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1 Introduction

Global symmetries play a central role in Quantum Field Theory (QFT). They are used as
an organizing principle to systematically construct the possible operators, their breaking
pattern allows to characterize the phases of a system and their possible anomalies provide
exact constraints on the dynamics. However, in recent times it has been made clear that
the notion of symmetry has to be generalized from the traditional textbook definition
typically in terms of Noether currents. The central idea, pioneered in [1], is that symmetries
are associated to symmetry operators Tg(Md−(p+1)) depending on a transformation g and
defined on codimension p+1 manifoldsMd−(p+1).1 The crucial point is that the dependence
onMd−(p+1) is topological: the properties of Tg(Md−(p+1)) — for instance their correlation
functions — do not change under small changes of Md−(p+1) as long as these do not cross
any charged operator.

The textbook examples of global symmetries naturally fit in this framework. Indeed,
for a continuous symmetry there is a Noether current, whose integral on Md−1 manifolds
gives a charge Q. Clearly, slight changes of Md−1 do not change Q as long as these do not
cross charged operators. Moreover, the exponential of Q gives a an element of the symmetry
group, and thus corresponds to the Tg(Md−1).2 The point of view above naturally gener-
alizes this in two directions. On one hand it allows for more generic symmetries supported
on codimension p+1 manifolds whose charged objects are supported on p-dimensional sub-
manifolds. These are often referred to as higher form symmetries or p-form symmetries. On

1We will mostly assume the QFT defined on a dimension d euclidean signature space, and thus talk
about operator insertions.

2In this case, as eiQ is a group element, it is often denoted by Ug(Md−1).
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the other hand, it allows to consider more generic categorical symmetries not arising from
a group. This is reflected into a more generic fusion rule for symmetry operators, which in
particular do not need to have an inverse (as opposed to what should happen for a fusion
rule of elements in a group). These cases are often dubbed non-invertible symmetries.

The existence of non-invertible symmetries is well-known in lower-dimensional QFT’s.
In particular, in 2d there is a whole body of work studying these (see e.g. [2–7] for early
references). Their status in higher dimensions is however a bit less clear. The case of O(2)
has been argued to give rise to non-invertible symmetries in [8] (see also [9], and [10] for
further developments), and more exotic examples have been constructed in [11, 12]. More
recently, it has been argued in [13] that indeed non-invertible symmetries are common in
higher dimensions.

Very recently, [9] (see also [14]) provided a criterion to compute the symmetry oper-
ators in a gauge theory with compact gauge group, including both invertible (i.e. usual
symmetries associated to groups) as well as non-invertible symmetries. From the analysis
in [9], it follows that if a gauge theory has local operators in all possible representations, no
possible non-trivial topological operator candidate for electric 1-form symmetry operator
can exist.3 Therefore, the absence of global electric 1-form symmetries, whether group-like
or non-invertible, is equivalent to the completeness of the spectrum of the QFT.4 In turn,
this has interesting implications for the Swampland Program (in short, the study of the
restrictions imposed in the low energy Physics which can be consistently coupled to Quan-
tum Gravity. See e.g. [15, 16] for introductions and further references), where the Absence
of Global Symmetries and the Completeness of the Spectrum are two central conjectures
which indeed have been long suspected to be deeply related.

In this paper we study in detail (certain) higher-form global symmetries of gauge
theories which include, as an element of the gauge group, charge conjugation in generic
d dimensions. More precisely, we will consider gauge theories based on the gauge groups
constructed in [17, 18] dubbed S̃U(N). These are principal extensions of SU(N) by the Z2
outer automorphism corresponding to flipping the Dynkin diagram, which, in particular,
exchanges the fundamental representation with the antifundamental, and thus corresponds
to charge conjugation (the construction can be extended to U(N), giving rise to Ũ(N)).
Concentrating on pure gauge theories, we will study the 1-form electric symmetry, which
turns out to be non-invertible (in a sense, generalizing the O(2) example). Moreover, as the
gauge groups are disconnected, there is a (d−2)-form symmetry associated to the non-trivial
π0(G) for G = S̃U(N), Ũ(N).5 We also introduce String Theory constructions of these
theories. Amusingly, these automatically all come with configurations of extended objects
which break the (d − 2)-form symmetry. From this perspective, they may be regarded

3By electric 1-form symmetry we mean the one that is always present in a gauge theory, associated to
the field strenght. In the free Maxwell case, the Noether current is simply F .

4Completeness of the spectrum is defined as the existence of operators in every possible representation
of the gauge group.

5There may be other higher form symmetries other than those we consider. In particular, there may be
a (d − 3)-form magnetic symmetry associated to the dual of the gauge field. However, its study requires
the knowledge of the GNO dual group, which is not known at present for the theories at hand.
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as Swampland examples in the sense that when the gauge theory with gauge group G is
embedded into a consistent theory of Quantum Gravity, the otherwise present (d−2)-form
symmetry is broken by the presence of charged “matter” (in this case extended objects).

The remainder of this paper is structured as follows. In section 2 we review basic
facts in the topic of higher form global symmetries, mainly from [1] and recent progress
in [9]. In section 3 give a lightning review of the groups S̃U(N), Ũ(N) and study the
electric 1-form symmetries of pure gauge theories based on them. In section 4 we study the
(d− 2)-form symmetry coming from the fact that the groups are disconnected. We discuss
the would-be charged objects, which are the so-called Alice strings [19] (or twist vortices
in the nomenclature of [9]). As it is well-known, in the presence of twist vortices, only
a subgroup of the gauge group is globally well-defined [20]. We also introduce a stringy
construction for gauge theories based on Ũ(N), which, as advertised above, automatically
come with Alice strings which break the (d− 2)-global symmetry.

Note added. As this note was being finished, [21] appeared overlapping with our results
on the electric 1-form (generically non-invertible) symmetries of the S̃U(N) theories.

