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ABSTRACT
Objectives  To systematically review the literature for 
assay methods that aim to evaluate type I interferon 
(IFN-I) pathway activation and to harmonise-related 
terminology.
Methods  Three databases were searched for 
reports of IFN-I and rheumatic musculoskeletal 
diseases. Information about the performance metrics 
of assays measuring IFN-I and measures of truth 
were extracted and summarised. A EULAR task force 
panel assessed feasibility and developed consensus 
terminology.
Results  Of 10 037 abstracts, 276 fulfilled eligibility 
criteria for data extraction. Some reported more than 
one technique to measure IFN-I pathway activation. 
Hence, 276 papers generated data on 412 methods. 
IFN-I pathway activation was measured using: qPCR 
(n=121), immunoassays (n=101), microarray (n=69), 
reporter cell assay (n=38), DNA methylation (n=14), 
flow cytometry (n=14), cytopathic effect assay (n=11), 
RNA sequencing (n=9), plaque reduction assay 
(n=8), Nanostring (n=5), bisulphite sequencing (n=3). 
Principles of each assay are summarised for content 
validity. Concurrent validity (correlation with other 
IFN assays) was presented for n=150/412 assays. 
Reliability data were variable and provided for 13 
assays. Gene expression and immunoassays were 
considered most feasible. Consensus terminology to 
define different aspects of IFN-I research and practice 
was produced.
Conclusions  Diverse methods have been reported 
as IFN-I assays and these differ in what elements or 
aspects of IFN-I pathway activation they measure and 
how. No ‘gold standard’ represents the entirety of the 
IFN pathway, some may not be specific for IFN-I. Data 
on reliability or comparing assays were limited, and 
feasibility is a challenge for many assays. Consensus 
terminology should improve consistency of reporting.

INTRODUCTION
Type I interferons (IFN-Is) are a group 
of cytokines with antiviral and immune-
modulatory function. IFN-Is have roles in 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Type I and type II interferons play a role in a broad 
spectrum of rheumatic musculoskeletal diseases 
(RMDs).

	⇒ There is a large body of literature indicating that 
many different assay methodologies evaluating 
distinct steps of type I interferon (IFN-I) pathway 
activity may have roles in the diagnosis, prognosis, 
therapy selection and stratification for therapy in 
RMD patients. However, no consensus on the best 
method has been proposed.

WHAT THIS STUDY ADDS
	⇒ This study provides a systemic literature review 
and synthesis of all published data on IFN-I assays 
reported in basic and clinical research in RMDs, 
especially the most substantial literature on gene 
expression and protein assays in systemic lupus 
erythematosus.

	⇒ We provide an appraisal and commentary of an ex-
pert group on content and criterion validity, reliability 
and feasibility of these assays.

	⇒ We also propose consensus terminology for future 
IFN assay reporting in basic and clinical research.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This work will assist physicians and researchers to 
select the most appropriate assays for the analysis 
of IFN-I pathway activity and facilitate the transla-
tion of IFN-I pathway activation assays into clinical 
practice.
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several rheumatic musculoskeletal diseases (RMDs), 
Many IFN-I assays have been proposed to aid in clinical 
management of RMDs but, despite a large body of litera-
ture, not yet adopted into routine clinical practice.1

The IFN-I family comprises 13 functional IFN-α genes 
and one IFN-β gene on human chromosome 9, as well 
as IFN-ε, IFN-κ, IFN-τ and IFN-ω. IFN-I subtypes are 
produced by all nucleated cells. In acute viral infection 
circulating haematopoietic immune cells, especially 
plasmacytoid dendritic cells, are the most important 
producers. In other contexts production by stromal 
and parenchymal cells in most tissues may be more 
important.2 3 These proteins bind to a shared receptor 
(IFNAR), initiating a cascade of downstream molecular 
and cellular effects. Signalling via the JAK-STAT pathway 
leads to expression of IFN-stimulated genes (ISG) that 
contain the IFN-sensitive response element. These ISGs 
encode intracellular, surface and soluble proteins that 
have diverse effects on immune regulation and on anti-
viral response, with significant remodelling of mRNA 
processing, post-translational modifications, metabolism, 
cellular trafficking, chromatin organisation and the cyto-
skeleton, among others.4 5 Although there are distinc-
tions in the signalling pathway and response elements 
between type I, type II (IFN-γ) and type III IFNs (IFN-λs), 
there is also considerable overlap between these systems 
which may make interpretation of these downstream 
pathways difficult.6 ISG expression on similar stimuli may 
differ between cell types and tissues.1

IFN-I have pathogenic roles in a broad range of human 
diseases including autoimmunity, infection, cancer and 
cardiovascular disease.7 8 In RMDs, IFN-I acts as a medi-
ator linking innate and adaptive immunity, with special 
significance in diseases in which self-nucleic acids are 
sensed by IFN-producing innate immune cells, in which 
they probably promotes the production of antinu-
clear antibodies.9 10 Therapeutic monoclonal antibody 
blockade of IFNAR was effective in phase III clinical trials 
in systemic lupus erythematosus (SLE), and is being 
investigated in other RMDs, and IFN-I pathway blockade 
may be involved in the mechanism of action of other 
therapies such as anti-malarials and JAK inhibitors.11 12

