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ABSTRACT 

A new concept of length of a continuous mode shape has been recently defined by the authors, which 
depends on the mode shape and how the volume is distributed in the structure. This concept was then 
extended to discrete systems by introducing the concept of a volume matrix. However, finite element 
programs do not provide the lengths of the mode shapes according to this new definition. Moreover, 
the volume matrices cannot be exported from the finite element programs. 

In this paper, an approximate approach is proposed to calculate the length of numerical mode shapes 
from the nodal components. It has been demonstrated that the length can be estimated with a reasonable 
accuracy if small finite elements are used. These new techniques are illustrated by several numerical 
models assembled in ABAQUS.  

The length of numerical mode shapes can be used to estimate the length of experimental mode shapes 
using the structural dynamic modification, which is valuable information to validate the modal masses 
estimated with the existing techniques to determine the modal masses in operational modal analysis. 
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1. INTRODUCTION 

A mode shape is said to be normalized to the unit length if its length is unity. In one-dimensional 
continuous systems, the Euclidean length squared 𝐿𝐿𝐸𝐸𝐸𝐸2  of a function 𝝍𝝍(𝒙𝒙), also known as Euclidean 
norm or 𝐿𝐿2 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, is defined as [1]: 

𝐿𝐿𝐸𝐸𝐸𝐸2 = � |𝜓𝜓(𝑥𝑥)|2𝑑𝑑𝑑𝑑
𝐿𝐿

0
 (1)  

In discrete systems, the length squared of the mode shape vector  𝝍𝝍 (length of a vector in an Euclidean 
space) is defined as [1]: 

𝐿𝐿𝐸𝐸𝐸𝐸2 = 𝝍𝝍𝑻𝑻𝝍𝝍 (2)  

The main inconvenience of Eq. (2) is that the length depends on the number of components of the 
vector. 

In [2] the squared length 𝐿𝐿𝜓𝜓2  of the mode shape 𝝍𝝍  was defined as the average of the length squared 
|𝜓𝜓|2 of the mode shape over the volume 𝑉𝑉of the structure i.e.: 

𝐿𝐿𝜓𝜓2 =
1
𝑉𝑉𝑇𝑇
� |𝝍𝝍|𝟐𝟐

𝑽𝑽

𝑑𝑑𝑑𝑑 (3)  

where 𝑉𝑉𝑇𝑇 is the total volume of the system. 

Eq. (3) secures that the length definition has the same unit as the mode shape. Thus, if the mode shape 
is dimensionless, so is the length. Eq. (3) was naturally extended to discrete systems as: 

𝐿𝐿𝜓𝜓2 =
1
𝑉𝑉𝑇𝑇

 𝝍𝝍𝑻𝑻𝑽𝑽𝑽𝑽 (4)  

where 𝑽𝑽 is the volume matrix of the system. 

In continuous straight planar beams with length L, distributed mass density 𝜌𝜌(𝑥𝑥) and cross section with 
area 𝐴𝐴(𝑥𝑥), the modal mass (also denoted as generalized mass in some books of structural dynamics) 
corresponding to an arbitrary normalized continuous mode shape vector  𝝍𝝍(𝒙𝒙), is given by [2,3,4]: 

𝑚𝑚𝜓𝜓 = � 𝜌𝜌(𝑥𝑥)𝐴𝐴(𝑥𝑥)|𝝍𝝍(𝒙𝒙)|2𝑑𝑑𝑑𝑑
𝐿𝐿

0
 (5)  

A general equation to calculate the modal mass for the continuous case is given by [2]: 

𝑚𝑚𝜓𝜓 = � 𝜌𝜌|𝝍𝝍|2𝑑𝑑𝑑𝑑
𝑉𝑉

 (6)  

wich can be easily extended to discrete systems as: 

𝑚𝑚 = 𝝍𝝍𝑇𝑇𝑴𝑴𝑴𝑴 (7)  

where 𝑴𝑴 is the mass matrix.  