2 Higher form symmetries and topological operators

In the quest to generalize the notion of symmetry to higher-form global symmetries [1],
one quickly realizes that the usual textbook formulation, based on a Lagrangian and an
explicit transformation of the fields, is not appropriate. Instead, the focus should be on the
symmetry generators Ug(Md−1) depending on a symmetry transformation g and associated
to a manifold Md−1. In the continous case, these are given by the exponentiation of the
charge computed as the integral of the Noether current,

Q(Md−1) =
∫
Md−1

?J , (2.1)

The key is that the dependence of Ug on the manifold Md−1 in which it is supported is
topological: Ug doesn’t change under deformations of Md−1 unless the deformation crosses
an operator charged under the symmetry.

This point of view can be easily generalized to higher-form symmetries. The sym-
metry operators now live on a codimension p + 1 manifold (on whom they depend only
topologically), and the charged objects are extended on p spatial dimensions.

Usually, the symmetry transformations form a group when fusing6 the topological
operators,

Ug1(Md−p−1) · Ug2(Md−p−1) = Ug1g2(Md−p−1) , (2.2)

and the transformation has an inverse U−1
g (Md−p−1) = Ug−1(Md−p−1). However, this re-

quirement can be relaxed, by demanding instead that the topological operators fuse accord-
6Intuitively, and since the topological nature of the operators is best understood when considering them

inside correlation functions, fusing them can be seen as taking their OPE: note that this operation makes
sense even for non-conformal field theories due to the topological nature of said operators.
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ing to (we now denote the operators by T to stress that they may not come from a group)

Ta(Md−p−1) · Tb(Md−p−1) =
∑
i

N i
ab Ti(Md−p−1) , (2.3)

and need not have an inverse; this structure is that of a fusion algebra. In this case we have
what is called a categorical symmetry or non-invertible symmetry.7 In dimensions three or
higher, a further generalization is possible, whereby operators of different dimensions can
start or end at a given topological junction, and the integer coefficients N i

ab ought to be
understood as the partition function of the topological theories living on said junctions [13].
The underlying structure is that of an n−category, and so this case is referred to as a higher
categorical symmetry.

The action of the topological operators on the charged objects O(Cp) can be understood
by introducing the symmetry operator on a sphere Sd−p−1 that surrounds Cp, and then
shrinking that sphere to a point, finding8

Ta(Sd−p−1)O(Cp) = BO(a)O(Cp) , (2.4)

where BO(a) is called the linking coefficient. As an example, we can consider the electric
1-form symmetry of a gauge theory. The charged operators are the Wilson lines Wρ(γ1),
with ρ a representation of the gauge group; and the symmetry operators, which we denote
Ta(Md−2), are the so called Gukov-Witten operators [23, 24], which are labelled by a
conjugacy class a of the gauge group. The linking coefficient in this case is obtained from
the Aharonov-Bohm interaction between the line and the codimension 2 operator [9, 25],

BWρ(a) = χρ(a)
dim ρ

sz(a) , (2.5)

where χρ(a) is the character of the representation ρ evaluated in the conjugacy class of a,
sz(a) is the number of elements of the group inside said conjugacy class and dim ρ is the
dimension of the representation.

In [9], the question was addressed of whether or not a Gukov-Witten operator can be
topological (i.e. if it generates a, possibly non-invertible, 1-form global symmetry) if it links
with an endable Wilson line. The argument is as follows: consider a gauge theory with
matter fields in a representation R. Then the Wilson lines corresponding to the representa-
tion R and tensor products thereof can end and break into segments. Suppose that a GW

7The name categorical symmetry comes from the 2-dimensional case, where the structure that captures
the features of these symmetries is that of a modular tensor category (see [22] for a more precise review and
references): the objects are the topological line defects, the morphisms are the local operators where the lines
can begin, end, or change; and the integer coefficients N i

ab correspond to the different possible local operators
in a given topological junction. See [21] for recent progress extending this to dimensions higher than 2,3.

8One may wonder whether more generic actions rather than the “canonical linking” (2.4) are possible.
As an example, it may happen that symmetry operators act trivially on the would-be canonically linked
operators, but non-trivially on other extended operators (an example of this being charge conjugation
in U(1)2N Chern-Simons theory: there is no gauge-invariant local operator to begin with. Yet, charge
conjugation exchanges a line with its conjugate). However, for our purposes we can assume that (2.4)
holds [9], as we will be interested on 1-form symmetries in pure gauge theories where the O’s are Wilson lines.
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operator 1) is topological and 2) links non-trivially with the Wilson line (i.e. the linking
coefficient is different from its linking with the identity operator, BW (a) 6= B1(a)). Then,
given the topological nature of the GW operator, we can consider either shrinking it on top
of the Wilson line, which produces the linking coefficient BW (a); or breaking the Wilson line
into segments and shrinking the GW on top of a point where there is no Wilson line, which
produces a trivial linking B1(a). By comparison, it follows that if a GW operator links non-
trivially with an endable Wilson line, it cannot be topological. Equivalently, a necessary
condition for GW operators to be topological is to link trivially with endable Wilson lines.

In fact, in [9] it was also argued that for gauge theories based on a compact gauge
group this necessary condition is also sufficient. The argument starts by enlarging the
original theory T with the addition of an adjoint scalar into an auxiliary theory T ′. Since
the gauge sector of T ′ is identical to that of T , the possible set of Gukov-Witten operators
as well as Wilson lines is the same as in the original theory. In addition, since no matter
in representations not already present in T is introduced, the endability/non-endability of
Gukov-Witten/Wilson lines is not changed from T to T ′. As a consequence the topological
sector of T ′ and T is the same (of course, generic observables such as generic correlation
functions in T ′ are different than those in T ), and hence so is their 1-form symmetry. A
simpler version of this statement is the following: if one has U(1) with a charge n electron,
the 1-form symmetry is Zn. If one adds to the theory arbitrarily many more charge n
electrons, obviously generic correlation functions will change, yet the 1-form symmetry
remains Zn. This is true as long as one adds matter in representations already present —
in this case, being U(1), electrons with the same charge. Hence, all in all, one can take
advantage of this to study the structure of the 1-form symmetry in T from that of T ′:9 one
can give a VEV to the adjoint scalar and move on the “Coulomb branch” where the gauge
group is U(1)r (and possibly some discrete factor). In that case, it is known that all GW
operators that link trivially with a Wilson line are topological. In fact, they can be seen
to precisely coincide with those selected by the necessary condition above. By continuity,
at least these operators must exist at the origin of the Coulomb branch, where at most we
could expect some symmetry enhancement. However, they already exhaust all the a priori
possible ones selected by the necessary condition of the previous paragraph, and therefore
one concludes that the trivial linking criterion is actually sufficient.

