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1 Introduction

One of the main unresolved issues of QCD is understanding its phase diagram. In vacuum,
QCD is a confining theory but, due to asymptotic freedom, for large enough temperatures
or chemical potentials it should be well described by a deconfined plasma composed of
weakly interacting quarks and gluons. At zero chemical potential lattice QCD can be em-
ployed to show a crossover between the confined and deconfined phases as the temperature
increases [1, 2]. Unfortunately, the sign problem prevents from applying lattice QCD to re-
gions where the quark chemical potential is comparable or larger than the temperature [3],
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and we lack a first principles approach that can determine the properties of QCD in the
intermediate sector of the phase diagram that lies between the region where lattice QCD
is applicable and the asymptotic region where QCD becomes weakly coupled.

This is not just of academic interest, but some parts of the intermediate strongly-
coupled region are accessible through experiments of heavy ion collisions and through
astrophysical observations of neutron stars and binary mergers (see e.g. [4] for a review).
Collision experiments may be able to reach a critical point marking the end of a line of
first order chiral symmetry breaking phase transitions in the temperature-baryon chemical
potential plane, conjectured to exist from phenomenological models. Neutron stars obser-
vations are sensitive to the equation of state in regions of low temperature and high baryon
density.

A possible way to learn about QCD deconfinement transitions is to study similar
strongly coupled gauge theories for which we have a known gauge/gravity dual pair. Even
though we do not expect that there is a perfect equivalence between the phase diagrams,
they may serve to understand the dynamics behind the transitions at strong coupling.
There is a handful of confining theories with a gravity dual that have a realization in string
theory. For instance, in four dimensions the best known are the Witten QCD (WQCD) [5]
and Klebanov-Strassler (KS) [6] models. However, the WQCD model is really dual to a
compactification of a higher dimensional theory and there is no separation between the
confinement and Kaluza-Klein scales in the regime where the theory is under control.
The KS model is more realistic, but it is technically quite challenging, among other things
because of its exotic UV behaviour. One can avoid the issues of the WQCD and KS models
if one is willing to move a bit further from QCD by going to three dimensions. Studying
confining theories in lower dimensions has a venerable history, and it was in fact in this
context where confinement was first proved by Polyakov for QED3 [7], and confirmed later
by lattice simulations [8].

In [9] the gauge/gravity duals of three-dimensional theories with a mass gap were
studied in detail as a family of solutions of type IIA supergravity originally constructed
in [10, 11]. The solutions are similar to the gravitational duals to ABJM [12] and ABJ [13]
theories — indeed connected to them by RG flows — so they are expected to be dual to a
quiver gauge theory with a rank and Chern-Simons level determined by the supergravity
fluxes. The uplift to M-theory further revealed that despite having a mass gap, most of
the solutions were actually not dual to a confining theory, just those for which the Chern-
Simons level in the dual field theory vanishes. These last will be the focus of the present
work.

In the absence of temperature and magnetic field the aforementioned theories have
N = 1 supersymmetry (i.e. 2 real supercharges). Contrary to higher supersymmetric
models, there are no non-renormalization theorems based on holomorphicity. Furthermore,
localization techniques cannot be applied, so N = 1 theories are almost on par with
non-supersymmetric models concerning the analysis of their non-perturbative properties.
Although there has been some work studying the vacuum structure of N = 1 theories [14,
15], as far as we are aware non-Abelian quiver theories with vanishing Chern-Simons levels
like the ones considered here have not been studied before. In this regard, our analysis
might also shed further light on the phase structure of N = 1 theories.
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The phase diagram as a function of the temperature was studied in [16]. In addition
to the solution dual to the confined phase, there are black hole solutions that are dual to
the deconfined phase of the same theory. The dominant phase is the one with lowest free
energy, that is determined from the supergravity action of the dual solution. It was found
that when the temperature is increased, there is a first order deconfinement transition, as
it is commonly the case in large-N gauge theories.1 In this work we will explore further the
phase diagram by turning on an external magnetic field for a global U(1) symmetry. The
properties of the supergravity solution, that will be discussed in more detail in the main
text, suggest that the gauge group is U(N)×U(N+M) in which case the global symmetry
would correspond to a magnetic UM(1) symmetry, as discussed in detail in e.g. [12, 21]
for ABJM, with the conserved current equal to the Hodge dual to the Abelian flux of the
diagonal U(1) gauge group.

The external gauge field couples to color magnetic vortices that have a dual description
in terms of D0- and wrapped D2-branes. These can in principle be created by the insertion
of a local magnetic monopole operator, with the brane attached to the location of the
monopole at the asymptotic boundary. It is worth recalling at this point that the Abelian
confinement in three dimensions described by Polyakov is produced precisely by a gas of
Abelian monopoles akin to the ones we are describing. Similarly, in the Seiberg-Witten
solution of N = 2 super Yang-Mills in four dimensions, confinement at a generic point of
the moduli space is produced by the condensation of Abelian monopoles,2 after the non-
Abelian part has been Higgsed [22]. In our setup the UM(1) external magnetic field could
have the effect of introducing a gap for the monopoles, thus suppressing their contribution
to the path integral. Therefore our analysis can serve as a check of whether Polyakov’s
form of confinement still plays a role in a less supersymmetric strongly coupled non-Abelian
theory, beyond lattice calculations.

Our results are summarized in figure 1. We observe that when the magnetic field is
increased there is a second order deconfinement transition, suggesting that indeed there
is a form of Polyakov confinement at play. To our knowledge this is the first example in
a holographic dual of a deconfinement transition that is not of first order, of Hawking-
Page type. The deconfined phase after the transition is distinct from the one found by
increasing the temperature, they are separated by a first order phase transition. Although
the transition turns into a crossover for large enough magnetic fields, some properties still
remain quantitatively different between the two deconfined phases.

The outline of the paper is as follows: in section 2 we summarize the main properties
of the supergravity solution and the dual field theory in the absence of monopole magnetic
field. In section 3 we introduce the monopole magnetic field and temperature and con-
struct the supergravity solutions, finding both confining solutions and black branes dual
to deconfined phases. In section 4 we study the thermodynamic properties of the solutions
and describe the phase diagram. Finally, in section 5 we discuss the results for the phase
diagram, future possible directions and speculate about the interpretation of the D0- and

1Otherwise, the Abelian deconfinement transition is expected to be of Kosterlitz-Thouless type, see
e.g. [17–20].

2In this case monopoles are line rather than local operators.
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Figure 1. Phase diagram in the temperature, monopole magnetic field plane. The confined phase
lies in the small temperature and magnetic field orange region, while the rest of the phase diagram
corresponds to deconfined phases. The red, solid curve indicates a line of first order deconfinement
phase transitions. The blue solid curve, however, stands for first order phase transitions between
different deconfined phases. It ends at a critical point, represented by the blue square, where the
phase transition becomes second order. Finally, the black, dotted line corresponds to second order
deconfinement phase transitions. These three lines meet at a triple point, where coexistence of the
three phases can occur.

D2-branes as monopole operators in the field theory. The main text is complemented with
several appendices containing some technical results and derivations. In appendix A we
collect some properties of the internal geometry. In appendix B we present a consistent
truncation to four-dimensional supergravity. In appendix C we collect previous results for
the solutions in the absence of magnetic field and temperature. In appendix D we compute
the D2-brane configuration and action dual to a monopole-antimonopole pair. Finally,
in appendix E we explain in detail the asymptotic expansions of the solutions and the
numerical calculation.

2 Confining ground state and monopole condensation

The type IIA supergravity solution describing the supersymmetric ground state of the
system was originally found in [11]. It takes the form of a stack of deformed fractional
D2-branes corresponding to D4-branes wrapped on a two-cycle. The internal manifold
is CP3, seen as an S2 fibration over S4, which is squashed with respect to the standard
Fubini-Study metric (see appendix A for details on the geometry). The ten-dimensional
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metric is supported by the NS three- and RR four-forms and it is regular in the IR, with
a collapsing two-cycle and a non-collapsing four-cycle which are ultimately responsible for
confinement in the gauge-theory side. For completeness, we give the exact gravitational
background in appendix C. We will refer to this solution as the “ground state” in the follow-
ing. The geometric mechanism for confinement is thus similar to other regular geometries
with collapsing cycles in the internal space, like Witten QCD [5] or Klebanov-Strassler [6].

This solution is expected to be dual to a three-dimensional gauge theory preserving
N = 1 supersymmetry, a non-conformal and less supersymmetric cousin of the ABJ and
ABJM theories [12, 13], without Chern-Simons terms. In the absence of fractional branes,
the dual was proposed in [23] to be a quiver with U(N)×U(N) gauge group together with
bifundamental matter — analogous to the Klebanov-Witten quiver in four dimensions [24]
or ABJM in three dimensions [12] — although the precise details are difficult to pinpoint,
essentially due to lack of holomorphicity. The presence of M fractional branes should shift
the rank of one of the gauge groups to U(N)×U(N +M).

Fractional branes also produce an unequal running of the gauge couplings. This results
in an RG flow similar to the one described by the Klebanov-Strassler solution [6]. There is
a cascade of three-dimensional Seiberg-like dualities — of the type introduced in [25, 26]
— that reduces the rank of the gauge groups when one progresses towards the IR, until
one is completely depleted, ending in a U(M) gauge theory and confinement.3

The type of cascade we just described was first identified in gravity duals of N = 3
deformations of the ABJ theory [30]. It exhibits some important differences with respect
to the four-dimensional Klebanov-Strassler case, most notably that it involves a finite
number of steps so that the ranks of the gauge groups remain finite in the UV. This might
be related to the fact that the gauge couplings of both groups are asymptotically free
in three dimensions, in contrast to the four-dimensional case where one of the couplings
always increases in the UV. We give the details of the cascade for the confining supergravity
solutions in appendix C.1. A consequence of this analysis is that the rank N has to be an
integer multiple of M in order for the cascade to be well defined and the background to
be regular. Thus, in the following one should think of M as scaling like N in the large-N
limit.