Assays for IFN-I have been proposed to have roles in 
the diagnosis, prognosis, therapy selection and stratifi-
cation for therapy in RMD patients, to reclassify RMDs, 
as well as predict disease onset.13 A limitation in the 
progression of these assays into routine practice has been 
the number and heterogeneity of methods and clinical 
studies published.1 Assays include methods to measure 
IFN-I proteins,14 gene expression assays for ISGs, assays 
for proteins encoded by ISGs, DNA methylation and 
functional assays. These are paralleled by heterogeneity 
in the diseases studied, clinical questions addressed and 
design of clinical studies. As a result, there has been no 
consensus on the type of IFN-I assay that should be used, 
nor in what clinical indications. An additional issue is the 
use of varying, and sometimes contradictory, terminology 

to refer to aspects of the biological pathway and systems 
for evaluating it.

To address these issues, a EULAR task force was 
convened. We aimed to conduct a systematic literature 
review (SLR) on the principles and performance metrics 
of the assays described in the field of RMDs and to 
develop consensus terminology for use in future studies.

METHODS
EULAR standardised operating procedures for EULAR-
endorsed recommendations were followed.15 A multi-
disciplinary task force of 17 members (from 8 EULAR 
countries and the USA) was convened including experts 
in all techniques used for IFN-I pathway activation assays, 
as well as autoimmune rheumatic disease, viral immu-
nology and monogenic interferonopathies. The task 
force included an expert in EULAR methodology, two 
members of the EULAR emerging network (EMEUNET) 
and a patient representative. Six Population Interven-
tion Comparator and Outcome questions (PICOs) were 
formulated (online supplemental text 1). PICO 1, ‘What 
methods have been employed to assess type I IFN pathway 
activation in people with RMDs? What are their perfor-
mance metrics (including aspects of content, criterion, 
construct validity as well as reliability and feasibility) of 
these methods?’ is the basis of this SLR. PICOs 2–6 refer 
to clinical applications and will be reported separately 
(reference to SLR2) (online supplemental text 1).

Search strategy and eligibility criteria
A protocol for the SLR was developed and approved 
by the task force. Ovid Medline, Embase and Web of 
Science were searched for reports of IFN and RMDs up 
to October 2019. Search strategy is provided in online 
supplemental text 2–4. In addition to the RMD terms, 
papers were eligible for inclusion if they fulfilled the 
following criteria: (1) presented data on human patients 
with RMDs (with or without healthy controls); (2) design 
as cross-sectional; randomised control trials, case–control 
studies, non-controlled trials, diagnostic accuracy studies, 
cohort studies, intervention studies; (3) studies that 
described results on biological material derived from 
peripheral blood (ie, serum, whole blood, cell subsets); 
(4) written in English. Exclusion criteria were: (1) non-
human studies; (2) conference abstracts, case studies, 
non-original articles such as editorials, review, opinion 
pieces, (3) articles that did not specify the type of IFN 
that the assay measures; (4) papers that did not describe 
their results as an assay, biomarker, test, score or similar in 
the abstract, (5) studies purely on IFN-I pathway genetics 
(see online supplemental text 5 for details). A minimum 
sample size was not considered within eligibility criteria 
as it could hid studies with more complex methods.

Titles and abstracts, followed by full-text screening 
was performed by two reviewers (AB and JR-C). The 
agreement between reviewers was high (>95%) and 
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discrepancies were resolved by discussion or consultation 
with the convenor (EV).

Data extraction
An extraction template addressing all PICOs was 
developed. For the present report, the following fields 
were collected: method name, population studied, 
type of assay, material analysed, pathway element, 
detailed description of method and calculation of 
reported result, validity (including face validity, crite-
rion validity, concurrent validity, discussed further 
below), reliability and feasibility. Association with clin-
ical endpoints (ie, diagnostic accuracy) as well as assay 
responsiveness were analysed in a separate SLR (refer-
ence to SLR2). Due to the heterogeneity in methods 
and analyses reported, comparative statistical analysis 
or meta-analysis was not performed, and the results 
are presented in narrative form.

Interpretation of IFN assay validity
All assays included in SLR met face validity since the 
literature review filter implied a plausible role in the 
IFN pathway. For content validity, we described what 
aspects of the IFN pathway are measured in a descrip-
tion of principle of the assay. For criterion validity, no 
objective gold standard type I IFN pathway activation 
assay exists. We therefore described criterion validity as 
‘evidence that assay measures IFN-I’ and four options 
were considered: (1) experimental stimulation of cells 
with IFN-I in vitro and demonstration of assay induc-
tion, (2) assays in patients receiving IFN-I therapy, (3) 
standard curves where appropriate, for example for 
an IFN-alpha ELISA but not IFN-inducible chemok-
ines, (4) blocking with anti-IFN antibodies in vitro 
or as a therapeutic agent. For concurrent validity, we 
evaluated whether putative IFN-I assays were shown to 
correlate with other putative assay(s). For reliability, 
we sought evidence of reanalysis of samples in inde-
pendent laboratories by the same method or repeat 
analysis of a sample at different times. Information on 
feasibility was provided based on review of the paper 
methodologies by the TaskForce panel as well as review 
of data in the paper.

