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Abstract: Intrathecal pseudodelivery of drugs is a novel route to administer medications to treat
neurodegenerative diseases based on the CSF-sink therapeutic strategy by means of implantable
devices. While the development of this therapy is still in the preclinical stage, it offers promising
advantages over traditional routes of drug delivery. In this paper, we describe the rationale of this
system and provide a technical report on the mechanism of action, that relies on the use of nanoporous
membranes enabling selective molecular permeability. On one side, the membranes do not permit
the crossing of certain drugs; whereas, on the other side, they permit the crossing of target molecules
present in the CSF. Target molecules, by binding drugs inside the system, are retained or cleaved
and subsequently eliminated from the central nervous system. Finally, we provide a list of potential
indications, the respective molecular targets, and the proposed therapeutic agents.

Keywords: drug delivery systems; intrathecal pseudodelivery; neurodegenerative diseases; intrathecal
device; nanoporous membranes

1. The BBB, the CSF, and the Neurodegenerative Diseases

Neurodegenerative diseases (NDD) are a group of disorders of the central nervous
system (CNS) that cause progressive death of nerve cells and loss of function in the brain
and spinal cord. The CNS compartments are represented by the parenchyma of the brain
and spinal cord, including the intracellular space with the intracellular fluids (ICF) and
the extracellular space with the interstitial fluid (ISF), and the cerebrospinal fluid (CSF)
space. The tissues of the CNS are separated from the systemic circulation by the blood-
brain barrier (BBB) and blood-CSF barrier (BCSFB) [1,2]. These barriers protect the CNS
from endogenous and exogenous compounds present in the systemic circulation and are
essential to ensure the proper function of the CNS. The BBB is a complex and highly
selective structure, a veritable border for numerous substances (including macromolecules)
found in the systemic circulation in their passage to the CNS [1]. This protective role is
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mainly the consequence of the presence of an endothelial layer with special features, with
flattened, polarized endothelial cells that have an increased mitochondrial content, minimal
pinocytic activity, a lack of fenestrations, and are closely linked via an elaborate protein
network consisting of tight junctions and adherens junctions [2] (Figure 1A). Besides the
almost non-existent paracellular passage of molecules, the presence of different highly
selective transporters on endothelial cells limits the free entry of drugs to the CNS [3].
Despite acting as a carrier by allowing the penetrance of glucose, vitamins, lipid-soluble
molecules, and gases (carbon dioxide and oxygen) from the blood toward the CNS, the BBB
serves as a shield against neurotoxins, but also against potentially therapeutic substances.
Additionally, these physical-chemical properties of the BBB are maintained in physiological
conditions thanks to the intercellular crosstalk between endothelial cells and the other
components of the BBB (pericytes, astrocytes, neurons). Regarding the BCSFB, it is located
in the choroid plexus of the brain ventricles, and it is composed of a cuboidal cell epithelium
with adhering Kolmer cells, a highly vascularized stroma with connective tissue, and the
brain capillary endothelium [4]. According to the classical paradigm, the primary role
of the choroid plexus epithelial cells is the secretion of CSF into the brain ventricles;
however, recent research acknowledges the protective role of the BCSFB for the cerebral
parenchyma [5]. In contrast to the BCSFB and BBB, the CSF and the ISF are not tightly
separated. Even large molecules up to the size of albumin can move passively from/to
the ISF and the CSF. Circulation of CSF and ISF around and through the CNS transports
not only fluids but also any solutes they carry, including nutrients, drugs, and metabolic
wastes. Impairment of this circulation, which is more intense during sleep, has profound
implications for NDD [6].
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Figure 1. (A). The complex structure of the neurovascular unit in physiological conditions. All com-
ponents interact anatomically and chemically in a complex web to maintain its functions. Endothe-
lial cells (purple), which make up the main part of the BBB, are characterized by high selectivity in 
transcellular transport, due to the tight junctions that fuse them together and restrict diffusion across 
the blood vessels. Pericytes (red) are essential cells in maintaining the structural and functional 
properties of the BBB and share a common basement membrane (blue) with endothelial cells. As-
trocytes (yellow) are involved in supportive processes and have a strategic localization between 
neurons (green) and other components of the BBB, with their specialized end feet extending to the 
walls of the blood vessels. (B). The most relevant pathophysiological changes of the neurovascular 

