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Abstract:

There is a lack of guidance on the choice of the spatial grain of predictor 
and response variables in species distribution models (SDM). This review 
summarises the current state of the art with regard to the following 
points: (i) the effects of changing the resolution of predictor and 
response variables on model performance; (ii) the effect of conducting 
multi-grain vs single-grain analysis on model performance; and (iii) the 
role of land cover type and spatial autocorrelation in selecting the 
appropriate grain size. In the reviewed literature, we found that 
coarsening the resolution of the response variable typically leads to 
declining model performance. Therefore, we recommend aiming for finer 
resolutions unless there is a reason to do otherwise (e.g., expert 
knowledge of the ecological scale). We also found that so far, the 
improvements in model performance reported for multi-grain models 
have been relatively low and that useful predictions can be generated 
even from single-scale models. In addition, the use of high-resolution 
predictors improves model performance; however, there is only limited 
evidence on whether this applies to models with coarser-resolution 
response variables (e.g. 100 km2 and coarser). Low-resolution 
predictors are usually sufficient for species associated with fairly 
common environmental conditions but not for species associated with 
less common ones (e.g., common vs rare land cover category). This is 
because coarsening the resolution reduces variability within 
heterogeneous predictors and leads to underrepresentation of rare 
environments, which can lead to a decrease in model performance. Thus, 
assessing the spatial autocorrelation of the predictors at multiple grains 
can provide insights into the impacts of coarsening their resolution on 
model performance. Overall, we observed a lack of studies examining 
the simultaneous manipulation of the resolution of predictor and 
response variables. We stress the need to explicitly report the resolution 
of all predictor and response variables.  
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1 Title: Scale mismatches between predictor and response variables in species distribution modelling: 

2 a review of practices for appropriate grain selection

3

4 Abstract

5 There is a lack of guidance on the choice of the spatial grain of predictor and response variables in species 

6 distribution models (SDM). This review summarises the current state of the art with regard to the following 

7 points: (i) the effects of changing the resolution of predictor and response variables on model performance; (ii) 

8 the effect of conducting multi-grain vs single-grain analysis on model performance; and (iii) the role of land 

9 cover type and spatial autocorrelation in selecting the appropriate grain size. In the reviewed literature, we found 

10 that coarsening the resolution of the response variable typically leads to declining model performance. 

11 Therefore, we recommend aiming for finer resolutions unless there is a reason to do otherwise (e.g., expert 

12 knowledge of the ecological scale). We also found that so far, the improvements in model performance reported 

13 for multi-grain models have been relatively low and that useful predictions can be generated even from single-

14 scale models. In addition, the use of high-resolution predictors improves model performance; however, there is 

15 only limited evidence on whether this applies to models with coarser-resolution response variables (e.g. 100 

16 km2 and coarser). Low-resolution predictors are usually sufficient for species associated with fairly common 

17 environmental conditions but not for species associated with less common ones (e.g., common vs rare land 

18 cover category). This is because coarsening the resolution reduces variability within heterogeneous predictors 

19 and leads to underrepresentation of rare environments, which can lead to a decrease in model performance. 

20 Thus, assessing the spatial autocorrelation of the predictors at multiple grains can provide insights into the 

21 impacts of coarsening their resolution on model performance. Overall, we observed a lack of studies examining 

22 the simultaneous manipulation of the resolution of predictor and response variables. We stress the need to 

23 explicitly report the resolution of all predictor and response variables.  

24

25

26 Keywords: Environmental niche modelling, Grain, Land cover, Predictor, Resolution, Scale, SDM, Variable

27
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28 1. Introduction

29 Species distribution models (SDMs) are widely used to assess species–environment relationships and to make 

30 predictions of species distributions in both space and time (Elith and Leathwick, 2009; Ferrier et al., 2017; 

31 Wiersma et al., 2011). To this end, SDMs relate a biodiversity-related response variable (e.g., the geographic 

32 distribution of one or more species) to explanatory variables (i.e., predictors, covariates, or features). The 

33 strength of these relationships infere species’ niches, and can be used to predict a species’ occurrence in 

34 unsurveyed locations. Although SDMs are a fundamental tool for answering many ecological, evolutionary, and 

35 conservation-related questions, some methodological issues remain unresolved (Araújo et al., 2019; Moudrý et 

36 al., 2017; Rocchini et al., 2011; Santini et al., 2021).