The homogeneous phases at finite temperature were found in [16]. At low temperatures
the dominant solution is a confining thermal state which is obtained by compactifying the
Euclidean time of the ground state on a circle. On the other hand, at high temperatures
the preferred state is a deconfined plasma phase captured by a black brane solution. These
two phases are connected through a first-order confinement/deconfinement transition at a
critical temperature

Tc = 0.2239 . . . λ
(
M

N

)3
, (2.1)

3It is also possible to modify the model by adding Chern-Simons terms for both gauge groups. The
corresponding family of supergravity solutions was found in [10]. Several of its physical properties were
analysed in [9, 27–29], including the fact that the topological interactions spoil confinement — in the sense
of a linear quark/antiquark potential — leaving behind merely a mass gap [9]. In this work we will be
mainly interested in the physics of confinement, so we will not consider the additional complications due to
this deformation.
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Figure 2. Left: difference in free energy between the deconfined plasma phase and the confining
thermal state as a function of the temperature. When the curve is below the horizontal axis the
plasma phase (black brane solutions) is dominant. There is a first order confining/deconfining phase
transition when the curve crosses the axis. Right: corresponding curve for the entropy density as
a function of temperature. At the phase transition, the entropy jumps from some finite value to
zero, as depicted by the solid red line. We are plotting the quantities in units of the IR scale (2.2).

with λ = gs`
−1
s N the three-dimensional ’t Hooft coupling, with dimensions of energy. At

this temperature the free energy is continuous but the entropy jumps, as shown in figure 2.
It is useful to define an IR energy scale associated to the deconfinement transition

ΛQCD = λ

(
M

N

)3
, (2.2)

so that thermodynamic quantities will be measured in units of this scale. It can be seen that
smallness of the ten-dimensional curvature in string units in the interior of the geometry
requires M � N , so this scale is parametrically smaller than the scale λ. This last
determines the transition between weak coupling in the UV and strong coupling in the IR,
and determines the region of the geometry where the dual gravity description is appropriate.

2.1 Confinement of electric charges and screening of monopoles

The supergravity solution gives some clues about the symmetries of the dual field theory.
In the reduction to four-dimensional supergravity there are two gauge fields that couple to
D0-branes and D2-branes wrapping a CP1 cycle

AD0 = C1, AD2 =
∫
CP1

C3 , (2.3)

where C1 and C3 are the one- and three-form RR potentials. The D0 field is massless, but
the D2 field is not (details can be found in appendix B), so there is only one conserved
current in the dual field theory. Following the arguments in [21], with Dirichlet boundary
conditions for the gauge fields and the B2 form, it follows that fundamental strings, D0-
branes, and wrapped D2-branes can end at the boundary. On the other hand, D4-branes
wrapping a CP2 and D6-branes wrapping a CP3 are not allowed to end at the boundary,
so there are no local gauge-invariant dibaryon or baryon dual operators, as expected for
the U(N)×U(N +M) theory.
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The interpretation of D0-branes and D2-branes ending at the boundary is as local
magnetic monopole operators. In the ABJM theory, when the ranks of the groups are
equal, a more precise map was proposed in [21]. If we denote monopole operators as
Mm1,m2 , with m1 and m2 the Abelian magnetic flux in each of the gauge groups, the
D0-brane corresponds to an operator with magnetic flux in the diagonal group, M1,1,
while the wrapped D2 corresponds to an operator with magnetic flux in the anti-diagonal
M1,−1. When the Chern-Simons level k is non-zero, theM1,−1 operator is in a k-symmetric
representation of the gauge groups, so it is not gauge invariant. This maps in the bulk to
the fact that there is a coupling in the D2-brane worldvolume∫

D2
A ∧ F2 ∼

(∫
CP1

F2

)∫
A ∼ k

∫
A , (2.4)

where A is the gauge field on the D2-brane. This induces a charge on the brane that has
to be compensated by attaching k fundamental strings. Since in the confining geometry
we are considering there is no F2 flux, the Chern-Simons level is zero in the dual theory,
and the monopole operator dual to the wrapped D2-brane is gauge invariant.

Given this map between branes and operators, it is natural to interpret the massless
AD0 field as dual to the magnetic global symmetry with topological one-form current

J = trN ?FN + trN+M ?FN+M , (2.5)

with F the color field strengths of the U(N) and U(N + M) groups in obvious notation.
We will denote this global symmetry as UM(1).

We will present some evidence in the following indicating that the solutions we are
considering indeed describe a confining theory and that confinement is likely produced
by monopole condensation in three dimensions à la Polyakov, at least for the Abelian
component of the gauge group. The monopoles that condense are dual to the wrapped
D2-branes, which in our setup are tensionless at the origin of the geometry and carry
n = N/M units of D0-brane charge at the boundary (see appendix D for more details).
The D0 charge appears due to the coupling of the D2-brane to the background B2 form∫

D2
C1 ∧B2 ∼

(∫
CP1

B2

)∫
C1 . (2.6)

At the asymptotic boundary of the geometry the integral over CP1 of B2 gives precisely the
coupling of n D0-branes to C1. At the origin of the geometry the integral of B2 vanishes,
so possibly the D0 charge is screened as one progresses towards the IR.

To show confinement, we will discuss the potential between electric and magnetic
charges showing that while it is linearly increasing for the first, it is screened for the
second. The quark-antiquark potential was computed in [9] introducing a rectangular
time-like Wilson loop in the usual way. The gravity description is a fundamental string
attached to the curve defining the Wilson line at the asymptotic boundary. It was found
that the quark-antiquark potential increases linearly with the separation, an indication
of confinement. This is possible when the string tension remains finite through all the
geometry, as one can easily check it is the case.
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Figure 3. The action of a wrapped D2-brane, ∆SD2 = Sconn − Sdiscon, as a function of length.
The red dot stands for the transition between connected and disconnected configuration. Technical
details of the calculation can be found in appendix D.

An indication that there is a monopole condensate is that wrapped D2-branes become
tensionless at the origin, since the two-cycle they wrap collapses to zero size. If confinement
was produced by monopole condensation as we propose, then we would expect that the
monopole-antimonopole interaction would be screened. This can be computed in a similar
way to the quark-antiquark potential by introducing a wrapped D2-brane extending be-
tween two points separated in a spatial direction at the asymptotic boundary. The action
of this configuration, SD2, gives a contribution to the spatial correlator of the monopole
operatorsMD2 dual to the wrapped D2-branes〈

M†D2(x)MD2(0)
〉
∼ e−SD2 . (2.7)

Contrary to the fundamental string, there can be a disconnected configuration where spa-
tially separated D2- and anti-D2-branes extend along the radial direction all the way to
the origin, since their worldvolume ends smoothly where the two-cycle collapses to zero
size. In figure 3 we show the difference in action between the connected and disconnected
configurations, as a function of the asymptotic separation between the branes. The de-
tails of the calculation are collected in appendix D. We can observe that for separations
L & 1.069 Λ−1

QCD the disconnected configuration dominates, after the difference in action
vanishes. Moreover, for L & 1.150 Λ−1

QCD, the connected configuration ceases to exists after
meeting with an unstable branch.

In the following sections we will introduce a magnetic field for the monopoles dual to
the D0-branes. Since the wrapped D2-brane carries non-zero D0 charge, this could affect
the monopole condensate, possibly even completely depleting it for large enough magnetic
fields, in which case we expect that the theory would no longer be confining. As we will
see, the phase diagram we find seems to confirm this picture.

3 Solutions at nonzero monopole magnetic field

If monopole condensation is indeed behind confinement, as the arguments of the previous
section suggest, we should expect a deconfinement transition when the cost of introducing
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a monopole becomes too large. We will discuss now how to do this within the supergravity
description.

As we have argued, the dual of a monopole is a D2-brane wrapped on CP1, which close
to the asymptotic boundary has an action

SD2 = M

(
ŜDBI −

1
gs`s

N

M2

∫
C1

)
, (3.1)

where we have extracted an explicit M factor from the DBI action, in such a way that ŜDBI

is dimensionless and has no explicit dependence on parameters of the field theory like the
’t Hooft coupling or the ranks of the groups (see appendix D for more details). We can
modify the action of the wrapped D2-brane by turning on the C1 form, whose components
along the field theory directions correspond, in the dual theory, to the conserved UM(1)
current and an external gauge field coupled to it

C1 = gs`s
M2

N
Aµdxµ , (3.2)

where the normalization is chosen to match the DBI part of the wrapped D2-brane action.
We can thus modify the action of the monopole-antimonopole configuration by switching
on the spatial components of Aµ. In particular, a UM(1) magnetic field can be character-
ized in a gauge-invariant way and preserves rotational invariance, simplifying the analysis
significantly. Furthermore, one might expect that a magnetic field would effectively gap
charged degrees of freedom, which are the monopoles, potentially triggering a deconfine-
ment transition. In section 4, by turning on such external magnetic field while keeping the
monopole chemical potential to zero, we will see that this scenario is indeed realized in this
theory.

3.1 Ten-dimensional ansatz and equations

All the solutions we will discuss are completely regular in ten-dimensional type IIA super-
gravity. The internal geometry is a particular realization of CP3 whose characteristics are
given in appendix A. In the following we use the notation stated there. The solutions we
are interested in asymptote to a stack of coincident color D2-branes in the UV, like the
ground state and thermal backgrounds discussed in section 2. Inspired by this, we take the
string-frame ansatz for the metric and dilaton as

ds2
st = h−

1
2
(
−b dt2 + dx2

1 + dx2
2

)
+ h

1
2

(
dr2

b + e2fdΩ2
4 + e2g

[(
E1
)2

+
(
E2
)2
])

,

eΦ = h
1
4 eΛ , (3.3)

with f , g, h, b and Λ depending only on the radial coordinate r. The function b in (3.3)
breaks three-dimensional Lorentz invariance in the directions parallel to the color branes
whenever it is non-constant. This is necessary both because we will look for black brane
solutions and because charge or magnetic fields will be turned on. The internal space
is topologically S2 × S4, with the forms E1 and E2 spanning the two-cycle, of volume
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X2 = E1 ∧ E2. This can be combined with another two-form J2 to produce a closed form
d (X2 − J2) = 0. More details about the internal geometry can be found in appendix A.

Our conventions for type IIA supergravity are such that the forms satisfy the Bianchi
identities

dH3 = 0 , dF2 = 0 , dF4 = H3 ∧ F2 , (3.4)

as well as the string-frame equations of motion

d ∗ F4 +H3 ∧ F4 = 0 ,
d ∗ F2 +H3 ∧ ∗F4 = 0 ,

d
(
e−2Φ ∗H3

)
− F2 ∧ ∗F4 −

1
2F4 ∧ F4 = 0 .

