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Our aim is the design of an efficient decoding algorithm in 
group codes. The algorithm is inspired by the well known 
syndrome decoding algorithm for linear codes and uses the 
decomposition of a semisimple group algebra KG as a direct 
sum of two-sided ideals, each of them generated by a central 
idempotent of KG. When G is an abelian group the algorithm 
can be modified to make it very simple and efficient. Some 
illustrative examples are presented.
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1. Introduction

Error correcting codes play a key role in guaranteeing the reliability of the information 
sent through a noisy channel. The algorithms for detection and correction of errors aim to 
recover the original sent message. This process, called decoding, is efficiently performed 
thanks to the existing error correcting codes.

On the other hand, it is possible to design cryptosystems based on error correcting 
codes, which in principle are resistant to quantum computing. In fact, cryptography 
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based on error correcting codes is postulated as one of the most promising post-quantum 
cryptographic methods. In it, a “good” error correcting code is the key in a public key 
cryptographic scheme.

The first system of this type was proposed in [23] by R. J. McEliece in 1978. This 
proposal uses Goppa codes that are hidden under a linear code. This linear code, that 
looks arbitrary is the public key. In order to decrypt the message, one should know 
how to decode using a linear code, what is known to be a key hard problem. McEliece’s 
proposal remains unbroken until now. Although the encryption and decryption processes 
are simple, the main problem with this scheme is the large size of the public keys.

Successive proposals to solve this problem suggested the replacement of Goppa codes 
by more structured codes such as Generalized Reed-Solomon Codes ([1,3,25,30]), Binary 
Reed-Muller Codes ([28]), Algebraic-Geometric Codes ([21]) or LDPC Codes ([2,29]). 
However, all of them have been broken (see [8,9,12,24,27,31]). Another alternative, is the 
use of codes having a non-trivial permutation automorphism group ([4,22,26]). However, 
the knowledge of the permutation automorphism group of a code allows some attacks by 
reducing the degrees and the number of variables of the algebraic system to solve. So, 
these new proposals have also been totally or partially broken in [13].

In this paper, we explore the use of group codes in cryptography. These codes are 
linked to (two-sided) ideals of the group algebra KG, where G is a finite group of order 
n and n is the length of the code. So, sometimes, we will write the elements of KG as 
n−tuples of elements of the field K, assuming a fixed order for the elements in G. Let 
us remember that a (n, k, d)−linear code C is a G−code, if there is an isomorphism of 
K−vector spaces φ : Kn → KG, satisfying that φ(C) is a two-sided ideal of KG.

A linear code C is called (abelian) group code, if there exists a (abelian) group G
such that C is a G−code. Linear codes that are (abelian) group codes were characterized 
by Bernal et al. ([5]) in terms of their permutation automorphism group. Notice that a 
group code can be realized as G−code for different groups, and some of them may be 
abelian and some non-abelian. In [14–17] the question of the existence of non-abelian 
group codes, that is, group codes that can’t be realized as abelian group codes, was 
addressed. Authors proved that given a group G, if there exists a non-abelian G−code, 
then |G| ≥ 24. An example of a G−code, with G = S4, that is not abelian group code 
was first constructed over the field K = F5. Later, the existence of such codes in the non 
semisimple case was also addressed, constructing G−codes over K = F2 and K = F3 that 
are not abelian group codes. The arguments used by the authors in the cases F3 and F5
are similar and they use the fact that the weight distribution of the constructed code 
(for each characteristic) does not coincide with the weight distribution of any abelian 
group code of length 24.

The problem for F2 was more complicated because every code over F2 of length 24 
has the same weight distribution than some abelian group code of the same length. In 
any case, authors in [18] could find a code that was not permutation equivalent to any 
abelian group code, as it was explicitly proved. However, codes obtained in this way 
(using the group S4) turned out to have worse parameters than abelian group codes of 
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the same length. Then, using the group G = SL(2, F3), the authors shown the existence 
of a non-abelian group code that is optimal in the sense that it has dimension 6 and 
minimal distance 10, being 10 the maximal distance of a binary linear code of length 
24 and dimension 6. Furthermore, this distance can’t be reached using an abelian group 
code of length 24 and dimension 6. In [19], using G = S4 and G = SL(2, F3) finally the 
existence of G−codes over Fp, for every prime p ≥ 3, that are non-abelian group codes 
was proved. Using other previous results of the authors, they can conclude that there 
are non-abelian group codes of length 24 for every finite field.

