
 
 

EXAMPLES OF MODEL CORRELATION WITH  
CLOSELY SPACED MODES 

N. García-Fernández1, F. Pelayo2and M. Aenlle2 

1 PhD Student, University of Oviedo, garciafnatalia@uniovi.es 
2 Professor, University of Oviedo, fernandezpelayo@uniovi.es 
3 Professor, University of Oviedo, aenlle@uniovi.es 

ABSTRACT 

In structural dynamics, two modes with natural frequencies 𝜔𝜔1 and 𝜔𝜔2, respectively, are closely spaced 
if the frequency separation 𝛥𝛥𝜔𝜔 = 𝜔𝜔2 − 𝜔𝜔1 is very small. If 𝛥𝛥𝜔𝜔 = 0, the modes are repeated. On the 
other hand, it is well known that closely spaced modes are highly sensitive to small perturbations of 
mass and stiffness.  

When a system with closely spaced eigenvalues is perturbed, the associated mode shapes are mainly 
rotating in their initial subspace. This means that we can have a good correlation in terms of mass and 
stiffness between the models, but low values of modal assurance criteria (MAC) can be obtained 
because of this rotation. In this case, the individual mode shapes should not be used for correlation using 
the modal assurance criteria (MAC), but the subspaces spanned by the unperturbed and the perturbed 
mode shapes should be correlated.  

If we still want to measure the correlation using MAC, the experimental mode shapes must be 
previously rotated in the subspace in order to get the best correlation between the experimental and the 
numerical mode shapes.  

In this paper, three models with closely spaced modes are studied.  Firstly, an analytical model with 4 
DOF’s and two repeated eigenvalues is perturbed with small mass changes. The other two models are 
experimental models with closely spaced modes which are correlated with two numerical models 
assembled in ABAQUS and ANSYS.  The experimental mode shapes were rotated in the subspace to 
get the best correlation between the models in terms of MAC.  
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1. INTRODUCTION 

1.1. General information 

In structural dynamics, closely spaced modes are defined as modes which are close in frequency [1-3]. 
A rule of thumb to define a set of mode shapes as closely spaced was proposed in [3]. If we consider 
two modes with close natural frequencies 𝜔𝜔1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔2, and frequency distance Δ𝜔𝜔 = 𝜔𝜔2 − 𝜔𝜔1, they can 
be considered closely spaced if:  

𝛥𝛥𝜔𝜔
𝜔𝜔

<
1

1000
 (1)  

where 𝜔𝜔 = 𝜔𝜔1 

The Modal Assurance Criterion (MAC) [4-5] is by far the most widely used technique to compare mode 
shapes. If two vectors 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 and 𝝓𝝓𝑿𝑿𝑿𝑿 , corresponding to a numerical and an experimental model, 
respectively, are compared, the MAC is given by: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹,𝜙𝜙𝑋𝑋𝑋𝑋) =
�𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻 ∙ 𝜙𝜙𝑋𝑋𝑋𝑋�

2

(𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻 ∙ 𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹)�𝜙𝜙𝑋𝑋𝑋𝑋𝐻𝐻 ∙ 𝜙𝜙𝑋𝑋𝑋𝑋�  
 (2)  

where the subindex ‘H’ indicates complex conjugate.  

If a set of mode shapes are compared, a MAC matrix is obtained, which can be presented in different 
formats: matrix, table, 2D or 3D plot. 

Closely spaced modes are highly sensitive to small mass and stiffness perturbations of the system, and 
they mainly rotate in their subspace [1,2,3]. Thus, we can have a good correlation in terms of mass and 
stiffness between the compared models, but low values of MAC can be obtained because of this rotation. 
This means that for closely spaced modes, correlation between different identification estimates or 
between a numerical model and an experimental model, should be calculated between subspaces and 
not between the individual mode shape vectors [2,3].  

According to the structural dynamic modification (SDM) [6], the experimental mode shapes can be 
expressed as a linear combination of the numerical mode shapes, i.e.: 

𝝓𝝓𝑿𝑿 = 𝝓𝝓𝑭𝑭𝑭𝑭𝑻𝑻 (3)  

where 𝑻𝑻 is a transformation matrix. 