Development of consensus terminology
After review of extracted data, terminology to describe 
aspects of type I IFN pathway, and assays designed 
to measure it, was developed by the task force. First, 
common themes with ambiguous concepts or that 
require harmonisation were identified. Next, defi-
nitions were produced by an iterative process until 
consensus was achieved.

RESULTS
Summary of RMDs and assays reported in the literature
Study selection is summarised in the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses diagram 
(figure 1). A total of 10 037 abstracts were identified. A 

total of 276 of these reports fulfilled eligibility criteria and 
were used for data extraction. Some used more than one 
technique to measure IFN-I pathway activation. Hence, 
these 276 papers generated data on 412 methods.

Assays measured diverse aspects of the IFN-I pathway 
(figure 2). A summary of the assays used and their classi-
fication is in table 1. The most frequently studied RMD 
was SLE (n=204 reports), followed by RA (n=43), SS/pSS 
(n=41), SSc (n=32), myositis (n=29), antiphospholipid 
syndrome (APS) (n=6), multiple disease groups (n=44), 
other single RMDs such as AS, PsA, AAV, Behçet's disease, 
IgG4-RD (n=13). Sample sizes ranged from n=6 to 
n=1760.16 17 Types of assays also varied across RMDs 
(figure 3).

Description of assays reported in the literature
A detailed description of the principles of each assay is 
given in online supplemental text 6.

Immunoassays: IFN-I proteins (IFN-α and IFN-β)
Fifty-eight studies were identified for IFN-α and nine for 
IFN-β.

Content: Antibody-based methods to quantify IFN-I 
proteins in biosamples including ELISA, dissociation-
enhanced lanthanide fluorescence immunoassay 
(DELFIA), multiplex assays and radioimmunoassays 
(RIA).

Criterion validity: These assays use specific antibodies, 
mostly commercial and validated by manufacturers, and 
most include controls and calibration curves. It is less 
clear whether a single sample and IFN subtype, such 
as serum IFN-alpha, is the most clinically relevant to a 
patient.

Concurrent validity: Concurrent validity was provided 
in 12/57 reports IFN-α and 4/9 for IFN-β against other 
assays such as expression of individual ISG,18 19 ISG 
expression scores,20 soluble IP-10 levels,21 flow cytometric 
measurement of SIGLEC1,22 bioassays,23 virus inhibi-
tion assays24 or reporter cell assays. Outcomes of these 
comparisons were highly variable. Some showed no clear 
association with IFN-α levels (ie, for IP-10, expression of 
individual genes),20 21 25 26 weak associations (IFN induc-
ible gene expression, bioassay),20 21 or strong association 
(ie, between RIA and virus inhibition assays or SIGLEC-1 
by flow cytometry or IFN-α and expression of individual 
ISGs).19 22

SiMoA (single molecule assay)
Eight studies were identified.

Content: A proprietary technology for ultrasensitive 
digital protein detection with a commercial assay for 
IFN-α (and some IFN-induced proteins).

Criterion validity: This was shown in six of eight studies. 
The study by Rodero et al showed that SiMoA could 
detect all subtypes of IFN-α, and excluded crossreactivity 
testing antibodies against recombinant IFN-β, IFNλ−1, 
IFNλ−2, IFN-ω and IFN-γ. This paper also described crite-
rion validity showing that addition of anti-IFN-α antibody 
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depleted the signal. Reproducibility was also confirmed. 
Matched plasma and serum samples tested for IFN-α 
showed strong correlation indicating a negligible influ-
ence of blood processing on IFN-α concentration and 
the ability to use either sample for retrospective patient 
screening. The potential implication of missing non-
circulating sources was emphasised since intracellular 
IFN-I was detected in samples from patients with gain of 
function mutations in Stimulator of IFN Genes (STING) 
but not SLE despite high expression of ISGs in both. 
The IFN-α concentrations that are detected by SiMoA 
are often below the levels required to induce a cellular 
response in vitro.

Concurrent validity: This was reported in five of 
eight studies. SiMoA IFN-α measurements were highly 
correlated with a 6 ISG qPCR score as well as Nanostring 

and soluble Siglec-1.3 27 28 IFN-α protein by SiMoA 
correlated with cytopathic effect using Madin–Darby 
bovine kidney cells challenged with vesicular stomatitis 
virus.3 In some SLE cases, SiMoA detected IFN-α while a 
bioassay was negative, so the biological significance of the 
low IFN-α concentrations detected by SiMoA may require 
further confirmation.

Immunoassays: IFN-inducible proteins
Forty-two studies were identified.