The fact that we can use abelian and non-abelian groups to construct group codes 
and the difficulty to distinguish group codes among linear codes seem good properties 
for these codes to be used in the design of a McEliece type cryptosystem. But it is also 
essential to have an efficient decoding algorithm. In [6], a permutation decoding algorithm 
for abelian group codes in the semisimple case was proposed. In [11], authors suggest an 
algorithm that can be seen as a variant of the classical syndrome decoding algorithm. But 
many problems are still open. In this work, a general and efficient decoding algorithm for 
group codes, in the semisimple case, is presented. For abelian group codes the algorithm 
can be modified to make it even more simple and efficient.

The decoding algorithm explained here does not work for left (or right) group codes 
nor for group codes in the non semisimple case. The reason is that the main property 
that we use is that for every ideal I of KG (identified with a G− code over K), there 
exists an ideal I+ such that KG = I ⊕ I+. Thus, x ∈ I if and only if xy = 0 for all 
y ∈ I+. This fact is not fulfilled for left (nor right) ideals nor for two-sided ideals of non 
semisimple algebras.

2. Preliminaries

From now on, G will be a finite group of order n, K is a finite field and n is not 
divisible by the characteristic of K. This is equivalent to say that the group algebra KG

is semisimple (Maschke’s Theorem, see [7]). Thus, KG can be written as the sum of s
minimal two-sided ideals (see p.166-170 of [10]). That is,

KG = 〈e1〉 ⊕ · · · ⊕ 〈em〉 ⊕ 〈em+1〉 ⊕ · · · ⊕ 〈es〉.

Each minimal two-sided ideal 〈ei〉 is generated by a primitive central idempotent ei. 
These ideals are called simple components of KG. Furthermore, any two-sided ideal of 
KG is generated by a central idempotent and is a direct sum of some simple components 
of KG (see p.437 of [20]).

So we will assume that C = 〈e0〉 is the two-sided ideal generated by e0 = em+1+· · ·+es. 
Hence, C can be identified with a group code of length n, as soon as we fix an order in 
the elements of G. Let’s denote k the dimension of C and d its minimal distance.

A codeword c ∈ C has the form c = ze0, for some z ∈ KG. Therefore, an arbitrary 
element c ∈ KG is a codeword if and only if ceh = 0 for all h ∈ {1, . . . , m}. If a word 
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c ∈ C is sent and the error e ∈ KG is produced during the transmission, the received 
word will be r = c + e. The syndromes of r are defined as the m elements

Sh = reh, h = 1, . . . ,m.

Consequently, Sh = (c + e)eh = eeh for all h ∈ {1, . . . , m}. Decoding by minimal distance 
means to look the closest codeword to r and here it is equivalent to find a solution of 
the system Xeh = Sh, h = 1, . . . , m, having weight q ≤ t, where t denotes the maximal 
number of errors that can be corrected by the code C. Clearly, we want such codeword 
to be unique. And this is always the case if the number of produced errors is not bigger 
than the error correcting capacity of the code C.

Theorem 2.1. Let C be a group code that corrects up to t errors. If the syndromes of a 
received word r are S1, . . . , Sm, then there is at most one element e ∈ KG, having weight 
less than or equal to t, that is a solution of the system Xeh = Sh, h = 1, . . . , m.

Proof. If e1, e2 ∈ KG are two distinct solutions of the above system with weights q1, q2, 
respectively, and q1, q2 ≤ t, then e1eh = e2eh = Sh for all h ∈ {1, . . . , m}. This implies 
that (e1 − e2)eh = 0 for all h ∈ {1, . . . , m}, that is, e1 − e2 ∈ C. So, the weight of e1 − e2
must be greater than or equal to d, where d is the minimal distance of C. But the weight 
of e1 − e2 is less than or equal to q1 + q2 ≤ 2t ≤ d − 1. This contradiction proves the 
Theorem. �
3. General case

Since the decoding process for group codes of dimension 1 is trivial, because the 
codewords are the scalar multiples of the central idempotent that generates the group 
code, we will consider, in what follows, only group codes of dimension k ≥ 2.

First, let us notice that if Sh = reh = 0 for all h ∈ {1, . . . , m}, then r ∈ C and 
conversely. So the detection of errors produced during the transmission process is very 
easy.

Before starting the decoding process, the products gieh, for all i ∈ {1, . . . , n} and 
h ∈ {1, . . . , m} should be computed. Denote Ch

gi ∈ Mn×1(K) the column matrix which 
consists of the coefficients of gieh (with the fixed order in G).

Proposition 3.1. If b < d and gi1 , . . . , gib are b distinct elements of G, then the matrix

C(gi1 , . . . , gib) =

⎛
⎜⎜⎝

C1
gi1

. . . C1
gib

...
...