If the mass-density 𝜌𝜌 of a system is constant, Eq. (7) can be expressed as: 

𝑚𝑚𝜓𝜓 = 𝝍𝝍𝑻𝑻𝑴𝑴𝑴𝑴 = 𝜌𝜌 𝝍𝝍𝑻𝑻𝑽𝑽𝑽𝑽    (8)  

183



 

 

where 𝑽𝑽 is the volume matrix. Eq. (8) can also be formulated as: 

𝑚𝑚𝜓𝜓 = 𝑀𝑀𝑇𝑇  
𝝍𝝍𝑻𝑻𝑽𝑽𝑽𝑽
𝑉𝑉𝑇𝑇

= 𝑀𝑀𝑇𝑇𝐿𝐿𝜓𝜓2     (9)  

If the mass density ρ is not constant, Eq. (7) can be expressed as: 

𝑚𝑚𝜓𝜓 = 𝑀𝑀𝑎𝑎𝑎𝑎𝐿𝐿𝜓𝜓2  (10)  

where 𝑀𝑀𝑎𝑎𝑎𝑎 is an apparent mass. 

One of the problems of the length defined by Eq. (4) is that finite element programs do not provide the 
lengths of the mode shapes. On the other hand, the volume matrices 𝑽𝑽 cannot be exported from the 
finite element programs either. 

If the numerical model is discretized with 𝑁𝑁𝑉𝑉 small finite elements of equal volume  Δ𝑉𝑉 Eq. (4) can be 
approximated as: 

𝐿𝐿𝜓𝜓2 ≅
Δ𝑉𝑉∑ 𝝍𝝍𝒌𝒌

𝟐𝟐𝑵𝑵𝑽𝑽
𝒌𝒌=𝟏𝟏

𝑁𝑁𝑉𝑉Δ𝑉𝑉
=
∑ 𝝍𝝍𝒌𝒌

𝟐𝟐𝑵𝑵𝑽𝑽
𝒌𝒌=𝟏𝟏
𝑁𝑁𝑉𝑉

=
𝝍𝝍𝑻𝑻𝝍𝝍
𝑁𝑁𝑉𝑉

   (11)  

However, in numerical models, the components of the mode shapes are commonly known at the nodes 
of the elements, and Eq. (11) can also be approximated by means of the expression: 

𝐿𝐿𝜓𝜓2 ≅
𝝍𝝍𝑻𝑻𝝍𝝍
𝑁𝑁

 (12)  

where N is the number of nodes in the model. 

According to the structural dynamic modification (SDM), the experimental mode shapes can be 
expressed as a linear combination of the numerical mode shapes [5,6], i.e.: 

𝝍𝝍𝑿𝑿 = 𝝍𝝍𝑭𝑭𝑭𝑭𝑻𝑻 (13)  

where 𝑻𝑻 is a transformation matrix. 

Due to the fact that the experimental mode shapes are only known at the measured DOF’s, an 
approximation of matrix  𝑻𝑻 can be obtained by means of the expression [5]: 

𝑻𝑻 = 𝝍𝝍𝑭𝑭𝑬𝑬𝒂𝒂
+ 𝝍𝝍𝑿𝑿𝒂𝒂 (14)  

where ‘+’ indicates pseudoinverse and subindex ‘a’ indicates active or measured DOF’s. The 
experimental mode shapes can then be expanded to the unmeasured DOF’s by: 

𝝍𝝍𝑿𝑿𝒅𝒅 = 𝝍𝝍𝑭𝑭𝑬𝑬𝒅𝒅𝑻𝑻 (15)  

where subindex ‘d’ indicates deleted or unmeasured.  

Finally, an approximation of the squared length of the experimental mode shapes can be obtained using 
the expanded experimental shapes with the expression: 

𝐿𝐿𝜓𝜓𝑋𝑋
2 ≅

𝝍𝝍𝑿𝑿
𝑻𝑻𝝍𝝍𝑿𝑿

𝑁𝑁
 (16)  

where it is assumed that the number of elements is the same in both the numerical and the experimental 
models. 
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2. A CANTILEVER BEAM WITH CONSTANT MASS-DENSITY 

2.1. 3D numerical model  

A steel cantilever beam with rectangular cross-section (4cm×5cm) and 1 meter long, was assembled in 
the finite element software ABAQUS [7] (see Figure 1-a). The steel was considered linear -elastic and 
the following material properties were assumed: mass-density 𝜚𝜚 = 7850 𝑘𝑘𝑘𝑘/𝑚𝑚3, Young’s modulus 
𝐸𝐸 = 210 𝐺𝐺𝐺𝐺𝐺𝐺, and Poisson ratio 𝜈𝜈 = 0.3. The total mass of the system is  𝑀𝑀𝑇𝑇 = 15.7 𝑘𝑘𝑘𝑘.  