If mass normalized mode shapes are used in eq. (3) to estimate the matrix T, it was demonstrated in [2] 
that, in case of closely spaced modes, matrix T is related to the rotation matrix R as: 

𝑻𝑻 = 𝑹𝑹𝑻𝑻 (4)  

In closely spaced modes the mode shapes mainly rotate in a subspace, a measure of the correlation can 
be obtained by means of the maximum angle 𝜃𝜃 between the subspaces defined by the experimental 𝝓𝝓𝑿𝑿 
and the numerical 𝝓𝝓𝑭𝑭𝑭𝑭 closely spaced mode shapes. This angle can be expressed as a MAC value [4,5] 
by: 

𝑀𝑀𝑀𝑀𝑀𝑀 = cos2(𝜃𝜃) (5)  

If the correlation is measured using MAC, the experimental mode shapes must be previously rotated in 
the subspace in order to get the best correlation between the experimental and the numerical mode 
shapes [2,3].  
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D’ambrogio and Fregolent [7] proposed the concept of S2MAC, similar to the MAC between two modal 
vectors, to correlate an experimental mode shape 𝜙𝜙𝑋𝑋 with a linear combination of two numerical closely 
spaced mode shapes 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 and 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭, which is expressed as:  

𝑆𝑆2𝑀𝑀𝑀𝑀𝑀𝑀 = max
𝛼𝛼,𝛽𝛽

�
�𝝓𝝓 𝑿𝑿

𝑯𝑯 (𝛼𝛼𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 + 𝛽𝛽𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭)�2

𝝓𝝓 𝑿𝑿
𝑯𝑯𝝓𝝓𝑿𝑿(𝛼𝛼𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 + 𝛽𝛽𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭)𝐻𝐻(𝛼𝛼𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 + 𝛽𝛽𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭)

� (6)  

If case of normal modes, eq. (6) leads to: 

𝑆𝑆2𝑀𝑀𝑀𝑀𝑀𝑀 =
�𝝓𝝓𝑿𝑿

𝑻𝑻𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭�
𝑭𝑭 − 2�𝝓𝝓𝑿𝑿

𝑻𝑻𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭��𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭
𝑻𝑻 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭��𝝓𝝓𝑿𝑿

𝑻𝑻𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭� + �𝝓𝝓𝑿𝑿
𝑻𝑻𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭�

𝑭𝑭

1 − �𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭
𝑻𝑻 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭�

𝑭𝑭  (7)  

In this paper, three cases with closely spaced modes are studied. Firstly, a 4 DOF system with two 
repeated modes is perturbed with small mass changes. Then, the experimental modal parameters of a 
square laminated glass plate are used for correlating the results of a numerical model assembled in 
ANSYS [8]. Finally, the experimental modal parameters of a symmetric lab-scaled two-floor steel 
frame are compared with those extracted from a numerical model also assembled in ABAQUS [9]. 

2. A SIMULATION CASE 

A 4 DOF system (system U) with two repeated eigenvalues was simulated with MATLAB [10]. The 
natural frequencies and the mode shapes are shown in Tables 1 and 2, respectively. The mass and the 
stiffness matrices were calculated from the eigenvalues and the eigenvectors. However, the solution of 
the eigenvalue problem gives same eigenvalues but a different set of mode shapes (see Table 3). 
Nevertheless, the mode shapes in Table 3 are linear combinations of those shown in Table 2. 

 
Table 1. Natural frequencies of the two simulated systems. 

Frequencies [Hz] 

System U System P Error [%] 
0.4502 0.4408 4.12 
0.4502 0.4479 1.03 
0.5513 0.5409 3.74 
0.6164 0.6060 3.34 

 

Table 2. Mode shapes of system U (original) 

0.3000 0.5000 1.0000 1.0000 
0.8000 1.2000 0.0000 -1.0000 
1.1000 0.1000 -1.0000 1.0000 
1.5000 -1.0000 1.0000 -0.8000 

 

Table 3. Mode shapes of system U (after solution of the eigenvalue problem) 

-0.4507 0.3700 1.0000 -1.0000 
-1.1569 0.8611 0.0000 1.0000 
-1.0696 -0.2757 -1.0000 -1.0000 
-1.0764 -1.4462 1.0000 0.8000 
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This system U was perturbed with small mass changes, the mass change matrix being presented in Table 
4.  The natural frequencies of the perturbed system (system P) are shown in Table 1. 