Cm
gi1

. . . Cm
gib

⎞
⎟⎟⎠ ∈ Mmn×b(K),

has rank b.
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Proof. Suppose C(gi1 , . . . , gib) has rank less than b. Then there are elements ν1, . . . , νb ∈
K, not all of them equal to zero, such that ν1C

h
gi1

+· · ·+νbC
h
gib

= 0, for all h ∈ {1, . . . , m}. 
Hence, (ν1gi1+· · ·+νbgib)eh = 0, for all h ∈ {1, . . . , m}, that is, x = ν1gi1+· · ·+νbgib ∈ C. 
This fact contradicts that the minimal distance of C is d, since the element x 	= 0 belongs 
to C and its weight is less than or equal to b and so strictly less than d. �

Now we can explain the details of the decoding algorithm. Assume that we receive a 
word r. First of all, we have to decide if this word r is the one that was sent or not. In 
the second case, we will need to recover the sent word. To do that, all the syndromes 
Sh = reh will be computed and the column vectors Sh of their respective coordinates 
with respect to the fixed basis B will be defined. The aim of the decoding algorithm is 
to find an element e = α1gi1 + · · · + αqgiq , having weight q ≤ t, such that Sh = eeh for 
all h ∈ {1, . . . , m}.

Since we do not know initially q, we consider a t−set of (ordered) elements of G, 
{gi1 , . . . , git}, and check if there is some element e = α1gi1 + · · · + αtgit that is the 
solution of the system Xeh = Sh, h = 1, . . . , m. This will be the case if and only if the 
linear system

X1C
h
gi1

+ · · · + XtC
h
git

= Sh, h ∈ {1, . . . ,m}, (1)

admits the solution Xi = αi for i = 1, . . . , t. We know that if this system has some 
solution, it is unique. Therefore, there exist a solution if the matrix C(gi1 , . . . , git) and 
the extended matrix

M(gi1 , . . . , git) =

⎛
⎜⎜⎝

C1
gi1

. . . C1
git

S1

...
...

...
Cm

gi1
. . . Cm

git
Sm

⎞
⎟⎟⎠ ,

have both equal rank. By Proposition 3.1 we only need to check that the rank of 
M(gi1 , . . . , git) is equal to t.

Note that this algorithm searches for t−sets {gi1 , . . . , git} in B = G for which the 
corresponding system of equations (1) is consistent. That is, the algorithm finds t−sets 
in G that contain all error positions. Suppose the error produced is β1gi1 + · · · + βqgiq . 
When q = t, {gi1 , . . . , git} is the unique t−set found by the algorithm. When q < t, the 
algorithm can find several t−sets containing {gi1 , . . . , giq}, for which the system (1) has 
a unique solution, but the error is uniquely determined, because the coefficients of gj, 
for any j 	= i1, . . . , iq, are always zero in the unique solution of the system (1) for any of 
the possible t−sets that make such system consistent.

3.1. Decoding algorithm

Let’s start now the description of the proposed decoding algorithm: 
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Step 1.
Compute, for the received word r, all the syndromes. If Sh = 0 for all h ∈ {1, . . . , m}, 
then there are no errors, that is r = c, and the algorithm ends. Otherwise, go to Step 2. 

Step 2.
Select at random {gi1 , . . . , git} a t−set of G. Construct the matrix M(gi1 , . . . , git) and 
compute its rank.

a. If the rank is t, find the unique solution X1 = α1, . . . , Xt = αt of the linear system

X1C
h
gi1

+ · · · + XtC
h
git

= Sh, h ∈ {1, . . . ,m}. (2)

Then, the error is e = αj1gij1 + · · · + αjqgijq , where αj1 , . . . , αjq are the non-zero 
elements in the above solution, and the algorithm ends.

b. Otherwise, the t−set is discarded, another t−set of G is selected at random and Step 
2 is repeated with it.

The algorithm finishes as soon as a t−set {gi1 , . . . , git} satisfying

Rank(M(gi1 , . . . , git)) = t, (P1)

is found. When all t−sets of G have been checked and none satisfies property (P1), we 
conclude that the number of errors produced during the transmission is greater than t
and the word r can not be corrected.

Example 3.2. Let G = S4 and K = F5. Order the elements of G as

g1 = (1), g2 = (3, 4), g3 = (2, 3),
g4 = (2, 3, 4), g5 = (2, 4, 3), g6 = (2, 4),
g7 = (1, 2), g8 = (1, 2)(3, 4), g9 = (1, 2, 3),
g10 = (1, 2, 3, 4), g11 = (1, 2, 4, 3), g12 = (1, 2, 4),
g13 = (1, 3, 2), g14 = (1, 3, 4, 2), g15 = (1, 3),
g16 = (1, 3, 4), g17 = (1, 3)(2, 4), g18 = (1, 3, 2, 4),
g19 = (1, 4, 3, 2), g20 = (1, 4, 2), g21 = (1, 4, 3),
g22 = (1, 4), g23 = (1, 4, 2, 3), g24 = (1, 4)(2, 3).