 
Figure 1. a) 3D steel numerical model; b) mesh with element size of 0.0025 m 

Particularizing Eq. (3) to a beam with constant cross-section, the analytical length of the mode shapes 
can be obtained with: 

𝐿𝐿𝜓𝜓2 =
1
𝐿𝐿
�|𝝍𝝍(𝒙𝒙)|𝟐𝟐
𝑳𝑳

𝟎𝟎

𝑑𝑑𝑑𝑑 (17)  

The analytical expressions of the bending mode shapes 𝝍𝝍(𝒙𝒙) corresponding to beams with constant 
mass-density and constant cross-section, are reported in the literature [1,8], and for a cantilever beam 
are given as: 

𝜓𝜓𝑘𝑘 = 𝐶𝐶1 �𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛽𝛽𝑘𝑘𝑥𝑥) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝑘𝑘𝑥𝑥) −
𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝛽𝛽𝑘𝑘𝐿𝐿) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝑘𝑘𝐿𝐿)
𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛽𝛽𝑘𝑘𝐿𝐿) + 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝑘𝑘𝐿𝐿) �𝑠𝑠𝑠𝑠𝑠𝑠ℎ

(𝛽𝛽𝑘𝑘𝑥𝑥) − 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝑘𝑘𝑥𝑥)�� (18)  

where ‘k’ indicates the order of the mode and the values of 𝛽𝛽𝑘𝑘 are shown in Table 1. 

 
Table 1. Values of 𝜷𝜷𝒌𝒌𝑳𝑳 for bending modes of a cantilever beam [1,8] 

 𝑘𝑘 
 1 2 3 4 𝑘𝑘 > 4 

𝛽𝛽𝑘𝑘𝐿𝐿 1.8751 4.6941 7.8548 10.996 (2𝑘𝑘 − 1)
𝜋𝜋
2

 

 

In this particular case the squared length results 𝐿𝐿𝜓𝜓2 = 0.25  for all the bending modes. 
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The beam was meshed with quadratic twenty-node hexahedral elements (C3D20R) and with different 
size of the elements. The natural frequencies corresponding to the first eight modes, using an element 
size of 2.5 mm, are presented in Table 2, whereas the mode shapes are shown in Figures 2.  The modal 
masses, corresponding to mode shapes normalized to the largest component equal to unity, are presented 
in Table 3. Where it can be observed that approximately the same modal masses are obtained for sizes 
less than 20 mm. 

 
Table 2. Natural frequencies of the cantilever beam. 

Mode Finite element model C3D20R  
(Element size 2.5 mm) 

Beam model B32 
(Element size 2.5 mm) 

1 1st Bending Y 33.452 33.379 

2 1st Bending X 41.774 41.694 

3 2nd Bending Y 208.090 207.630 

4 2nd Bending X 258.800 258.290 

5 3rd Bending Y 575.950 574.610 

6 3rd Bending X 711.860 710.370 

7 1st Torsion 720.160 719.400 

8 4rd Bending Y 1110.400 1107.600 
 

 

 
Figure 2. First 8 mode shapes. 

 

The length of the mode shapes was calculated with Eq. (12) and they are presented in Table 4. As 
expected, the accuracy obtained with Eq. (12) increases as increasing the number of the elements in the 
model. Moreover, the error is larger for the higher modes. All the lengths obtained with the numerical 
model approaches the analytical values as decreasing the size of the elements, but the rate of 
convergence is slower for the torsional mode.  
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Table 3. Modal masses obtained from the numerical model. 

