributors,
offering interoperability between them.

In view of the above, this paper presents a fast full transcoding
algorithm from HEVC to VVC. A preliminary study of the VVC encoder
in which the partitioning tree of each block is defined randomly,
which relates to whether the current block is evaluated or directly
partitioned to the next level of depth, meaning that the traditional
brute-force scheme is not applied, has allowed us to determine that
80.93% of the encoding time is spent in finding the most efficient
block partitioning. With this study, we can conclude that assisting the
transcoder’s decision-making can achieve high time savings, so the key
to this work is to find the best possible decision in order to maintain
the coding efficiency, avoiding the brute-force partitioning scheme of
the original coding flow. The proposal is divided into three stages in
order to tackle all the partitioning levels: (i) first, a Naïve-Bayes model
is applied to the new larger block size (128 × 128 pixels); (ii) then,
we use HEVC bitstream decisions in the quadtree (QT) partitioning to
determine the partitioning in VVC; (iii) and, finally, a second Naïve-
Bayes model is used after the QT to decide whether to perform the
binary tree (BT) and ternary tree (TT) partitioning of VVC.

This paper is built upon a partitioning algorithm proposed by the
authors in [11], but extends it with a new classifier for BT and TT
structures and a later refinement of the model through a cost analysis
process in order to maximize the performance of the new classifier. The
decisions taken from this analysis have achieved that only 1.57% of
the prediction misses involve a compression penalty. Thanks to this
extension, the experimental results have shown computational time
savings in the transcoding process of 45.40% on average over the time
spent by a traditional cascaded transcoder for the set of test sequences
provided by the JVET and encoded in the RA scenario [12]. In terms of
Bjøntegaard delta rate (BD-rate), which measures the variation in bit-
rate between two sequences with the same objective video quality [5],
a penalty of 1.50% is introduced.

In summary, the main novelties of this work are as follows:

1. A novel Bayesian prediction model to determine the partitioning
decision of BT/TT partitioning for each leaf coding unit (CU)
node based on feature set specific to the current block.

2. A novel fast HEVC-VVC transcoding algorithm that uses multiple
Bayesian prediction models for each QT and BT/TT partitioning
levels to expedite the CU split decisions in all levels.

3. A cost benefit analysis which can be used to trade-off the
transcoding complexity to coding efficiency loss during the
decision making phase.

The structure of the paper is as follows. Section 2 covers some of
the most relevant related work in the literature. Section 3 includes
the novelties of VVC, focusing in coding block partitioning. Then, the
algorithm is detailed in Section 4, and the results of the experimental
evaluation are analyzed in Section 5, including a performance compari-
son with state-of-the-art proposals. Finally, conclusions and future work
are drawn in Section 6.

2. Related work

Heterogeneous video transcoding between different standards has
2

been studied in order to provide interoperability between them in an
efficient way, since the simple transcoder composed of a cascade pro-
cess is not feasible as it would be repeating an encoding process without
taking advantage of the decisions made by the previous standard,
resulting in a high computational cost [13]. At the time of writing this
proposal, to the best of the authors’ knowledge, there are no proposals
from other authors involving transcoding from HEVC to VVC.

In 2018, J.-F. Franche and S. Coulombe presented a fast algorithm
for H.264-to-HEVC video transcoding [14]. This approach presents
a motion propagation algorithm that creates a motion vector (MV)
candidate list, where the best candidate is selected at the prediction
unit (PU) block. Thanks to the estimation of the prediction error of
each candidate and the use of this information in different partitions,
some redundancies are avoided in the encoding process. Then, a fast
mode decision method based on a post-order traversal of the CTU is
introduced, including several mode reduction techniques. This proposal
is 11.77× faster, with a compression penalty of 3.82%, on average
respect to the cascaded pixel-domain approach.

In the same year as the above proposal, another work on transcod-
ing between H.264 and HEVC was presented [15]. In this case, it
was based on exploiting the spatial and temporal information of the
bitstream coming from H.264, designing a Bayesian rule in which
different elements such as motion vectors, dividing depths and bit
allocations accelerate the decisions for the CU size and partitioning
mode in HEVC. For the RA scenario, the authors achieved time savings
of 61%, introducing a BD-rate penalty of 3.50%.

In 2019, A. Borges et al. presented a proposal for transcoding
between HEVC and AV1 [16], which is the royalty-free codec designed
by the AOMedia group [17]. In this work, the solution infers decisions
in the encoding process of AV1 by inheriting the decoded CU size in-
formation from the HEVC bitstream. As the smallest block size allowed
in AV1 is 4 × 4 pixels, a depth level map is processed to generate
each 4 × 4 region of a frame in HEVC. Then, this depth level map is
imported in AV1 to constrain the encoding process according to the
HEVC partitioning. The proposal achieves time savings of 35.41%, and
a BD-rate penalty of 4.54% is introduced.

In 2021, an algorithm based on block partitioning inheritance for
VP9-to-AV1 transcoding was presented [18]. VP9, which is the en-
coder developed by Google, has been constantly improved over the
last decade, and is considerably better than its predecessor, VP8 [19].
In this proposal, the algorithm relies on the reuse of the VP9 block
partitioning during the AV1 re-encoding process. The idea is based on
a statistical analysis showing the correlation between the block sizes
adopted by VP9 and AV1. The authors achieve a 28% reduction in the
encoding time by reducing the time taken by AV1 to find the best block
partitioning. In terms of BD-rate, it results in a compression penalty of
4%.