(3.5)

The Bianchi identities are solved by the ansatz for the forms

H3 = dB2 , F2 = dC1 + F fl
2 , F4 = dC3 +B2 ∧ F2 + F fl

4 , (3.6)

where we have introduced the closed but non-exact terms

F fl
2 = Qk (X2 − J2) , F fl

4 = qc (J2 ∧ J2 −X2 ∧ J2) . (3.7)

in correspondence with the two- and four-cycle respectively. It is instructive to explain
the ansatz for the forms in relation to the consistent truncation and the four-dimensional
model of appendix B. First of all, from the two fluxes (3.7) allowed by the geometry, we
take the two-form to vanish, that is, Qk = 0. This is related to the fact that we do not want
to include a Chern-Simons term in the dual gauge theory (see eq. (B.24) and the discussion
below it). The four-form flux on the other hand must be non-vanishing, so qc 6= 0. This
constant corresponds to the Page charge of D4-branes and it is therefore quantized. It is
related to the shift in the UV rank of one of the gauge groups in the dual field theory M as

qc = 3π`3sgs
4 M . (3.8)

The ansatz for the form potentials uses the left-invariant forms defined in appendix A.
It reproduces the one used in the reduction to four dimensions, eq. (B.3), that is

B2 = b2 + bX X2 + bJ J2 ,

C1 = a1 ,

C3 = a3 + ã1 ∧X2 + â1 ∧ J2 + aX X3 + aJ J3 ,

(3.9)

The functions bX , bJ and aJ are scalars from the four-dimensional point of view and depend
solely on the radial coordinate r in (3.3). They are crucial to resolve the IR geometry of the
ground state [9] and were non-trivial also in the thermal solutions in [16]. The additional
scalar aX is an axion — it appears in the equations always acted on by a derivative —
giving mass to a vector (see eq. (B.28)) so it can be fixed to any constant value, in particular
aX = 0.
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The rest of the terms are new with respect to [9, 16]. There are three vectors (one-
forms) that we parametrize as

a1 = at (r) dt+ gs`s
M2

N

B
2 (x1dx2 − x2dx1) , ã1 = ãt (r) dt , â1 = ât (r) dt ,

(3.10)
for some constant B. The prefactor has been chosen so that it corresponds to the physical
magnetic field associated to the vector A, defined in eq. (3.2). As reflected in (B.29), this
is a massless vector and therefore associated to a U(1) symmetry. On the other hand,
according to eq. (B.28), the combinations ã1 − â1 and ã1 + â1 are Stueckelberg-coupled to
axions and thus massive. They do not admit a magnetic field.

We are then left with the three- and two-forms a3 and b2. The only non-trivial com-
ponents allowed by the symmetries we want to preserve are

a3 = at12 (r) dt ∧ dx1 ∧ dx2 , b2 = b12 (r) dx1 ∧ dx2 . (3.11)

Notice that the three-form lives in the external four-dimensional space and therefore it is
non-dynamical. Indeed, it can be dualized to a constant Qc as explained in eqs. (B.5), (B.8)
and (B.9). This is manifested in the relation

a′t12 = −
[
e−4f−2g

h2 [4aJ (bX + bJ) + 2qc (bX − bJ) +Qc] + b12 a
′
t

]
, (3.12)

imposed by the equation of motion for F4. Ultimately, the constant has to vanish due
to regularity conditions in the IR of the geometry, as argued around eq. (C.13). In the
following we fix Qc = 0.

Finally, b2 can be dualized to an axion a, defined in eq. (B.27), which gives mass to the
combination of vectors ã1−â1. This means that the two-form does not contain independent
degrees of freedom. Taking the axion to vanish, this is reflected in the relation

b′12 = −e
−4f−2g+2Λ

bh [ 4aJ (ãt + ât) + 2qc (ãt − ât)] , (3.13)

which is deduced from (B.27) evaluated in our ansatz. This can be used to eliminate b12
(which always appears with a derivative) in the rest of the equations. The content of (3.4)
and (3.5) is then the dynamics of three scalars and three vector potentials, two of them
massive.

The equation of motion for the dilaton is in our conventions

R+ 4∇M∇MΦ− 4∇MΦ∇MΦ− 1
12H

2 = 0 , (3.14)

while Einstein’s equations read

RMN + 2∇M∇NΦ− 1
4H

2
MN = e2Φ

[1
2(F 2

2 )MN + 1
12(F 2

4 )MN −
1
4gMN

(1
2F

2
2 + 1

24F
2
4

)]
,

(3.15)
in a self-explanatory notation. From this set, one gets second order differential equations for
the functions in the metric and dilaton, together with a first order constraint. Overall, the
system consists of 11 second order differential equations subject to a first order constraint
for the set of 11 functions {f, g, Λ, h, b, bJ , bX , aJ , at, ãt, ât} .
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3.2 Solutions and expansions

In the following we will describe the main steps we took to construct the solutions at
nonzero monopole magnetic field and describe their properties. A complete analysis can
be found in appendix E.

We will discuss two types of new backgrounds at finite charge/magnetic field. One
type, the “confining solutions”, ends smoothly when the two-cycle of the internal space
collapses to zero size, similarly to the zero magnetic field ground state. The other are black
brane solutions with a regular non-extremal horizon. Their thermodynamic properties
will be explained in section 4. These solutions were found numerically by means of a
shooting method. In a few words, we specified the desired boundary conditions both at the
asymptotic boundary of spacetime (the UV) and at the origin/horizon (the IR) by using
series expansions in the radial coordinate near these two regions. Such series are written in
terms of a set of undetermined coefficients, which are fixed by demanding continuity and
differentiability of the numerical solution at some intermediate point in the bulk.

It is advantageous to work with a dimensionless radial coordinate ξ such that

dr = − ρ0

ξ2
√

1− ξ4 dξ . (3.16)

where ρ0 is some constant with dimensions of length whose precise value will be determined
presently. In this coordinate, the asymptotic boundary is at ξ → 0 and the origin/horizon
at ξ → 1 for the confining solutions and at ξ = ξh < 1 for the black brane solutions.

Near the boundary we impose that all our solutions have the same leading D2-brane
asymptotics, coincident with the ground state, except for the control parameters, which
are in this case the magnetic field and chemical potential. In this way we ensure, through
the holographic dictionary, that the gauge theory we consider is not modified in the UV.
This condition fixes the value of ρ0 to4

ρ0 = |b0|
`2s
2 λ

M2

N2 , (3.17)

where b0 is a dimensionless constant that is determined by imposing regularity of the
confining solutions. At vanishing magnetic field its value is b0(B = 0) = −3K(−1), with
K(m) the complete elliptic integral of the first kind. It turns out that b0 < 0 for all the
solutions we have found. For black brane solutions the value of b0 can be taken to be the
same as the ground state solution.

The boundary expansions of the metric and dilaton take the form

e2f = ρ2
0

2ξ2

(
1 + · · ·+ f5ξ

5
)

+ · · · , e2g = ρ2
0

4ξ2 + · · · ,

h = 128 q2
c

15ρ6
0
|b0| ξ5 + · · · , b = 1 + b5ξ

5 + · · · , eΛ = 1 + · · · ,
(3.18)

4The arguments leading to this relation are analogous to those resulting in eq. (C.15), which is recovered
for the ground state value of b0.
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where we have showed only the leading terms and the independent subleading coefficients
appearing later in the expressions for thermodynamic quantities. Similarly, for the scalars
the expansions are

bJ = 2qc
3ρ0

b0 + · · · , bX = − 2qc
3ρ0

b0 + · · · , aJ = qc
6 + · · · . (3.19)

Finally, the vector potentials are written as

at = ρ3
0
qc

(v0 + v1ξ) + · · · , ât = ρ2
0
2b0v1

15 ξ + · · · , ãt = −ρ2
0
2b0v1

15 ξ + · · · . (3.20)

It is convenient also to introduce the dimensionless magnetic field b defined as

B = 1
gs`s

N

M2
ρ5

0
q2
c

b = |b0|
5

18π2 Λ2
QCDb . (3.21)

The dimensionful factors in (3.18)–(3.21) have been chosen in such a way that the coeffi-
cients f5, b5, v0 and v1 are dimensionless and moreover ρ0 and qc drop from the equations
of motion.

The boundary expansion of the warp factor determines the number N of D2-branes as
follows

h ' 16
5
QD2

r5 , QD2 = 3π2`5sgsN . (3.22)

Comparing with (3.18), one can check, after changing coordinates according to (3.16),
that this is consistent with the identifications (3.17) and (3.8). Among the coefficients
that appear in the expansions, f5 and b5 in (3.18) determine the expectation value of the
energy-momentum tensor in the dual field theory, while v0 and v1 in (3.20) are related to
the value of the chemical potential and the charge density. To be more precise, the charge
density is actually not only determined by v1 but it also receives additional contributions
depending on the magnetic field, as we will see in more detail later.

Let us now discuss the two different IR boundary conditions. These correspond to two
different phases in the dual gauge theory.

Magnetized confining phase. One of our main results is that the confining phase is
still present when the magnetic field is gradually turned on, but it disappears when the
magnetic field is large enough. In the gravitational dual this means that there is a solution
at finite magnetic field with similar IR boundary conditions as the ground state, meaning
that the two-sphere collapses smoothly while S4 keeps a finite size (see eq. (C.3)). This
implies that e2g → 0 when ξ → 1, while e2f , h and the dilaton remain constant.

We impose regularity on the solutions, which in this case also implies that the form
potentials on the collapsing cycle — described by the form X2 — as well as the associated
radial flux, should vanish when ξ → 1. Given the ansatz for the fluxes (3.9), this means
that bX , ã1, and their field strengths should vanish in this limit. We also use the gauge
freedom to set at = 0 at ξ = 1, although it can be shifted to an arbitrary value at the cost
of shifting v0 in (3.20). This freedom indicates that the solutions are actually independent
of the chemical potential, which can be set to an arbitrary value. Notice as well that
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Figure 4. Magnetic field, in units of the confinement scale (2.2), as a function of the IR value of the
dilaton factor eΛ. The ground state corresponds to λIR = 1 and B = 0, represented by the red dot.
The magnetic field reaches a maximum value Bmax ≈ 7.744 Λ2

QCD and saturates to Bsat ≈ 2πΛ2
QCD

(thick segment) as λIR → 0.

nothing prevents us from compactifying the (Euclidean) time direction, as was done with
the ground state in [16], so the solutions we discuss in the following should also be thought
of as having an arbitrary temperature. The details of the expansion verifying all these
conditions can be found in appendix E.2.