Mode 
Element size (mm) 

Analytical 
2.5 5 10 20 30 

1 1st Bending Y 3.9267 3.9265 3.9262 3.9253 3.9221 3.925 
2 1st Bending X 3.9305 3.9304 3.9301 3.9294 3.9285 3.925 
3 2nd Bending Y 3.9667 3.9665 3.9661 3.9650 3.9592 3.925 
4 2nd Bending X 3.9927 3.9925 3.9922 3.9914 3.9902 3.925 
5 3rd Bending Y 4.0317 4.0315 4.0311 4.0296 4.0200 3.925 
6 3rd Bending X 4.0927 4.0925 4.0921 4.0912 4.0897 3.925 
7 1st Torsion 4.2839 4.2838 4.2835 4.2884 4.2819 3.925 
8 4rd Bending Y 4.1246 4.1244 4.1239 4.1211 4.1073 3.925 

 

Table 4. Values 𝑳𝑳𝝍𝝍𝟐𝟐  using Eq. (12). 

Mode 
Element size (mm) 

Analytical 
2.5 5 10 20 30 

1 1st Bending Y 0.2506 0.2510 0.2519 0.2537 0.2552 0.25 
2 1st Bending X 0.2508 0.2513 0.2522 0.2539 0.2556 0.25 
3 2nd Bending Y 0.2532 0.2538 0.2549 0.2570 0.2592 0.25 
4 2nd Bending X 0.2549 0.2555 0.2566 0.2587 0.2609 0.25 
5 3rd Bending Y 0.2575 0.2582 0.2596 0.2623 0.2654 0.25 
6 3rd Bending X 0.2614 0.2622 0.2636 0.2662 0.2692 0.25 
7 1st Torsion 0.2953 0.3177 0.3626 0.4354 0.5568 --- 
8 4rd Bending Y 0.2636 0.2645 0.2664 0.2699 0.2741 0.25 

 

Due to the fact that the mass-density of the system is constant, the ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  is the same for all the 
modes and equal to the total mass, i.e.  𝒎𝒎𝝍𝝍

𝑳𝑳𝝍𝝍
𝟐𝟐 = 𝑀𝑀𝑇𝑇  = 15.7 𝑘𝑘𝑘𝑘. This ratio is shown in Table 5 and as 

expected, the numerical ratios  𝒎𝒎𝝍𝝍

𝑳𝑳𝝍𝝍
𝟐𝟐   approaches the analytical values for small size of the elements. 

 

Table 5. Ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐 . 

Mode 
Element size (mm) 

Analytical 
2.5 5 10 20 30 

1 1st Bending Y 15.669 15.643 15.586 15.472 15.369 15.7 
2 1st Bending X 15.672 15.640 15.583 15.476 15.370 15.7 
3 2nd Bending Y 15.666 15.628 15.559 15.428 15.275 15.7 
4 2nd Bending X 15.664 15.626 15.558 15.429 15.294 15.7 
5 3rd Bending Y 15.657 15.614 15.528 15.363 15.147 15.7 
6 3rd Bending X 15.657 15.608 15.524 15.369 15.192 15.7 
7 1st Torsion 14.507 13.484 11.813 9.849 7.690 15.7 
8 4rd Bending Y 15.647 15.593 15.480 15.269 14.985 15.7 

 

A better estimation of the lengths can be obtained with a linear extrapolation of the results obtained 
with two different sizes or fitting the results corresponding to several models meshed with different size 
of elements. If the lengths of Table 4 obtained with sizes 5 and 10 mm are extrapolated with a straight 
line to zero size, the results presented in Table 6 are obtained, where it can be observed that the total 
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mass 𝑀𝑀𝑇𝑇 is estimated with an error less than 0.05%. The results obtained fitting all the results of Table 
6 with a straight line are also shown in the same table, achieving again a good accuracy. The 
extrapolation of the results corresponding to the torsional mode are shown in Figure 3. 

 

Table 6. Length  𝑳𝑳𝝍𝝍𝟐𝟐  and ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  by extrapolation. 