It is known that F5S4 decomposes as the direct sum of five simple components of dimen-
sions 1,1,4,9 and 9. In a concrete way

F5S4 = 〈e1〉 ⊕ 〈e2〉 ⊕ 〈e3〉 ⊕ 〈e4〉 ⊕ 〈e5〉,

where

e1 = (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4),
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e2 = (4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4),

e3 = (1, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 1),

e4 = (1, 3, 3, 0, 0, 3, 3, 3, 0, 2, 2, 0, 0, 2, 3, 0, 3, 2, 2, 0, 0, 3, 2, 3),

e5 = (1, 2, 2, 0, 0, 2, 2, 3, 0, 3, 3, 0, 0, 3, 2, 0, 3, 3, 3, 0, 0, 2, 3, 3)

are the primitive central idempotents. Take C = 〈e5〉. The group code C has parameters 
n = 24, k = 9, d = 8 and t = 3.

If the received word is

r = (2, 1, 4, 1, 1, 4, 0, 0, 1, 1, 3, 4, 1, 3, 4, 4, 1, 1, 1, 4, 4, 0, 4, 2),

then the decoding process is as follows:

Step 1. We compute Sh, h = 1, 2, 3, 4. In this case,

S1 = (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4)T ,

S2 = (1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1)T ,

S3 = (0, 1, 2, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 2, 1, 0)T ,

S4 = (1, 3, 0, 2, 4, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 4, 4, 4, 0, 1, 2, 0, 3, 4)T .

Since they are not equal to zero, we go to Step 2.

Step 2. Take the 3−set {g4, g7, g18}. We have that the matrix

M(g4, g7, g18) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1
g4

C1
g7

C1
g18

S1

C2
g4

C2
g7

C2
g18

S2

C3
g4

C3
g7

C3
g18

S3

C4
g4

C4
g7

C4
g18

S4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

has rank 3. In fact, we have that C1
g4

= C1
g7

= C1
g18

, C2
g7

= C2
g18

and C3
g7

= C3
g18

where

C1
g18

= (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4)T ,

C2
g18

= (1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1)T ,

C3
g18

= (0, 1, 2, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 2, 1, 0)T .

Furthermore,

C2
g = (4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 4)T ,

4



8 C. Martínez, F. Molina / Finite Fields and Their Applications 89 (2023) 102206
C3
g4

= (2, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 2, 1, 0, 0, 2)T ,
C4

g4
= (0, 3, 3, 1, 0, 3, 2, 0, 0, 3, 2, 3, 3, 3, 2, 0, 0, 2, 2, 0, 3, 2, 3, 0)T ,

C4
g7

= (3, 3, 0, 2, 2, 0, 1, 3, 3, 0, 0, 3, 3, 0, 0, 2, 2, 3, 0, 3, 2, 0, 3, 2)T ,
C4

g18
= (2, 3, 0, 2, 3, 0, 3, 2, 2, 0, 0, 3, 3, 0, 0, 3, 3, 1, 0, 2, 2, 0, 3, 3)T .

The solution of the system

X1C
1
g4

+ X2C
1
g7

+ X3C
1
g18

= S1

X1C
2
g4

+ X2C
2
g7

+ X3C
2
g18

= S2

X1C
3
g4

+ X2C
3
g7

+ X3C
3
g18

= S3

X1C
4
g4

+ X2C
4
g7

+ X3C
4
g18

= S4

is X1 = 0, X2 = 4 and X3 = 2.

Consequently,

e = 4g7 + 2g18 = (0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0)

and

c = (2, 1, 4, 1, 1, 4, 1, 0, 1, 1, 3, 4, 1, 3, 4, 4, 1, 4, 1, 4, 4, 0, 4, 2).

4. A special case

In this section, keeping the notation in the previous ones, we will present a variation 
of the previous algorithm in the case that G is abelian and the simple components of 
KG have dimension 1. We know that this is the case when K contains a primitive root 
of the unit.

Before starting the algorithm, we compute the scalars λh
gi ∈ K such that gieh = λh

gieh, 
for all i ∈ {1, . . . , n} and h ∈ {1, . . . , m} (note that the simple components 〈e1〉, . . . , 〈em〉
have dimension 1). Let us define Agi = (λ1

gi , . . . , λ
m
gi)

T for all gi ∈ G and

A(gi1 , . . . , gib) =
(
Agi1

. . . Agib

)
.

Proposition 4.1. If b < d and gi1 , . . . , gib are b distinct elements of G, then the matrix

A(gi1 , . . . , gib) =

⎛
⎜⎜⎝

λ1
gi1

. . . λ1
gib

...
...