Let us consider pure gauge theories with a gauge group G that is disconnected. The
endable Wilson lines will correspond to the adjoint representation and its tensor products.
In this case, the previous argument, together with (2.5), leads to a very simple criterium
to find the 1-form symmetry. Instead of the center of the group (as is the case in the more
usual examples of connected and simply connected groups like SU(N)), the topological
Gukov-Witten operators will correspond to the conjugacy classes of the elements in the
centralizer of the identity component G0 of G,

{topological GW} ≡ {G−1hG , h ∈ CG
(
G0
)
} , (2.6)

9Note that in general even the dynamical behavior (e.g. spontaneous symmetry breaking) may be differ-
ent. However we are only interested in the structure of the UV 1-form symmetry, which must be identical
in T to the one in T ′.

– 5 –



J
H
E
P
0
4
(
2
0
2
3
)
0
9
3

Once the topological operators have been identified, we need to determine whether they
generate a group or a non-invertible symmetry. A possible way to do it is by using the
so called quantum dimension of the operator, which is defined [9] as the linking coefficient
with the identity operator, dim(Ua) = B1(a). As an example, if we are concerned with
the one-form symmetry, the topological operators are Gukov-Witten operators and their
quantum dimension is (2.5)

dim(Ta) = B1(a) = sz(a) . (2.7)

The quantum dimensions have the property that they get multiplied under the fusion of
topological operators, and summed under their sum,

dim(Ta · Tb) = dim(Ta) dim(Tb) , (2.8)
dim(Ta + Tb) = dim(Ta) + dim(Tb) , (2.9)

and since the topological operator corresponding to the identity always has quantum di-
mension equal to 1, this allows us to infer when a symmetry has to be non-invertible from
the presence of topological operators with quantum dimension ≥ 1.

In the same way that we can study the electric one-form symmetry from the topological
GW operators and under which Wilson lines are charged, we can also look at the topological
Wilson lines to find out about the dual (d− 2)-form symmetry under which GW operators
are charged. It turns out that this problem has a more straight-forward solution [9]. Since
the gauge holonomy along a contractible loop always belongs to the identity component
of the gauge group, two Wilson lines along homotopic paths differ at most by an element
of G0. Therefore, only Wilson lines corresponding to representations that map G0 to the
identity are topological. In other words,

{topological WL} ≡ {representations of π0(G)} , (2.10)

where π0(G) is the group of connected components of G. Note that this discussion is
actually unchanged in the presence of matter fields in any representation of G.

While the main focus of this work lies in pure gauge theories, one can consider more
general theories adding matter fields.10 If the matter is in a representation smaller than
the adjoint, the corresponding Wilson lines will become endable, and the GW operators
with whom they link can no longer be topological. As a consequence, the 1-form symmetry
will be reduced. Similarly, for the dual (d − 2)-form symmetry, we can make the GW
operators endable, albeit in this case by adding suitable codimension-3 objets. These were
called twist vortices in [9] and are defined by a monodromy in G/G0 when going around
them. For the disconnected gauge groups under study in this article, these are also known
as Alice vortices, or Alice strings in 4 dimensions [19].

It is worth pointing that this discussion, which is mostly “kinematical”, holds irre-
spective of the dimensionality of the space for pure gauge theories with YM action. In
particular, the existence and invertibility properties of the generators of the electric 1-form
symmetry do not depend on d. However, depending on the dimensionality of the space,

10Depending on the matter content, there may be gauge anomalies, as recently studied in [26].
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Gauge group Topological GW operators Quantum dimension 1-form symmetry

Sp(N)
TSp0 = Id 1

Z2
TSpπ 1

SO(2)
T

SO(2)
0 = Id 1

SO(2)
T

SO(2)
θ , θ∈ (0,2π) 1

SO(2k), k≥ 2
TSO0 = Id 1

Z2
TSOπ 1

SO(2k−1) , k≥ 2 TSO0 = Id 1 Trivial

Table 1. Summary of topological Gukov-Witten operators for theories with Sp(N) and SO(N)
gauge group.

there can be certain additional ingredients entering the full 1-form symmetry: for instance,
in d = 3 both GW and Wilson lines are line operators; or in d = 4 there can be a magnetic
1-form symmetry acting on Wilson lines. In both cases, the full 1-form symmetry may be
more complicated than the subset of topological operators studied in this paper, which is
only the electric part. Moreover, depending on the spacetime dimension, one may have
different topological terms (such as θ terms in 4d, Chern-Simons terms in odd d) which
could as well enrich the discussion. We leave these aspects for future studies.

2.1 Examples: SO, Sp, O

In this section, we review the higher form symmetries of the orthogonal group O(N) that
result from using the formalism discussed above. We also list the results for SO(N) and
Sp(N), as we will need them on later sections.

Special orthogonal and symplectic groups. These groups are connected, therefore
the 1-form symmetry of the corresponding pure gauge theory is simply given by the center
(see table 1). In all these cases, the 1-form symmetry is invertible.

The magnetic (d− 2)-form symmetry, which is given by the group of connected com-
ponents, is trivial in all these cases.

Orthogonal groups. This is the first instance of disconnected gauge group that we
encounter. Instead of the center, the 1-form symmetry is obtained from the centralizer of
the identity component of the group. We need to distinguish three possible cases: N = 2,
N even and bigger than 2, or N odd.