Mode 

Sizes 

 5 mm and 10 mm 
Linear fit of all values in 

Table 4 

𝑳𝑳𝝍𝝍𝟐𝟐  𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  𝑳𝑳𝝍𝝍𝟐𝟐  𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  

1 1st Bending Y 0.2501 15.7005 0.2502 15.6927 
2 1st Bending X 0.2504 15.6969 0.2504 15.6941 
3 2nd Bending Y 0.2527 15.6973 0.2527 15.6952 
4 2nd Bending X 0.2544 15.6946 0.2544 15.6929 
5 3rd Bending Y 0.2568 15.6998 0.2568 15.7004 
6 3rd Bending X 0.2608 15.6929 0.2607 15.6939 
7 1st Torsion 0.2728 15.7034 0.2690 15.9262 
8 4rd Bending Y 0.2626 15.7068 0.2626 15.7046 

 
Figure 3. Calculation of the squared length of the torsional mode. Red circles: data from Table 4. Black line: fit 

using data of 5 and 10 mm. Green line: Linear fit using all the results. 

 

2.2. A 3D beam model  

The cantilever beam was also meshed with quadratic beam elements B32 with a length of 2.5 mm (801 
nodes) and 1.25 mm (1601 nodes), obtaining very similar modal parameters. The natural frequencies 
are shown in Table 2 and the modal masses (mode shapes normalized to the largest translational 
component equal to unity) are shown in Table 7. The length of the mode shapes was estimated with Eq. 
(12) using only the translational components. The ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  is obtained with an error less than 1.6% 
for all the modes. Thus, beam models can be used successfully to estimate the length of the mode shapes 
with low computational cost. 

With this model, all the translational components of the torsional mode are zero, and ABAQUS 
normalize this mode shape to the largest rotation equal to unity. This means that the squared length of 
the torsional mode (𝐿𝐿𝜃𝜃2 ) is dimensionless and the modal mass is given in units of 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2, which can 
also be obtained analytically with the expression:  
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𝑚𝑚𝜃𝜃 = 𝐼𝐼𝑀𝑀𝐿𝐿𝜃𝜃2  (19)  

Where 𝐼𝐼𝑀𝑀 is the mass moment inertia of the structure with respect to the longitudinal axes of the beam, 
which for a rectangular section of dimensions 𝑎𝑎 × 𝑏𝑏 is given by: 

𝐼𝐼𝑀𝑀 = 𝑀𝑀𝑇𝑇
(𝑎𝑎2 + 𝑏𝑏2)

12
 

 
(20)  

For this beam, Eq. (20) gives  𝐼𝐼𝑀𝑀=0.0054  𝑘𝑘𝑘𝑘𝑚𝑚2 

From the finite element model, it has been obtained that 𝐿𝐿𝜃𝜃2 = 0.5 and 𝑚𝑚𝜃𝜃 = 2.682 × 10−3 𝑘𝑘𝑘𝑘𝑚𝑚2, 
which gives a ratio 𝑚𝑚𝜃𝜃

𝐿𝐿𝜃𝜃
2 = 0.0054  𝑘𝑘𝑘𝑘𝑚𝑚2. 

The modal masses and the squared lengths of the torsional mode, obtained with the 3D model and with 
the beam model, are related by the expression: 

𝑀𝑀𝑇𝑇 =
𝑚𝑚
𝐿𝐿2

=
𝑚𝑚𝜃𝜃

𝐿𝐿𝜃𝜃2
1

(𝑎𝑎2 + 𝑏𝑏2)
12

 (21)  

 

Table 7. Length 𝑳𝑳𝝍𝝍𝟐𝟐 , modal mass 𝒎𝒎𝝍𝝍 and ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  for the bending modes of the beam model. 