37 One such issue is the choice of spatial resolution, or grain, of the input data (Dungan et al., 2002). It has been 

38 hypothesized that organisms respond to their environment more strongly at some grains than at others; these 

39 grains have been referred to as ‘ecological scales’ (Lecours et al., 2015), ‘characteristic scales’ (Holland et al., 

40 2004), ‘intrinsic scales’ (Wu and Li, 2006) and ‘response grains’ (Mertes and Jetz, 2018). This concept implies 

41 that for every species, there are one or more grains that best capture the scales at which organisms most strongly 

42 respond to specific environmental variables. For example, it is assumed that climate constrains species 

43 distributions at broader spatial scales (e.g., at the extent of a whole continent, with phenomena that can be 

44 measured at a coarse resolution like > 100 km2). At successively finer resolutions and over smaller geographic 

45 extents, topography or biotic interactions may be the dominant variables in controlling species distribution, 

46 whereas at even finer resolutions, microclimate, vegetation structure, or the presence of individual land cover 

47 categories such as water bodies might drive local species distribution (Austin and Van Niel, 2011; Field et al., 

48 2009; Pearson and Dawson, 2003; Wiens, 1989). However, previous studies have suggested that some of the 

49 abovementioned variables may shape species distribution across multiple grains (e.g., Alexander et al., 2015; 

50 Bütikofer et al., 2020; Wisz et al., 2013). Consequently, the choice of grain adopted in models can strongly 

51 influence our ability to detect and measure species’ response to the environment (de Knegt et al., 2010; Huston, 

52 2002; Levin, 1992; Soberón, 2007; Cord et al. 2014). 

53 Ideally, both species occurrence data and predictor variables are available at relatively fine resolutions, allowing 

54 the researchers to coarsen the resolutions iteratively to find the best match between the predictor and response 
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55 variables. While the response data should preferably be available at resolutions at which the species are expected 

56 to respond to the environment, predictor variables should be detailed enough to allow distinguishing important 

57 features of the environment that are hypothesized to affect species distribution (e.g., a certain habitat type or 

58 specific microclimatic conditions). However, this is not always the case due to limitations in data availability. 

59 Usually, the original spatial resolution of different datasets that need to be integrated for modelling purposes 

60 varies significantly, and thus finding an optimal match remains a significant challenge.

61 It is a common practice to modify the resolution of the input data so that it matches the resolution at which the 

62 study is intended, for example, by averaging environmental variables within field plots. Both continuous (e.g., 

63 bioclimatic variables, terrain characteristics such as slope) and categorical (e.g., land cover) predictors are often 

64 aggregated or resampled to match the resolution of the response variable (Grohmann, 2015; Moudrý et al., 

65 2019). While not commonly implemented, an alternative approach consists of retaining the discrepancy between 

66 the grain sizes of the response and predictor variables through hierarchical modelling. This allows modelling 

67 species distribution using fine-grain species data and coarse-grain environmental data (McInerny and Purves, 

68 2011), coarse-grain species data using fine-grain environmental data (Keil et al., 2013, 2014), or modelling the 

69 grain-dependency of the species-environment relationships. The latter can be done using an extra parameter in 

70 the model to quantify the relationship across a continuum of spatial scales (Keil & Chase, 2019).

71 Any end user should know how changing the spatial resolution of predictor and response variables can affect 

72 SDM performance and which data characteristics play a role in how profound the effect of changing the 

73 resolution will be. Therefore, here we review methodological issues related to the choice of the spatial resolution 

74 of predictor and response variables in SDM. In particular, we focus on the following issues: (i) the effects of 

75 changing the resolution of predictor and response variables on model performance, (ii) the effect of conducting 

76 multi-grain vs single-grain analysis on model performance, and (iii) the role of land cover type and spatial 

77 autocorrelation in the selection of appropriate grain sizes. Accordingly, we aim at providing recommendations 

78 for the critical assessment of the input data. 