The case of O(2) was studied in detail in [8, 9], and it is special because the identity
component, SO(2), is abelian. The full group O(2) can be written as a semidirect product
SO(2) o Z2. By definition the generator of the Z2 does not commute with the SO(2),
therefore the centralizer is

CO(2)(SO(2)) = SO(2) . (2.11)

– 7 –
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The topological GW operators are labelled by the conjugacy classes of elements in
this centralizer. Here the global structure of the group becomes relevant, as we can also
conjugate by the nontrivial element in the Z2. If we denote this element as P , the action
on an element of the centralizer is

P−1 ·

 cos θ − sin θ
sin θ cos θ

 · P =

 cos θ sin θ
− sin θ cos θ

 , (2.12)

i.e. it maps θ 7→ −θ. This means that we don’t have one GW operator for each θ ∈ [0, 2π],
but rather one for each θ ∈ [0, π] and the quantum dimension of the operators labelled by
θ ∈ (0, π) is equal to two. Therefore, the 1-form symmetry in the O(2) case is non-invertible.
The fusion algebra of the topological operators was reported in [9],

T
O(2)
θ · TO(2)

ϕ = T
O(2)
θ+ϕ + T

O(2)
θ−ϕ ,

T
O(2)
θ · TO(2)

π = T
O(2)
θ+π ,

TO(2)
π · TO(2)

π = 1 , (2.13)

T
O(2)
θ · TO(2)

θ = 1 +W
O(2)
sign + T

O(2)
2θ ,

T
O(2)
θ · TO(2)

π−θ = TO(2)
π +W

O(2)
sign TO(2)

π + T
O(2)
2θ−π ,

where θ 6= ϕ and WO(2)
sign is the Wilson line in the sign representation of O(2) (WO(2)

sign alone
stands for the Wilson line in the sign representation on a trivial surface). The appearance
of the Wilson line in the fusion of two GW operators is the hallmark of a higher-group
global symmetry structure [27], that can also be seen from the fact that Wilson lines of
the SO(2) theory (namely before gauging the Z2) are charged under the (0-form) charge
conjugation symmetry as well as the electric 1-form symmetry. In more detail, the fourth
equation in (2.13) can be understood as follows.11 First, consider the fusion of two GW
operators corresponding to different angles θ and ϕ and take the limit ϕ→ θ. We obtain

T
O(2)
θ · TO(2)

θ = T
O(2)
2θ + “TO(2)

0 ” . (2.14)

Naively, one would say that “TO(2)
0 ” is equal to two copies of the identity. However, to

properly investigate this one should consider the fusion inside correlation functions. When
all other operators in the correlator belong to the connected component (that is, they are
operators just like those in the SO(2) theory), indeed T

O(2)
0 looks like twice the identity.

However, if one of the inserted operators belongs to the disconnected component there may
be subtleties. Indeed, suppose including in our correlator the GW operator corresponding
to the Z2 ⊆ O(2), which we denote TO(2)

disc . This corresponds to the insertion of an Alice
string defined by a gauge connection which picks a sign upon going around the string.
Suppose now 〈TO(2)

disc T
O(2)
θ · · · 〉. Since TO(2)

θ shifts the gauge connection by a constant,
which is clearly incompatible with the action of TO(2)

disc , it follows that TO(2)
disc T

O(2)
θ = 0

for any θ. Thus, inserting (2.14) in the correlator with T
O(2)
disc leads to the requirement

11We thank Miguel Montero for explaining this argument to us.
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Gauge group Topological GW operators Quantum dimension 1-form symmetry

O(2)
Id 1

(2.13)T
O(2)
θ , θ ∈ (0, π) 2

T
O(2)
π 1

O(N), N ≥ 3
Id 1

Z2
T
O(N)
π 1

Table 2. Summary of topological Gukov-Witten operators for theories with O(N) gauge group.

“TO(2)
0 ”TO(2)

disc = 0, which shows that “TO(2)
0 ” cannot simply be two copies of the identity.

In fact, the only operator we can construct that satisfies these conditions is

“TO(2)
0 ” = 1 +W

O(2)
sign , (2.15)

leading to the fusion rule in (2.13) (a similar argument would hold for the fifth equation).
The cases of O(N) where N ≥ 3 are simpler, since the centralizer is always finite.

If N is odd, then SO(N) has trivial center. However, in this case O(N) is the direct
product SO(N) × Z2 and the nontrivial element of the Z2 (which is −1) will appear in
the centralizer. Naturally, both ±1 are mapped to themselves by conjugation in O(N),
thus, we have a Z2 invertible 1-form symmetry. On the other hand, if N is even, SO(N)
has a center isomorphic to Z2, where the non-trivial element is precisely −1. In this case
the extension to the orthogonal group is a semidirect product SO(N) o Z2, and no new
elements will appear in the centralizer. We conclude that also in this case we have an
invertible Z2 1-form symmetry. We summarize these results in table 2.

The dual (d− 2)-form symmetry is obtained from the representations of the group of
connected components (2.10). For all the O(N) groups, π0(O(N)) = Z2, which has two
representations. These two representations of Z2 lift to the full O(N) group giving rise to
the trivial and sign representation. Therefore, the topological Wilson lines are precisely
W

O(N)
1 (γ) and W

O(N)
sign (γ). Note that in this case the fusion of the Wilson lines (which

in general is obtained from the decomposition of the tensor product of the two initial
representations) reduces to a group operation,

W
O(N)
1 ·WO(N)

1 = W
O(N)
1 , W

O(N)
1 ·WO(N)

sign = W
O(N)
sign ,

W
O(N)
sign ·WO(N)

1 = W
O(N)
sign , W

O(N)
sign ·WO(N)

sign = W
O(N)
1 , (2.16)

and so the (d− 2)-form symmetry is an invertible Z2.

3 Electric 1-form symmetry

In this section, we look at the electric 1-form symmetry of disconnected groups built as Z2
extensions of SU(N) or U(N). We derive the topological Gukov-Witten operators from the
generic arguments presented in section 2, namely from the computation of the centralizer
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of the identity component of these groups. An alternative derivation of which are the
topological GW operators, with equal results, is presented in appendix A.