Mode 

Beam model B32 

2.5 mm (801 nodes) 

Beam model B32 

1.25 mm (1601 nodes) 

𝑳𝑳𝝍𝝍𝟐𝟐  
[−] 

𝒎𝒎𝝍𝝍 
[𝑘𝑘𝑘𝑘] 

𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  
[𝑘𝑘𝑘𝑘] 

𝑳𝑳𝝍𝝍𝟐𝟐  
[−] 

𝒎𝒎𝝍𝝍 
[𝑘𝑘𝑘𝑘] 

𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  
[𝑘𝑘𝑘𝑘] 

1 1st Bending Y 0.2505 3.9309 15.6922 0.2504 3.9309 15.6985 
2 1st Bending X 0.2507 3.9342 15.6929 0.2505 3.9342 15.7054 
3 2nd Bending Y 0.2522 3.9710 15.7454 0.2520 3.9710 15.7579 
4 2nd Bending X 0.2532 3.9967 15.7848 0.2531 3.9967 15.7910 
5 3rd Bending Y 0.2549 4.0369 15.8372 0.2548 4.0369 15.8434 
6 3rd Bending X 0.2575 4.0978 15.9138 0.2573 4.0978 15.9262 
7 1st Torsion -- -- --- --- --- --- 
8 4rd Bending Y 0.2590 4.1317 15.9525 0.2588 4.1317 15.9648 

 

3. A CANTILEVER BEAM MADE OF STEEL AND CONCRETE  

A three-dimensional cantilever beam with the same dimensions as those used in section 2, and made of 
steel and concrete is considered in this section (see Figure 4a). The encastre boundary condition is 
placed at the end of the steel part. The following material properties were assumed for the steel: mass-
density 𝜚𝜚 = 7850 𝑘𝑘𝑘𝑘/𝑚𝑚3, Young’s modulus 𝐸𝐸 = 210 𝐺𝐺𝐺𝐺𝐺𝐺, and Poisson ratio 𝜈𝜈 = 0.3. The material 
properties assumed for the concrete were following: mass-density 𝜚𝜚 = 2400 𝑘𝑘𝑘𝑘/𝑚𝑚3, Young’s modulus 
𝐸𝐸 = 20 𝐺𝐺𝐺𝐺𝐺𝐺, and Poisson ratio 𝜈𝜈 = 0.18.  

The beam was meshed with twenty-node hexahedral elements (C3D20R) with an approximate global 
size of 0.0025m (see Fig. 4b). The natural frequencies and modal masses (mode shapes normalized to 
the largest component equal to unity) corresponding to the first eight modes are presented in Table 8. 
The total mass of the beam is 𝑀𝑀𝑇𝑇 = 10.25 𝑘𝑘𝑘𝑘, distributed as 𝑀𝑀𝑠𝑠 = 7.85 𝑘𝑘𝑘𝑘 and 𝑀𝑀𝑐𝑐 = 2.4 𝑘𝑘g, where 
subindexes ‘s’ and ‘c’ indicate steel and concrete respectively. 
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The partial and the total squared lengths estimated with Eq. (12) are shown in Table 8. The partial 
lengths and the total length are related by the equation [2]: 

𝐿𝐿𝜓𝜓2 =
𝑉𝑉𝑠𝑠𝐿𝐿𝜓𝜓𝑠𝑠

2 + 𝑉𝑉𝑐𝑐𝐿𝐿𝜓𝜓𝑐𝑐
2

𝑉𝑉𝑇𝑇
 (1)  

In this case 𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑐𝑐 = 𝑉𝑉𝑇𝑇/2 and Eq. (22) leads to: 

𝐿𝐿𝜓𝜓2 =
𝐿𝐿𝜓𝜓𝑠𝑠
2 + 𝐿𝐿𝜓𝜓𝑐𝑐

2

2
 (2)  

The lengths of the mode shapes were calculated with models using size elements of 5 and 10 mm, and 
then extrapolated to zero size (see Table 8). 

On the other hand the apparent mass is given by: 

𝑀𝑀𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑇𝑇
𝜌𝜌𝑠𝑠𝐿𝐿𝜓𝜓𝑠𝑠

2 + 𝜌𝜌𝑐𝑐𝐿𝐿𝜓𝜓𝑐𝑐
2

𝐿𝐿𝜓𝜓𝑠𝑠
2 + 𝐿𝐿𝜓𝜓𝑐𝑐

2  (3)  

With respect to the modal masses of the structure, they can be calculated as the sum of the contributions 
of the steel and the concrete parts by: 

𝑚𝑚 = 𝑀𝑀𝑠𝑠𝐿𝐿𝜓𝜓𝑠𝑠
2 + 𝑀𝑀𝑐𝑐𝐿𝐿𝜓𝜓𝑐𝑐

2  (4)  

The modal masses and the apparent masses calculated with Eqs. (25) and (24) are shown in Table 9. 