When solving the equations through the shooting method, it turns out that the mag-
netic field itself is not the most convenient label for this family because for values of B
in certain interval there are two branches of solutions. An appropriate parameter is for
instance λIR, the value at ξ = 1 of the factor eΛ that enters in the dilaton ansatz (3.3). This
parameter turns out to be restricted to the range 0 < λIR ≤ 1. The values of the magnetic
field in this interval are shown in figure 4, where the horizontal axis represents λIR

−1. The
value λIR = 1 corresponds to the ground state solution in the absence of magnetic field and
is represented by a red dot on the figure. As λIR is decreased the magnetic field grows up
to a maximum value Bmax ≈ 7.744 Λ2

QCD, reached when λIR ≈ 0.0818. Then it decreases,
saturating at Bsat ≈ 2πΛ2

QCD in the limit λIR → 0. This gives rise to two branches of confin-
ing solutions for B ∈ (Bsat, Bmax). Moreover, this points towards the existence of additional
solutions that complete the phase diagram for values of the magnetic field beyond Bmax.

Finally, it is worth stressing that all these confining solutions are regular at the origin,
as the S2 shrinks smoothly and the transverse topology becomes that of an R3 bundle over
S4, exactly as in the ground state geometry (C.3). In particular, the curvature invariants
evaluated at the IR are finite. As λIR decreases and the magnetic field saturates to Bsat,
some of these curvature invariants grow, as seen in the left panel of figure 5. This could be
signalling that an IR singularity is developing. However, all these solutions can be uplifted
to eleven-dimensional supergravity. It turns out that in this limit the eleven-dimensional
curvatures stay finite and saturate to a constant value (see right panel of figure 5).
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Figure 5. Left: absolute value of the ten-dimensional Ricci scalar evaluated at the origin of the
geometry, in string units, as a function of the IR value of the dilaton factor eΛ. The solid curve
stands for solutions with negative IR Ricci scalar, whereas for the dashed curve it is positive. Right:
eleven-dimensional Ricci scalar evaluated at the origin of the geometry, in Planck units, in terms
of the same parameter.

This hints that the family of backgrounds with these IR boundary conditions may
be continuously connected to another branch of solutions, which would be singular from
the ten-dimensional point of view but regular in eleven dimensions,5 perhaps extending
to values of the magnetic field above the maximum we encountered. We have checked
that the M-theory circle shrinks as the limiting magnetic field is approached. The ar-
guments in [9] then suggest that this putative branch of solutions may be gapped but
non-confining. This picture is supported by the behavior of the string tension computed
from the quark/antiquark potential, which vanishes as λIR → 0 and the limiting value of
the magnetic field is approached. This can be seen in figure 6.

In this work we focus on the phase diagram at nonzero temperature. As we will see in
the next section the branch that reaches the limit B → Bsat is always thermodynamically
disfavoured, so we leave the construction of this new branch at vanishing temperature for
future studies.

Magnetized plasma phase. In order to complete the phase diagram at finite tempera-
ture we will construct black branes at non-zero magnetic field. These are dual to deconfined
plasma states in the field theory side. The existence of a horizon is encoded in a simple
zero of the blackening factor b. Regularity for the rest of the functions imposes that they
reach a finite value, with the additional condition that the time components of the vec-
tor potentials must vanish at the horizon (see appendix E.3). The leading terms in the
expansion of the metric and dilaton are

e2f = ρ2
0 fh + · · · , e2g = ρ2

0 gh + · · · , h = 128 q2
c

9ρ6
0
hh + · · · ,

b = bh(ξ − ξh) + · · · , eΛ = λh + · · · .
(3.23)

5This is not an uncommon feature and happens for instance if one turns on a Chern-Simons interaction
in the gauge theory dual, as detailed in [9].
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Figure 6. String tension in units of the confinement scale, computed from the quark/antiquark
potential, as a function of the magnetic field. The red dashed line indicates the magnetic field at
which the confining backgrounds cease to be dominant. The black, dot-dashed line corresponds to
Bmax while the orange dot labels Bsat.

The values of the dimensionless coefficients fh, gh, hh, bh, λh determine the value of physical
properties such as the entropy and temperature. In this case we decided to fix the parameter
b0 — and accordingly ρ0 through eq. (3.17) — to its ground-state value, b0 = −3K(−1), as
in [16]. Then, in the shooting procedure all the coefficients of the IR and UV expansions
are fixed except for three control parameters: v0, ξh and b or, equivalently, the chemical
potential, the temperature and the magnetic field. We have thus a three-parameter family
of black branes. Their thermodynamic properties are investigated in the next section.

4 Thermodynamics and the phase diagram

In this section we discuss the main thermodynamic properties of the different solutions
we have constructed. We uncover an interesting structure of phase transitions in the
temperature and monopole magnetic field plane, focusing on the case of vanishing chemical
potential. The map between parameters of the gravity solution and field theory quantities
is collected in table 1 of appendix C.

4.1 Thermodynamic quantities and relations

The renormalized four-dimensional bulk action Iren describing the system is obtained in
appendix B.1. The free-energy density G of a particular state is given in terms of its
Euclidean on-shell value by

G = − Iren

βV2
, (4.1)

with V2 the (infinite) volume in the spacial directions and β the period of the compact
Euclidean time. It is related to the temperature through T = 1/β.
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Ultimately, the final expression for the free-energy density (4.1) in terms of the param-
eters of the solution depends on the particular phase we are considering. For any confining
solution, it gets no IR contribution (see eq. (B.52) and comments below) and the final
result is

Gconf = ρ5
0

2κ2
4

(
−7b5

2 − f5

)
= NMΛ3

QCD
(−b50)

3 · 211π4

(
−7b5

2 − f5

)
, (4.2)

where in the second equality we have used the relation (3.17) and substituted the four-
dimensional Newton’s constant (B.18). On the other hand, in the plasma phase of sec-
tion E.3, there is an additional contribution from the horizon of the black brane

Gplas = NMΛ3
QCD

(−b50)
3 · 211π4

[
−7b5

2 − f5 + 16bhf2
hghξ

2
h(1− ξ4

h)
1
2

λh
2 + 64

135b
2
0v0(20bb0 + 27v1)

]
.

(4.3)
In this paper we work in the grand canonical ensemble: if there are different states at
the same temperature, chemical potential and magnetic field, the preferred one will be
that with the lowest free-energy density. In our conventions, G = 0 corresponds to the
free-energy density of the supersymmetric ground state, which has T = 0 and vanishing
magnetic field.

As usual, for black brane solutions the temperature and entropy density are quantities
obtained from horizon data. The former is determined from the requirement that the
solution has no conical singularity at the horizon. The latter is the Bekenstein-Hawking
entropy, given by the area of the horizon. In terms of the expansion parameters they read

Splas = ρ3
0qc

2κ2
4

512
√

2πf2
hghh

1
2
h

3λ2
h

= NMΛ2
QCD

(−b30)
211π3

512
√

2πf2
hghh

1
2
h

3λ2
h

,

Tplas = −ρ
2
0
qc

3bhξ2
h(1− ξ4

h)
1
2

32
√

2πh
1
2
h

= −ΛQCD
b20
3π

3bhξ2
h(1− ξ4

h)
1
2

32
√

2πh
1
2
h

.

(4.4)

Notice that the entropy of the plasma grows as NM ∼ N2 in the large-N limit, as expected
for a deconfined phase of a Yang-Mills theory. On the other hand, the entropy vanishes in
the absence of a horizon, so for the confining phase Sconf = 0. Similarly the temperature
Tconf is arbitrary, since there is no condition fixing the period of the time coordinate.

Our ansatz admits solutions with an external chemical potential µ. For the black brane
solutions it is fixed by the asymptotic value of At

µplas = N

M2
1
gs`s

ρ3
0
qc
v0 = ΛQCD

(−b30)
6π v0 , (4.5)

demanding simultaneously that this vector potential vanishes at the horizon. In contrast,
we need not impose such condition on the confining solutions, so µconf is arbitrary in that
case. In this paper we only study solutions with µplas = µconf = 0. Nevertheless, we keep v0
explicit in our formulas for completeness. We leave the problem of turning on the chemical
potential for future work.
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Despite the chemical potential being vanishing, some of our solutions, in particular
the black branes, will still be charged. The charge density can be computed in several
ways, for instance as the radial canonical momentum of At. Equivalently, as a constant of
integration in the equation of the massless vector, which can be written as a total derivative
(see eq. (B.14)). In terms of the parameters of the solutions it reads

Q = −M
2

N

gs`sqcρ
2
0

2κ2
4

64
135b

2
0(20bb0 + 27v1) = −NMΛ2

QCD
b40

2160π3 (20bb0 + 27v1) . (4.6)

Notice that the charge is not simply the normalizable mode in the expansion of the massless
vector, v1, but it gets shifted by the magnetic field b. This correction, which comes from
the topological interactions in the action (B.31), is a reflection of the fact that Maxwell and
Page charges do not necessarily coincide in the presence of such terms. The charge density
vanishes identically when evaluated on confining solutions, Qconf = 0, but it is generically
non-zero in the plasma phase.

Varying the action with respect to the boundary metric we get the energy density,
pressure and spatial components of the energy momentum tensor (B.53). They read

E = ρ5
0

2κ2
4

(
−7b5

2 − f5

)
= NMΛ3

QCD
(−b50)

3 · 211π4

(
−7b5

2 − f5

)
,

T xx = P − BM = ρ5
0

2κ2
4

(
−3b5

2 + f5

)
= NMΛ3

QCD
(−b50)

3 · 211π4

(
−3b5

2 + f5

)
,

(4.7)

were M is the magnetization. These expressions are valid both for the confined and decon-
fined phases, since they are given just in terms of UV data. Note that the energy density
E obtained from the energy momentum tensor coincides with the free energy density in a
confined phase Gconf, eq. (4.2). Identifying the pressure as

P = −G , (4.8)

this is nothing but the first law of thermodynamics, E+P = TS+µQ = 0, in the confining
phase, as the entropy and charge densities vanish. Moreover, taking into account eqs. (4.3)
to (4.8), one gets as a consistency check that the first law also holds in the plasma phase.