λm
gi1

. . . λm
gib

⎞
⎟⎟⎠ ∈ Mm×b(K)

has rank b.
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Proof. The proof is analogous to the proof of Proposition 3.1. �
The algorithm starts by computing all the syndromes Sh = reh = μheh where μh ∈ K. 

Let us define the column vector R = (μ1, . . . , μm)T .
As before, the algorithm will look for t−sets of G containing all error positions. So, 

the aim of the algorithm is to find an element e = α1gi1 + · · · + αtgit , where gi1 , . . . , git
are distinct elements of G and α1, . . . , αt ∈ K such that the linear system

X1Agi1
+ · · · + XtAgit

= R (3)

has a unique solution Xi = αi for all i ∈ {1, . . . , t}. And this is equivalent to the fact 
that the rank of the extended matrix

B(gi1 , . . . , git) =
(
Agi1

. . . Agit
R
)

=

⎛
⎜⎜⎝

λ1
gi1

. . . λ1
git

μ1

...
...

...
λm
gi1

. . . λm
git

μm

⎞
⎟⎟⎠

is equal to the rank of the matrix A(gi1 , . . . , git) that is known to be t.

4.1. Decoding algorithm

Let’s start the description of the second decoding algorithm.

Step 1.
Compute all the syndromes. If Sh = 0 for all h ∈ {1, . . . , m}, then there are no errors 
and the algorithm ends. Otherwise, compute R and go to Step 2. 

Step 2.
Select at random {gi1 , . . . , git} a t−set of G. Compute the matrix B(gi1 , . . . , git) and its 
rank.

a. If the rank is t, find the unique solution α1, . . . , αt ∈ K of the linear system

X1Agi1
+ · · · + XtAgit

= R.

If αj1 , . . . , αjq are the non-zero elements in the above solution, then the error is 
e = αj1gij1 + · · · + αjqgijq and the algorithm ends.

b. Otherwise, the t−set is discarded, another t−set of G is randomly selected and Step 
2 is repeated with it.

The algorithm finishes when a t−set {gi1 , . . . , git} satisfying

Rank(B(gi1 , . . . , git)) = t, (P2)
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is found. If all t−sets of G have been checked and none satisfies (P2), we conclude that 
the number of errors produced during the transmission is greater than t and the word r
can not be corrected.

This algorithm is more efficient than the general algorithm since the size of matrices is 
smaller. It computes ranks of matrices with n −k rows instead of matrices with n(n −k)
rows.

5. Abelian case

The algorithm seen in the previous section proved to be very efficient when dealing 
with abelian groups. But the field must be fairly good. Our aim now is to adjust this 
algorithm to be used on arbitrary fields. In what follows, G is an abelian group and its 
order n is not divisible by the characteristic of K.

Next result will be essential in what follows. Since, we could not find a reference for 
it, its proof is included by completeness.

Proposition 5.1. Let C be a linear code over a field K and E another field extension of 
K. If C̃ = C ⊗K E, then C̃ has the same parameters as C.

Proof. It is well known in linear algebra that for any K−vector space V , V ⊗K E is also 
an E−vector space defining

ξ(v ⊗ γ) = v ⊗ (ξγ), v ∈ V, γ, ξ ∈ E,

and if {vi} is a K−basis of V , then {vi ⊗ 1} is an E−basis of V ⊗K E. Consequently, 
C and C̃ have the same length and the same dimension. Also, C and C̃ have a common 
control matrix H (whose elements lie in K). Denote d̃ the minimal distance of C̃ and d
the distance of C. Now we conclude the proof by using that,

d = min{b | There are b columns of H linearly K−dependent}
= min{p | There are p columns of H linearly E−dependent} = d̃. �

From now on, let us consider E the smallest extension of K such that the simple 
components of EG have dimension 1. Then EG is direct sum of (one-dimensional) com-
ponents generated by its primitive central idempotents, denoted f1, . . . , fn.

Remind that if e1, . . . , es are the primitive central idempotents of KG, then ei is 
the sum of those fj ∈ {f1, . . . , fn} satisfying eifj 	= 0. Indeed, since {f1, . . . , fn} is 
an E−basis of EG, there are γi

1, . . . , γ
i
n ∈ E such that ei = γi

1f1 + · · · + γi
nfn. Then, 

ei = e2
i = (γi

1)2f1 + · · · + (γi
n)2fn implies (γi

j)2 = γi
j . Consequently, γi

j = 0 or γi
j = 1 for 

all j ∈ {1, . . . , n} and γi
j = 1 if and only if eifj 	= 0.