 

Table 4.Mass change matrix (kg) 

0.0170 0 0 0 
0 0 0 0 
0 0 0.0120 0 
0 0 0 0.0100 

 

The MAC matrix between the mode shapes of both systems (perturbed and unperturbed from Table 3) 
presented in Table 5. As it can be observed, the correlation between the first two modes is very poor. 

 

Table 5. MAC 

0.6979 0.3807 0.0135 0.0233 
0.4990 0.4177 0.0620 0.0082 
0.0660 0.0128 0.9993 0.0509 
0.0272 0.0002 0.0631 0.9985 

 

The rotation matrix presented in Table 7 was estimated from the transformation matrix  𝑻𝑻 obtained 
with eq. (3), and which is shown in Table 6. Mass normalized numerical and experimental mode 
shapes were used to estimate the matrix  𝑻𝑻.  

 

Table 6. T matrix  

0.7390 -0.6522 0.0152 -0.0257 
0.6421 0.7506 0.0141 0.0310 
-0.0138 -0.0001 0.9809 -0.0139 
-0.0007 -0.0217 0.0111 0.9826 

 

Table 7. Rotation matrix 

0.7549 0.6559 
-0.6559 0.7548 

 

This rotation matrix (Table 7) was used to rotate 40.98º the perturbed closely spaced mode shapes by:  

𝝓𝝓𝑹𝑹 = 𝝓𝝓 𝑹𝑹𝑻𝑻 (8)  

in order to obtain the best fit between the unperturbed and the perturbed mode shapes. 

The new MAC obtained after the rotation of the mode shapes is shown in Table 8, where it can be 
observed that a very good correlation exists between both systems, which confirms that the 
discrepancies in terms of mass and stiffness are very low. The angle between the subspaces spanned by 
the closely spaced modes is 1.4727º (MAC=0.9993), which confirms the slight discrepancies between 
the two models. The angle between the first and the second unperturbed mode shapes is 78.4º, whereas 
that between the corresponding perturbed mode shapes is 79.05 º.  
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Table 8. MAC after rotation  

0.9998 0.0383 0.0135 0.0233 
0.0382 0.9995 0.0620 0.0082 
0.0194 0.0764 0.9993 0.0509 
0.0147 0.0186 0.0631 0.9985 

3. A SQUARE LAMINATED GLASS PLATE 

In this section, a square laminated glass plate with dimmensions 1400 x 1400 mm, and consisting of 
two glass layers with thickness 4 mm, and one polymeric interlayer with   thickness 1.14 mm, is studied. 
The plate was fixed to a steel frame at the four corners (see Fig. 1). 

A 3D finite element model was assembled in ANSYS using 20 node structural solid elements of type 
SOLID186 (see Fig. 2). The finite element model was meshed with 19200 elements and 97767 nodes. 
The numerical natural frequencies are shown in Table 9, and as it can be observed, modes 2 and 3 have 
repeated frequencies. The modes shapes are presented in Fig. 3. 

 

 
Figure 1. Data set used in the experiments. 

The natural frequencies and the mode shapes were also estimated with operational modal analysis, The 
responses were measured with 16 accelerometers with a sensitivity of 100mV/g and registered with a 
TEAC LX-120 data recorder with 16 input channels. The plate was excited applying many randon small 
hits across the surface. The natural frequencies estimated with the EFDD (frequency domain 
decomposition) technique are shown in Table 9. 

 
Table 9. Natural frequencies of the laminated glass plate. 

Mode Shapes Experimental 
[Hz] 

Numerical 
[Hz] 

Error 
[%] 

Mode 1 9.35 9.72 3.80 
Mode 2 19.62 21.10 7.01 
Mode 3 19.83 21.12 6.10 
Mode 4 22.53 24.82 9.22 
Mode 5 55.76 56.11 0.62 
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Figure 2. Numerical model. 