Finally, the first HEVC-to-VVC transcoding algorithm was presented
by the authors in 2021 [11], but it only tackles the QT partitioning. The
algorithm first starts with a Naïve-Bayes classifier at the first depth level
and then carries out the remaining QT decisions based on the QT par-
titioning used in HEVC. However, the BT and TT partitioning decisions
are left to the VVC encoder. Despite this, when used in conjunction
with the early techniques implemented in VTM, the proposed algorithm
achieves time savings of 44.07% with a BD-rate penalty of 2.11%, and
when the QT partitioning is used as is from HEVC, the time reduction
increases up to 57%, whereas the BD-rate also increases to 2.40%.

To conclude this section, it is important to mention that the release
of the VVC standard has given way to a large number of fast encoding
proposals, many of them compatible with a transcoder such as the one
presented in this work. Some of these proposals focus on the parti-
tioning, such as in [20], where edge detection is used to skip vertical
or horizontal partition modes in intra coding and the prediction of
object motion during three frames is used to accelerate inter encoding.
In this context, in [21] the acceleration of the partitioning is focused
on the new TT structure of VVC, where the features extracted by
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edge detection is utilized to make fast decisions about the TT splitting
decision and its direction.

There has also been a growth in the use of convolutional neural net-
works (CNN) and other machine learning techniques for fast encoding
in VVC compared to HEVC publications. In this sense, a CNN-based fast
inter coding method is presented in [22], where a multi-information
fusion CNN model is proposed to early terminate the CU partition
by jointly using multi-domain information. There are also CNNs for
specific partitioning levels, such as the one described in [23], where
the 128 × 128 pixel partitioning level is targeted by a CNN to decide
whether to stop the partitioning, split and continue in QT or split and
continue in BT/TT partitions.

Due to the transcoding algorithms studied in the literature are
specifically designed for the video coding standards involved in each
work, they are not applicable to our transcoding scenario from HEVC
to VVC. Therefore, the development of this VVC transcoding algorithm
is opening new lines of work in this area of research.

3. Technical background

This section summarizes the new features of VVC, with respect to
HEVC, as defined by the version used during the development of this
proposal [24]. It should be noted that, although the latest version
of the standard included some other additions, the partitioning has
not been modified. This means that the algorithm is suitable for any
VVC-compliant encoder implementation.

HEVC partitioning is based on CTUs of up to 64 × 64 pixels, which
can be recursively divided by the QT partitioning into four CUs down
to 8 × 8 pixels. The CUs are then encoded using either intra-picture or
inter-picture prediction. Finally, one or more PUs can be contained in
a block, which is encoded using a QT of transform units (TUs).

In VVC, the CTU size is increased to 128 × 128 pixels, and the
partitioning structure is extended through the use of the multi-type tree
(MTT), which allows for a more flexible and adaptive partitioning of
the image. As can be seen in Fig. 1, MTT employs two stages to adapt
to the local characteristics of the frame input block:

• Firstly, the QT structure is carried out, where a CU can be divided
into four square-shaped blocks of equal size recursively.

• Secondly, the QT leaf nodes can be split by horizontal and vertical
blocks using the BT and TT structures, except for 128 × 128 pixel
QT leaf nodes, for which only the BT is allowed.

In the inter prediction module, VVC includes several new features.
One of them is the VVC affine motion compensated prediction, in
which two motion compensation models are used. The subblock-based
temporal MV prediction (SbTMVP) tool is similar to the temporal
MV prediction (TMVP) technique of HEVC, including improvements
in its implementation. Also, the adaptive MV resolution (AMVR) tech-
nique allows the encoding of the MVs in units of four-luma-sample,
integer-luma-sample or quarter-luma-sample. With respect to the intra
prediction module, the main novelty lies in the extension to 65 pre-
diction modes from the 33 used in HEVC, allowing VVC to adapt to
the characteristics of the image, although the Planar and DC modes
have not been modified. Finally, the main novelties in the remaining
modules are the modifications to the transform, where a multiple
transform selection (MTS) is implemented in VVC. MTS allows the
encoder to choose among a set of different transform functions, namely
DCT-II, DCT-VIII and DST-VII. Lastly, a high-precision MV storage is
used, with up to 1/16 fraction accuracy for merge, affine and MV
storage.
3

Fig. 1. MTT partition scheme of a CTU in VVC.

4. Partitioning decision algorithm

In this section, the design of the full HEVC-to-VVC transcoding
algorithm is described. Its objective is to replace the exhaustive search
of block partitioning, speeding up the decision-making of the transcoder
at all the partitioning levels. As shown in Fig. 2, the algorithm is divided
into three stages:

• Stage 1: a Naïve-Bayes classifier is applied at the 128 × 128 level
to decide whether the block must be divided into 4 sub-blocks in
QT, or the QT partitioning should end at the first level.

• Stage 2: if the decision is to split in QT at Stage 1, we take
advantage of the HEVC bitstream to provide the QT partitioning
decisions for the remaining levels.

• Stage 3: when QT partitioning is completed, a new Naïve-Bayes
model is applied to decide whether or not the BT and TT struc-
tures must be evaluated.