79

80

81

82

Page 4 of 26

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

83 2. Effects of changing the resolution of predictor and response variables on model performance

84 Numerous studies examined the grain dependence of species-environment relationships (see the review by 

85 Moudrý and Šímová, 2012). Some authors coarsened the resolution of the response variable (section 2.1), others 

86 coarsened the resolution of predictor variables so that the resulting predictor was coarser than the response 

87 variable (section 2.2). Finally, in some studies the resolution of predictor variables was coarsened so that the 

88 resulting predictor was finer than the response variable (section 2.3). These three scenarios are shown in Figure 

89 1. The distinction between these three approaches is often not made in the respective studies, and the effect of 

90 changing any resolution can be mistakenly understood as a single problem. We found no studies manipulating 

91 the resolution of predictors from finer to coarser resolution compared to the response variable, nor did we find 

92 studies manipulating the resolution of both the predictors and the response simultaneously (but see Tobalske, 

93 2002).  

94

95 2.1 How the resolution of the response variable affects model performance 

96 The availability of species data at a much coarser resolution than commonly used environmental variables (e.g., 

97 species occurrence locations only available aggregated at a municipal or county level; Cheng et al., 2021; Jetz 

98 et al., 2012) can significantly limit our ability to model species-environment relationships. Studies using species 

99 data at such coarse resolutions are not uncommon, especially for less studied taxa. As examples of such data, 

100 we can name gridded atlases (Jalas and Suominen, 1988; Šťastný et al., 2021), the resolutions of which can 

101 range from hundreds of meters to tens of kilometres. However, monitoring programs collecting atlas data are 

102 organizationally and financially demanding. The choice of grid resolution then becomes a trade-off between the 

103 level of detail and the feasibility of fieldwork. It is increasingly common to supplement atlases with maps 

104 generated with SDMs (e.g., Flousek et al., 2015; Šťastný et al., 2021). As field data may nowadays be gathered 

105 with the knowledge that they will also be used for modelling, it is important to know how the resolution of the 

106 response affects model performance. 

107 In studies specifically examining the effect of grain size of the response variable on SDM performance, response 

108 grain ranges from a few metres to hundreds of kilometres, depending on the predictors tested (Figure 1a; Table 

109 1; see review by Miguet et al., 2015). These studies typically ask: at what scale(s) is the species distribution 
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110 most driven or constrained by specific environmental conditions? At finer resolutions, studies typically 

111 concentrate on the role of landscape structure (composition and configuration) in driving species distribution 

112 (Heikkinen et al., 2007; Holland et al., 2004; Tobalske, 2002). With coarser response grains, studies often 

113 include (bio)climatic variables (Chauvier et al., 2022; Kaliontzopoulou et al., 2008; Seo et al., 2009). Typically, 

114 such studies report declining model performance with the coarsening of the resolution of the response variable 

115 (Chauvier et al., 2022; Gábor et al., 2022a; Heikkinen et al., 2007; Kaliontzopoulou et al., 2008; Seo et al., 

116 2009; Zarzo-Arias et al., 2022), suggesting that modelling species at coarser resolutions is not optimal. 

117 However, these studies typically focus on the general performance of the models and do not report the effect of 

118 changing the response grain on the variables’ importance, which may provide valuable insights into which 

119 variables shape species distributions at individual grain sizes (but see Chauvier et al., 2022; Hanberry, 2013). 

120 2.2 How the resolution of the predictor variable (coarser than the response variable) affects model 

121 performance?

122 Instead of coarsening the resolution of the response variable, some studies have coarsened the resolution of 

123 predictor variables, so that the resulting predictor is coarser than the response variable (Figure 1b; Table 2). 

124 They came to different conclusions. Ferrier and Watson (1997) concluded that coarse environmental data lead 

125 to poorer model performance. Graf et al. (2005) found that the predictive power was highest at resolutions of 

126 about 1 and 2 km2. In contrast, Guisan et al. (2007) and Pradervand et al. (2014) concluded that coarsening the 

127 predictor variables' resolution did not substantially change model performance, meaning that refining the 

128 resolution may not be sufficient to improve the models. 

129

130 2.3 How the resolution of the predictor variable (finer than the response variable) affects model 

131 performance?

132 Studies that manipulate the resolution of predictor variables, so that the resulting predictor was finer than the 

133 response variable (Figure 1c; Table 3), are mostly concerned with the importance of fine-scale habitat features 

134 for analyzing species-environment relationships (e.g., Gottschalk et al., 2011; Šímová et al., 2019). They 
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135 combine response variables at a coarse resolution with predictor variables at a fine resolution. These studies 

136 typically ask: do we need fine-resolution predictors to explain species distribution at a relatively coarse 

137 resolution?