Figure 1. (A). The complex structure of the neurovascular unit in physiological conditions. All com-
ponents interact anatomically and chemically in a complex web to maintain its functions. Endothelial
cells (purple), which make up the main part of the BBB, are characterized by high selectivity in
transcellular transport, due to the tight junctions that fuse them together and restrict diffusion across
the blood vessels. Pericytes (red) are essential cells in maintaining the structural and functional prop-
erties of the BBB and share a common basement membrane (blue) with endothelial cells. Astrocytes
(yellow) are involved in supportive processes and have a strategic localization between neurons
(green) and other components of the BBB, with their specialized end feet extending to the walls of
the blood vessels. (B). The most relevant pathophysiological changes of the neurovascular unit in
NDD. Many of the homeostatic processes of the BBB are impaired in NDD. Vascular integrity is
impaired by damage to the endothelial cells (purple), which lose their impermeability in the tight
junctions, along with atrophy of pericytes (red), astrocyte endfeet swelling (yellow), and collagen and
laminin accumulation in the basal membrane (blue). Aggregates of protein build up and organize in
plaques that surround the astrocytes and neurons. This causes neuroinflammation with the secretion
of inflammatory cells and cytokines, with the central role played by microglia (dark blue). Within
neurons (green), proteins may also accumulate in intracellular aggregates, which are associated with
the accumulation of glial cells and neuronal dysfunction. Modified from Schreiner et al. [7] (Magda
Pîrt,ac originally designed this figure by using Adobe Fresco).
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Pathologically, besides cellular loss, most NDD exhibit molecular hallmarks such as
beta-amyloid (Aβ), tau, α-synuclein, mSOD1, and TDP-43. Disease-distinctive proteins
exist in different states that aggregate between them: soluble monomers aggregate together
to form dimers and oligomers, that can form soluble protofibrils. In turn, protofibrils
aggregate to form insoluble fibrils, that eventually deposit in the form of plaques or
tangles [8]. Soluble proteins are present in the CSF, and in equilibrium—either direct or
inverse, depending on the molecule and the stage of the disease—with the concentration in
the ISF (Figure 1). Similarly, polyglutamine (polyQ) diseases are a group of genetic NDD
caused by the abnormal expansion of a CAG trinucleotide repeat that is translated into an
expanded polyQ sequence in the disease-causative proteins. The expanded polyQ sequence
itself plays a critical disease-causative role in the pathogenic mechanisms underlying these
diseases. The most common pathogenic mechanism in polyQ diseases is related to the
fact that the expanded polyQ sequence promotes a conformational transition from the
native monomer into the β-sheet-rich monomer, followed by the formation of soluble
oligomers and finally insoluble aggregates with amyloid fibrillar structures (Figure 2). The
intermediate soluble species including the β-sheet-rich monomer and oligomers exhibit
substantial neurotoxicity [9].
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Figure 2. Aggregation of proteins from monomers to plaques. Soluble monomers aggregate together
to form dimers and oligomers, that can form soluble protofibrils. These protofibrils aggregate to form
insoluble fibrils, that can form plaques. The process is dynamic and bidirectional, therefore complex
aggregates can disaggregate into less complex aggregates. Modified from Kok et al., 2022 [8].

From this perspective, the central event in the pathophysiology of NDD is a proteosta-
sis imbalance leading to protein aggregation overwhelming the proteostasis capacity of
brain cells (e.g., autophagy-lysosome and ubiquitin-proteasome systems), and interfering
with the ability of neurons to cope with pathogenic proteins [10,11], which accumulate and
deposit intracellularly and/or extracellularly (Figure 1B). Eventually, protein aggregates
lead to neuronal cell death, frequently mediated by activated tyrosine kinases. Not in
vain, the exquisitely tuned activity of protein kinases is essential to maintaining cellular
homeostasis [12]. Whereas loss-of-function variants are generally associated with cancer,
gain-of-function variants are associated with NDD. Since these pathways are crucial for
degrading aggregate-prone proteins and dysfunctional organelles such as mitochondria,
they help maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted
protein and organelle accumulation by cell division, the nervous system is particularly
dependent on autophagic pathways. This dependence may be a vulnerability as people age
and these processes become less effective in the brain. The origin of proteostasis imbalance
may be due to a genetic origin and/or acquired causes. Today, the pathogenic mechanisms
underlying most genetic NDD are generally known, yet we do not have a clear understand-
ing of the etiologies of sporadic NDDs. In sporadic NDD, some risk or protective factors
have been identified (genetic polymorphisms, style of life including exercise, sleep, and
diet), but the precise links between these factors and the pathogenic mechanisms leading to
proteostasis imbalance are yet to be deciphered. In any case, the formation of aggregates of
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these proteins may be the consequence of different pathogenesis, including a variable com-
bination of increased synthesis, synthesis of structurally abnormal forms, and decreased
degradation, either by intracellular (autophagy, microglia) or extracellular systems [13–16].
A decrease in their clearance to compartments outside the brain parenchyma has been
identified as a relevant contribution to protein accumulation in the CNS fluidic systems,
due to the impairment of the BBB, the CSF flow, and the glymphatic system [17–23]. Protein
degradation involves enzymes contributing to clear target molecules, such as neprilysin
or insulysin, that clear Aβ [24]. The soluble fraction of the triggering receptor expressed
on myeloid cells 2 (sTREM2) is a bioactive molecule capable of binding ligands, activating
microglia, and regulating immune responses during neurodegenerative processes. While
sTREM2 promotes microglial survival and stimulates the production of inflammatory
cytokines, variants of sTREM2 are less potent in both suppressing apoptosis and triggering
inflammatory responses. In Alzheimer’s disease (AD), wild-type sTREM2 binds oligomeric
Aβ and acts as an extracellular chaperone, blocking and reversing Aβ oligomerization and
fibrillization, and preventing Aβ-induced neuronal loss in vitro. Levels of sTREM2 in CSF
fall prior to AD clinical onset, rise in early AD, and fall again in late AD. Subjects with
higher sTREM2 levels in CSF progress more slowly into and through AD than do subjects
with lower sTREM2 levels, suggesting that sTREM2 may protect against AD [25–28].