Finally, from equations (4.7), (4.8) and (3.21), the magnetization can be written as

Mconf = NMΛQCD
3 · 5
210π2

b5

b
,

Mplas = NMΛQCD
3 · 5
210π2

b5

b
− 16

675

27
(
5bhf2

hghξ
2
h(1− ξ4

h)
1
2 + 4b20λ2

hv0v1
)

bλ2
h

+ 80b30v0

 ,
(4.9)

for the confined and plasma phases respectively.
These thermodynamic quantities should obey various relations, such as

M = − dG
dB

∣∣∣∣
T,µ

, S = − dG
dT

∣∣∣∣
B,µ

, and Q = − dG
dµ

∣∣∣∣
T,B

. (4.10)

Given that we have independent expressions in terms of the coefficients for the left hand
side of these equalities, we can use them as a consistency check and to test our numerics.
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Figure 7. Left: free-energy densities, as a function of temperature, for the magnetized plasma
(solid curves) and magnetized confining phase (dashed lines) for different choices of magnetic field
in the range B ∈ [0,Btriple), with B increasing from bottom to top. The phase with the lowest free-
energy density is preferred, so we encounter a confinement/deconfinement phase transition when the
two curves cross. Right: entropy density, as a function of temperature, for the same solutions. The
dot-dashed curves indicate thermodynamically-disfavoured states of the system. The discontinuity
at the phase transition indicates that it is first order.

We have indeed verified that the first two identities hold when evaluated on our solutions.
Since we focused on the case µ = 0, we do not have enough data to differentiate with
respect to the chemical potential and examine the last identity for the charge density.

4.2 Phase diagram

In this section we analyze the phase structure of the system in the (B, T )-plane, deter-
mining the preferred phase for each choice of magnetic field and temperature. The two
types of solutions that compete are the deconfined plasma states and the magnetized con-
fining ones, both discussed in section 3. Their free-energy density is given in eqs. (4.2)
and (4.3) respectively. In the grand-canonical ensemble, when several solutions exist at
the same values of temperature and magnetic field, the one with lower free energy will be
thermodynamically preferred.

A convenient way to visualize the different types of phase transitions that are present
in the system is to examine how it evolves when the temperature is lowered while the
magnetic field is held fixed. We identify two special values of the magnetic field,

Btriple ≈ 1.152 Λ2
QCD , Bcritical ≈ 1.615 Λ2

QCD , (4.11)

where the qualitative behavior changes. Accordingly, they determine the following regions
in the phase diagram of figure 1: Region A comprises the interval between zero magnetic
field and the line of second order phase transitions at Btriple. Region B is the interval that
lies between the second order phase transitions and the critical value of the magnetic field,
Bcritical, where the line of first order transitions ends. Region C corresponds to values of
the magnetic field larger than the critical one. All three regions are defined for any value
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Figure 8. Left: free-energy density as a function of temperature for three different choices of
magnetic field around Btriple, both for plasma (solid curves) and confining (dashed straight lines)
states. The lowest curve has B < Btriple, the central one B ≈ Btriple and the upper one B > Btriple.
Right: zoom in version of the upper curve, where it can be seen that above Btriple the confining
phase is disfavored. There is a first order phase transition between deconfined phases when the two
solid lines cross.

of the temperature. Within each region, we find the following phases and transitions when
the temperature is changed:

Region A: B ∈ [0,Btriple). The phase structure in this case is similar to that of van-
ishing magnetic field, discussed in section 2. In this region, we still encounter con-
finement/deconfinement phase transitions, which now occur between the magnetized
plasma and the confining backgrounds with non-vanishing magnetic field. The effect
of B in the free energy and entropy can be seen in figure 7. Qualitatively, it lifts the
free energy of the two different states — the plasma and the confining one — but
their overall shape is similar to the non-magnetized solutions shown in figure 2.

Another important feature is that the phase transition is still first order, since quan-
tities such as the entropy (see the right panel on figure 7), energy density or charge
density are discontinuous across the phase transition.

Region B: B ∈ (Btriple,Bcritical). When the magnetic field is raised above Btriple there is an
interesting effect. As shown in figure 8, a new stable branch of black brane solutions
develops. The solutions on this branch have always smaller free energy than the
confining ones at the same value of the magnetic field. In a sense, we can think of
the regular confining infrared as being “covered by a horizon” above this particular
value of the magnetic field. From the field theory perspective, this signals the loss
of confinement. Consequently, for values of the magnetic field in this region, there
is still a first order phase transition, but now taking place between two deconfined
phases.
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Figure 9. Left: free-energy density as a function of temperature for different values of B in the
vicinity of the critical point, with the magnetic field increasing from bottom to top. The swallowtail
is lost in the uppermost curves, which have B ≥ Bcritical. Right: log-log plot of the entropy density
as a function of temperature for the same values of the magnetic field. When the swallowtail shape
disappears in the curves for the free energy, above Bcritical, the phase transition becomes second
order at the critical point and a smooth crossover for even larger values of B .

This feature gives raise to a triple point in the (B, T )-plane, located in the intervals

Btriple = (1.152± 0.013) Λ2
QCD , Ttriple = (0.1456± 0.0018) ΛQCD . (4.12)

At these particular values of temperature and magnetic field, three different phases
coexist: the confining phase and two plasma phases.

Region C: B > Bcritical. The first order phase transitions between plasma phases that
were identified in Region B cease to exist above the critical value of the magnetic
field Bcritical. The passage from Region B to Region C is reflected in figure 9, where
we see the loss of the swallowtail shape of the free energy characteristic of first order
phase transitions. Therefore, for values of the magnetic field in this region, there are
no phase transitions. Instead, thermodynamic quantities evolve smoothly between
the low and high temperature behaviors.

This means that there is a line of first order phase transitions between plasma states
ending at a critical point, where a second order phase transition takes place. As for
the triple point, we can locate this critical point in the intervals

Bcritical = (1.6145± 0.0013) Λ2
QCD , Tcritical = (0.08801± 0.00014) ΛQCD . (4.13)

It remains to be seen how the transition between Region A and Region B pro-
ceeds as the magnetic field is increased for fixed temperatures below Ttriple, since the low
temperature phases in those regions are confined and deconfined respectively. As we men-
tioned, as soon as the new branch of black brane solutions appears, it is preferred over
the confining branch. This is the reason why this transition becomes a vertical line sitting
at Btriple in the (B, T )-plane. We will comment more on this feature in the discussion.
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Confining phase

Figure 10. Charge density (left), magnetization (right) and entropy density (bottom) as a func-
tion of the magnetic field in the vicinity of Btriple (indicated by the black dot), for different choices
of the temperature. In the confining phase, these quantities do not depend on the temperature,
as indicated by the red, thick curves. The different curves, for any choice of the temperature, are
continuous at Btriple, indicating that the transition is second order.

Moreover, picking any value of the temperature T < Ttriple, we can study how different
thermodynamic quantities vary as the magnetic field is changed. As can be seen in fig-
ure 10, the charge, magnetization and entropy are continuous across Btriple. This shows
that the low-temperature confinement/deconfinement transition triggered by the magnetic
field is second order.

All this information about the behaviour of the system can be summarised by the phase
diagram in the (B, T )-plane, as shown in figure 1 in the Introduction. There, the various
regions and different types of phase transitions we have discussed are depicted, together
with the triple and critical points given by equations (4.12) and (4.13) respectively. It is also
instructive to show on this plane how different physical quantities vary as we change the
temperature and the external magnetic field. This analysis can be found in figure 11, where
the density plots for the entropy density, charge density and magnetization are shown.
These quantities change discontinuously across the line of first order phase transitions.
Among them, the quantity that changes more abruptly is the entropy density. In contrast,
both the magnetization and charge density are exactly zero for vanishing magnetic field,
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Figure 11. Density plots of the logarithm of the entropy density (top), charge density (middle)
and magnetization (bottom) as a function of the external magnetic field and temperature. The solid
curves correspond to the line of first order phase transitions between the plasma and the confining
phase (when B < Btriple) and between different states of the plasma (when Btriple < B < Bcritical).
These curves end at a critical point, represented by a square. Finally, the dashed vertical lines
correspond to second order confinement/deconfinement phase transitions between the confining
solution and the low-temperature plasma state. The triple point (4.12) is represented by a circle,
where the three phases may coexist.
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which means that their discontinuities become fainter as the magnetic field is switched off.
Finally, it is interesting to note that both entropy and charge densities are constant (and
zero) in the confining phase, whereas the absolute value of the magnetization grows with
increasing magnetic field.

Notice that the confining phases that are thermodynamically preferred at low tem-
peratures and small magnetic fields are continuously connected to the ground state with
B = 0. This is the branch of solutions to the left of the maximum magnetic field in figure 4.
The solutions to the right of the maximum are never realised since the plasma phases are
always dominant for those values of B.

5 Discussion

The physical quantities plotted in figure 11 reveal several interesting aspects of the different
phases. In the confined phase all quantities are temperature independent and the entropy
vanishes, as expected at leading order in the large-N expansion. As a consequence, the
energy density and pressure satisfy the relation in vacuum P = −E, and the pressure is
negative. The low temperature deconfined phase also has a very weak temperature depen-
dence, especially close to the transition where the entropy is very small. This results in a
critical line between the confined and deconfined phases that is temperature independent.
This is possibly a consequence of the large-N limit, similar phase transitions independent
of thermodynamic variables are observed in other large-N setups, e.g. [31].

Comparing the low and high temperature deconfined phases, one can appreciate that,
as alredy mentioned, while it remains mostly temperature independent in the first, but
have a clear temperature dependence in the second. Also the entropy is much smaller in
the low temperature phase than in the higher temperature one, even in the region where
they are separated by a crossover, and the pressure and energy density are dominated by
vacuum contributions P ' −E. This suggests that the low temperature phase retains
some characteristics of the confined phase, perhaps indicating that a monopole condensate
persists together with a plasma of monopoles in a normal phase, the last sourcing the
non-zero monopole charge of the deconfined phase. Following this reasoning, in the high
temperature phase one would expect a monopole condensate to be negligible or completely
washed away.

Both deconfined phases have gravity duals that are black brane geometries. We thus
expect them to behave as fluids at long wavelengths. Comparing the entropies, the low and
high temperature phases resemble ‘liquid’ and ‘gas’ phases respectively. On the other hand,
the viscosity of both phases is proportional to the entropy density, so that the viscosity is
much larger in the high temperature phase, as can be appreciated in figure 9.