138 High-resolution predictor variables suitable for modelling at multiple levels of detail may not be readily 

139 available for the particular study area, their acquisition may be prohibitively expensive (especially for studies 

140 conducted over large extents), and their use may require excessive data processing and significantly increase 

141 computational time (Kissling et al. 2022; Moudrý et al. 2022). Hence, researchers face trade-offs between data 

142 detail and availability, data processing, and analytical optimization. Several studies have examined the 

143 importance of fine-grain habitat features for the analysis of species-environment relationships using a relatively 

144 coarse-grained response variable (Figure 1c; Table 3). In this type of study, authors typically use predictor 

145 variables of various origins, collected, for example, by remote sensing (Leitão & Santos 2019), fieldwork, or 

146 crowd-sourcing (Šímová et al., 2019; Thomas et al., 2002; Venier et al., 2004). Others have coarsened the grain 

147 of the original predictors to examine the grain dependency of species-environment relationships (e.g. Gottschalk 

148 et al., 2011). 

149 Thomas et al. (2002) found that field-collected fine-grain predictors and predictor variables derived from a 30 

150 m digital elevation model lead to the same model performance at a 1 km resolution. Seoane et al. (2004) found 

151 that models derived from land cover at a 250 m resolution are comparable to those based on the same variables 

152 derived from satellite images at a 30 m resolution, in agreement with Venier et al. (2004). Consequently, it is 

153 commonly assumed that coarse-resolution habitat predictors at continental (e.g., CORINE Land cover; Büttner 

154 et al., 2004) or global (e.g., Global Consensus Land cover; Tuanmu and Jetz, 2014) geographic extents are 

155 sufficient for use in combination with coarse-resolution responses.

156 However, it is essential to know if a given spatial resolution of a predictor variable captures the details that are 

157 important for explaining the distribution of the species of interest. Gottschalk et al. (2011) concluded that a 

158 higher spatial resolution of predictors could be essential for accurate predictions. In addition, they attributed the 

159 improvement in models using detailed land cover maps to the high level of detail in the species response variable 

160 (2 km diameter around survey points). This contrasts with results by Šímová et al. (2019) that demonstrated 

161 improvement in model performance when using high–resolution land cover data despite the coarse resolution 

162 of species data (12 x 11.2 km). They showed that the area and perimeter of water bodies derived from high–
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163 resolution land cover datasets (raster data at 30 m resolution) explain distributions of waterbirds better than 

164 predictors derived from coarser 1 km data. In line with these findings, it has been recently recommended to first 

165 coarsen the resolution of the predictors to match the resolution of the assumed ecological scale before 

166 calculating prediction metrics (e.g., standard deviation, Shannon-Wiener diversity index, or Rao’s Q) at the 

167 resolution of a response variable (Graham et al., 2019). In this context, the recent finding by Gábor et al. (2022b), 

168 who showed that in the case of species inhabiting rare habitats, using simple binary predictors (i.e. 

169 presence/absence of the habitat) might be sufficient, is of particular interest.

170 In conclusion, coarse–resolution land cover or terrain predictors may lack details to capture potentially suitable 

171 habitats such as wetlands or cliffs. Thus, using high-resolution data could benefit models utilizing coarser-

172 resolution species data (e.g. from gridded atlases). The question of whether the need for fine-scale predictors is 

173 somehow related to the resolution of the response variable or whether it can be generalized should be further 

174 explored for different taxa and sets of predictors.

175

176 3. Single-grain versus multi-grain analysis

177 Up to this point, we have neglected discussing the possibility of considering species-environment relationships 

178 at multiple grains in a single model. Typically, experimental studies use a single grain for the response variable. 