Content: Immunoassays for soluble proteins encoded 
by ISGs in biosamples including ELISA, DELFIA, 
multiplex assays and radioimmunoassays.

Criterion validity: These assays do not evaluate IFN-I 
directly and production of some of the IFN-inducible 
proteins reported is known to be also induced by 

Figure 1  PRISMA chart. Search and selection strategy of publications. PRISMA, Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses.
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IFN-II or other inflammatory mediators. This is likely 
a particular problem if a single ‘IFN-inducible’ protein 
is reported. Of 42, 21 studies measuring chemokines 
cited papers showing they are IFN-I-induced. Only 
3/42 studies provided experimental evidence. Bauer 
et al29 selected IFN chemokines whose transcripts were 
induced by IFN-α in a microarray study but did not 
check whether other IFNs or inflammatory mediators 
also induced these proteins. Thanarajasingam et al30 
evaluated stimulation of whole blood including IFN-α, 
oligonucleotides with cytosine‐guanine repeats, 
Resiquimod (R848), LPS, IFN‐α+LPS and null (no 
stimulant) then measured cytokines/chemokines and 
IFN-α. Most of the other studies cite the evidence from 
Bauer et al.29 The IFN-inducible proteins included in 
assays are summarised in figure 4.

Concurrent validity: Of 42, 16 studies demon-
strated concurrent validity against another test for 
IFN-I. 11/16 used an ISG expression assay.29–38 In 
two studies concurrent validity was tested between 
the IFN-inducible protein and two other techniques 
(flow cytometry for SIGLEC-122 39 as well as IFN-α 
protein21 26; and gene expression as well as a reporter 
cell assay).30 40

Flow cytometry
Twelve studies reported using flow cytometry to analyse 
IFN-I-inducible markers.

Content: Evaluation of IFN-inducible proteins, mostly 
on the cell surface, using flow cytometry. It allows cell-
specific measurement that avoids artefacts due to changes 
in the cellular composition of the sample. The most 
common target was SIGLEC-1. Other markers reported 

were CD64 (FCGR1), MxA, IFITM1, PRKRA. Only mono-
cytes can be analysed using SIGLEC-1 (CD169), so mono-
cyte data represent the bulk of this literature.

Criterion validity: Of 12, 4 studies reported in vitro 
experiments showing stimulation of cells (PBMCs cells 
subsets or cell lines) with IFN-I and induction of the flow 
cytometry markers. Of 12, 9 studies cited evidence from 
the literature that the genes encoding the flow cytometry 
marker are IFN-inducible, or prior papers that report 
the marker as an IFN assay. These studies did not report 
whether other subtypes of IFN or other inflammatory 
mediators induced the flow cytometry markers.

Concurrent validity: Of 12, 5 studies demonstrated 
correlation with another IFN assay such as the same 
protein in serum by ELISA, the expression of the 
protein’s transcript by qPCR, against IFN-α protein 
measured by ELISA, or against IFN scores derived from 
qPCR assays.22 35 39 41–43 Some comparator assays compared 
ELISA or IFN Score results from unsorted blood with a 
specific cell population analysed by flow cytometry.

RNA microarrays
Microarrays were reported in 70 studies in total, with 
several differences in the methods section.

Content: A gene expression assay using probes that 
provide broad coverage of the transcriptome.

Of the 70 studies, 3 main methods of data analysis were 
used: (1) reporting an ‘IFN signature’, referring to the 
presence or absence of a cluster of ISGs, usually readily 
visible on a heat map; (2) an ‘IFN score’, usually referring 
to a continuous variable calculated from a predefined 
set of ISGs or (3) modules of ISGs, which allows the 
clustering of ISGs into two or more groups, and then a 

Figure 2  Aspects of the IFN-I pathway evaluated by each assay. The IFN pathway is a complex system with multiple 
subtypes of IFNs and diverse downstream effects on gene and protein expression. Existing assays measure different aspects 
of the IFN pathway; they do not reflect the entirety of the pathway and some are not specific for IFN-I. See text for full 
description of these assays.
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signature or score to be provided for each module or 
differences across modules are screened. The terms for 
these methods have not always been consistently used.

Of 70, 36 studies reported IFN signatures, 23/70 as 
IFN scores and 10/70 studies presented results as IFN 
modules. The most popular platform used was Affyme-
trix (39/70), followed by Illumina (15/70), Stanford 
microarrays (4/70), Agilent (3/70) or custom-made 
arrays. Microarrays were performed mainly using RNA 
from whole blood (41/70). Blood was collected using 
PAXgene (36/70) or Tempus tubes (5/70). Others used 
PBMCs or various combinations of isolated cell subsets.