If C is the group code in KG generated by e0, as in Sections 1 and 2, and C̃ = C ⊗KE is 
the group code in EG generated by e0, then we know, by Proposition 5.1, that C̃ corrects 
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the same number of errors than C. We can rename the idempotents f1, . . . , fn in such a 
way that e0 = fn−k+1 + · · · + fn.

Given an element r ∈ KG, denote S1, . . . , Sl its syndromes related to the group code 
C and S̃1, . . . , S̃n−k its syndromes related to the group code C̃ when r is considered an 
element in EG.

To decode a received word r ∈ KG, we will consider it as element of EG and will 
decode using the code C̃. The process works because of the following result, in which we 
keep the previous notation.

Proposition 5.2. If there exist e ∈ KG and ẽ ∈ EG, both with weight less than or equal 
to t, such that

eeh = Sh, h = 1, . . . ,m (4)

and

ẽfj = S̃j , j = 1, . . . , n− k (5)

respectively, then ẽ = e and so ẽ ∈ KG.

Proof. For each ei ∈ KG, let’s denote J(i) the set of those j ∈ {1, . . . , n} such that 
eifj 	= 0. So, ei =

∑
j∈J(i) fj and therefore

Sh = reh = r

⎛
⎝ ∑

j∈J(h)

fj

⎞
⎠ =

∑
j∈J(h)

S̃j

for all h ∈ {1, . . . , m}. By the hypothesis and Theorem 2.1, e and ẽ are the unique 
elements in KG and EG, respectively, satisfying (4) and (5). Note that e ∈ KG ⊆ EG

and (4) implies that

e

⎛
⎝ ∑

j∈J(h)

fj

⎞
⎠ = eeh = Sh =

∑
j∈J(h)

S̃j ,

for all h ∈ {1, . . . , m} and thus

∑
j∈J(h)

(efj − S̃j) = 0.

Since, efj − S̃j ∈ 〈fj〉 for all j ∈ J(h) then efj − S̃j = 0 for all j ∈ J(h). Therefore 
efj = S̃j for all j ∈ J(h) and consequently, (5) is fulfilled. By uniqueness in EG, we have 
that ẽ = e and thus ẽ ∈ KG. �
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This result assures that if we can decode the element r ∈ KG using C̃ and we get a 
codeword c ∈ C̃\C, then we can conclude that the number of errors produced during the 
transmission is greater than the error correcting capacity of C and we can’t decode in C.

So this second algorithm can be used with any abelian group code and on arbitrary 
fields (such that the characteristic of K does not divide the order of G) and we only need 
to extend scalars in a fairly way.

Example 5.3. Let K = F2 and G = C3 × C3 × C3 = 〈a, b, c〉. Here

F2(C3 × C3 × C3) = 〈e1〉 ⊕ · · · ⊕ 〈e14〉.

The dimension of the first simple component is 1 and the other simple components have 
dimension 2. We fix the basis

{1G, a, b, c, a2, ab, ac, b2, bc, c2, a2b, a2c, ab2, abc, ac2, b2c, bc2,

a2b2, a2bc, a2c2, ab2c, abc2, b2c2, a2b2c, a2bc2, ab2c2, a2b2c2}.

Then the simple components are generated respectively by the following primitive central 
idempotents:

e1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

e2 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0),

e3 = (0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1),

e4 = (0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1),

e5 = (0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1),

e6 = (0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1),

e7 = (0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0),

e8 = (0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1),

e9 = (0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0),

e10 = (0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1),

e11 = (0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1),

e12 = (0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0),

e13 = (0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1),

e14 = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The smallest extension E of F2 such that the dimensions of the simple components of EG
are equal to 1, is E = F4 = F2(w) where w2 = w + 1. The primitive central idempotents 
of F4(C3 × C3 × C3) are:
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f1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

f2 = (1, w, w,w,w2, w2, w2, w2, w2, w2, 1, 1, 1, 1, 1, 1, 1, w, w,w,w,w,w,w2, w2, w2, 1),

f3 = (1, w2, w2, w2, w, w,w,w,w,w, 1, 1, 1, 1, 1, 1, 1, w2, w2, w2, w2, w2, w2, w, w,w, 1),

f4 = (1, w, w,w2, w2, w2, 1, w2, 1, w, 1, w, 1, w, w2, w, w2, w, w2, 1, w2, 1, 1, 1, w, w,w2),

f5 = (1, w2, w2, w, w,w, 1, w, 1, w2, 1, w2, 1, w2, w, w2, w, w2, w, 1, w, 1, 1, 1, w2, w2, w),

f6 = (1, w, w2, w, w2, 1, w2, w, 1, w2, w, 1, w2, w, 1, w2, w, 1, w2, w, 1, w2, 1, w, 1, w, w2),