We begin by recalling some basic definitions and propierties of S̃U(N) groups. These
are the principal extensions of SU(N) groups, i.e. semidirect products SU(N)oΘ Z2 where
Θ : Z2 → Aut(SU(N)) is a lift to the group of the automorphism of the Dynking diagram
of SU(N). If N is odd, there is only one such possible lift up to isomorphism,

ΘI(1)(g) = g , ΘI(−1)(g) = (g−1)T = g , (3.1)

where g ∈ SU(N) and the bar denotes complex conjugation. If N is even, there are two
distinct choices of Θ that give rise to two different groups [18]. One is given by (3.1) and
the other by

ΘII(1)(g) = g , ΘII(−1)(g) = −JN (g−1)TJN = −JNgJN , (3.2)

where

J2k :=

 0 −1k×k
1k×k 0

 . (3.3)

We denote these two different groups as S̃U(N)I and S̃U(N)II respectively, and their
elements are pairs (g, η) with g ∈ SU(N) and η ∈ Z2. According to the definition of
semidirect product, multiplication of elements is given by

(g1, η1)(g2, η2) = (g1Θ(η1)(g2), η1η2) . (3.4)

It is possible to give a matrix construction of the groups explicitly exhibiting these prop-
erties [18].

Note that we can apply the same construction beginning with gi ∈ U(N), although in
this case we cannot call them principal extensions. We will denote these groups as Ũ(N)I
and Ũ(N)II . In many cases, it can be useful to write the elements of these groups directly
in their fundamental representation. This is a 2N dimensional representation where an
element (g, η) is represented by

fund((g, 1)) =

 g 0
0 Θ(−1)(g)

 , fund((g,−1)) =

 0 g

Θ(−1)(g) 0

 (3.5)

With these definitions, it is easy to compute both the center as well as the centralizer
of the identity component of these groups. First, recall that the center of U(N) and SU(N)
is U(1) or ZN respectively, with elements eiθ1 or ei2kπ/N1. Second, note that elements of
the disconnected component don’t commute with generic elements in the connected com-
ponent. Therefore, to find the center, we need to find the elements (h, 1) with h ∈ Z(G)
(G = U(N) or SU(N)) that commute with (g,−1) with g ∈ G. From the definition of the
semidirect product, we find

(h, 1)(g,−1) = (hg,−1) , (3.6)
(g,−1)(h, 1) = (gΘ(−1)(h),−1) . (3.7)
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Gauge group Topological GW operators Quantum dimension 1-form symmetry

Ũ(N)
T Ũ0 = Id 1

(3.24)T Ũθ , θ ∈ (0, π) 2
T Ũπ 1

S̃U(2n+ 1)
T S̃U0 = Id 1

(3.21)
T S̃Uk , k = 1, . . . , n 2

S̃U(2n)
T S̃U0 = Id 1

(3.21)T S̃Uk , k = 1, . . . , n− 1 2
T S̃Un = T S̃Uπ 1

Table 3. Summary of topological Gukov-Witten operators for theories with Ũ(N) and S̃U(N)
gauge group.

Since h ∈ Z(G), this leads to the condition

h = Θ(−1)(h) = h , (3.8)

which doesn’t depend on whether Θ corresponds to (3.1) or (3.2). This condition is only
satisfied for h = ±1; however, note that for the case of SU(2k− 1) only +1 belongs to the
group. All in all, the center of these groups is given by

Z(Ũ(N)) = Z2 , (3.9)

Z(S̃U(2n)) = Z2 , (3.10)

Z(S̃U(2n+ 1)) = {1} . (3.11)

The topological GW operators can be found from the centralizers of the identity com-
ponents. The computation of these centralizers is very similar to that of the centers above.
The only difference is that, since these elements don’t need to commute with the discon-
nected component, we don’t need to impose (3.8). Therefore,

C
Ũ(N)(U(N)) =

{(
eiθ1, 1

)
, θ ∈ [0, 2π]

}
, (3.12)

C
S̃U(2n)(SU(2n)) =

{(
ei
kπ
n 1, 1

)
, k = 0, 1, . . . , 2n− 1

}
, (3.13)

C
S̃U(2n+1)(SU(2n+ 1)) =

{(
ei

2kπ
2n+11, 1

)
, k = 0, 1, . . . , 2n

}
, (3.14)

Finally, in order to find the topological GW operators, what we need to do is compute
the conjugacy classes of the elements above in Ũ(N) and S̃U(N). Working directly in the
fundamental representation, 0 1

1 0

 g 0
0 Θ(−1)(g)

 0 1

1 0

 =

Θ(−1)(g) 0
0 g

 . (3.15)

– 11 –



J
H
E
P
0
4
(
2
0
2
3
)
0
9
3

From the definition of Θ(−1) we see that conjugating with an element of the discon-
nected component leads to mapping the phase θ 7→ −θ, or k 7→ −k. All in all, for the
different gauge groups, we have topological GW operators labelled by

Ũ(N) : T Ũg = T Ũg(θ) , g(θ) = eiθ

1 0
0 1

 , θ ∈ [0, π] , (3.16)

S̃U(2n) : T S̃Ug = T S̃Ug(k) , g(k) = ei
kπ
n

1 0
0 1

 , k = 0, 1, . . . , n , (3.17)

S̃U(2n+ 1) : T S̃Ug = T S̃Ug(k) , g(k) = ei
2kπ

2n+1

1 0
0 1

 , k = 0, 1, . . . , n . (3.18)

Note that the conjugacy classes corresponding to θ ∈ (0, π) have two elements be-
longing to them, and likewise for k = 1, . . . , dN/2e − 1. Therefore the corresponding GW
operators have quantum dimension two: this means that the symmetry is non-invertible,
as there are no operators that we can fuse with e.g. T S̃U1 and produce the identity operator,
according to (2.8). This can also be checked by directly computing the fusion rule, which
we proceed to illustrate in the example of S̃U(N). Note that the GW operator T S̃Uk can
be written as a sum of two GW operators of SU gauge theory,

T S̃Uk (Md−2) = TSUk (Md−2) + TSU−k (Md−2) . (3.19)

If we fuse two operators with k 6= k′, we find

T S̃Uk · T S̃Uk′ =
(
TSUk + TSU−k

)
·
(
TSUk′ + TSU−k′

)
(3.20)

= TSUk · TSUk′ + TSUk · TSU−k′ + TSU−k · TSUk′ + TSU−k · TSU−k′ .