Criterion validity: Of 70, 16 studies presented stimula-
tion experiments showing induction of ISGs by IFNs-I or 
used public datasets to derive ISG sets. A few studies also 
reported ISG downregulation or IFN signature neutral-
isation after experiments or administration of IFN-
targeted medications. The modular analysis provided 
data suggesting that modules may represent the rela-
tive abundance of type I versus type II IFNs. As for all 
gene expression assays described, a potential limitation 
when analysing unsorted cells is artefactual change due 
to changes of the cellular composition of the sample. 
Indeed, ISG expression differs between cell subsets and 

Figure 3  Summary of RMDs evaluated using each type of IFN-I assay. Pie charts indicate the number of reports of assays for 
each methodology and each rheumatic musculoskeletal disease. Some publications include more than one assay, so number 
of papers may differ from the numbers on this figure. RMDs, rheumatic musculoskeletal diseases.

Figure 4  UpSet plot for constituents of immunoassays. Dots and bars indicate what combinations of proteins were measured 
in reports of IFN immunoassays. The left-hand chart shows the number of reports for each protein. The upper chart shows the 
number of reports for each combination.
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patients with RMDs often have cytopenias or expansion 
of cell subsets secondary to autoimmunity or immuno-
suppressive therapy.

Concurrent validity: Provided in 33/70 reports. 
Microarray results were validated against qPCR scores, 
individual ISGs expression, serum IFN-α, -β and IFN-
inducible chemokines and a methylation array.

RNA-sequencing
Nine studies reported RNA-sequencing (RNASeq).

Content: Sequencing of the whole transcriptome 
providing qualitative and quantitative data on any RNA 
type.

Studies reported differentially expressed genes 
including ISGs in whole blood (3/9), isolated CD19+B cells 
(3/9), monocytes CD14+, pDCs, neutrophils (1/9 each 
subset). RNASeq was performed on Illumina.

Criterion validity: As for other gene expression 
methods. Stimulation with IFN-I was shown in one out of 
nine study, in another ISGs were derived from the Inter-
ferome database. ISG were not reported in subsets as for 
micro-arrays and qPCR studies.

Concurrent validity: provided in three ouf of nine 
reports, against chemokine score in serum,44 methylation 
profile of selected ISGs45 and qPCR.46

Nanostring
Five studies reported gene expression using Nanostring.

Content: A proprietary probe-based gene expres-
sion usually analysing 800 transcripts in manufacturer 
designed or customisable panels.

Nanostring was reported in in five out of nine studies 
to evaluate expression of ISGs in whole blood, PBMCs 
and CD19+B cells.

Criterion validity: as for other gene expression assays. 
Commercial predefined panels were provided by the 
manufacturer.

Concurrent validity: Provided in four out of nine studies 
where results were compared with serum protein IFN-α 
or SIGLEC1, IFN-I scores by qPCR or RNA-seq.28 39 46 47

IFN-I scores by qPCR
qPCR was reported in 122 studies with differences in the 
methods section.

Content: All qPCR studies report a set of real-time PCR 
techniques based on commercial or custom probes and 
primers for quantification of predefined ISG transcripts. 
Of the 122 studies, 5 main methods of data analysis were 
used: (1) 4/122 measured qPCR for genes encoding IFN 
proteins; (2) 30/122 reported expression of individual 
ISGs; (3) 82/122 studies reported an IFN Score—that 
is, expression of a set of ISGs as a continuous value; (4) 
4/122 studies reported IFN-inducible chemokines as 
scores or individual genes; (5) 2/122 reported clusters of 
ISGs as a categorical signature.

Criterion validity: as for other gene expression assays. A 
total of 14/122 studies contained direct evidence based on 
experimental stimulation with appropriate positive and 

negative controls. The ISGs and reference genes chosen 
were highly variable between studies, and the rationale 
for these choices was not always given. A list of transcripts 
in scores used in RMDs is shown in figure 5. Sources and 
preanalytical features also differ across studies.

Some papers derived and used more than one score, 
related to the modular data from microarray studies 
or from unsupervised approaches (factor analysis or 
principal component analysis). Many studies reported 
correlations among ISGs, providing additional criterion 
validity. While many papers suggest these reflect balance 
of IFN-I and IFN-II, this was not demonstrated in any 
paper.46 48 48 49 49 50 50–54 However, when multiple scores 
were analysed, particular sets of ISGs, such as IFN-Score-B, 
show a stronger correlation with clinical endpoints than 
others in certain conditions. The metric properties of the 
scores, dynamic ranges and calculations to derive them 
may be other reasons that some sets of ISGs provide 
better clinical correlations, which also applies to other 
gene expression assays.

Concurrent validity: Provided for 43/122 studies, 
mainly by comparing new gene expression scores against 
previously published scores that use different ISGs. 
Several studies validate scores against levels of IFN-α 
protein measured by ELISA, SiMoA, etc); IFN-stimulated 
proteins (SIGLEC1, GAL9, G3BP); chemokines/chemo-
kine scores; or expression of individual ISGs (MxA).

DNA Methylation arrays
Fourteen studies analysed an aspect of the IFN pathway 
using DNA methylation arrays.