f7 = (1, w2, w, w2, w, 1, w, w2, 1, w, w2, 1, w, w2, 1, w, w2, 1, w, w2, 1, w, 1, w2, 1, w2, w),

f8 = (1, w, w2, w2, w2, 1, 1, w, w,w,w,w,w2, w2, w2, 1, 1, 1, 1, 1, w, w,w2, w2, w2, 1, w),

f9 = (1, w2, w, w,w, 1, 1, w2, w2, w2, w2, w2, w, w,w, 1, 1, 1, 1, 1, w2, w2, w, w,w, 1, w2),

f10 = (1, w, w, 1, w2, w2, w, w2, w, 1, 1, w2, 1, w2, w, w2, w, w, 1, w2, 1, w2, w2, w, 1, 1, w),

f11 = (1, w2, w2, 1, w, w,w2, w, w2, 1, 1, w, 1, w, w2, w, w2, w2, 1, w, 1, w, w,w2, 1, 1, w2),

f12 = (1, w, w2, 1, w2, 1, w, w,w2, 1, w, w2, w2, 1, w, w,w2, 1, w, w2, w2, 1, w, 1, w, w2, 1),

f13 = (1, w2, w, 1, w, 1, w2, w2, w, 1, w2, w, w, 1, w2, w2, w, 1, w2, w, w, 1, w2, 1, w2, w, 1),

f14 = (1, w, 1, w, w2, w, w2, 1, w, w2, w2, 1, w, w2, 1, w, w2, w2, 1, w, w2, 1, w2, 1, w, 1, w),

f15 = (1, w2, 1, w2, w, w2, w, 1, w2, w, w, 1, w2, w, 1, w2, w, w, 1, w2, w, 1, w, 1, w2, 1, w2),

f16 = (1, w, 1, w2, w2, w, 1, 1, w2, w, w2, w, w, 1, w2, w2, w, w2, w, 1, 1, w2, w, w, 1, w2, 1),

f17 = (1, w2, 1, w, w,w2, 1, 1, w, w2, w, w2, w2, 1, w, w,w2, w, w2, 1, 1, w, w2, w2, 1, w, 1),

f18 = (1, w, 1, 1, w2, w, w, 1, 1, 1, w2, w2, w, w,w, 1, 1, w2, w2, w2, w, w, 1, w2, w2, w, w2),

f19 = (1, w2, 1, 1, w, w2, w2, 1, 1, 1, w, w,w2, w2, w2, 1, 1, w, w,w,w2, w2, 1, w, w,w2, w),

f20 = (1, 1, w, w, 1, w, w,w2, w2, w2, w, w,w2, w2, w2, 1, 1, w2, w2, w2, 1, 1, w, 1, 1, w, w),

f21 = (1, 1, w2, w2, 1, w2, w2, w, w,w,w2, w2, w, w,w, 1, 1, w, w,w, 1, 1, w2, 1, 1, w2, w2),

f22 = (1, 1, w, w2, 1, w, w2, w2, 1, w, w,w2, w2, 1, w, w,w2, w2, 1, w, w,w2, 1, w, w2, 1, 1),

f23 = (1, 1, w2, w, 1, w2, w, w, 1, w2, w2, w, w, 1, w2, w2, w, w, 1, w2, w2, w, 1, w2, w, 1, 1),

f24 = (1, 1, w, 1, 1, w, 1, w2, w, 1, w, 1, w2, w, 1, w2, w, w2, w, 1, w2, w, w2, w2, w, w2, w2),

f25 = (1, 1, w2, 1, 1, w2, 1, w, w2, 1, w2, 1, w, w2, 1, w, w2, w, w2, 1, w, w2, w, w,w2, w, w),

f26 = (1, 1, 1, w, 1, 1, w, 1, w, w2, 1, w, 1, w, w2, w, w2, 1, w, w2, w, w2, w2, w, w2, w2, w2),

f27 = (1, 1, 1, w2, 1, 1, w2, 1, w2, w, 1, w2, 1, w2, w, w2, w, 1, w2, w, w2, w, w,w2, w, w,w).

Here e1 = f1, e2 = f2 + f3, e3 = f4 + f5, e4 = f6 + f7, e5 = f8 + f9, e6 = f10 + f11, 
e7 = f12 + f13, e8 = f14 + f15, e9 = f16 + f17, e10 = f18 + f19, e11 = f20 + f21, 
e12 = f22 + f23, e13 = f24 + f25, e14 = f26 + f27.