4.1. Stage 1: Classifier applied at the block level of 128 × 128 pixels

Since VVC has been designed for ultra-high resolution, it was nec-
essary to extend the maximum CTU size to 128 × 128 pixels, while
the maximum size for HEVC was 64 × 64 pixels. In other words, there
is no direct relationship at the first level of partitioning between the
two standards. However, a study on the percentage of times that the
128 × 128 pixel block is not further split into CUs reveals its impact on
the encoding. Table 1 shows the percentage of unsplit blocks in high-
resolution video sequences according to the quantization parameter
(QP) [12], in which it can be seen that most blocks finish their QT
partitioning at the 128 × 128 pixel block level in low bit-rate scenarios.
For this reason, the proposed transcoding algorithm makes use of a
Naïve-Bayes model that predicts when the QT partitioning should end
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Fig. 2. Proposed HEVC-to-VVC transcoding algorithm.

at the first depth level, saving a large amount of computational time
by skipping the QT at lower levels.

To develop the classifier, a large amount of valuable information
from the HEVC bitstream has been analyzed following a knowledge
discovery from data (KDD) approach [25]. In this process, the frames
and their corresponding residual information are obtained from the
HEVC bitstream, and then they are divided into 128 × 128-pixel blocks
to extract information which describes the local characteristics of the
blocks. Taking advantage of this information, which has been processed
using machine learning techniques, a classifier that speeds up the
transcoder partitioning decisions has been developed for the 128 × 128
pixel blocks. If the decision is to split, the block is divided into 4 sub-
blocks of 64 × 64 pixels each. Therefore, the total computational time is
reduced, since the evaluation of the current 128 × 128 pixel block and
corresponding BT partitions is skipped. On the contrary, if the classifier
decides not to split the 128 × 128 pixel block, the QT is skipped for the
lower levels.

4.1.1. Data understanding
The features and statistics selected to develop the model for Stage

1 of the proposal are described in this subsection. This information
4

Table 1
Percentage of unsplit blocks per QP and class in VVC.

Sequence class Unsplit 128 × 128 blocks (%)

QP22 QP27 QP32 QP37

Class A1 9.81 23.01 31.61 40.57
Class A2 15.44 32.84 46.81 59.07
Class B 10.07 25.28 39.18 53.93
Class E 48.41 65.72 75.64 82.96

describes the characteristics of the block, trying to find the correlation
between the block texture and an efficient partitioning:

• Average of the block (𝑥): the complexity of the texture can be
described with the average of the samples of the 128 × 128 pixel
block.

• Variance of the block (𝜎2): variance of the samples of a block of
size 128 × 128 pixels.

• Variance of the means in sub-blocks (𝑉𝑀): QT partitioning di-
vides a block into four sub-blocks of equal size. Thus, it is useful to
have information about these sub-blocks by dividing a 128 × 128
pixel block into four sub-blocks of size 64 × 64 pixels. The mean
of the samples of each 64 × 64 pixel block is calculated, and then
the variance of these means.

• Variance of the variances in sub-blocks (𝑉 𝑉 ): similar to 𝑉𝑀 , the
128 × 128 pixel block is divided into four blocks of size 64 × 64
pixels. In this case, the variance of the samples of each 64 × 64
block is calculated, and then the variance of these variances.

• Fisher coefficient of skewness (𝛾): the symmetry of a set of values
with respect to the average can be evaluated with this metric. To
calculate 𝛾, the following expression is satisfied, where 𝑃 is the
value of each sample and 𝑁 is the total samples of the 128 × 128
pixel block.

𝛾 =
∑𝑁

𝑖=1(𝑃𝑖 − 𝑥)3

𝑁 ⋅ 𝜎3

• Mean absolute deviation (𝑀𝐴𝐷): this feature indicates the
amount of deviation that occurs around the mean in a set of
values by calculating the average distance between each value
and the central value:

𝑀𝐴𝐷 =
∑𝑁

𝑖=1
|

|

𝑃𝑖 − 𝑥|
|

𝑁

• Number of zero values (𝑍): the complexity of the prediction for
a block can be estimated with the number of zero values in its
residual block of 128 × 128 pixels.

• Coefficient of kurtosis (𝛽): this defines how sharply the tails
of a distribution differ from the tails of a normal distribution,
depending on how the values are distributed around the average,
so that a greater 𝛽 implies a higher concentration of values close
to the average. This is the expression that satisfies:

𝛽 =
∑𝑁

𝑖=1
(

𝑃𝑖 − 𝑥
)4

𝑁 ⋅ 𝜎4
− 3

• Spatial index (𝑆𝐼): allows to evaluate the complexity of the tex-
ture of a block using the Sobel filter (𝑆𝐹 ), so it can be determined
whether it is a homogeneous region of the image. The 𝑆𝐹 is the
convolution (∗) of the Sobel matrices, as indicated below, with
a 3 × 3 matrix, 𝐴𝑝, surrounding the pixel to which the filter is
being applied. The 𝑆𝐼 is calculated as the standard deviation of
the pixels contained in the 128 × 128-sized block after applying
the 𝑆𝐹 .

𝑆𝐹𝑥 =
⎡

⎢

⎢

−1 0 1
−2 0 2

⎤

⎥

⎥

∗ 𝐴𝑝

⎣−1 0 1⎦
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Table 2
Features calculated in blocks of 128 × 128 pixels.