Content: Analysis of methylation of genomic DNA to 
identify changes in actively transcribed genes

The material analysed included isolated cell subsets 
(most frequently CD4+T cells, but also CD8+T cells, 
CD19+B cells or neutrophils) as well as whole blood and 
PBMCs. The Illumina Human Methylation 450 BeadChip 
(HM450) was the most commonly method used for high-
throughput human methylome analyses in 13/14 studies. 
Other studies used a newer Illumina assay based on the 
EPIC chip (Illumina Infinium MethylationEPIC Bead-
Chip). Differential methylation was reported for ISGs as 
well as IFNA gene across all tested blood cell types and 
samples.

Criterion validity: These assays do not directly measure 
the transcription of IFNs or ISGs, nor their protein prod-
ucts so are only an indirect indication of activation of IFN-
related pathways based on prior knowledge. The studies 
retrieved did not add any direct evidence to support their 
specificity.

Concurrent validity: Of 14, 10 reports presented 
concurrent validity. In three cases, results were validated 
against bisulphite sequencing, pyroseqencing and others 
looked at impact of hypomethylation on gene expression 
by qPCR (comparing to selected representative individual 
genes) or microarray results (IFN score) or RNA-seq. One 
study validated methylation results against IFN-α and -β 
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protein levels in serum. Of 14, 2 studies validated their 
results against publicly available methylation datasets.

Reporter cell assays
Forty studies reported data from reporter cell assays.

Content: Quantitative analysis of the ability of IFNs in 
biosamples (ie, serum) to upregulate ISGs in a reporter 
cell line.

Various combinations of cells, biosamples and methods 
of readout have been published. Most studies analysed 

Figure 5  UpSet plot for constituents of gene expression assays. Dots and bars indicate what combinations of genes were 
measured in reports of IFN gene expression assays. The left-hand chart shows the number of reports for each gene. The upper 
chart shows the number of reports for each combination.
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serum, with plasma in a smaller number. Samples were 
used to stimulate a reporter cell.

Two main groups of reports were identified. A first 
group of 31 studies used reporter cell assays with a 
qPCR readout. Most of these used a WISH cell line 
(human amnion) combined with patient serum (22 
studies); 4 studies used HeLa cells; others used PBMCs 
from healthy controls, THP1 cells or HUVEC. The 
output readout was measured by qPCR using combi-
nation of 1–6 ISGs. The ISGs and reference genes 
chosen were highly variable between studies, and 
the rationale for these choices was not given. Results 
were usually presented as individual gene expression 
or IFN scores. The ISGs and reference genes chosen 
were highly variable between studies, and the ratio-
nale for these choices was not given. Results were 
usually presented as individual gene expression or 
IFN scores.

A second group of nine studies used measurement 
of output by luminescence or spectrophotometry. 
In this group, three studies used A549 cells (human 
lung carcinoma); two used novel HEK-Blue IFN-α/β 
and/or donor PBMCs; one used Hil3 (hepatoma cell 
line); one used U937 cells stably expressing an Mx1 
promoter; one used U937-Mx1-Luc (containing lucif-
erase reporter construct) and one used Fibroblast cells 
(FL). The results were presented in various formats 
such as: ‘Activity’ (titres, dilutions or arbitrary units) 
or concentration of IFN-α, etc.

Criterion validity: From both subcategories of 
reporter cell assays 14/29 and 2/9 gave experimental 
evidence on measuring IFN-I by using positive controls, 
inhibition with anti-IFN-I antibodies, stimulation with 
IFN-I or describing using a standard curve.

Concurrent validity: 8/29 and 5/9 studies, respec-
tively, from these two groups presented concurrent 
validity. In most cases this was compared with IFN 
scores by qPCR measured in PBMCs or whole blood 
as well as against IFN-α protein levels in serum or 
plasma

Cytopathic effect assay
Eleven studies reported cytopathic effect assays.

Content: Measures the capability of IFN-I in a 
biosample to suppress the cytopathic effect of viral 
replication on a target cell in vitro. Various combi-
nations of cells and viruses have been reported 
(discussed in online supplemental text 6). The most 
common combination is the human lung carcinoma 
cell line A549 challenged with encephalomyocarditis 
virus (EMCV).

Criterion validity: All studies used IFN-I standards 
and further three additionally used neutralisation of 
IFN with anti-IFN-α antibodies.

Concurrent validity: Three reports provided 
evidence of concurrent validity against SiMoA and RIA 
IFN-α protein measurement.

Plaque reduction assay
Content: Evaluation of the ability of IFN-I in a biosample 
to prevent cell killing by a lytic virus in vitro. This assay was 
used in n=7 RMD studies. Many different combinations of 
cells, patient sample types and methods of readout have 
been published. The cell line used most frequently was 
WISH in combination with serum and vesicular stomatitis 
virus (VSV) (n=5). Two other studies used fibroblastic 
cell lines (human foreskin fibroblasts (HFF) ormammary 
stromal fibroblastic (MSF) cell lines) with VSV. All these 
studies were published in 1970s and 1980s. The last study 
identified, from 2011, reported using VERO cell line in 
combination with serum and EMCV.