 

 
Figure 4. a) 3D concrete-steel model; b) mesh with element size of 0.0025 m 
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Table 8. Natural frequencies, modal masses and length of the concrete-steel the cantilever beam. 

Mode Natural frequencies 
[Hz] Modal mass 

Length 
Steel 𝐿𝐿𝜓𝜓𝑠𝑠

2  Concrete 𝐿𝐿𝜓𝜓𝐶𝐶
2  Total 𝐿𝐿𝜓𝜓2  

1 1st Bending Y 47.81 0.93 0.0089 0.3583 0.1836 
2 1st Bending X 59.66 0.93 0.0089 0.3583 0.1836 
3 2nd Bending Y 148.44 1.32 0.0879 0.2625 0.1752 
4 2nd Bending X 184.83 1.32 0.0892 0.2625 0.1758 
5 3rd Bending Y 440.37 0.90 0.0382 0.2542 0.1462 
6 3rd Bending X 542.98 0.91 0.0382 0.2583 0.1483 
7 1st Torsion 743.98 0.79 0.0073 0.3076 0.1705 
8 3rd Bending Y 798.21 1.56 0.1108 0.2917 0.2012 

 

 
Table 9. Contribution of the steel and concrete parts to the modal mass. Apparent mass. 

Mode 
Modal mass 

Apparent mass Steel 
𝑀𝑀𝑇𝑇𝑇𝑇𝐿𝐿𝑠𝑠2 

Concrete
𝑀𝑀𝑇𝑇𝑇𝑇𝐿𝐿𝑐𝑐2  𝑀𝑀𝑇𝑇𝑇𝑇𝐿𝐿𝑠𝑠2 + 𝑀𝑀𝑇𝑇𝑇𝑇𝐿𝐿𝑐𝑐2  

1 1st Bending Y 0.066 0.863 0.929 5.05 
2 1st Bending X 0.066 0.864 0.930 5.05 
3 2nd Bending Y 0.692 0.630 1.322 7.54 
4 2nd Bending X 0.697 0.633 1.330 7.54 
5 3rd Bending Y 0.295 0.606 0.901 6.21 
6 3rd Bending X 0.300 0.617 0.917 6.21 
7 1st Torsion 0.057 0.74 0.796 5.04 
8 3rd Bending Y 0.865 0.698 1.564 7.79 

 

4. CONCLUSIONS 

In constant mass-density systems, the modal mass is equal to the product between the total 
mass of the structure and the length squared. If the mass-density is not constant, the modal 
mass is equal to the product between an apparent mass (different for each mode) and the length 
squared. The length of the mode shapes can be useful to validate experimental modal masses 
and to know how the mass is distributed in the structure. The experimental mode shapes can 
be expanded to the unmeasured DOF’s using a numerical model, and the length can be 
estimated using eq.(16). Alternatively, the length of the experimental mode shapes can be 
estimated using the transformation matrix T and the length of the numerical mode shapes,. 
In this paper, the accuracy obtained in the length of the numerical mode shapes of two 
cantilever structures, one with constant mass-density and the second one made of steel and 
concrete, is analyzed. The length of numerical mode shapes can be estimated with a good 
accuracy using eq.(12) if small 3D elements of equal size are used to mesh the model.  
Both cantilever models were meshed with 3D elements C3D20R, and the lengths of the mode 
shapes were estimated with eq. (12). The results corresponding to models of different size, 
were linearly extrapolated to zero size, allowing to estimate the length of all the modes with a 
very good accuracy.  
The structures were also meshed with beam elements B32 and the length of the mode shapes 
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were calculated with eq.(12) considering only the translational DOF’s (the contribution of the 
rotations can be neglected if the elements are small). It has been demonstrated that beam models 
can be used successfully to estimate the length of the mode shapes with low computational cost. Beam elements 
can also be used to calculate the length of the torsional modes, considering only the rotational 
DOF’s. 
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