 

 
Figure 3. Numerical mode shapes 

The MAC between the experimental and the numerical mode shapes is presented Table 10. As it can be 
observed there is no good correlation between the experimental and numerical models for the second 
the third modes.  

 
Table 10. MAC. 

0.9971 0.0000 0.0000 0.0000 0.0661 
0.0000 0.5990 0.5099 0.0001 0.0002 
0.0001 0.3965 0.4896 0.0000 0.0007 
0.0000 0.0000 0.0002 0.9996 0.0000 
0.0976 0.0001 0.0000 0.0000 0.9862 

 

It can be seen Figure 4 that modes 2 and 3 are physically rotated, which explains the bad correlation 
between these two modes. 

From the transformation matrix 𝑻𝑻 (see Table 11), the rotation matrix shown in Table 12 was obtained 
using the same procedure presented in section 2. Mass normalized numerical mode shapes and 
experimental mode shapes normalized to the largest component equal to unity were used to estimate 
the matrix 𝑻𝑻.  From Table 12 it is inferred that the rotation angle is approximately 42.5º. 
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Figure 4. Numerical and experimental mode shapes 2 and 3 

 
Table 11. 𝑻𝑻 matrix. 

1.4818 0.0063 -0.0065 -0.0006 0.0414 
0.0018 0.9253 -0.8563 0.0111 0.0178 
-0.0107 0.7523 0.8395 -0.0039 0.0313 
-0.0011 0.0064 -0.0140 -0.9801 0.0005 
-0.0327 0.0101 -0.0041 0.0011 1.0582 

 
Table 12. Rotation matrix. 

0.7379 0.6479 
-0.6479 0.7379 

 

Finally, the MAC between the rotated experimental mode shapes and the numerical mode shapes (Table 
13) show a very good correlation between the two models. 

An alternative to MAC is to calculate the angle between the subspaces spanned by the closely spaced 
modes. It is also interested to know if there is a relative deviation between the closely spaced 
eigenvectors (perfect rotation means no deviation). For this example, the angle between the subspaces 
spanned by the second and the third modes is 3.8203º (MAC= 0.9956). With respect to the angle 
between the second and the third numerical mode shapes, they are perfectly orthogonal (angle 90º), 
whereas in the experimental system the angle is 89.158º. These values confirm the good correlation 
between the two models in terms of mode shapes. 

 
Table 13. MAC after rotation. 

0.9971 0.0000 0.0000 0.0000 0.0661 
0.0000 0.9965 0.0000 0.0001 0.0002 
0.0001 0.0001 0.9974 0.0000 0.0007 
0.0000 0.0002 0.0001 0.9996 0.0000 
0.0976 0.0000 0.0000 0.0000 0.9862 

4. A LAB-SCALED TWO-FLOOR STEEL FRAME  

In this section a small symmetric lab scaled steel frame is studied (see Fig.5).  The structure consists of 
four columns with square section 5 x 5 mm2 and length 80 mm, and two square steel floors with 
thickness 5 mm and dimensions 30mm x 30mm. 
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Figure 5. Two-floor steel frame structure. 

A model of the structure was assembled in ABAQUS and meshed with beam elements B33 (columns) 
and quadrilateral shell elements S4R (floors). The numerical natural frequencies are shown in Table 14 
and the mode shapes in Fig 6. 

The experimental modal parameters were estimated with operational modal analysis. The response of 
the structure was measured with 6 accelerometers with a sensitivity of 100mV/g and registered with a 
TEAC LX-120 data recorder. The natural frequencies estimated with the EFDD technique are also 
shown in Table 14. 

 
Table 14. Experimental and natural frequencies 

Mode Shapes Experimental 
[Hz] 

Numerical 
[Hz] 

Error 
[%] 

Mode 1- 1st bending 4.2200 4.2490 0.69 
Mode 2- 1st bending 4.4280 4.2490 4.04 

Mode 3-torsion 7.6735 7.8572 2.39 
Mode 4-2nd bending 11.1262 11.680 4.98 
Mode 5-2nd bending 11.3784 11.680 2.65 

Mode 6-torsion 20.2675 21.401 5.59 
 

Table 15. MAC. 