179 Therefore, they implicitly assume the existence of a common ecological scale for all predictor variables. 

180 However, it has been shown that the ecological scale is variable-specific since species often respond to different 

181 environmental variables at different spatial scales, and sometimes even respond differently to a single 

182 environmental variable at multiple grains (Leitão et al. 2010; Lecours et al., 2020; Miguet et al., 2016; Roilo et 

183 al. 2022). However, despite theoretical concepts and extensive empirical evidence that species respond to their 

184 environment at different spatial grains (e.g. Bergman et al., 2012; Graf et al., 2005; Holland et al., 2004; Stuber 

185 and Fontaine, 2019; Zweifel-Schielly et al., 2009), the appropriate approach to select the grain of response 

186 variable remains unclear (Jackson and Fahrig, 2015; Martin and Fahrig, 2012; Stuber and Gruber, 2020). For 

187 example, Mertes et al. (2020) recognized two primary spatial grains at which species typically respond to their 

188 environment: they denoted the term “occupancy grain” for the grain equivalent to a species’ typical home range 

189 and the term “response grain” for the grain at which an individual uses an environmental resource. They also 

Page 8 of 26

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8

190 developed an optimization procedure for their identification. However, studies usually use grains of response 

191 variables coarser than the assumed occupancy and response grain, and it is unclear how to incorporate 

192 occupancy and response grains in such studies (but see Graham et al., 2019).

193

194 In theory, species distributions are driven by environmental variables at a range of scales (Levin, 1992), and 

195 there is no single “correct” spatial grain at which to characterize species-environment associations (Mitchell et 

196 al., 2001; Wiens, 1989). Therefore, models using multiple grains should, in theory, outperform models that 

197 assume a common ecological scale for all variables. However, scale-sensitive applications that aim to align the 

198 grain of the response variable (or predictor variables; see Graham et al., 2019) with the ecological scale are rare 

199 (McGarigal et al., 2016). In addition, studies have come up with different conclusions. Some have suggested 

200 that the performance of models using multiple response variable grains is better than that of single-grain models 

201 (Mertes et al., 2020), while others have not drawn similar conclusions (Martin and Fahrig, 2012). Of note is that 

202 the improvements reported for multi-grain models were often relatively low, in the order of hundredths of the 

203 area under the receiver operating characteristic curve (AUC) values (Boscolo and Metzger, 2009; Graf et al., 

204 2005; Kuhn et al., 2011; Mateo Sánchez et al., 2014). In other words, valuable predictions can still be generated 

205 from models using a single arbitrarily selected scale. Hence, it remains unclear whether the increased complexity 

206 caused by the use of multiple grains is beneficial, particularly in the case of SDMs used for the projection of 

207 species distributions under future climate conditions, which are generally uncertain (e.g. Sinclair et al., 2010). 

208

209 4. Land cover types and spatial autocorrelation 

210 In an early study on the effect of spatial resolution on the performance of species-habitat relationships, Karl et 

211 al. (2000) suggested that the effects of coarsening the resolution depend on the heterogeneity of the environment. 

212 The difference in land cover types used in different analyses might, therefore, explain some contrasting findings. 

213 For example, Seoane et al. (2004) and Venier et al. (2004) observed no improvement in models when using 

214 finer-grain land cover data, while Gottschalk et al. (2011) and Šímová et al. (2019) observed a significant 

215 improvement. Both Seoane et al. (2004) and Venier et al. (2004) used data on common land cover types, such 

216 as the proportion of forests within mapping units. For homogeneous landscapes displaying strong spatial 
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217 autocorrelation (e.g., large blocks of forests), land cover information does not change much when spatially 

218 aggregated to coarser resolutions. In contrast, Šímová et al. (2019) focused on water bodies, a land cover 

219 category that can become virtually invisible at coarser resolutions; coarsening the resolution often leads to a 

220 bias and underrepresentation of rare environments such as (especially linear) water bodies in certain landscapes. 

221 Similarly, Seoane et al. (2004) observed considerable improvement in models for riparian species when finer-

222 resolutions predictors were used. This may be one of the reasons why Tuanmu and Jetz (2014) found that the 

223 Global Consensus Land Cover that has a spatial resolution of 1 km2 (https://www.earthenv.org/landcover; see 

224 Table 2) performed worse for predicting aquatic species than species inhabiting other environments. Similarly, 

225 Cord et al. (2014) showed for 30 tree species that SDM performance was significantly positively correlated with 

226 the species-specific degree of association between the focal species and different land cover types.