In parallel to proteostasis disbalance, a common feature in NDD is chronic immune
activation, in particular of astrocytes and microglia, the resident macrophages of the central
nervous system [29]. The CSF immune system dysregulates during healthy brain aging and
especially during neurodegenerative processes. Monocytes upregulate lipid processing
genes with age in cognitively normal CSF, and particularly in neurodegeneration [30].
The release of aggregated pathogenic proteins such as Aβ, tau, α-synuclein, mSOD1,
and TDP-43 into the extracellular space, drives the changes of microglia and astrocytes
into their pro-inflammatory phenotypes (Figure 1B). The pro-inflammatory-phenotype
astrocytes and activated microglia release pro-inflammatory factors, such as interleukins
and tumor necrosis factor α (TNF-α), which act as mediators dysregulating the synaptic
function, the BBB, the metabolic function, and CSF and blood flow [5,29–34]. Altogether,
the predominance of the pro-inflammatory state results in the increase of pro-inflammatory
factors and in a decrease in the protein clearance; and ultimately in disease progression.

2. The Problem of Drug Delivery to the CNS and Its Many Explored Solutions

The administration of drugs targeting the CNS poses challenges. The main difficulty
is related to poor drug penetration through the BBB, as multiple in vivo, in vitro, and in
situ experiments have demonstrated [35]. Small molecule diffusion through BBB operates
similarly to solute-free diffusion through biological membranes. The probability of a
given small molecule passing through the BBB can be predicted based on its molecular
weight (MW) and structure. If the MW is greater than 450 Daltons, and/or the drug’s
structure includes polar functional groups that form more than seven hydrogen bonds, then
its transport through the BBB will be low unless there is carrier-mediated transport [36].
Conversely, if the MW is less than 450 Daltons and the drug forms seven or fewer hydrogen
bonds with water, then its transport through the BBB may be significant, provided that it is
not a substrate for an active efflux transporter. In certain pathological conditions such as
stroke or cancer, the BBB experiences structural and functional changes that damage the
central nervous system. BBB leakage enables increased immune cell traffic and substance
passage to the interstitial fluid. The BBB can be opened through physical interventions like
hyperosmotic infusions or focused ultrasounds, which facilitate the entry of drugs such as
mAbs [37,38]. When it comes NDD, BBB dysfunction is linked to chronic inflammation,
heightened oxidative stress, and the pathological accumulation of misfolded proteins. These
factors impede drug delivery to CNS in comparison to acute conditions. Furthermore, the
BCSFB may also be altered in NDD, undergoing similar cellular and molecular changes to
BBB alterations, leading to permeability changes [4,36–38].
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In recent years, a multitude of brain drug delivery technologies have emerged, includ-
ing trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells,
exosomes, nanoparticles, gene therapy, endogenous BBB carrier-mediated transport and
receptor-mediated transport systems [36]. As presented in Figure 3, there are available
at present both invasive and non-invasive techniques, while alternative routes shunting
the natural brain barriers are also being explored. Nanoparticle (NP)-based systems have
shown promising potential as precision medicines that can effectively penetrate the BBB
by crossing, avoiding, or disrupting the BBB. Diverse systems, including liposomes, mi-
celles, polymeric NPs, solid-lipid NPs, and inorganic NPs, have been investigated for
NP drug loading to treat NDD [39,40]. Exosomes are extracellular vesicles secreted by a
wide variety of cells, and their primary functions include intercellular communication,
immune responses, human reproduction, and synaptic plasticity. Due to their natural ori-
gin and molecular similarities with most cell types, exosomes have emerged as promising
therapeutic tools for numerous diseases, particularly NDD [41].
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barrier; CNS—central nervous system; NP—nanoparticle).