There are several directions in which the work presented here could be extended.
First, it would be interesting to study in more detail the second order transition and in
particular extract the critical exponents. At present we have not been able to do it because
this requires finding solutions very close to the transition line, which is numerically very
challenging. Finding solutions at very low temperatures is numerically demanding as well.
We have been able to find some extremal solutions at nonzero magnetic field that we may

– 24 –



J
H
E
P
0
3
(
2
0
2
3
)
2
1
8

present in a future work, but we have not determined yet whether they can be connected
to the asymptotically D2 brane geometry, or if the right zero temperature solutions would
be of a different kind. For instance, extending the unstable branch shown in figure 4 may
require a different type of ansatz where the M-theory circle collapses to zero size at the
origin. Extending the phase diagram to include a non-zero monopole chemical potential
would also be interesting. Since there cannot be monopole charge in the confined phase
this would likely trigger a phase transition to a deconfined phase with non-zero charge.

There are many physical observables that can in principle be computed from the solu-
tions we have obtained so far. Related to the phase transitions the monopole-antimonopole
interaction and the Wilson line are obvious ones, but also the entanglement entropy can
contain some useful information [29, 32]. The spectrum of fluctuations around the solutions
can also provide some valuable information. It is for instance unclear whether the UM(1)
symmetry is spontaneously broken. If that were the case, there would be a gapless mode in
the confining phase at zero temperature and magnetic field. If the mode exists it would be
interesting to study how temperature and magnetic field affect its dispersion relation. In
the black brane solutions we expect to have hydrodynamic modes whose dispersion relation
would be interesting to obtain, as well as the value of other transport coefficients beyond
the shear viscosity. In particular, since there are topological terms with field-dependent
coefficients, it is possible that the Hall viscosity is non-zero through a mechanism analogous
to the one described in [33].

Another interesting direction would be to study the phase diagram of a mirror dual [34,
35], in the particle-vortex dual sense [36]. For the amount of supersymmetry we are con-
sidering, mirror duality of N = 1 QED was studied in [37], and there are generalizations
for the Abelian theory of probe D2-branes on cones with special holonomy [38, 39], and
for non-Abelian theories with Chern-Simons terms [15], but there does not seem to be
an extension to the non-Abelian case for vanishing Chern-Simons levels. In our case the
expectation is that in the mirror dual the monopole magnetic field would translate into
a baryon charge density [40], thus allowing to explore “nuclear matter” in a holographic
setup without having to introduce additional flavor D-branes or instantons on those.

A different extension would be to introduce the monopole magnetic field in theories
with a mass gap that are not confining [9], by having a non-zero Chern-Simons level in
the dual field theory. As we had discussed, in these theories the monopole operators
dual to wrapped D2-branes are not gauge-invariant, and the massless field dual to the
UM(1) current corresponds to a different combination of vector fields in the reduction to
four dimensional supergravity (see appendix B). Consequently, the type of charged objects
that might be able to condense would probably be modified. Whether this translates to
qualitative differences in the phase diagram is an interesting question that might be worth
exploring.

Let us finally speculate about the field theory dual to the confining solutions. As we
discussed previously, the geometry is likely dual to a quiver theory with U(N)×U(N +M)
gauge group and bifundamental fields. The field theory contains gauge-invariant monopole
operators dual to the D2-brane that carry n = N/M units of D0-brane charge, with the
D0-branes expected to be dual to symmetric monopole operators Mm,m in the notation
introduced in section 2. In addition, in the reduction to four-dimensions described in
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appendix B there is a topological term in (B.22) of the form

32qc
κ2

4

∫ (
â1 − ã1

2

)
∧ db2 . (5.1)

The vector field is the combination that enters in C3 as the coefficient of a closed two-form
in the internal space. This term would be non-zero if we had for instance components of
the vector fields along the x1 direction and of the b2 form along the t, x2 directions and
depending on the holographic radial coordinate. Setting â1 = −ã1, the vector field and
two-form couple respectively to a wrapped D2 brane and a fundamental string as follows

SD2 ⊃
1

πgs`3s

∫
x1
ã1, SF1 ⊃

1
2π`2s

∫
tx2

b2 . (5.2)

The natural normalization of the fields is ã1 = πgs`
3
sÃ1 and b2 = 2π`2sb2, in such a way

that the vortex line associated to a D2-brane and the Wilson line associated to the string
get multiplied by phases ei

∫
Ã1 and ei

∫
b2 respectively. This makes the topological term

equal to
M

2π

∫
Ã1 ∧ db2 . (5.3)

Since we have Dirichlet boundary conditions of the two-form, following the arguments
in [21], there should be a ZM one-form symmetry in the dual field theory.

A possible way to understand the monopole spectrum and the one-form symmetry is
if the theory originates from an orbifold

U(2N +M) ' [Udiag(1)× SU(2N +M)] /ZN+My
[Udiag(1)×U(1)× SU(N)× SU(N +M)] /ZM

. (5.4)

We will denote the original U(2N + M) theory as the ‘parent’ and the theory obtained
after orbifolding as the ‘daughter’. For N = nM , the fundamental representation with zero
charge under the Udiag(1) group splits into a

(
Nn+1, (N +M)−n

)
representation, where

the subindex denotes the charge under the non-diagonal U(1). Then, a Wilson loop in
the fundamental representation of the parent theory would produce line operators of the
daughter theory that are charged under the non-diagonal U(1), i.e.W2N+M −→WNWN+M
would have charge 1 and would not be gauge invariant. A line operator neutral under the
non-diagonal U(1) could be obtained from the product of 2n+ 1 fundamental Wilson lines
in the parent theory

W 2n+1
2N+M −→Wn

NW
n+1
N+M ≡W . (5.5)

Using thatW 2N+M
2N+M ∼ 1,WN

N ∼ 1,WN+M
N+M ∼ 1 — since in all cases they would be screened

by fields in the adjoint representation — we obtain WM ∼ 1. This leads naturally to the
ZM one-form symmetry.

Regarding the monopole spectrum, bifundamental fields would be in a (Nn+1,(N+M)n)
representation, thus having charge 2n+ 1 under the non-diagonal U(1). The phase that a
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particle in the bifundamental representation would pick when going around a monopole of
chargeMm1,m2 is

ϕbif = 2π (m1(n+ 1) +m2n) . (5.6)

For a symmetric monopole m1 = m2 = 1
2n+1 is the minimal amount of magnetic charge

allowed by Dirac quantization. The other minimal choice is m1 = n+1
2n+1 , m2 = − n

2n+1 .
The symmetric monopole M 1

2n+1 ,
1

2n+1
would correspond to a D0-brane, while the nat-

ural interpretation of the D2-brane carrying n D0-brane charge would be an operator
Mn

1
2n+1 ,

1
2n+1
M n+1

2n+1 ,−
n

2n+1
. This last would correspond in the parent theory to a monopole

of unit magnetic charge.
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A Geometry of CP3

In this paper we study solutions to type IIA supergravity whose internal geometry is CP3.
For completeness, in this appendix we give some details of this space and specify our
conventions. For our purposes, the three dimensional complex projective space is seen as
the coset Sp(2)/U(2), which is a two-sphere S2 fibered over a four-sphere S4. A suitable
choice of coordinates goes as follows. Let ωi be the set of left-invariant forms on the three-
sphere, normalized so that 2dωi = εijkω

j ∧ ωk. A particular realization is for instance

ω1 = cosψ dφ+ sinψ sinφ dχ
ω2 = sinψ dφ− cosψ sinφ dχ
ω3 = dψ + cosφ dχ

(A.1)

with the ranges 0 ≤ φ ≤ π, 0 ≤ χ ≤ 2π and 0 ≤ ψ ≤ 4π. Then, the metric of a unit radius
four-sphere can be written as

dΩ2
4 = 4

(1 + ζ2)2

[
dζ2 + ζ2

4 ω
iωi
]
, (A.2)
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with ζ a non-compact coordinate in the range 0 ≤ ζ < ∞. Taking 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2π to be the angles on S2, the non-trivial fibration is described by the vielbeins

E1 = dθ + ζ2

1 + ζ2

(
sinϕω1 − cosϕω2

)
,

E2 = sin θ
(

dϕ− ζ2

1 + ζ2ω
3
)

+ ζ2

1 + ζ2 cos θ
(
cosϕω1 + sinϕω2

)
. (A.3)

It is convenient to consider a rotated version of the vielbeins on the four-sphere

S1 = ζ

1 + ζ2

[
sinϕω1 − cosϕω2

]
,

S2 = ζ

1 + ζ2

[
sin θ ω3 − cos θ

(
cosϕω1 + sinϕω2

)]
,

S3 = ζ

1 + ζ2

[
cos θ ω3 + sin θ

(
cosϕω1 + sinϕω2

)]
,

S4 = 2
1 + ζ2 dζ , (A.4)

so that, despite the explicit dependence of (A.4) on the angles θ and ϕ, it is still verified
that SnSn = dΩ2

4. Then, the metric on the coset reads

ds2
(
CP3

)
= α2

[(
E1
)2

+
(
E2
)2
]

+
4∑

n=1
SnSn , (A.5)

for some constant α controlling the squashing of the fiber over the base.6 It is also possi-
ble to write down the left-invariant forms on the coset in a compact manner using these
vielbeins. This set contains the two-forms7

X2 = E1 ∧ E2 , J2 = S1 ∧ S2 + S3 ∧ S4 , (A.6)

as well as the three-forms

X3 = E1 ∧
(
S1 ∧ S3 − S2 ∧ S4

)
− E2 ∧

(
S1 ∧ S4 + S2 ∧ S3

)
,

J3 = −E1 ∧
(
S1 ∧ S4 + S2 ∧ S3

)
− E2 ∧

(
S1 ∧ S3 − S2 ∧ S4

)
. (A.7)

These are related by exterior differentiation as

dX2 = dJ2 = X3 , dJ3 = 2 (X2 ∧ J2 + J2 ∧ J2) . (A.8)

Higher-rank forms constructed by wedging of these will also be left-invariant. One finds
the two four-forms X2 ∧J2 and J2 ∧J2, appearing in (A.8), together with the volume form
on CP3, namely Ω6 = (E1 ∧ E2) ∧ (S1 ∧ S2 ∧ S3 ∧ S4). There are no adequate one- or
five-forms. Moreover, the complete set closes under Hodge duality.

6There are two Einstein points: α2 = 1, where the Fubini-Study metric is recovered, and α2 = 1/2 where
the metric admits instead a nearly-Kähler structure.