227

228 Environmental variables are typically spatially autocorrelated (i.e., values between two locations are more 

229 similar the closer the locations are in space; Legendre, 1993). This spatial autocorrelation can be quantified 

230 using an empirical variogram that can be used to calculate the characteristic distance within which spatial 

231 autocorrelation operates (i.e., the ‘range’ of an empirical variogram). Recently, Mertes and Jetz (2018) 

232 highlighted the importance of considering environmental autocorrelation for the ability of SDMs to estimate 

233 species-environment associations. Similar results were obtained by Kühn (2006) for species richness. More 

234 recently, Smith and Santos (2020) explored the effect of the resolution of predictor variables and their 

235 autocorrelation on estimates of their importance. This body of literature shows that using coarser environmental 

236 data in SDMs without consideration of the autocorrelation can mischaracterize species-environment 

237 relationships (see Miller, 2012, for review). This is particularly true for variables that vary rapidly over space; 

238 i.e. heterogeneous landscapes characterized by spatial autocorrelation with relatively small range values (Mertes 

239 and Jetz, 2018). Aggregating heterogeneous landscapes to a coarser resolution results in the loss of a portion of 

240 that heterogeneity (Graham et al., 2019; Karl et al., 2000; Mertes and Jetz, 2018). Lower autocorrelation means 

241 higher randomness; hence, very distinct values are aggregated together. In contrast, if there is strong 

242 autocorrelation, aggregating over a larger area does not change the value much because the values were similar 

243 even in the finer resolutions. 
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244 Importantly, the inherent spatial autocorrelation of both species occurrences and predictor variables can result 

245 in models that may inadvertently capture the spatial structure rather than true functional relationships (Bahn and 

246 McGill, 2007). Indeed, it has been shown that spatial autocorrelation can lead to SDMs with high discrimination 

247 ability even when there is no relationship between species occurrence and environmental variables (Chapman, 

248 2010; Fourcade et al., 2018) and that many SDMs, despite a good fit, are not significantly better than null models 

249 (Osborne et al., 2022). Therefore, it is a question of whether the loss of explanatory power accompanying the 

250 coarsening of the resolution is due to the use of an inappropriate scale (e.g. due to the lack of detail of potentially 

251 suitable environmental conditions) or due to changes in the spatial structure; hence, this loss of power should 

252 be further explored for different resolutions and predictors. In any case, selecting a relevant set of environmental 

253 predictors based on the known ecology of the species of interest is essential to ensure fitting SDMs with an 

254 appropriate ecological interpretation (Fourcade et al., 2018). In addition, it is necessary to carefully inspect 

255 whether SDMs estimated from the observed data perform better than those generated from the null occurrence 

256 distributions, for example by using the recently-developed “fauxcurrence” R package (Osborne et al., 2022). 

257

258 5. The ratio between the resolution of response and predictor variables

259 A recently proposed standard protocol (Zurell et al., 2020) recommends reporting information on data, 

260 modelling techniques, validation, and underlying questions (Araújo et al., 2019; Michener and Jones, 2012; 

261 Rocchini and Neteler, 2012). However, many studies still lack it (see Feng et al., 2019 for a review). When 

262 evaluating the effect of changing the resolution of predictor variables, it is also important to consider the 

263 resolution of the response variable (i.e., species occurrences). The opposite is also true: when evaluating the 

264 role of the resolution of the response variable, one should be aware of the resolution of predictor variables. 

265 Although this may seem like a trivial recommendation, it remains infrequent that studies evaluating the effects 

266 of changing resolutions discuss their results with respect to the ratio between the resolutions of the response 

267 variable and predictor variables (but see Moudrý and Šímová, 2012). The ratio between the resolution of the 

268 response and the resolution(s) of the predictor variables differs among studies and might be the reason for 

269 reported contradicting results (Figure 1). For example, in studies evaluating the importance of finer–resolution 

270 predictors to explain species distributions, response grains can differ considerably (Table 4). It can be expected 
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271 that for small ratios, coarsening of the resolution of predictor variables will have a minimal effect on model 

272 performance (e.g. Seoane et al. 2004; Venier et al. 2004), while for high ratios (indicating a high difference 

273 between the resolutions of the response and predictor variables), considerable effects can be expected due to the 

274 aggregation of highly different values (e.g. Gottschalk et al. 2011; Šímová et al. 2019). Practices could be 

275 improved by reporting the resolution of predictor variables as well as that of the response variable. 