Feature Description

𝑥 Average of the samples of the residual block
𝜎2
𝑅𝑒𝑠 Variance of the samples of the residual block

𝜎2
𝑅𝑒𝑐 Variance of the samples of the reconstructed block

𝑉𝑀 Variance of the means in sub-blocks of the residual block
𝑉 𝑉 Variance of the variances in sub-blocks of the residual block
𝛾𝑅𝑒𝑠 Fisher coefficient of skewness of the residual block
𝛾𝑅𝑒𝑐 Fisher coefficient of skewness of the reconstructed block
𝑀𝐴𝐷𝑅𝑒𝑠 Mean absolute deviation of the residual block
𝑀𝐴𝐷𝑅𝑒𝑐 Mean absolute deviation of the reconstructed block
𝑍 Number of zero values in the residual block
𝛽𝑅𝑒𝑠 Kurtosis coefficient of the residual block
𝛽𝑅𝑒𝑐 Kurtosis coefficient of the reconstructed block
𝑆𝐼 Spatial index of the reconstructed block
𝐶 Cost in bits to encode the block in the HEVC stream
𝑃 Number of pixels contained in a frame
𝜆 Lambda value used to encode the block

𝑆𝐹𝑦 =
⎡

⎢

⎢

⎣

−1 −2 −1
0 0 0
1 2 1

⎤

⎥

⎥

⎦

∗ 𝐴𝑝

𝑆𝐹𝑝 =
√

𝑆𝐹 2
𝑥 + 𝑆𝐹 2

𝑦

𝑆𝐼 = 𝜎(𝑆𝐹𝑖)

• Cost in bits of a block (𝐶): with the amount of bits required to
encode the block in the HEVC bitstream, the complexity of the
prediction can be estimated.

• Number of pixels (𝑃 ) in the frame (width × height) of the se-
quence.

• The lambda (𝜆) value of the frame encoding: since 𝜆 depends on
the QP and the temporal layer of the frame according to the group
of pictures (GOP), its value can be obtained directly from VVC.

Certain features are calculated for both the residual information and
the reconstructed image of the 128 × 128 pixel block. For this reason,
Table 2 provides a summary of the notation used in the document.

4.1.2. Dataset creation
To learn the Naïve-Bayes model, we start from a limited set of

video sequences, specifically those that are laid out by the JVET in
a common testing conditions document [12]. The main advantage of
using these sequences is that they contain different scenarios, so this
broad spectrum of use cases ensures that the model will be applicable to
different contexts. The sequences are divided into classes according to
their resolution: Class A1 (3840 × 2160 pixels), Class A2 (3840 × 2160
pixels), Class B (1920 × 1080 pixels), Class C (832 × 480 pixels), Class
D (416 × 240 pixels) and Class E (1280 × 720 pixels).

Due to the limitation on the number of sequences, the dataset to
train the model was created by using one sequence per class, according
to their temporal index (TI) and spatial index (SI) [26], which are
represented in Fig. 3. With this criterion, a wide range of textures and
content is covered, where the chosen sequences are: Campfire (Class A),
BasketballDrive (Class B), BQMall (Class C), BQSquare (Class D) and
KristenAndSara (Class E). However, with the aim of homogenizing the
number of instances per class and avoiding overfitting to the higher
resolution sequences, 1000 instances per temporal layer and sequence
were selected. These instances come from the encodings of each se-
quence for QP values 22, 27, 32 and 37, as defined in the JVET test
conditions document, in frames B of the RA scenario. The instances not
used for training and those corresponding to the remaining sequences,
were left for the validation process.

Once the instances are obtained from the HEVC bitstream, given
that this is a classification problem (i.e., supervised learning), the
5

Fig. 3. SI and TI of the test sequences. Classes: A (Red), B (Yellow), C (Green), D
(Black) and E (Purple).

dataset needs to include the actual decision of the VVC encoder so
that the model can learn whether the 128 × 128 pixel block should
be split or not. This new attribute is called class, which is the element
to be predicted by the classifier. To obtain the class, the sequences were
encoded under VTM v2.0.1 [27], where the value 1 was used when a
block was split in QT in VVC, and 0 otherwise.

With the selection of instances discussed above, nearly 6 million
instances are available in our dataset, of which 1.40% were used in the
learning phase, and the remaining (98.60%) were left for validation.

4.1.3. Learning the Naïve-Bayes model
The instances described in the previous section are used in a data

process to generate the decision model in a machine learning tool called
WEKA [28]. Fig. 4 depicts the different stages of this process for the
creation of the Naïve-Bayes model. A Bayesian classifier was chosen
because the model can be learnt in linear time, i.e., (𝑁𝑛), where
𝑁 is the number of instances and 𝑛 the number of features (which
is constant and much smaller than N) [29]. In addition, it is linear
in its classification stage, i.e., (𝑛), being one of the fastest classifiers
available (it should be noted that 𝑛 is constant, since the number of
features is known). Bayes classifiers aim to classify an event (class
𝑌 ) from other events that are independent of each other (variables
{

𝑋1,… , 𝑋𝑁
}

), satisfying the expression:

𝑃 (𝑌 |𝑋1,… , 𝑋𝑁 ) ∝ 𝑃 (𝑌 ) ⋅ 𝑃 (𝑋1|𝑌 )…𝑃 (𝑋𝑁 |𝑌 )

To measure the performance of the model as it progresses through
the stages shown in Fig. 4, an accuracy metric was used that satisfies
the following expression:

Accuracy (%) =
True positives + True negatives

Total number of instances ⋅ 100

Without preprocessing, the classifier would obtain an accuracy of
only 79.01% over the training set. However, the input features are
continuous quantitative variables, while Naïve-Bayes achieves better
results for categorical variables. For this reason, the attributes are
grouped into intervals whose range varies according to their contribu-
tion to the class attribute by a process of supervised discretization [30],
increasing the accuracy of the model up to 84.42%.