7The Kähler form associated to the Fubini-Study metric is in this language X2 − J2.
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The ansatz for the fluxes in the main text is given in terms of these left-invariant
forms. This symmetry ensures that the ansatz is consistent, meaning that the angles
drop out from the ten-dimensional equations and there is just dependence on the radial
coordinate. Furthermore, there is a consistent truncation to four dimensions keeping just
the invariant modes that we detail in appendix B.

A crucial characteristic of this manifold is that it has a two- and a four-cycle given
by CP1 and CP2 respectively. The two-cycle is specified in our coordinates by θ and ϕ at
fixed coordinates on the four-sphere. We have thus the integrals∫

CP1
X2 = 4π ,

∫
CP1

J2 = 0 . (A.9)

On the other hand, the four-cycle is obtained by fixing θ = ϕ = π/2, in which case the
following integrals are obtained∫

CP2
J2 ∧ J2 = 16

3 π
2 ,

∫
CP2

X2 ∧ J2 = −16
3 π

2 . (A.10)

Finally integrating over the entire volume we get∫
CP3

E1 ∧ E2 ∧ S1 ∧ S2 ∧ S3 ∧ S4 = 1
2

∫
CP3

X2 ∧ J2 ∧ J2 = 32
3 π

3 . (A.11)

B Truncation to four dimensions

In this section we reduce type IIA supergravity on CP3 seen as the coset Sp(2)/U(2).
Consistency of the truncation will be ensured by left-invariance on the coset. The result
is a four-dimensional N = 2 supergravity, first obtained in [41]. Nevertheless, we will give
the details to make contact with the variables used in [9, 16], keeping the vectors and forms
that were discarded in those two references.

The expansion of the ten-dimensional fields is performed using the set of left-invariant
forms discussed in appendix A. A particular realization in terms of coordinates is given
there, which can be used for instance to compute the Hodge duals of these forms.

We choose to solve the Bianchi identities (3.4) as

H3 = dB2 , F2 = dC1 + F fl
2 , F4 = dC3 +B2 ∧ F2 + F fl

4 , (B.1)

for some two-, one- and three-form potentials B2, C1 and C3 respectively. The internal
manifold is topologically S2×S4, so it has non-trivial two- and four-cycles. This allows us to
include the fluxes F fl

2 and F fl
4 for the two- and four-forms, which are closed but non-exact.

In terms of the globally defined left-invariant forms they read

F fl
4 = qc (J2 ∧ J2 −X2 ∧ J2) , F fl

2 = Qk (X2 − J2) , (B.2)

with qc and Qk some constants, related to gauge theory parameters through flux quanti-
zation, as will be detailed below. The manifold does not admit a three-form flux. The
form-potentials are written in terms of the invariant forms as

B2 = b2 + bX X2 + bJ J2 ,

C1 = a1 ,

C3 = a3 + ã1 ∧X2 + â1 ∧ J2 + aX X3 + aJ J3 ,

(B.3)
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where a3 is a three-form, b2 is a two-form, a1, ã1 and â1 are one-forms and the rest are
scalars, all of them defined on the external manifold. This is the most general expansion
compatible with the symmetries on the coset. Using these expansions together with the
fluxes (B.2) the field strengths appearing in the equations of motion (3.5) are

H3 = db2 + dbX ∧X2 + dbJ ∧ J2 + (bJ + bX)X3 ,

F2 = da1 +Qk (X2 − J2) ,
F4 = f4 + f̃2 ∧X2 + f̂2 ∧ J2 +DaX ∧X3 + daJ ∧ J3 + fX0 X2 ∧ J2 + fJ0 J2 ∧ J2 ,

(B.4)

with the following covariant derivative and field strengths

DaX = daX − ã1 − â1 , f4 = da3 + b2 ∧ da1 ,

f̃2 = dã1 + bX da1 +Qk b2 , f̂2 = dâ1 + bJ da1 −Qk b2 ,
fX0 = 2aJ +Qk (bJ − bX)− qc , fJ0 = 2aJ −Qk bJ + qc .

(B.5)

To complete the reduction ansatz we need to take the dilaton Φ to be purely external,
while the string-frame metric reads8

ds2
st = eΦ/2

(
e−2U−4V ds2

4 + e2U 1
4

[(
E1
)2

+
(
E2
)2
]

+ e2V 1
2dΩ2

4

)
. (B.7)

Substituting the ansatz in the type IIA equations of motion and separating the com-
ponents containing the different left-invariant forms we get a set of equations of motion
for the fields in the reduction. From the equation for F4 we get the following. The terms
proportional to the internal volume-form give the condition9

0 = d
(
e6U+12V+Φ/2 ∗ f4

)
+ 32fX0 dbJ + 32fJ0 dbX + 64 (bX + bJ) daJ

= d
[
e6U+12V+Φ/2 ∗ f4 + 16 [4aJ (bX + bJ) + 2qc (bX − bJ) +QkbJ (bJ − 2bX)]

]
.

(B.8)

This can be immediately integrated to trade the four-form f4 for a certain constant Qc
such that

∗ f4 = −16e−6U−12V−Φ/2 [Qc + 4aJ (bX + bJ) + 2qc (bX − bJ) +QkbJ (bJ − 2bX)] . (B.9)

Next, the components proportional to J2 ∧ J2 give the equation for ã1, which reads

d
(
e−2U+4V+Φ/2 ∗ f̃2

)
− 4e−2U−4V+Φ/2 ∗DaX + 2fJ0 db2 + 2dbJ ∧ f̂2 = 0 . (B.10)

Similarly, the components containing X2 ∧ J2 yield the condition

d
(
e2U+Φ/2 ∗ f̂2

)
− 8e−2U−4V+Φ/2 ∗DaX + 4fX0 db2 + 4dbJ ∧ f̃2 + 4dbX ∧ f̂2 = 0 . (B.11)

8The relation between these scalars and the functions in the ten-dimensional ansatz (3.3) is

eΦ = h1/4eΛ , e2U = 4h3/8e2g−Λ/2 , e2V = 2h3/8e2f−Λ/2 . (B.6)

9In this and the following equations the Hodge dual “∗” is taken with respect to the four-dimensional
metric ds2

4 in (B.7).
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From the terms proportional to X3 one gets

d
(
e−2U−4V+Φ/2 ∗ daJ

)
− db2 ∧DaX − (bX + bJ) f4

−2
(
fJ0 e

−2U−12V+Φ/2 + 2fX0 e−6U−8V+Φ/2
)
∗ 1 = 0 ,

(B.12)

where f4 is to be understood as given by (the dual of) (B.9). Finally we have the equation
for the axion aX coming from the components containing J3, which reads

d
(
e−2U−4V+Φ/2 ∗DaX

)
+ db2 ∧ daJ = 0 . (B.13)

Notice that this equation is not independent but given by the exterior derivative of ei-
ther (B.10) or (B.11).

The equation for F2 gives a unique non-trivial condition, which plays the role of equa-
tion of motion for the vector a1, and reads

d
(
e2U+4V+3Φ/2 ∗ da1

)
+ e6U+12V+Φ/2 (∗f4) db2 + 8e2U+Φ/2dbJ ∧ ∗f̂2

+16e−2U+4V+Φ/2dbX ∧ ∗f̃2 + 64 (bX + bJ) e−2U−4V+Φ/2 ∗DaX = 0 ,
(B.14)

where again (∗f4) is given by (B.9).
Finally we have the equation for the NS three-form, whose component proportional to

the internal volume form gives

d
(
e4U+8V−Φ ∗ db2

)
− e6U+12V+Φ/2 (∗f4) da1 − 16Qke−2U+4V+Φ/2 ∗ f̃2

+8Qke2U+Φ/2 ∗ f̂2 − 32fJ0 f̃2 − 32fX0 f̂2 − 64DaX ∧ daJ = 0 .
(B.15)

Since the two-form turns out to be massive through a Stueckelberg coupling to a vector,
we do not expect this equation to be independent of the rest. Indeed, its exterior deriva-
tive gives a combination of the vector equations of motion (B.10) and (B.11). When the
parameter Qk vanishes, it is convenient to dualize the two-form to an axion giving mass to
a combination of the vectors, as will be detailed below.

The components containing J2 ∧ J2 yield the equation for the scalar bX

d
(
e−4U−Φ ∗ dbX

)
+ 8Qke−6U−8V+Φ/2fX0 ∗ 1− 2fJ0 f4 − f̂2 ∧ f̂2

−4 (bX + bJ) e−4U−8V−Φ ∗ 1− e−2U+4V+Φ/2da1 ∧ ∗f̃2 = 0 ,
(B.16)

while those with X2 ∧ J2 correspond to bJ and read

d
(
e−4V−Φ ∗ dbJ

)
− 16Qke−6U−8V+Φ/2fX0 ∗ 1 + 8Qke−2U−12V+Φ/2fJ0 ∗ 1

−4fX0 f4 − 4f̃2 ∧ f̂2 − 8 (bX + bJ) e−4U−8V−Φ ∗ 1− e2U+Φ/2da1 ∧ ∗f̂2 = 0 .
(B.17)

The ansatz in [9, 16] is recovered by turning off all the vectors, the two-form and the
scalar aX , which solves their respective equations of motion and is therefore consistent.
The remaining equations for U , V , Φ and the metric will not be presented in detail, since
the only modifications with respect to [9, 16] come from the kinetic terms of the vectors
and two-form, that can be inferred from the previous equations.
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Defining the four-dimensional Newton’s constant as

1
2κ2

4
= 1

2κ2
10

∫
CP3

1
16 E

12 ∧ S1234 = 4π4

3 (2π`s)8 g2
s

(B.18)

the entire set of equations of motion can be obtained from the following action. First, we
have the terms involving just the metric and scalars (in an obvious notation)

Sscal = 1
2κ2

4

∫ [
R ∗ 1− 1

2 (dΦ)2 − 4 (dU)2 − 12 (dV )2 − 8dU · dV − 32e−2U−4V+Φ/2 (daJ)2

−4e−4V−Φ (dbJ)2 − 8e−4U−Φ (dbX)2 − 32e−2U−4V+Φ/2 (DaX)2 − V ∗ 1
]
, (B.19)

with the potential

V = 128 e−6U−12V−Φ/2 [Qc + 4aJ (bJ + bX) +QkbJ (bJ − 2bX) + 2qc (bX − bJ)]2

+32 (bJ + bX)2 e−4U−8V−Φ + 64 [2aJ +Qk (bJ − bX)− qc]2 e−6U−8V+Φ/2

+32 (2aJ −QkbJ + qc)2 e−2U−12V+Φ/2 + 4Q2
ke
−2U−8V+3Φ/2

+8Q2
ke
−6U−4V+3Φ/2 − 24e−2U−6V − 8e−4U−4V + 2e−8V . (B.20)