276

277 6. Conclusions 

278 Spatial scale is one of the most critical issues in ecology and associated disciplines (Levin, 1992). Species 

279 respond to their environment at different scales, and processes controlling species distribution operate at various 

280 spatial scales. Unsurprisingly, the studies we reviewed found various optimal resolutions, depending on the 

281 species and ecosystems analyzed. Besides, most studies analyzing multiple species usually report only a general 

282 trend in models’ behaviour with respect to changing resolution, and there are always some models that do not 

283 conform to the general pattern (e.g., Guisan et al., 2007; Pradervand et al., 2014). Our review highlights that 

284 within the typically used resolutions (0.01 – 100 km2) finer-resolution models generally perform better. Besides, 

285 the use of coarse-resolution response variables has implications for the predicted distribution range (Kunin, 

286 1998). When the resolution of the response variable is too coarse, there is a risk of overestimating the occupied 

287 area (Connor et al., 2018; Hu and Jiang, 2010; Lauzeral et al., 2013; Seo et al., 2009). Moreover, Gábor et al. 

288 (2022a) recently showed that coarsening the resolution does not compensate for positional error in species 

289 occurrence data. Therefore, we recommend basing the choice of the resolution of the response variable on 

290 practical aspects, such as aiming for finer resolutions unless there is a reason to do otherwise (e.g., expert 

291 knowledge of the ecological scale of the species under study).

292

293 Coarsening the resolution of predictor variables has been shown to negatively affect model performance as it 

294 obscures fine-scale heterogeneity in environmental variables. Therefore, we recommend (1) using finer-

295 resolution environmental variables when modelling species associated with rare environmental entities (e.g., a 

296 rare habitat type), even when using species occurrence data at a coarse resolution (Šímová et al., 2019). When 

297 species are associated with widespread environmental conditions, using low–resolution predictors is likely 
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298 sufficient. However, we recommend (2) assessing spatial autocorrelation or thematic resolution of predictors at 

299 multiple grains to estimate the potential impacts of coarsening their resolution on model performance (i.e. to 

300 ensure that they preserve enough detail to distinguish environmental features that affect species distribution at 

301 a given resolution). Thirdly, (3) studies may benefit from considering multiple grains of the response variable 

302 within a single model, even though the improvements reported for multi-grain models have so far been relatively 

303 low, and we recognize that useful predictions can still be generated from single-scale models. Finally, (4) studies 

304 should explicitly report the resolutions of the predictor and response variables, following the standard ODMAP 

305 protocol recently proposed by Zurell et al. (2020).

306
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Figure 1. Three approaches typically used for testing the grain dependence of species–environment 

relationships. (a) Manipulation of the resolution of the response variable with a fixed resolution of the 

predictors (b) Manipulation of the resolution of predictors, so that the resulting predictor was coarser 

than the response variable. (c) Manipulation of the resolution of predictors, so that the resulting predictor 

was finer than the response variable. The ratios shown in the figure (i.e. 16:1, 1:16, 4:4) express the 

resolution ratio that quantifies the magnitude of the difference between the resolution of the species data 

and that of environmental variables (this ratio quantifies how many cells of a particular predictor lie 

within a single cell of the response variable – the number shown in brackets). Note that if the fitted 

relationship is to be used for prediction, it is always limited by the coarsest grain used (either of predictor 

or response).
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Table 1. Examples of studies focused on resolution of the response variable. 

Study Species
Resolution of 
the response 

Predictors
Resolution of 
predictors

Tobalske (2002)
1 bird 
species

1 and 4 km2 Landcover, elevation, 
edge density

25 m (50 m for 
elevation)

Heikkinen et al. 
(2007)

1 butterfly 
species

0.01, 0.25, 
and 1 km2

Landcover, habitat 
connectivity

25 m

Kaliontzopoulou 
et al. (2008) 

1 lizard 
genus

1 and 100 
km2

Climate, topography, 
land cover

from 90 m to 1 km 
depending on the 
variable

Seo et al. (2009)
9 plant 
species

from 1 km2 
up to 4096 
km2

Climate 1 km

Rengstorf et al. 
(2012)

Cold 
water 
corals

From 2500 
m2 up to 1 
km2

Bathymetry 50 m

Gábor et al. 
(2022a)

1 virtual 
species

25 m2 to 0.25 
km2

Topography, canopy 
height

5 m

Zarzo-Arias et 
al. (2022)

1 mammal 
species

0.25, 1 and 
25 km2

Landcover, 
topography, human 
activity

100 m (25 m for 
topography)

Chauvier et al. 
(2022)

1180 plant 
species

From 0.01 
km2 up to 
1600 km2

Climate, soil 100 m 
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Table 2. Examples of studies that coarsened the resolution of predictors beyond the resolution 
of the response variable. 