The next step is to eliminate redundant information or information
that does not provide information about the class. To do this, a forward
selection was carried out using the Wrapper method [31]. This method
consists of an iterative process that starts with an empty set, and in
each iteration the variable that contributes most to the class is added,
until reaching an iteration that does not improve the results of the
previous iteration. When applying this method to our dataset, the
Wrapper algorithm stops at the third iteration, since the set formed
by the features 𝐶 and 𝛽 in the second iteration obtains an accuracy
𝑅𝑒𝑐
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Fig. 4. Data processing and model generation flowchart.

Table 3
Accuracy per sequence class and QP of the Naïve-Bayes classifier
at the 128 × 128 pixel level.

Sequence class Accuracy (%)

QP22 QP 27 QP 32 QP 37

Class A1 96.24 91.33 90.06 89.76
Class A2 91.90 85.30 83.83 85.73
Class B 94.30 88.66 85.85 86.24
Class C 97.64 95.23 92.96 90.05
Class D 99.13 95.44 89.92 87.69
Class E 88.47 90.33 92.32 94.37

Average 94.86 90.98 88.89 88.64

of 92.34% and there is no subset of three variables that improves it,
finishing the algorithm.

The process performed demonstrates the importance of preprocess-
ing the input dataset. To confirm the performance of the classifier, we
evaluated it on all the remaining instances, i.e., the test set. Table 3
shows the results according to the sequence class and QP in order to
verify that the model performs well in all situations, meaning that there
is no overfitting to any sequence class. Thus, it can be seen that an
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accuracy of around 90% is achieved in all situations, with slightly better
results in low QP scenarios.

4.2. Stage 2: HEVC-assisted QT decisions

In Stage 1, the proposed model decides whether or not to split the
first partitioning level in QT, i.e., the blocks of size 128 × 128 pixels.
If the classifier predicts not to split, the QT structure is finished and
the current block can be encoded at this level or split using the BT
structure. However, if the decision is to split, VVC would continue
an exhaustive search for square blocks from 64 × 64 to 8 × 8 pixels.
Taking advantage of the fact that these partitioning levels were already
evaluated in HEVC, we can save computational time by adopting the
decisions that HEVC already made in our transcoder.

Regarding the implementation of this stage in the transcoding ap-
proach, fast checks performed by VVC on the square blocks were
disabled, in order to replicate the same structure in QT of HEVC from
64 × 64 pixel blocks to lower levels. These early termination techniques
are useful in a VVC encoding environment. However, in a transcoding
scenario, where these blocks were already analyzed in HEVC through
an exhaustive rate–distortion optimization procedure, we can take ad-
vantage of this analysis by ignoring these early termination techniques,
leaving fewer partitioning levels to be evaluated in BT and TT.

Once the HEVC square block structure is replicated, the QT parti-
tioning ends, giving way to the evaluation of the block into horizontal
and vertical sub-blocks using the new BT and TT partitions of VVC. In
the next stage, a new model that decides whether or not it is efficient
to implement these partitioning structures is introduced.

4.3. Stage 3: Classifier applied to the QT leaf blocks

The BT and TT structures of VVC make use of horizontal and
vertical partitions to adapt to the local characteristics of the image
more accurately. A Bayesian model was implemented to save time by
skipping the BT and TT schemes. This model decides whether to finish
partitioning at the current block level or to continue evaluating the
horizontal and vertical partitioning blocks of the BT and TT structures.
However, since the blocks are smaller compared with the classifier
used in Stage 1, the number of features was increased with respect
to the model of Stage 1 in order to try to capture the block details.
Subsequently, a cost analysis was performed to minimize the impact
of errors in this model. The following subsections explain the process
carried out in this stage.

4.3.1. Data understanding
With respect to the model applied at the 128 × 128 pixel level,

the amount of statistical information obtained for each instance was
substantially increased. It should be taken into account that, in addition
to the current block, it is necessary to analyze the features of the
two horizontal blocks in BT, the two vertical blocks in BT, the three
horizontal blocks in TT and the three vertical blocks in TT, making a
total of 11 features for the following statistics: 𝑥, 𝜎2𝑅𝑒𝑐 , 𝛾𝑅𝑒𝑐 , 𝑀𝐴𝐷𝑅𝑒𝑐 ,
𝛽𝑅𝑒𝑐 and 𝑆𝐼 . The remaining features used are:

• Dimensions (width and height) of the block.
• Temporal layer of the frame in which the current block is con-

tained.
• QT depth of the block.
• 𝑃 and 𝜆, in the same way as the Stage 1 model.
• Variance of means and variance of variances of the samples

by sub-blocks. For example, in horizontal BT, the mean of the
samples of the upper horizontal sub-block and the mean of the
samples of the lower horizontal sub-block are obtained, and the
variance of these values is calculated. The same is done for all
other possible partitionings and for the variance.
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Table 4
Distribution of instances (%) in the initial confusion matrix
of the Stage 3 classifier.

Predicted

Skip BT/TT Check BT/TT

Actual Skip BT/TT 75.53% 6.67%
Check BT/TT 5.49% 12.31%

• Since Stage 2 ends with the corresponding HEVC CU in QT, we
obtained information about this block from the HEVC bitstream.
This information corresponds to the size of the PUs, whether its
encoding was inter or intra, and the number of bytes required for
its encoding. It is foreseeable that this information will be very
useful in the new model. On the one hand, a 2N×2N PU may
indicate that no further partitioning of the block is necessary. On
the other hand, the cost of encoding the current block in HEVC
was one of the features chosen in the model of Stage 1.