The 1-form symmetry of SU(N) gauge theory is invertible, i.e. the fusion of the TSUk GW
operators obeys (2.2). Thus,

T S̃Uk · T S̃Uk′ = TSUk+k′ + TSUk−k′ + TSUk′−k + TSU−(k+k′)

= T S̃Uk+k′ + T S̃U|k−k′| , (3.21)

The fusion rule in the case when k = k′ is more subtle and we cannot compute it directly.
However, since the behaviour of the 1-form symmetry of S̃U and Ũ groups seems in many
aspects a natural generalization of the O(2) case described above, we expect that the same
argument to that between equations (2.14)–(2.15) should also apply; i.e. whenever the
naive substitution k′ → k gives rise to T S̃U0 we should identify it with the condensation
defect 1 +W S̃U

sign (see also [21] for a related discussion in the language of categories). That
is, the fusion rule should be

T S̃Uk · T S̃Uk = 1 +W S̃U
sign + T S̃U2k . (3.22)
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If N is even, the case k′ = N
2 − k also has to be studied independently, and again similarly

to the O(2) case,
T S̃Uk · T S̃UN

2 −k
= T S̃UN

2
+W S̃U

signT
S̃U
N
2

+ T S̃U2k−N2
. (3.23)

For the gauge group Ũ , the computation is completely analogous, and the only differ-
ence is that instead of the discrete parameters k, k′ we have continious parameters θ, θ′,

T Ũθ · T Ũθ′ = T Ũθ+θ′ + T Ũ|θ−θ′| . (3.24)

We can gain further intuition on the appearance of non-invertible symmetries if we
consider the theory before gauging the outer automorphism (i.e. just U(N) or SU(N)
gauge theory), when the topological Gukov-Witten operators have quantum dimension
one. However, the (now global) zero-form symmetry is not independent of the center one-
form symmetry; a feature that can be seen from the fact that the fundamental Wilson line
is acted upon by charge conjugation C as

C : Wfund 7→Wfund , (3.25)

This implies that the total global symmetry of the theory is not a direct product of both,
but rather a higher categorical object known as a 2-group symmetry (see e.g. [27–32]).

This observation provides further support to the identification of the symmetry opera-
tors for the S̃U(N)/Ũ(N) theories above (along lines similar to [33]). The GW operators of
the U(N)/SU(N) theory are acted in a similar way to (3.25) by C. It is then clear that the C-
invariant combinations are precisely (3.19) (and the converse for U(N)), which are then the
leftover GW after gauging C. Note that the appearance of non-invertible symmetries is due
to the “folded structure” in (3.19), which from this point of view is inherited from the fact
that the 1-form generators of the SU(N)/U(N) theory are acted by the 0-form symmetry C.

4 Dual (d − 2)-form symmetry

In this section, the aim is twofold: on the one hand, we study the (d− 2)-form symmetry
generated by topological Wilson lines; and on the other hand, we look for brane construc-
tions of S̃U(N) theories. It seems that the key to achieving the second is to include defects
so that the (d− 2)-form symmetry is broken.

4.1 Wilson lines and Alice strings

In the previous section we looked for topological GW operators that generate the electric 1-
form symmetry. The charged objects were Wilson lines, and the symmetry can be broken
if we include particles that make the Wilson lines endable. In this section, we look for
topological Wilson lines: the charged objects are precisely the Gukov-Witten operators.
As we have discussed above, the Wilson line along a contractible path always belongs to
the connected component of the group, and this makes it so that the topological ones,
which generate the (d − 2)-form symmetry, are given by the representations of the gauge
group that map the whole identity component G0 to 1 (2.10).
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In the case of S̃U(N) and Ũ(N), the group of connected components is Z2. This group
has two representations, the trivial and the fundamental. At the level of the group, they
correspond to the trivial representation and the sign representation respectively, where the
sign representation is defined as

sign((g, 1)) = 1 , sign((g,−1)) = −1 , (4.1)

for g in S̃U(N) or Ũ(N). Therefore, the topological Wilson lines are W G̃
1 and W G̃

sign.
Similarly to the case of the O(N) groups (2.16), the topological Wilson lines fuse according
to the Z2 product, and therefore we have a Z2 invertible (d− 2)-form symmetry.

In a similar fashion to the 1-form symmetry, this (d−2)-form symmetry can be broken
by including defects on which the charged GW operators can end. These were dubbed twist
vortices in [9], and in the context of the charge conjugation symmetry have been usually
called Alice strings [19]. These defects always have a transverse R2 at each point, and
are defined by the fact that when going around them, operators undergo a monodromy
corresponding to the outer automorphism of the gauge group.

An important feature of Alice strings is that their presence reduces the globally well
defined gauge group [25]. This is because the outer automorphism doesn’t commute with
all gauge transformations, and states that should be gauge equivalent can pick up different
Aharonov-Bohm phases from the action of the monodromy. This is a contradiction: what
happens is that, even if in a region that doesn’t include the string the gauge group is appar-
ently G, the presence of the string reduces it to the centraliser of the outer automorphism
of G, i.e. precisely the subgroup that does commute with the monodromy.

Let’s be more explicit in the case at hand of S̃U(N)I,II . When going around the Alice
string, fields are acted upon by the element (1,−1) which corresponds to the outer auto-
morphism of SU(N). Note that this action does depend on the choice of semidirect product
Θ (3.1) or (3.2). The globally well defined gauge group is the centraliser C

S̃U(N)I,II
((1,−1)),

which can be easily found by computing

(g, η)(1,−1) = (gΘ(η)(1),−η) = (g,−η) , (4.2)
(1,−1)(g, η) = (Θ(−1)(g),−η) . (4.3)

We see that g needs to satisfy
g = Θ(−1)(g) . (4.4)

If Θ = ΘI (3.1), this implies that g ∈ SO(N). On the other hand, if Θ = ΘII (3.2), which
can only happen if N is even, we have g ∈ Sp(N/2). Note also that the element (1,−1)
will always belong in the centraliser, which therefore will take the form of a direct product.