Study Species
Resolution of 
the response 

Predictors
Resolution of the 
predictors

Ferrier and 
Watson 
(1997)

56 species 20 x 50 m
climatic, topographic, 
soil, vegetation

200 m and 5 km

Graf et al. 
(2005)

1 bird species 0.01 km2
topographic, climatic, 
land cover, human 
disturbance

1 ha up to ∼11 km2 

Guisan et 
al. (2007)

50 species 0.01 - 1 km2 climatic, topographic, soil
 0.01 - 1 km2 and 1 - 
100 km2

Pradervand 
et al. (2014)

239 Plant 
species

4 m2 topographic, climatic 4 m2 up to 0.01 km2

Vale et al. 
(2014)

3 vertebrate 
species

Point 
occurrences

climatic, topographic, 
habitat

1 km2 and 100 km2

Manzoor et 
al. (2018)

1 plant species
Point 
occurrences

climatic, topographic, 
land cover

50 m, 300 m, and 1 
km

Page 25 of 26

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 3. Examples of studies focused on the role of resolution of environmental predictors. 

Study Species
Resolution 
of response 

Predictors
Resolution of 
predictors

Source of data

Thomas 
et al. 
(2002)

Vegeta-
tion types

1 km2
Terrain, landform, 
rock/sediment 
composition

Field 
measured, 
30 m

Various

Tobalske 
(2002)

1 bird 
species

1 km2 Landcover, elevation, 
edge density

25 m, 100m
Coarsening 
resolution of 
original data

Seoane 
et al. 
(2004)

54 bird 
species

350 m 
diameter 
around 
survey 
points

Area of shrubs or 
forests

30, 50, and 
250 m

Various 

Venier et 
al. 
(2004)

10 forest 
birds

5 km2 Climate, habitat
200, and 1000 
m

Various 

Gottscha
lk et al. 
(2009)

13 bird 
species

2 km 
diameter 
around 
survey 
points

Terrain, 
land-use

from 1 m up to 
1 km

Coarsening 
resolution of 
original data

Šímová 
et al. 
(2019)

7 Water 
birds

12 x 11.2 
km 
mapping 
quadrats

Area and perimeter of 
water bodies

from 30 m up 
to 1 km

Various 

Connor 
et al. 
(2019)

1 mammal 
species

2 km2 grid 
cells

Terrain, land cover, 
climate, phenology

From 30 m up 
to 2 km

Coarsening 
resolution of 
original data
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Table 4. Resolutions adopted in studies evaluating the importance of fine–resolution 
predictors. The Resolution ratio quantifies how many cells of the predictor lie within a single 
cell of the response variable.  

Study
Resolution of 
response 

Resolution of 
predictors

Resolution Ratios

Seoane et 
al. (2004)

96,000 m2 
(350 m diameter 
around survey points)

900 m2; 2500 m2, and 
62,500 m2

96,000 : 900 m2 (~ 107 cells)
96,000 : 2500 m2 (~ 38 cells)
96,000 : 62,500 m2 (~ 1.5 cells)

Venier et al. 
(2004)

5 km2 0.04 km2, and 1 km2 5 : 0.04 km2 (125 cells)
5 : 1 km2 (5 cells)

Gottschalk 
et al. (2009)

3.14 km2 (2 km 
diameter around 
survey points)

from 1 m2 up to 1 km2

3.14 : 1x10-6 km² (3,140,000 cells)
3.14 : 1x10-5 km² (314,000 cells)
3.14 : 1x10-4 km² (31,400 cells)
3.14 : 1x10-3 km² (3,140 cells)
3.14 : 0.01 km² (314 cells)
3.14 : 0.1 km² (31.4 cells)
3.14 : 1 km² (3.14 cells)

Šímová et 
al. (2019)

134 km2 (12 x 11.2 km 
mapping quadrats)

from 900 m2 
up to 1 km2

134 : 0.0009 km2 (~ 150 000 cells)
134 : 0.01 km2 (13,400 cells)
134 : 1 km2 ( 134 cells)
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