Invasive techniques rely on implantable devices accessing the CSF-intrathecal (IT),
intraventricular (IVT) or ISF intraparenchymal delivery. In contrast to the extensive use
of the CSF for diagnostic purposes, the CSF has not been frequently regarded as a target
biological fluid for therapies for CNS conditions because it requires invasive procedures
and systems. Today, few drugs are delivered in the CSF, mainly because it is an invasive
procedure not without risks. However, in recent decades, therapies addressed at the CSF
have gained some momentum as a result of advanced treatments such as gene therapies and
replacement enzymatic therapies which need IT or IVT delivery. While the IT drug delivery
pathway is still regarded as an experimental approach in neurodegenerative diseases, this
route has long been successfully used in the treatment of other pathological conditions
and in the symptomatic therapy of pain and spasticity [42–45]. More recently, intrathecal
infusion of Nusinersen, an antisense oligodeoxynucleotide (ASO), was approved by FDA
and EMA for the treatment of spinal muscular atrophy (SMA) [46]. Several ASOs have been
tested in clinical trials for their ability to treat brain or spinal cord parenchyma by injecting
drugs into the lumbar CSF. One such ASO is Tominersen, which targets the huntingtin
mRNA of Huntington’s disease (HD). Another ASO, Tofersen, targets the superoxide
dismutase 1 (SOD1) mRNA in SOD1-dependent amyotrophic lateral sclerosis (ALS). [47].

Controlled drug delivery systems (DDS) seek to improve patient compliance by in-
creasing therapeutic efficacy, extending drug release time and stability, increasing drug
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bioavailability, reducing side effects, and reducing dosage frequency. Moreover, DDS
contribute to the safety of pharmaceuticals during their whole delivery period by serving
as various kinds of protective barriers that enclose them, minimizing the loss of active
ingredients and any harmful impacts on patients. They are typically constructed at nano-
metric and micrometric levels in order to combine several qualities such as site-specificity,
endurance, or external stimuli sensitivity [48–50].

Intrathecal pumps are a good example of implantable DDS targeting the CNS. Intrathe-
cal pumps consist of an electromechanical pump cased with a metal reservoir that stores
the medication, and a catheter that is implanted in the spinal intrathecal space to deliver the
medication from the pump to the CSF, thus accessing the CNS where the medication takes
effect. Two types of pumps are available: a constant rate pump delivers the medication
at a constant rate, and a programmable pump delivers the medication according to a rate
determined by a computer program [51,52]. While intrathecal pumps offer good control of
the rate of drug release, and enable effective low dosing, thus reducing the incidence and
severity of drug-derived adverse effects, they are not exempt from complications, including
the risk of overdose as a result of incorrect pump programming, pump failure, CSF leak,
granuloma formation, obstruction of CSF flow, and infections [53,54].

3. Clearing the CSF as a Therapeutic Strategy in Neurodegenerative Diseases

Different approaches have been investigated with the aim of removing pathogenic
proteins from the CNS, including inhibition of protein synthesis, and promoting protein
degradation. Most therapeutic strategies addressed to enhance the clearance of brain
proteins rely on clearing them from the periphery [55]. Disease-modifying therapies, such
as monoclonal antibodies (mAb) against target molecules, recently started showing clinical
benefits in some NDD at least [56]. However, safety remains a concern, since peripherally
administered mAbs may lead to serious side effects, such as immunologically mediated
amyloid-related imaging abnormalities (ARIA) after anti-Aβ mAb therapies [57]. However,
there might be a much more direct way of clearing proteins from the brain than removing
them from the plasma: removing them from the CSF. This is the rationale of the so-called
“CSF-sink therapeutic hypothesis” [58–60] (Figure 4).
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between CNS fluid compartments, green arrows represent pathways of therapeutic clearance of target
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fluid compartments after therapy. Modified from Schreiner et al [60].
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Indeed, several attempts have been made to treat neurodegenerative diseases us-
ing different CSF filtration systems. In ALS, extracorporeal CSF filtration was shown to
successfully mitigate the neurotoxic capacity of CSF from subjects with sporadic Amy-
otrophic Lateral Sclerosis (ALS) in vitro [61] and in a mouse model [62]. However, a very
small randomized, controlled, and open study in the nineties, concluded that filtration
of 200–250 mL CSF daily, over five days, did not seem to have a substantial therapeutic
effect in patients with ALS [63]. In a single case of familial ALS, there was subjective, but
no objective, improvement of the patient immediately after CSF filtration and two weeks
later [64].