In summary, if we add an Alice string to break the (d− 2)-form symmetry of S̃U(N)
theory, the gauge group becomes SO(N) × Z2 or Sp(N/2) × Z2. It is interesting to look
back to the electric 1-form symmetry of these theories. From table 1, we see that the
topological Gukov-Witten operators, after the reduction of the well defined gauge group,
correspond to +1 or −1 (the latter only when it belongs to the group). Comparing with
the results of table 3, these are precisely the GW operators with quantum dimension 1 in
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S̃U(N) theory. Therefore, it seems that breaking the (d − 2)-form symmetry ultimately
results in the disappearance of the non-invertible 1-from symmetries. We believe that this
is a phenomenon deserving of further exploration.

4.2 Brane constructions

Brane setups engineering Alice strings and Ũ(N) gauge groups can be achieved by inter-
secting branes with orientifolds. Following [24], consider

0 1 2 3 4 5 6 7 8 9
N D3 × × × ×
O3 × × × ×
r D3’ × × × ×

(4.5)

The argument in [24] suggests that the theory on the D3-branes is Ũ(N). However,
from the point of view of the D3-branes, the O3 +r D3’ act as a codimension 2 defect with
a monodromy associated to the element (1,−1) ∈ Ũ(N), that is, an Alice string. As a
result, the globally well defined gauge group is O(N) (in the Ũ(N)I case) or Sp(N/2) (in
the Ũ(N)II case), and the full Ũ(N)I,II is only manifest on top of the defect. The type
of semidirect product extension ΘI or ΘII depends on the choice of orientifold plane. For
O3+, Õ3

+
we find Ũ(N)I , leading to a globally well-defined O(N) in the presence of the

twist vortex, and for an O3− we find Ũ(N)II leading to a globally well-defined Sp(N/2) in
the presence of the twist vortex.12

This arrangement of branes can be straightforwardly generalised to N Dp-branes along
the x0,...,p directions and Op +k Dp’ along the x0,...,p−2,p+1,p+2. In this way, we can engineer
Ũ(N) theories in a different number of dimensions.

Besides (4.5), there are two more setups where we can engineer a Ũ(N) theory in a
similar fashion. These are the type IIB configuration

0 1 2 3 4 5 6 7 8 9
N D3 × × × ×
k D7’ × × × × × × × ×
O7 × × × × × × × ×

(4.6)

The IIB configuration with an O7− and 4 extra flavor D7 branes was studied in detail
in [34, 35], where it was argued that the 2d intersection acts as an Alice string for the
Ũ(N)I theory on the D3, out of which only a O(N) is globally well-defined.

In addition, we also have the T-dual in type IIA,

0 1 2 3 4 5 6 7 8 9
N D2 × × ×
k D6’ × × × × × × ×
O6 × × × × × × ×

(4.7)

12It would be interesting to clarify the distiction bewteen O3− and Õ3
−
.
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In both these cases, the theory on the D3 (or D2) is a Ũ(N) gauge theory, and the ori-
entifold intersection appears as an Alice string which reduces the well defined gauge group
to an orthogonal or symplectic subgroup. However, as opposed to (4.5), the identification
of the type of orientifold with the semidirect product extension is reversed: an O7+ will
give rise to Ũ(N)II on the D3, and an O7− to Ũ(N)I .

An important observation is that all the brane constructions that we have discussed
have one thing in common: when seeking to engineer a disconnected gauge group, the
Alice string appears automatically, and it seems impossible to the best of our knowledge to
find the former without the latter. As a consequence, as we have discussed in the previous
section, the presence of the Alice string also serves the purpose of breaking the (d−2)-form
global symmetry of these theories. This strongly resonates with the conjectured absence
of global symmetries in quantum gravity.

5 Conclusions and outlook

In this note we have studied the electric 1-form and (d − 2)-form symmetries of gauge
theories based on the gauge groups which include charge conjugation as part of the gauge
symmetry introduced in [17, 18]. As for the electric 1-form symmetry, concentrating on pure
gauge theories, we have found that these QFT’s provide very simple and explicit examples of
non-invertible symmetries using the technology developed in [9], supporting the claim in [13]
that indeed non-invertible symmetries are ubiquitous also in dimensions higher than three.
In this case, the emergence of non-invertible symmetries can be heuristically understood
considering a copy of the same theory but with gauge group SU(N) (an analogous discussion
holds for the U(N) case). In that case, the symmetry operators associated to the electric 1-
form symmetry are permuted by the 0-form charge conjugation symmetry (forming actually
a 2-group). The operators which carry over to the version of the theory with gauged charge
conjugation are the combinations which are C-invariant, and this “folds” the GW operators
as in (3.19) leading to non-invertible symmetries in very much the same way as in the O(2)
case discussed in [9]. The non-invertible character of the symmetries can be read-off from
the fact that their quantum dimension is 2 (instead of 1). This manifests itself also in
the fusion rules, which mimic the O(2) case. Even though we have provided arguments in
support of the fusion rules in section 3, it would be very interesting to further study this
aspect to put them on firmer grounds.

More generally, the existence of non-invertible symmetries has been shown to be closely
related to mixed anomalies (see e.g. [12, 36]). The fact that, when considering a theory
which includes charge conjugation as part of the gauge group, one immediately finds a non-
invertible 1-form symmetry, may signal that such a mixed anomaly between the gauge group
and its outer automorphism should be present (see [37] for a related discussion). It would
be very interesting to investigate this point further, complementing the studies of [26].