4.3.2. Model generation
The process carried out to generate the model is similar to the

process carried out for Stage 1 (see Fig. 4), with a subsequent cost
analysis. Using the same sequences to obtain the training set instances,
we obtained the features described in the previous subsection for 1000
instances per temporal layer, QT depth and sequence, each sequence
being encoded using the QP values 22, 27, 32 and 37.

Once the feature discretization and selection had been performed,
the Wrapper algorithm selected a subset of 11 variables: width and
height of the block, QT depth, 𝑃 , 𝜆, 𝛾𝑅𝑒𝑐 of the middle block in hori-
zontal TT partitioning and of the right block in vertical TT partitioning,
𝛽𝑅𝑒𝑐 of the middle block in vertical TT partitioning, the variance of the
variances of the samples in horizontal TT partitioning, PU partitioning
of the CU in HEVC, and the cost in bytes required to encode the block
in HEVC.

With these variables, the Naïve-Bayes classifier is able to achieve an
accuracy of 87.84%. However, when looking at the confusion matrix
shown in Table 4, we can see that the errors are homogeneously
distributed (around 6%) in each of the two possible prediction errors.
The impact of these two errors is not the same in terms of coding
efficiency and encoding time. A false negative, that is, deciding to skip
the BT and TT because of a prediction error has a high penalty in
compression, since we are stopping a square block from being divided
horizontally or vertically to adapt to the characteristics of the image,
causing a costly block prediction. On the contrary, a false positive
means checking BT and TT when it would not have been necessary
because the compression efficiency is not improved. For this reason, the
next subsection details the cost analysis performed to tune the decision
model.

4.3.3. Cost analysis of the classifier
In order for this model to have the least possible impact on com-

pression, it is necessary to increase the threshold of not splitting the
QT leaf block by BT and TT. In this way, we allow the new BT and TT
structures to be skipped in the appropriate blocks. For this purpose,
two modifications were made to the model, described in the next
paragraphs.

Firstly, a cost analysis was developed to minimize the impact of the
false negatives. This analysis shows that the normalized probability of
the decision to skip BT and TT partitioning must be greater than the
0.82 threshold to obtain the lowest impact on this prediction error, as
shown in Fig. 5. In this sense, the cost refers to the BD-rate penalty
introduced by the classifier, while the benefit is related to the time
saved in decision-making with respect to the traditional brute-force
scheme.

However, this modification implies an increase in false positives
where BT and TT partitioning is predicted to be checked when it should
7

Fig. 5. Cost/Benefit of decision to skip BT/TT partitioning based on the threshold
value.

Table 5
Distribution of instances (%) in the final confusion matrix
of the Stage 3 classifier.

Predicted

Skip BT/TT Check BT/TT

Actual Skip BT/TT 65.76% 16.44%
Check BT/TT 1.57% 16.23%

not be evaluated, as can be seen in Table 5 with the new classifier
confusion matrix. This problem was solved at the time of algorithm
implementation, allowing that when the model decision is to check BT
and TT, the cost of the current block is also evaluated. Thus, if that cost
is greater than not using BT or TT splitting, the same result as in the
case of deciding to skip them will be obtained.

In summary, the classifier will perform a correct prediction in
65.76% of the blocks, resulting in time savings, and will only produce
a compression penalty in 1.57% of the cases. In the remaining 32.67%
blocks, there will be neither coding time savings nor penalization, since,
as the established threshold is not exceeded, the usual VVC encoding
flow is maintained.

5. Performance evaluation

This section presents the results of the proposal, previously in-
troducing the procedure to evaluate its performance and the testing
environment in which the simulations were carried out.

5.1. Transcoding procedure and setup

We used the video sequences specified in the common test condi-
tions document by the JVET [12]. Each of these sequences was encoded
using 10 bits per sample encoding and 4:2:0 chroma subsampling for
QP values 22, 27, 32 and 37, in the RA, LB and LP scenarios.

First, the sequences are encoded and decoded in HEVC
(HM v16.16 [10]). During the decoding process, the information nec-
essary for the three stages of the proposed algorithm is extracted,
while obtaining the sequences in raw format. Then, the sequences are
encoded in VVC (VTM v2.0.1 [27]) in order to extract the partitioning
decisions for the classifiers. Finally, the transcoding algorithm has been
implemented in VVC (VTM 17.0 [7]). Therefore, the video sequences
have been encoded in the original VTM 17.0 encoder and with the
proposal in order to obtain the results in terms of coding efficiency
and acceleration of the transcoding process.

The tests were carried out on a hardware platform consisting of 37
nodes with an Intel® Xeon® E5-2630L v3 CPU and 16 GB of main
memory, running at 1.80 GHz with Turbo Boost disabled to ensure
reproducibility.
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Table 6
Time saved in the transcoding process of the proposed HEVC-to-VVC transcoder.