0.9968 0.0026 0.0017 0.0004 0.0003 0.0000 
0.0042 0.9773 0.3618 0.0001 0.0003 0.0066 
0.0019 0.3708 0.9963 0.0001 0.0000 0.0003 
0.0002 0.0000 0.0001 0.9013 0.0985 0.0346 
0.0000 0.0006 0.0012 0.3132 0.6827 0.2030 
0.0001 0.0022 0.0001 0.0002 0.3515 0.9992 

 

Due to the symmetry of the structure, all the bending modes are repeated (see Fig. 6), i.e.  modes 1 and 
2 has repeated frequencies, and the same for modes 4 and 5. MAC between the numerical and 
experimental mode shapes are presented in Table 15.  

250



 

 

 
Figure 6. Numerical mode shapes. 

 

 
Figure 7. Numerical and experimental mode shapes 4 and 5. 

 

Table 16. 𝑻𝑻 matrix. 

-0.0697 0.0026 -0.0011 0.0001 0.0000 -0.0001 
-0.0040 -0.0610 -0.0020 -0.0001 -0.0002 0.0000 
0.0005 0.0012 0.0196 -0.0001 -0.0002 0.0000 
0.0002 -0.0004 0.0002 -0.0095 -0.0021 -0.0001 
-0.0013 -0.0037 0.0004 0.0044 -0.0045 -0.0002 
0.0002 0.0039 -0.0001 0.0001 0.0001 -0.0043 
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Mass normalized numerical mode shapes and experimental mode shapes normalized to the unit length 
were used to estimate the matrix 𝑻𝑻 (see Table 16), from which the rotation matrix shown in Table 17 
was obtained using the same procedure presented in section 2.  From Table 17 itis inferred that the first 
bending modes were rotated 3.5º and the second bending modes were rotated approximately 24.7º. 

 
Table 17. Rotation matrix 

-0.9981 -0.0580 0.0000 0.0000 0.0000 0.0000 
0.0580 -0.9981 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 -0.9082 0.4183 0.0000 
0.0000 0.0000 0.0000 -0.4183 -0.9082 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

 

It can be seen in Table 18 that the MAC has improved for both the first and the second bending modes. 
The angles between the subspaces spanned by the closely spaced modes are 7.8436º (MAC = 0.9814). 
for modes 1 and 2 and 3.7228º (MAC = 0.9958) for modes 4 and 5. In the numerical model, all the 
bending modes are orthogonal (angle 90º), whereas in the experimental system the angle between the 
first bending modes is 87.65º, and 75.96º between the fourth and fifth modes.  

A relatively low MAC has been obtained between the mode shapes of the fifth modes. On the other 
hand, the fourth and fifth experimental mode shapes are far from orthogonal, as it is the case in the 
numerical model. This can be attributed to discrepancies between the models or to errors in the 
estimation of the mode shapes. 

 
Table 18. MAC after rotation. 

0.9997 0.0001 0.0001 0.0004 0.0001 0.0000 
0.0011 0.9864 0.3652 0.0001 0.0001 0.0030 
0.0013 0.3710 0.9970 0.0001 0.0000 0.0003 
0.0002 0.0000 0.0002 0.9737 0.0259 0.0103 
0.0001 0.0006 0.0004 0.1984 0.8001 0.2510 
0.0001 0.0022 0.0001 0.0002 0.3515 0.9992 

5. CONCLUSIONS 

According to the structural dynamic modification, an experimental system can be considered as a 
perturbation of a numerical model. When a numerical system with closely spaced eigenvalues is 
perturbed, the associated mode shapes are mainly rotating in their initial subspace [1,2,3]. This means 
that low MAC values can be obtained although a good correlation can exist in terms of mass and 
stiffness.  

In order to obtain the best correlation in terms of MAC, the mode shapes have to be previously rotated. 
In this paper, the mode shapes of three models with closely eigenvalues have been successfully rotated 
to obtain the best correlation in terms of MAC. The first model was a simulated case with two repeated 
eigenvalues, which was perturbed with small mass changes. The other two models are experimental 
models with closely spaced modes which are correlated with two numerical models assembled in 
ANSYS and ABAQUS. The results have demonstrated that a good correlation exist between the 
numerical and the experimental models. 
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