Since the gauge groups we are considering are disconnected (π0(G) = Z2), QFT’s based
on them automatically exhibit a (d − 2)-form symmetry [9]. The objects charged under
this symmetry are twist vortices (Alice strings in the d = 4 case). As it is well-known, in
the presence of twist vortices only a subgroup of the full gauge group is well defined. In the
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case at hand it is SO(N) for S̃U(N)I and Sp(N/2) for S̃U(N)II — recall that this latter
version is only available for even N . Elaborating on [24] and [34, 35] we have suggested
String Theory embeddings for these theories. Amusingly, they automatically come with
twist vortices, thus breaking the (d− 2)-symmetry. This is very much consistent with the
Swampland criteria that any global symmetry should be broken. These String Theory
constructions involve intersecting orientifolds. Roughly speaking, the type of orientifold
(Op± and their tilde versions) matches the possible theories. However, it would be very
interesting to study these constructions in more detail (in particular including the relation
between the two proposed constructions). Moreover, the String Theory construction may
be used to study the duality properties of these theories. As a consequence, this would
allow to study magnetic (d − 3)-form symmetries as well as possible ’t Hooft anomalies.
Note that some of these aspects may depend on the dimension d. We leave these very
interesting aspects for future studies.
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A Gukov-Witten operators and principal extensions

In the main text, we have studied the 1-form symmetries of pure gauge theories with discon-
nected gauge groups, using the known result that the topological Gukov-Witten operators
should correspond to the conjugacy classes of elements in the centralizer of the identity
component of the group. In this appendix, we find the same topological GW operators by
direct computation of their linking with Wilson lines in the adjoint. This computation has
two steps: first we identify all possible GW operators, and then we use (2.5) to find which
of them link trivially with the Wilson line; these will be the topological ones.

Gukov-Witten operators where introduced in [23, 24] as codimension two operators
that preserve a certain amount of supersymmetry. This was done by finding solutions to
Hitchin’s equations for the gauge fields, with a singularity at the locus of the operator and
prescribed boundary conditions. Said boundary conditions are specified by the monodromy
when going around the singular locus, which is an element of the gauge group and whose
conjugacy class is a gauge invariant that labels the different Gukov-Witten operators.

If the gauge group is connected, finding all posible GW operators is easy. A basic
theorem of Lie theory tells us that in this case, any element of the group is conjugate to
at least one element of the maximal torus, i.e. if we call G the group and T its maximal
torus, the map

C : G× T → G (A.1)
(g, t) 7→ g−1tg
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is surjective. More precisely, elements of T that are related by the action of the Weyl group
Wg will give rise to the same conjugacy classes. For our purposes, this implies that the
possible GW operators (topological or not) are labelled by elements of T/Wg.

This statement is no longer true if the group is not connected. Still, if we restrict
ourselves to the case of principal extensions (namely the group is a semidirect product
of its connected component times its group of outer automorphisms), we have lemma 2.1
of [38], which is enough for our purposes. The statement in the case where the outer
automorphism group is isomorphic to Z2 is that, if we call G0 the identity component of
the group and Θ the map such that G = G0 oΘ Z2, then the map

ϕ : G× TΘ → Gdisc (A.2)
(g, t) 7→ g−1Θ(t)g

is surjective onto the disconnected component of the group. Here Gdisc = Θ·G0 denotes said
disconnected component, and TΘ is the subgroup of the maximal torus of G0 which is left in-
variant by the action of Θ. Therefore, GW operators specified by a monodromy transforma-
tion in the disconnected component of the gauge group can be labelled by elements in TΘ.

Once all the GW operators have been identified, we look for the ones that link triv-
ially with an adjoint Wilson line: these are the topological ones that generate the 1-form
symmetry. From the linking coefficient (2.5) it follows that we need to solve

χAdj(a) = dimAdj , (A.3)

where a ∈ T if we are considering a GW operator in the connected component and a = Θ(t),
t ∈ TΘ if we are considering one in the disconnected component.

Example: S̃U(3)I . As an example, we can consider the principal extension of SU(3).
Its Lie algebra has three positive roots, α1, α2 and α1 + α2, and the outer automorphism
exchanges α1 and α2: thus, the invariant subgroup of the torus, TΘ, precisely corresponds
to the root α1 + α2. In order to write down the characters, it’s more convenient to use
a modified basis for the fugacities, instead of the usual one, such that the one parameter
subgroup corresponding to α1 +α2 is parametrized by z2

1 . This can be achieved by selecting
fugacities z1z

3
2 and z1/z

3
2 for the α1 and α2 directions respectively [17, 18]; note that in these

terms the action of the outer automorphism is z2 7→ 1/z2. With this, the character of the
adjoint evaluated in a conjugacy class in the connected and disconnected components gives

χAdj(t) = 2 + z2
1 + 1

z2
1

+ z1z
3
2 + 1

z1z3
2

+ z1
z3

2
+ z3

2
z1
, t ∈ T (A.4)

χAdj(Θ(t′)) = −z2
1 −

1
z2

1
, t′ ∈ TΘ (A.5)

The dimension of the adjoint of S̃U(3)I is equal to 8. Since the fugacities are complex
numbers of modulus 1, we find that the topological GW operators correspond to elements
in the connected component such that z1 = 1 and z3

2 = 1, or z1 = z2 = −1. The
solutions with z1 = z2 = 1 and z1 = z2 = −1 are in fact one and the same, which
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can be seen from the fact that with this fugacity parametrization, the character of the
fundamental is χF = z1z2 + 1/z2

2 + z2/z1. The corresponding Gukov-Witten operator is
the identity of the 1-form symmetry. The other two solutions z1 = 1, z2 = eiπ/3 and
z1 = 1, z2 = e2iπ/3 correspond to different elements of the gauge group, but ones that get
identified via conjugation with the generator of the Z2. Therefore, there is one non-trivial
GW operator, with quantum dimension two, that generates the 1-form symmetry. This is
the same result obtained from the centralizer computation in the main text.

An important remark is that χAdj(Θ(t′)) = dim(Adj) has no solutions for GW operators
corresponding to the disconnected component. This is completely generic and due to the
fact that, since TΘ has always a smaller dimension than T , there will be fewer monomials in
the corresponding character than it’s needed to have solutions to the equation. Therefore,
GW operators labelled by classes in the disconnected component can never be topological.
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