Class Sequence Random access Low delay B Low delay P

BD-rate (%) TR (%) BD-rate (%) TR (%) BD-rate (%) TR (%)

A1

Tango2 2.52 45.52 3.22 49.73 3.30 47.73
Drums100 3.62 45.18 4.31 47.61 4.74 46.92
Campfire 2.38 53.45 2.83 51.91 3.15 50.95
ToddlerFountain2 0.79 37.13 0.62 39.66 0.45 38.97

A2

CatRobot 3.85 49.10 6.62 52.35 6.37 51.24
TrafficFlow 0.28 32.18 3.16 39.47 3.51 38.60
DaylightRoad2 1.77 50.25 3.25 54.45 3.83 52.64
Rollercoaster2 2.27 46.45 2.47 45.36 2.14 43.39

B

Kimono 1.15 39.50 1.79 44.94 1.91 45.18
ParkScene 1.10 45.60 3.00 54.10 3.16 51.30
Cactus 1.48 47.19 3.00 53.06 2.60 51.45
BasketballDrive 1.99 50.85 2.32 51.60 2.41 50.85
BQTerrace −1.49 37.96 2.11 44.28 0.76 46.54

C

BasketballDrill 1.99 51.14 2.30 51.37 2.28 49.54
BQMall 2.80 49.94 3.77 52.59 3.47 50.03
PartyScene −0.01 52.08 1.40 54.32 0.86 50.95
RaceHorsesC 2.16 55.46 1.79 55.45 1.48 53.49

D

BasketballPass 2.04 52.95 2.53 52.90 2.36 49.32
BQSquare −1.29 42.09 1.66 50.27 0.18 45.68
BlowingBubbles −0.08 47.89 1.75 52.79 1.39 49.47
RaceHorses 2.40 55.30 2.66 55.88 2.31 51.84

E
FourPeople 1.42 37.80 4.17 46.34 4.05 44.67
Johnny 1.18 29.87 4.90 37.34 5.15 35.60
KristenAndSara 1.55 34.72 4.78 40.26 4.89 39.08

Class A1 2.33 45.32 2.75 47.23 2.91 46.14
Class A2 2.04 44.50 3.88 47.91 3.96 46.47
Class B 0.85 44.22 2.44 49.60 2.17 49.06
Class C 1.74 52.16 2.32 53.43 2.02 51.00
Class D 0.77 49.56 2.15 52.96 1.56 49.08
Class E 1.38 34.13 4.62 41.31 4.70 39.78

Average 1.50 45.40 2.93 49.08 2.78 47.31
5.2. Experimental results

Table 6 shows the time savings with respect to the MTT partitioning
and the BD-rate results achieved by the proposed algorithm for each
sequence and class. These results are shown for the RA, LB and LP
scenarios. It is important to note that the overhead introduced by the
algorithm is less than 0.1%, which is included in the times shown
in Table 6, so we can conclude that the impact of the algorithm is
negligible compared with the time savings achieved by the proposal.

Regarding the coding efficiency results in the RA scenario, it can
be seen that we introduce a penalty of only 1.50% on average in
terms of BD-rate, which is a small penalty compared with the high
computational cost of 45.40% that is reduced in the transcoding process
compared with a traditional cascaded transcoder. Two main conclu-
sions can be drawn from these results. On the one hand, the Naïve-
Bayes models applied in Stages 1 and 3 are effective, where prediction
errors have a minor impact. On the other hand, Stage 2 takes the
decisions in QT of HEVC, producing a different partitioning than VVC
would obtain with the new coding tools.

We can also observe some cases in which the transcoder obtains a
better encoding efficiency. This is due to the fact that throughout the
development of VTM, new coding tools have been implemented that
can alter the partitioning tree. Since these techniques are ignored to
respect the decision of the classifiers in Stages 1 and 3, and of HEVC
for the case of QT partitioning in Stage 2, a different partitioning tree is
generated than that of the baseline transcoder, which shows that VTM
does not always get the most optimal compression decision. In the same
way, the results for the LB and LP scenarios are similar in terms of time
savings compared with the RA configuration.

With respect to time savings, we can see that the values are similar
between sequences and classes around the average. Thus, we can
conclude that the algorithm works properly in different scenarios, with
no overfitting in its development. On the contrary, as far as coding
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efficiency is concerned, it can be seen that the penalty introduced is
more diverse between sequences with respect to the average per class
to which they belong. Given that the models developed using the Naïve-
Bayes classifier reached an accuracy of 92.34% in Stage 1, and in
Stage 3 only 1.57% of the cases entail penalties, we can deduce that
the main impact on BD-rate is introduced in Stage 2. Therefore, we can
conclude that the HEVC QT partitioning is a suboptimal solution when
applied to VVC, producing more or less effective results which may
even produce gains in compression, as in the case of the BQTerrace,
PartyScene, BQSquare and BlowingBubbles video sequences.

To understand how the algorithm works, Fig. 6 shows a visual com-
parison of the partitioning of the different schemes involved. For this
purpose, the partitioning of original HEVC encoded stream, cascaded
HEVC-VVC transcoded stream (baseline), and the transcoded stream
generated by the proposed algorithm have been represented, showing
a portion of the second frame of the Cactus sequence, encoded with
QP 32 in the RA scenario. If we focus on the first partitioning level,
we can see that HEVC starts its partitioning with 64 × 64 pixel blocks,
while VVC starts with 128 × 128 pixel blocks. If we compare Figs. 6(a)
and 6(b) at this level, we can see that the model applied in Stage 1
succeeded in its prediction, since the proposed algorithm has decided
not to split in the two blocks of 128 × 128 pixels in the upper part of
the image, and has decided to split in those of the lower part. When
the model decides to split a 128 × 128 pixel block, Stage 2 of the
algorithm is applied, performing the HEVC QT partitioning, as can be
seen in Fig. 6(c), which matches the HEVC partitioning. Finally, the
new Bayesian classifier is applied to decide when to continue with the
BT and TT partitions durante the Stage 3 of the proposal.