Let us consider C = 〈e0〉, where e0 = e9 + e10 + e11 + e12 + e13 + e14. Then n = 27, 
k = 12, d = 6, t = 2. Hence,
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C̃ = 〈f16 + f17 + f18 + f19 + f20 + f21 + f22 + f23 + f24 + f25 + f26 + f27〉

has the same parameters as C. We compute, working in C̃,

Ã1G
= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

Ãa = (1, w2, w, w2, w, w2, w, w2, w, w2, w, w2, w, w2, w)T ,
Ãb = (1, w2, w, w2, w, w,w2, w, w2, w2, w, w,w2, 1, 1)T ,
Ãc = (1, w2, w, w,w2, w2, w, w,w2, 1, 1, 1, 1, w2, w)T ,

Ãa2 = (1, w, w2, w, w2, w, w2, w, w2, w, w2, w, w2, w, w2)T ,
Ãab = (1, w, w2, w, w2, 1, 1, 1, 1, w, w2, 1, 1, w2, w)T ,
Ãac = (1, w, w2, 1, 1, w, w2, 1, 1, w2, w, w2, w, w,w2)T ,
Ãb2 = (1, w, w2, w, w2, w2, w, w2, w, w,w2, w2, w, 1, 1)T ,
Ãbc = (1, w, w2, 1, 1, 1, 1, w2, w, w2, w, w,w2, w2, w)T ,
Ãc2 = (1, w, w2, w2, w, w,w2, w2, w, 1, 1, 1, 1, w, w2)T ,
Ãa2b = (1, 1, 1, 1, 1, w2, w, w2, w, 1, 1, w2, w, w,w2)T ,
Ãa2c = (1, 1, 1, w2, w, 1, 1, w2, w, w,w2, w, w2, 1, 1)T ,
Ãab2 = (1, 1, 1, 1, 1, w, w2, w, w2, 1, 1, w, w2, w2, w)T ,
Ãabc = (1, 1, 1, w2, w, w2, w, w,w2, w, w2, 1, 1, w, w2)T ,
Ãac2 = (1, 1, 1, w, w2, 1, 1, w, w2, w2, w, w2, w, 1, 1)T ,
Ãb2c = (1, 1, 1, w2, w, w,w2, 1, 1, w, w2, w2, w, w2, w)T ,
Ãbc2 = (1, 1, 1, w, w2, w2, w, 1, 1, w2, w, w,w2, w, w2)T ,
Ãa2b2 = (1, w2, w, w2, w, 1, 1, 1, 1, w2, w, 1, 1, w, w2)T ,
Ãa2bc = (1, w2, w, w,w2, w, w2, 1, 1, 1, 1, w2, w, 1, 1)T ,
Ãa2cc = (1, w2, w, 1, 1, w2, w, 1, 1, w, w2, w, w2, w2, w)T ,
Ãab2c = (1, w2, w, w,w2, 1, 1, w2, w, 1, 1, w, w2, w, w2)T ,
Ãabc2 = (1, w2, w, 1, 1, w, w2, w2, w, w,w2, 1, 1, 1, 1)T ,
Ãb2c2 = (1, w2, w, 1, 1, 1, 1, w, w2, w, w2, w2, w, w,w2)T ,
Ãa2b2c = (1, w, w2, 1, 1, w2, w, w,w2, w2, w, 1, 1, 1, 1)T ,
Ãa2bc2 = (1, w, w2, w2, w, 1, 1, w, w2, 1, 1, w2, w, w2, w)T ,
Ãab2c2 = (1, w, w2, w2, w, w2, w, 1, 1, 1, 1, w, w2, 1, 1)T ,

Ãa2b2c2 = (1, 1, 1, w, w2, w, w2, w2, w, w2, w, 1, 1, w2, w)T .

Suppose

r = (1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1),

then:
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Step 1. We have S̃j 	= 0 for all j ∈ {1, . . . , 15} \ {1, 10, 11, 12, 13} and

R̃ = (0, w, w2, w2, w, 1, 1, w, w2, 0, 0, 0, 0, w2, w)T .

Step 2. Taking the 2−set {a2b, a2bc}, we have that

B̃(a2b, a2bc) =
(
Ãa2b Ãa2bc R̃

)

has rank 2. Then, the solution of the system X1Ãa2b +X2Ãa2bc = R̃ is X1 = X2 = 1.

Hence,

e = a2b + a2bc = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

and

c = (1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1).

Remark. If we execute the general algorithm, looking for 2−sets such that the corre-
sponding extended matrices have rank 2, these matrices have 27 ×8 = 216 rows. However, 
if we apply the last algorithm, we compute the ranks of extended matrices with 15 rows, 
which clearly makes the last algorithm more efficient.

6. Conclusions

1. A decoding algorithm has been found that is efficient for group codes in the semisim-
ple case.

2. In the abelian case the algorithm can be improved to get a faster and simpler version.
3. A careful comparison of the complexities of both algorithms has to be done next.
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