It is worth revising methods aimed at CSF dilution or enhancing CSF flow, as they
are closely related to CSF-sink therapeutic strategy. In AD, mechanical dilution of CSF has
long been a proposed therapeutic approach [65]. CSF shunts such as ventriculo-peritoneal,
ventriculo-pericardial, ventriculo-atrial and lumbo-peritoneal shunts are the recommended
therapy for communicating hydrocephalus. Noteworthy, shunting procedures delay intrac-
erebral deposition of Aβ in patients with communicating hydrocephalus [66]. COGNIShunt
is a system for a continuous, low-flow ventriculoperitoneal shunt (Eunoe, acquired by Inte-
gra Lifesciences). Results of the clinical trial showed that the difference between treatment
groups, while still favoring the COGNIShunt group, was not statistically significant [67].
Arethusta (Leucadia Therapeutics) is a system based on an implantable device to restore
CSF flow across the cribriform plate, with no clinical reports yet.

4. Intrathecal Pseudodelivery of Drugs: Concept, Advantages, and Disadvantages

Therapeutics such as enzymes, antibodies, and even transport proteins (e.g., albumin),
which are mostly intended to link with molecular targets to be removed from the organism,
do not really need to be released in the fluid or tissue to action. In fact, binding to the
molecular target can be achieved regardless of the compartment. With this in mind, IT
pseudodelivery of drugs is a novel concept to administer drugs to treat CNS conditions
relying on the CSF-sink therapeutic strategy [60], by means of implantable DDS to put in
touch therapeutics with molecular targets inside of the device, without delivering to the
biological fluid (hence the name “pseudo”-delivery). The key component in the device
is a smart design of customized nanoporous membranes that allow the influx of small
molecules (targets) at the time of preventing the efflux of therapeutics of larger molecular
size (nanosieve) see the Supplementary Materials for a short animation.

Functional nanoporous materials are an important class of nanostructured materials
because of their tunable porosity and pore geometry (size, shape, and distribution) and
their unique chemical and physical properties. Progress in developing a broad spectrum of
nanoporous materials has accelerated their use for extensive applications in biomedical
fields [68]. Nanoporous membranes are natural or synthetic membranes that can be made
from a variety of materials and can be fabricated in different configurations including
pore size, surface coating, geometry, and pore distribution, providing unique mass trans-
port characteristics that have numerous potential biological and medical applications that
involve isolating, sorting, sensing, and releasing biological molecules. Nanoporous mem-
branes are of great interest in drug delivery because they offer a secure delivery system
for medications and stop bodily enzymes from breaking them down and because they
can be tailored-made and fine-tuned for precise control of the rate of drug delivery or to
exquisitely adjust the selective molecular permeability [69,70]. While a few years ago there
were technical challenges for the successful application of nanoporous membranes to con-
trolled drug delivery applications—including the need for biocompatibility, the reduction
of risk of infections, and the reduction of risk of biofouling [71] most of these challenges
have already been overcome and solutions are now being optimized [72,73]. Nanoporous
membranes can be used as stand-alone DDS or assembled into complex DDS.

IT pseudodelivery is the first DDS to be endowed with nanoporous membranes acting
on the CNS [72,74,75]. Devices for IT pseudodelivery of drugs look similar to intrathecal
pumps as they also have a subcutaneous reservoir and an intrathecal catheter accessing
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the CSF. However, they are not necessarily endowed with electromechanical pumps. The
mechanism of action depends on the use of nanoporous membranes enabling selective
molecular permeability [72,75]. On one side, the membranes do not allow crossing of drugs,
but on the other side, they allow crossing of the target molecules present in the CSF. Target
molecules bind drugs inside the system, thus being trapped or cleaved and eliminated
from the CNS (a short simulation illustrating the mechanism of action can be found as a
Supplementary Materials). Drugs are not released from the reservoir to the organism, and
they can be replaced as needed percutaneously through self-sealing septa in the reservoir.

Not every target molecule or drug is suitable to be targeted/used via pseudodelivery. For
a disease to be suitable to be treated using IT pseudodelivery, three conditions must be met:

1. A target molecule should be present in the CSF (soluble). This should be identified as
potentially “toxic” or “pathogenic” and involved directly (aggregating proteins) or
indirectly (mediators) in the physiopathology of the disease.