Criterion validity: All eight studies reported using IFN 
standards (recombinant IFN-α mainly, IFN-β and IFN-γ in 
some cases) as positive controls, as well including nega-
tive controls. A neutralisation assay with anti-IFN anti-
bodies was also performed in three cases.

Concurrent validity: nNne of studies showed results of 
concurrent validity

IHC
A single study reported the results of whole blood stained 
for MxA as semi-quantitative intensity of staining. This 
assay shares similar considerations to other assays for 
single IFN-stimulated proteins.

Feasibility
Key considerations in feasibility provided by the task 
force members after reviewing manuscripts is provided 
in online supplemental table 1.

Definitions of terms
The terminology used to describe aspects of IFN-I 
pathway activation was not consistent in the litera-
ture eligible for this SLR. This includes the distinction 
between signatures and scores, abbreviations for IFN 
subtypes and even the use of the term ‘interferonopathy’ 
(used to indicate either monogenic diseases, but also 
to refer to any polygenic RMDs in which increased IFN 
pathway activation was observed, especially SLE). Having 
identified key areas with inconsistent nomenclature and 
reporting, consensus terminology was agreed through 
an interactive compromise process with reference to the 
existing evidence. Recommended terms relating to IFN-I 
reporting in basic and clinical research is presented in 
table 2.

DISCUSSION
This SLR is the first summary of the entirety of the litera-
ture of IFN-I assays in the field of rheumatology. We iden-
tified a substantial body of literature supporting the value 
of these assays, but simultaneously several inconsistencies 
in the literature that are a barrier for the progression of 
these biomarkers into clinical practice. These findings 
provide a knowledge framework to guide assay selection 
and will inform the development of EULAR points to 
consider for the measurement, reporting and application 
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of IFN-I pathway activation assays in clinical and research 
practice.

The assays described all measure different aspects of 
the complex IFN pathway. However, none of them can 
assess all relevant elements of the IFN-I activity in a 
human patient, and many of them are not specific for 
IFN-I. Hence, no single assay can evaluate the entirely of 
the IFN-I pathway activation. The most appropriate assay 
choice is contextual, depending on the specific research 
or clinical question as well as aspects of feasibility and 
reliability.

The complexity of this pathway presents an intrinsic 
problem in construct validity, that is, evidence that puta-
tive IFN-I assays measure IFN-I pathway activation specif-
ically. Given that no assay can measure the entirety of 
IFN-I pathway activation, there is no ‘Gold Standard’ 
against which to evaluate new assays. Although SiMoA has 
increased the ability to measure IFN-I proteins themselves 
in the circulation more easily, this is only one component 
of the pathway. Further, non-circulating sources of IFN-I 
may be more important in many contexts. Molecular 
events downstream of the IFNAR may be more relevant 
to immunopathogenesis and thus, clinical applications. 
Meanwhile, assays for downstream molecules, such as 
assessment of ISG expression of IFN-inducible proteins, 
may be responsive to other IFNs or cytokines (Figure 6). 
Many of the papers reviewed presented concurrent 

validity (ie, correlation with another putative IFN-I assay) 
as evidence to support that they are IFN-I assays. This 
is weak evidence. The effects of IFN-I on the immune 
system and other aspects of its biology are so diverse that 
many parameters –ranging from acute-phase markers to 
symptom scores—may be found to correlate with IFN-I 
pathway activation. For this reason, methods for construct 
validity are likely to be measures of criterion validity, such 
as in vitro stimulation of cells with IFN-I as well as nega-
tive and positive controls before evaluating gene expres-
sion; or inhibition of reporter cell assays with anti-IFN-I 
antibodies. These methods do not represent autoimmu-
nity in the complete organism. Regardless of these issues, 
representation of the complete IFN-I pathway may not be 
necessary for a clinically applicable biomarker.

An additional aspect of analytical validity that varied 
between reports was the analysis and reporting of results. 
Many papers reporting gene expression assays presented 
results as high or low, or positive or negative; and several 
cut-off criteria and score calculation practices were 
proposed. Although ISG expression is often bimodally 
distributed, this dichotomisation remains a dubious 
concept, since cytokine levels and cellular responses are 
naturally continuous. The bimodal distribution of results 
may differ in non-SLE RMDs, or in specific SLE popu-
lations. One study demonstrated that evaluation of IFN 
scores as continuous variables provided clinically relevant 

Table 2  Consensus terminology

Term Abbreviation Definition

Interferon IFN Proteins with antiviral activity; IFNs are mediators of an antiviral response. They belong to 
the type I, type II and type III IFN families.

Type I interferon IFN-I The IFNs alpha, beta, omega, kappa, epsilon, secreted by any nucleated cell, and binding to 
the IFNAR, which is expressed on any nucleated cell.

Type II interferon IFN-II IFN gamma, mostly secreted by T cells, binding to the IFNGR, which is expressed on most 
leucocytes.

Type III interferon IFN-III IFN lambda, which are structurally more similar to IL-10 but share downstream signalling and 
gene expression with IFN-I.