5.3. Comparison with state-of-the-art fast encoding methods

As discussed in Section 2, implementing fast encoding algorithms
can also be used to expedite the transcoders. This could be done in
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Fig. 6. Comparison between the partitioning in HEVC, the baseline transcoder and the proposal.
two ways: by directly combining the transcoder described in this work
with state-of-the-art proposals that affect other encoder modules or, in
the case of those proposals that influence the partitioning decisions, by
working together to refine the behavior of the classifiers. For this rea-
son, the time reductions of the fast encoding algorithms are comparable
with the transcoder. However, BD-rate penalties cannot be compared as
easily, given that fast encoding algorithms are typically evaluated using
raw sequences as input, whereas the efficiency of transcoding proposals
is assessed using already encoded material. Since the re-encoding of a
video sequence introduces higher BD-rate losses, it is possible to assume
that fast encoding algorithms will result in greater BD-rate penalties in
a transcoding scenario compared to fast encoding.

Table 7 presents the TR of the proposal compared with some state-
of-the-art works described in Section 2, in the RA scenario. This table
shows the time savings achieved per sequence, as well as the average.
To offer a fair comparison of these works with our proposal, Table 7
shows at the bottom the average achieved by our proposal when taking
into consideration only the set of sequences in common with each
related work.

In general, when comparing individual sequences, the acceleration
obtained in this proposal is superior in most cases. An important detail
to note is that although [20–22] have similar time reductions on
average, [22] uses a CNN, reporting an algorithm overhead of 2.14%
in VTM 6.0. This is a relevant cost with respect to the 0.1% required
by the Bayesian transcoder classifiers applied in Stage 1 and Stage 3 of
our proposal. Regarding [23], authors achieve a 9.33% time reduction
by using a CNN at the 128 × 128 pixel level, so it is foreseeable that
the extension of the proposal to more levels will accelerate even more.
However, if we compare this proposal with the time saving obtained by
our Bayesian classifier of Stage 1, i.e., only targetizing the 128 × 128
pixel level, we obtain a time reduction of 13.38%, as shown in [11].
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Other recent approaches are [32,33], both implemented on top of
recent versions of VTM, achieving time savings of 27.85% and 24.42%,
respectively for the RA configuration. However, since these proposals
do not include individual results of each sequence, they were not
considered in the comparison carried out in this section.

6. Conclusions and future work

This paper describes a full transcoding algorithm for partitioning de-
cisions applied in an HEVC-to-VVC transcoder. The proposal is divided
into three stages. Stage 1 consists in a Naïve-Bayes model applied at
the 128 × 128 pixel block level. If this block is split, the remaining QT
levels are taken based on the HEVC bitstream, corresponding to Stage 2
of the algorithm. Finally, Stage 3 employs a new Bayesian model to
decide whether or not to apply the BT and TT structures at the QT leaf
nodes. The cost analysis performed on this classifier has substantially
optimized the performance of this classifier.

The results show time savings in the transcoding process of around
45%–50% on average for all the sequences and scenarios evaluated,
making it one of the fastest transcoders in the literature on heteroge-
neous video transcoding, at the expense of a BD-rate penalty of 1.50%
in the RA scenario, and 2.93% and 2.78% for LB and LP configurations,
respectively. Since this proposal only involves partitioning decisions,
we intend to accelerate other modules of the transcoder as future
work, such as the prediction of intra directional modes. In addition, the
use of machine learning techniques is increasing in the field of video
encoding due to the low impact on computational cost. Thus, different
compatible models could be applied, leading to a joint decision which
could further help in handling the coding efficiency of the transcoding
process.
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Table 7
Time savings (%) of the proposal compared to state-of-the-art methods (RA scenario).

Class Sequence Proposed N. Tang [20] Z. Pan [22] Y. Ciou [21] W. Yeo
[23]

A1

Tango2 45.52 — 38.56 — 25.95
Drums100 45.18 — — — —
Campfire 53.45 — 38.23 44.61 7.36
ToddlerFountain2 37.13 — — — —

A2

CatRobot 49.10 — 36.84 — 25.68
TrafficFlow 32.18 — — — —
DaylightRoad2 50.25 — 35.47 — —
Rollercoaster2 46.45 — — — —

B

Kimono 39.50 41.82 — — —
ParkScene 45.60 31.60 — — —
Cactus 47.19 33.17 29.36 28.27 13.80
BasketballDrive 50.85 42.15 37.28 — 15.65
BQTerrace 37.96 29.47 20.21 — 13.54

C

BasketballDrill 51.14 28.73 29.23 40.31 7.43
BQMall 49.94 33.27 27.48 — 3.99
PartyScene 52.08 35.23 20.80 24.63 2.88
RaceHorsesC 55.46 33.89 26.39 32.11 3.16

D

BasketballPass 52.95 24.33 26.97 34.31 3.37
BQSquare 42.09 23.00 14.86 15.13 3.54
BlowingBubbles 47.89 21.87 22.15 17.86 3.59
RaceHorses 55.30 31.83 24.20 31.93 0.70

E
FourPeople 37.80 26.65 33.77 17.99 —
Johnny 29.87 24.44 35.22 — —
KristenAndSara 34.72 25.32 36.50 16.79 —

Average 45.40 30.42 29.64 27.63 9.33

Average TR (%) of the proposal using the same set of sequences as the related works

N. Tang [20] sequence set → 45.65
Z. Pan [22] sequence set → 46.86
Y. Ciou [21] sequence set → 48.19
W. Yeo [23] sequence set → 46.06
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