2. A drug acting specifically on the target molecule is needed. This can be an antibody,
an aptamer, an enzyme, or any other compound that has specificity over the target
molecule and either binds or cleaves the target molecule.

3. A significant size difference should exist between the target and drug molecules. While
other physicochemical features may also play a role (such as electrostatic charge),
the size difference is the main feature driving the selective molecular permeability
through nanoporous membranes.

While the development of this therapy is still in the preclinical stage, it offers promising
advantages over traditional routes of delivery. Being target-selective provides advantages
over other CSF clearance systems since the level of other proteins —not involved in disease
pathogenesis—would be preserved. It also provides important advantages over “standard”
peripherally administered drugs, including the following: 1. Acting continuously, on the
CSF directly, is expected to be much more effective than acting peripherally. 2. Immunoiso-
lation of drugs impedes immune responses, fully avoiding immunologically mediated side
effects reported with biological drugs systemically administered [74,75].

In contrast, potential adverse effects related to the intrathecal system implantation and
functioning should be taken into consideration, with expected local complications similar to
those seen with intrathecal pumps, such as CSF leak, hemorrhage, and infection, along with
device-derived problems such as CSF flow obstruction or even device disconnection [74,75].

5. Potential Applications of Intrathecal Pseudodelivery of Drugs: Diseases, Targets,
and Relevant Drugs

The field of disease-modifying therapies for NDD is one of the hottest topics in
medicine nowadays. Despite a myriad of studies, no effective disease-modifying treatment
is available at the present for most of these conditions [76] while the first disease-modifying
therapies for AD have been recently approved with some controversy regarding their
efficacy and safety [77,78]. However, much knowledge has been accumulated regarding
the molecules and cellular pathways involved in the pathogenesis of NDD that can become
valuable targets for future therapies. Different classes of therapeutics are suitable to be
used via intrathecal pseudodelivery in the treatment of NDD. Table 1 summarizes the most
relevant NDD, their known molecular targets, and the therapeutic agents proposed to be
applied through this route, based on previous evidence on the drugs’ mechanism of action.
There is little research testing IT pseudodelivery in these conditions yet, hence this list
should be considered just as therapeutic hypotheses today.
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Table 1. Summary of the potential molecular targets and the proposed classes of therapeutic agents
to be administered via IT pseudodelivery for the most relevant neurodegenerative diseases.

Neurodegenerative Disease Molecular Target Proposed Classes of Therapeutic Agents

Alzheimer’s disease

Aβ

mAbs, aptamers [74–80]

Enzymes [24]

Albumin [81,82]

Protein conformation stabilizers and aggregation
inhibitors [81–84]

Tau protein

mAbs, aptamers [85,86]

Protein conformation stabilizers and aggregation
inhibitors [87,88]

sTREM2 mAbs, aptamers [89,90]

IL-6 mAbs [91]

TNF-α fusion protein by recombinant DNA, mAb [92–95]

Parkinson’s disease and Dementia with
Lewy bodies

α-synuclein

mAbs, aptamers [58,86,96,97]

Enzymes [98]

Protein conformation stabilizers and aggregation
inhibitors [83,99]

IL-6 mAbs [100]

TNF-α mAbs [101]

Multisystem Atrophy α-synuclein

mAbs, aptamers [58,86,96,97]

Protein conformation stabilizers and aggregation
inhibitors [83,99]

Enzymes [98]

Progressive supranuclear palsy Tau

mAbs, aptamers [102,103]

Protein conformation stabilizers and aggregation
inhibitors [104]

Frontotemporal dementia

TDP43 mAbs, aptamers [105]

Tau protein

mAbs, aptamers [85]

Protein conformation stabilizers and aggregation
inhibitors [104]

Amyotrophic lateral sclerosis

SOD

mAbs, aptamers [86]

Protein conformation stabilizers and aggregation
inhibitors [86,106,107]

TDP43

mAbs, aptamers [108]

Enzymes [109]

Protein conformation stabilizers and aggregation
inhibitors [110,111]

Tau protein

mAbs, aptamers [85]

Protein conformation stabilizers and aggregation
inhibitors [104]

IL-6 mAbs [112]

TNF-α mAbs [113,114]

Huntington’s disease and other diseases
caused by polynucleotide-mutated repeats

mutant HTT protein and other
polyQ-mutated proteins

mAbs, aptamers [115]

Protein conformation stabilizers and aggregation
inhibitors [116,117]