Interferon-stimulated genes ISGs Genes whose expression is known to be upregulated by any kind of IFN. Individual ISGs 
may not exclusively represent type I IFN pathway activation.

Type I Interferon pathway Type I IFN pathway is a dynamic, biological system that includes the secretion of type I IFN 
protein, binding to the IFNAR, initiation of JAK/STAT signalling pathways, expression of IFN-
stimulated genes and the expression of IFN-stimulated proteins.

Type I Interferon pathway 
activation

Any evidence for changes in function or levels of the components of the Type I IFN pathway.

Type I interferon pathway 
assay

An assay measuring one or more components of the type I IFN pathway at a molecular or 
functional level.

Interferon stimulated gene 
expression signature

A qualitative description of coordinated expression of a set of ISGs that is indicative of type I 
IFN pathway activation.

Interferon stimulated gene 
expression score

A quantitative variable derived from expression of a defined set of ISGs that is indicative of 
type I IFN pathway activation.

Interferon stimulated protein 
score

A variable derived from expression of a defined set of soluble biomarkers known to be 
upregulated by IFN, although not specific for type I IFN.

Interferonopathy Mendelian diseases in which there is constitutive type I IFN pathway activation with a causal 
role in pathology. The clinical picture may resemble RMDs. However, most diseases with IFN 
pathway activation are polygenic disorders and not mendelian Interferonopathies.

ISG, IFN-stimulated genes; RMDs, rheumatic musculoskeletal diseases.
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information in addition to high/low status (ie, very high 
expression has a different clinical significance to moder-
ately high50).

Immunoassays are often used to assess directly IFN 
levels in biosamples from patients with RMDs. However, 
sensitivity of these methods has been questioned in the 
past since IFN-I may be below detection55 when assayed 
using ELISA. This method is also influenced by low 
reproducibility and shows rather variable correlation 
with bioassays55 56 possibly because of other subtypes of 
IFN or because the assay can detect a similar epitope on 
a non-IFN-α protein, a stable but biologically inactive 
IFN-α protein degradation product56 or the presence of 
other IFN subtypes. Of note, these limitations must be 
regarded as antibody specificity-related rather than to 
the assay itself. While the SiMoA technology can measure 
proteins with an increased sensitivity a limitation is the 
lack of a commercially available kit to detect all IFN-I 
subtypes. And levels of IFN in serum may not be the only 
relevant IFN protein influencing IFN pathway activation. 
Clinical validation to demonstrate any superior proper-
ties as a biomarker is still required.

Three main types of assay to evaluate downstream 
cellular responses to IFN-I had the most substantial body 
of literature; immunoassays for soluble IFN-stimulated 
proteins, assays for IFN-stimulated genes and flow cyto-
metric assays for IFN-stimulated cell surface proteins. For 
all of these, confirmation that they pertain specifically to 
IFN-I is critical and not always provided. However, these 

assays generally appeared feasible in routine practice. 
One additional flow cytometry marker was published 
after completion of the SLR, which is evaluable on any 
cell subset.4

Functional assays or bioassays are among the oldest 
in the literature with more modern adaptations in later 
papers. These assays have obvious interest in terms of 
biological significance, but most appeared to have poor 
feasibility for routine clinical practice.

This SLR has some limitations. Due to the heteroge-
neity in the methods of reporting, it was not possible to 
perform meta-analysis. The presentation format of the 
results representing the same assay was so variable that 
did not allow for comparison of data between studies. 
Moreover, assays were evaluated on the basis of their 
methodologies and technical aspects, whereas their clin-
ical associations were the focus of other SLR (reference 
to SLR2). Although some papers reported more than one 
assay or method (2–4), these did not necessarily provide 
concordant results. Some studies described multiple 
assays as independent assays of IFN-I pathway activation. 
Reports also varied by sample types and study designs, 
and assay usage differed across RMDs. Furthermore, 
there is a lack of standardised instruments for compara-
tive analyses and specific technical aspects, such as feasi-
bility. For these reasons, we relied on expert commentary 
in this SLR.

This SLR is the first step in a programme designed to 
facilitate translation of IFN-I assays in clinical research 

Figure 6  Overlap between types of IFNs. Although there are distinct receptors for type 1, 2 and 3 IFNs, there is substantial 
overlap in signalling and response elements. Assays measuring segments of the pathway downstream from the IFN receptor 
may not be specific for one subtype of IFN and some may preferentially reflect type II or III IFNs.
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and practice. Together with an analysis of their associa-
tions with clinical outcomes, these will inform the EULAR 
points to consider for the measurement, reporting and 
application of IFN-I pathway activation assays in clinical 
and research practice. We believe this programme will 
ultimately lead harmonisation and to widespread adop-
tion of these promising assays to improve patient care. 
Although genetic studies were not included in this review, 
we consider that our task force will also facilitate prog-
ress in the characterisation of genetic variants. Moreover, 
due to the broad involvement of IFN in human disease, 
our analysis may be also applicable beyond the field of 
rheumatology.
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