Abbreviations: mAbs—monoclonal antibodies, SOD—superoxide dismutase, sTREM2—soluble triggering receptor
expressed on myeloid cells 2, Aβ—beta-amyloid, TNF-α—tumor necrosis factor α, IL-6—Interleukin 6.
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Monoclonal antibodies (mAbs) directed against misfolded proteins such as Aβ, Tau
protein, or α-synuclein are a first choice when considering IT pseudodelivery, as they have
been demonstrated to be effective when administered intravenously in many studies [118].
Moreover, mAbs targeting Aβ were approved very recently for the treatment of AD in
humans (see Aducanumab [79] and Lecanemab [77]). mAbs is the only class of therapeutics
with in vivo studies published via intrathecal pseudodelivery, which showed feasibility,
good safety, and histological efficacy in animal models of AD [74,75]. Aptamers are an
interesting class of compound that could replace antibodies in the near future, as they
can also be used for therapeutic purposes within the pseudodelivery device. Compared
to currently available mAbs, aptamers have some advantages such as a smaller size and
mass, lower immunogenicity, greater replicability, and a greater level of control (high
durability, sensitivity, and specificity) [80]. Similarly, antibodies and aptamers binding other
pathogenic proteins such as Alpha-syn, Tau, TDP43, or mutant HTT might be of interest
to treat other NDD via the pseudodelivery route, even if they failed when systemically
administered for safety or efficacy reasons [58,85,86,96,97,103,105,115].

Other molecules binding pathogenic proteins can be of interest. For instance, human
serum albumin (HSA) is a natural buffer of Aβ. A promising approach to AD prevention is
to reduce the concentration of free Aβ by targeted stimulation of the interaction between
HSA and Aβ. This approach can be implemented by pseudodelivering albumin alone [81]
or in combination with agents increasing the affinity of HSA to Aβ through the action of
HSA ligands [82].

Another therapeutic possibility is to act on the enzymatic dysfunction, a relevant
example being the switch from the non-amyloidogenic pathway to the amyloidogenic one
in AD [119]. In the same manner, compensating for the malfunctioning enzymes or even
using different enzymes (from the family of membrane metallo-endopeptidases such as
neprilysin and other Aβ cleaving enzymes [24]) inside the pseudodelivery device can be a
smart option considering the high CSF throughput.

Protein conformation stabilization and aggregation inhibition that targets the up-
stream of the insoluble aggregate formation would be a promising approach toward the
development of disease-modifying therapies for most NDD, particularly for polyQ dis-
eases. PolyQ aggregation inhibitors of different chemical categories, such as intrabodies,
peptides, and small chemical compounds, have been identified through intensive screening
methods [116,117]. Among them, those with high molecular sizes are suitable to be used
via IT pseudodelivery. The same approach could be used to inhibit the aggregation of
Aβ, Tau, alpha-synuclein, SOD, and TDP43 [83,87,99,110,111,113,120]. In addition, clearing
cofactors promoting protein aggregation, such as iron or tyrosine kinase, are an alternative
way of inhibiting protein aggregation [121]. Interestingly, some nanomaterials such as
polyoxometalates may also work as inhibitors of amyloid aggregation [84] and might be
suitable to be used as therapeutic agents through this route.

Finally, another clear target in NDD are molecules involved in inflammation such as
anti-TNF-α. According to several reports, anti-TNF-α agents may affect amyloidosis in
inflammatory/autoimmune diseases, such as rheumatoid arthritis and familial Mediter-
ranean fever [121]. Indeed, perispinal administration of the anti-TNF-α medication etan-
ercept (a fusion protein produced by recombinant DNA) has been reported effective in
cognitive improvement in one single case report [92], and similar results were obtained in
animal studies [32]. Comparable results were noticed for infliximab, a chimeric monoclonal
antibody already approved for the treatment of multiple autoimmune diseases such as
Crohn’s disease, rheumatoid arthritis, and psoriasis. A study indicated that intracere-
broventricular administration of infliximab reduced Aβ plaques and tau phosphorylation
in APP/PS1 mice [93] and resulted in cognitive improvement in a human case [94], while
recent research confirms the protective cerebral effects (reduced microgliosis, neuronal
loss, and tau phosphorylation) of TNF-α inhibitors in a transgenic mouse model of tauopa-
thy [114]. These results are encouraging, indicating that IT infliximab offers an alternative
therapeutic approach for AD, and potentially for other neurodegenerative disorders whose
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pathogenesis involves TNF-α such as PD [101] and ALS [113]. Clinical trials for different
conditions have shown a detrimental effect of TNF-α antagonists in advanced heart failure
and anti-TNFs are associated with an increased risk of infection. Rare case reports of
drug-induced lupus, seizure disorder, pancytopenia, and demyelinating diseases have
been noted after systemic treatment with TNF-α antagonists [122,123]. Meanwhile, chronic
dosing with a brain-penetrant biologic TNF-inhibitor induced hematology and iron dysreg-
ulation in aged APP/PS1 mice [95]. In this regard, IT pseudodelivery of anti-TNF-α agents
may offer a safer route of administration.

Drugs targeting the complement component C5, CD19 on B cells, and the inter-leukin-
6 (IL-6) receptor, have been used for the treatment of patients with refractory inflammatory
CNS diseases. Particularly, Tocilizumab, a humanized, monoclonal antibody against the IL-
6 receptor, has been tested for neurologic indications, such as neuromyelitis optica [124] or
primary CNS vasculitis [125]. Tocilizumab has also been tested in ALS [112] and proposed
in PD [100] and AD [91] As IL-6 is present in the CSF, monoclonal antibodies binding IL-6
directly—such as HZ-0408b [126]—via IT pseudodelivery might be an alternative route to
target inflammation in NDD.

Lastly, a TREM2-activating antibody with a BBB transport vehicle enhances microglial
metabolism in AD models [89] and tau pathology and neurodegeneration are associated
with an increase in CSF sTREM2 [90]. However, some of these experiments can be inter-
preted as full-length TREM2 protecting rather than sTREM2 [26]. Therefore, while sTREM2
might be a suitable target via IT pseudodelivery in AD, more knowledge is needed to
understand how, when, and in what cases this target might be of interest.

6. Conclusions

IT pseudodelivery of drugs is a novel concept to administer drugs to treat NDD, based
on the CSF-sink therapeutic strategy by means of implanted devices. The mechanism of action
relies on the properties of nanoporous membranes enabling selective molecular permeability.

Being an invasive procedure, the expected safety issues of IT pseudodelivery are
related to device implantation and functioning. However, the promising advantages of
IT pseudodelivery of drugs in terms of efficacy and drug-related safety would overcome
the disadvantages.

Potentially, there are a number of NDD where IT pseudodelivery might be of interest.
While there is a theoretical rationale supporting these indications, in vitro and in vivo
testing is still lacking for most of them; therefore, the proposal should be considered just a
therapeutic hypothesis today.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics15030768/s1.
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C.A.; Svedružić, Ž.M.; Morozova-Roche, L.A. Polyoxometalates as Effective Nano-inhibitors of Amyloid Aggregation of Pro-
inflammatory S100A9 Protein Involved in Neurodegenerative Diseases. ACS Appl. Mater. Interfaces 2021, 13, 26721–26734.
[CrossRef] [PubMed]

85. Ji, C.; Sigurdsson, E.M. Current Status of Clinical Trials on Tau Immunotherapies. Drugs 2021, 81, 1135–1152. [CrossRef] [PubMed]
86. Teng, E.; Manser, P.T.; Pickthorn, K.; Brunstein, F.; Blendstrup, M.; Sanabria Bohorquez, S.; Wildsmith, K.R.; Toth, B.; Dolton, M.

Safety and Efficacy of Semorinemab in Individuals with Prodromal to Mild Alzheimer Disease: A Randomized Clinical Trial.
JAMA Neurol. 2022, 79, 758–767. [CrossRef] [PubMed]

87. Wischik, C.M.; Harrington, C.R.; Storey, J.M.D. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol.
2014, 88, 529–539. [CrossRef] [PubMed]

88. Wischik, C.M.; Bentham, P.; Gauthier, S.; Miller, S.; Kook, K.; Schelter, B.O. Oral Tau Aggregation Inhibitor for Alzheimer’s
Disease: Design, Progress and Basis for Selection of the 16 mg/day Dose in a Phase 3, Randomized, Placebo-Controlled Trial of
Hydromethylthionine Mesylate. J. Prev. Alzheimers Dis. 2022, 9, 780–790. [CrossRef]

89. van Lengerich, B.; Zhan, L.; Xia, D.; Chan, D.; Joy, D.; Park, J.I.; Tatarakis, D.; Calvert, M.; Hummel, S.; Lianoglou, S.; et al. A
TREM2-activating antibody with a blood–brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease
models. Nat. Neurosci. 2023, 1–14. [CrossRef]

90. Ma, L.Z.; Tan, L.; Bi, Y.L.; Shen, X.N.; Xu, W.; Ma, Y.H.; Li, H.Q.; Dong, Q.; Yu, J.T. Dynamic changes of CSF sTREM2 in preclinical
Alzheimer’s disease: The CABLE study. Mol. Neurodegener. 2020, 15, 1–9. [CrossRef] [PubMed]
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