On the other hand there are the kinetic terms for the vectors and two-form

Svec = 1
2κ2

4

∫ [
−1

2e
4U+8V−Φdb2 ∧ ∗db2 −

1
2e

2U+4V+3Φ/2da1 ∧ ∗da1

−8e−2U+4V+Φ/2f̃2 ∧ ∗f̃2 − 4e2U+Φ/2f̂2 ∧ ∗f̂2

]
. (B.21)

Finally one has the convoluted topological terms

Stop = 1
2κ2

4

∫ [[
64 aJDaX + 32 qc (â1 − ã1) + 16Qc a1

]
∧ db2 − 32 qcQk b2 ∧ b2

−16 bX f̂2 ∧ f̂2 − 32 bJ f̃2 ∧ f̂2 − 16 bX b2J da1 ∧ da1

+32 bX bJ da1 ∧ f̂2 + 16 b2J da1 ∧ f̃2

]
. (B.22)

This reduced action is given in terms of the three constants associated to the fluxes,
Qc, Qk and qc, which correspond to brane charges and are therefore quantized. Indeed,
imposing the quantization conditions [27]

k = 1
2κ2

10TD6

∫
CP1

F2 ,

M − k

2 = 1
2κ2

10TD4

∫
CP2

(F4 −B2 ∧ F2)

N = 1
2κ2

10TD2

∫
CP3

(
− ∗ F4 −B2 ∧ F4 + 1

2B2 ∧B2 ∧ F2

) (B.23)

and using the integrals (A.9), (A.10) and (A.11), one gets the relations

Qc = 3π2`5sgsN , qc = 3π`3sgs
4

(
M − k

2

)
, Qk = `sgs

2 k , (B.24)
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in the conventions
1

2κ2
10

= 2π
(2π`s)8 g2

s

, TDp = 1
(2π`s)p gs`s

. (B.25)

Notice that these correspond to Page charges, so the integers N , M and k count the
number of different types of branes. However, Page charges change under large gauge
transformations. This will be important later on when we discuss the cascade.

The parameter k corresponds to the Chern-Simons level in the gauge theory dual,
which is vanishing in the solutions considered in this work. Moreover, regularity in the IR
of the ground state forces Qc = 0, as explained around eq. C.13, so in the remainder of
this section — and in the bulk of the paper — we will fix Qc = Qk = 0.

In this limit the action greatly simplifies. First, the equation of motion for the two-form
can be written as the total derivative

d
[
e4U+8V−Φ ∗ db2 + 64aJ DaX + 32qc (â1 − ã1)

]
= 0 . (B.26)

In this way it is possible to dualize the form into an axion a defined as

∗ db2 = 16 e−4U−8V+Φ [Da− 4aJDaX ] , (B.27)

with the covariant derivatives

Da = da+ 2qc (ã1 − â1) , DaX = daX − (ã1 + â1) . (B.28)

This immediately shows that the vectors ã1 and â1 are massive due to their Stueckelberg
couplings to the axions aX and a. On the other hand, the remaining vector is massless
and associated to a gauge symmetry in the bulk. Indeed, its equation of motion can be
written as

d
[
e2U+4V+3Φ/2 ∗ da1 + 16 bXe−2U+4V+Φ/2 ∗ f̃2 + 8 bJe2U+Φ/2 ∗ f̂2

+32b2JbXda1 + 16b2Jdã1 + 32bXbJdâ1
]

= 0 ,
(B.29)

with the field strengths f̃2 = dã1 + bX da1 and f̂2 = dâ1 + bJ da1. This equation describes
a massless vector, a1, interacting with the massive ones through non-diagonal kinetic and
Chern-Simons terms. Then, it is dual to the global UM(1) symmetry we are interested in
putting at finite density and/or magnetic field.

The suitable action reproducing the correct equations of motion reads in this case

Sscal = 1
2κ2

4

∫ [
R ∗ 1− 1

2 (dΦ)2 − 4 (dU)2 − 12 (dV )2 − 8dU · dV − 4e−4V−Φ (dbJ)2

−8e−4U−Φ (dbX)2 − 32e−2U−4V+Φ/2 (daJ)2 − 32e−2U−4V+Φ/2 (DaX)2

−128e−4U−8V+Φ (Da− 4aJDaX)2 − V ∗ 1
]

(B.30)

for the scalars and

Svec = 1
2κ2

4

∫ [
−1

2e
2U+4V+3Φ/2da1 ∧ ∗da1 − 8e−2U+4V+Φ/2f̃2 ∧ ∗f̃2 − 4e2U+Φ/2f̂2 ∧ ∗f̂2

−16 bX f̂2 ∧ f̂2 − 32 bJ f̃2 ∧ f̂2 − 16 bX b2J da1 ∧ da1 + 32 bX bJ da1 ∧ f̂2

+16 b2J da1 ∧ f̃2

]
(B.31)

for the vectors. The potential V in (B.30) is the one in (B.20) with Qc = Qk = 0.
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B.1 Holographic Renormalization

In this appendix we perform the holographic renormalization of the action (B.30) and (B.31).
The action takes the general form

S = 1
2κ2

4

∫ (
R ∗ 1−GABDφA ∧ ∗DφB − V ∗ 1−HIJF

I ∧ ∗F J + LIJF
I ∧ F J

)
, (B.32)

with F I = dAI and DφA = dφA +KA
IA

I . We take for the eight scalars in our truncation
the ordering φA = {Φ, U, V, bJ , bX , aJ , aX , a} and for the vectors AI = {a1, ã1, â1}. With
this ordering, the (scalar-dependent) matrices H and L are

H =


1
2e

2U+4V+ 3Φ
2 + 4e2U+ Φ

2 b2J + 8e−2U+4V+ Φ
2 b2X 8e−2U+4V+ Φ

2 bX 4e2U+ Φ
2 bJ

8e−2U+4V+ Φ
2 bX 8e−2U+4V+ Φ

2 0
4e2U+ Φ

2 bJ 0 4e2U+ Φ
2

 ,

L =

−16b2JbX −8b2J −16bJbX
−18b2J 0 −16bJ
−16bJbX −16bJ −16bX

 ,

(B.33)
while the non-vanishing components of the gauging are K7

2 = K7
3 = −1 together with

K8
2 = −K8

3 = 2qc. Notice that the mass matrix for the vectors is then given by the
product MIJ = GABK

A
IK

B
J .

In our conventions, this same action reads in components

S = 1
2κ2

4

∫ √
−g

(
R−GABgµνDµφ

ADνφ
B − V − 1

2HIJg
µνgρσF IµρF

J
νσ

)
d4x+Stop , (B.34)

with the topological term

Stop = 1
2κ2

4

∫ 1
4 ε̃

µνρσLIJF
I
µνF

J
ρσ . (B.35)

Here ε̃ is the Levi-Civita symbol (not tensor) verifying

dxµ ∧ dxν ∧ dxρ ∧ dxσ = ε̃µνρσd4x . (B.36)

Maxwell’s equations deriving from this action are (recall that ε̃νµρσ∂µF Jρσ = 0 because of
the Bianchi identity)

∂µ
(√
−gHIJg

µρgνσF Jρσ

)
−
√
−gGABKB

Ig
νµDµφ

A + 1
2 ε̃

νµρσF Jρσ∂µLIJ = 0 , (B.37)

while Einstein’s equations read

Rµν = GABDµφ
ADνφ

B + 1
2gµνV +HIJg

ρσF IµρF
J
νσ −

1
4HIJgµνF

I
ρσF

J ρσ . (B.38)

Our task is to write the on-shell action as a total derivative. Let us first manipulate
the gravitating part of the action in (B.34). The trace of Einstein’s equations gives

R−GABgµνDµφ
ADνφ

B = 2V , (B.39)
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so the on-shell action reduces to

Igrav = 1
2κ2

4

∫ √
−g

(
V − 1

2HIJg
µνgρσF IµρF

J
νσ

)
d4x . (B.40)

Next, for a diagonal metric

ds2 = gttdt2 + gxxdx2 + gyydy2 + grrdr2 , (B.41)

with the metric components depending only on r, the mixed tt component of Einstein’s
equations reads

Rtt = gttGABK
A
IK

B
JA

I
tA

J
t + 1

2V +HIJg
ttgρσF ItρF

J
tσ −

1
4HIJF

I
ρσF

J ρσ , (B.42)

where we have imposed that φA = φA (r). Using this we can get rid of the potential in the
action, that results

Igrav = 1
κ2

4

∫ √
−g

(
Rtt − gttGABKA

IK
B
JA

I
tA

J
t −HIJg

ttgρσF ItρF
J
tσ

)
d4x . (B.43)

Now we want to eliminate the mass term for the vectors. In order to do so, we use the
temporal component of Maxwell’s equations

∂r
(√
−gHIJg

rrgttFrt
)
−
√
−ggttGABKA

IK
B
JA

J
t + ε̃trxyF Jxy∂rLIJ = 0 , (B.44)

where we have imposed that in our ansatz the only non-vanishing components of the field
strengths are F Irt and F Ixy. Substituting this in the mass term in the action and taking into
account that F Irt = ∂rA

I
t we get

Igrav = 1
κ2

4

∫ [√
−gRtt − ∂r

(√
−gHIJA

I
tF

J rt
)
− ε̃trxyAItF Jxy∂rLIJ

]
d4x . (B.45)

The last term is not yet a total derivative, but we can combine it with the topological one

Itop = 1
κ2

4

∫
ε̃rtxyLIJF

I
rtF

J
xy , (B.46)

so that the total on-shell action reads

Igrav + Itop = 1
κ2

4

∫ [√
−gRtt − ∂r

(√
−gHIJA

I
tF

J rt
)
− ∂r

(
ε̃trxyLIJA

I
tF

J
xy

)]
d4x . (B.47)

Finally, it is always verified for this type of metrics that

Rtt = 1√
−g

∂r
(√
−γKt

t

)
(B.48)

with Kt
t the temporal component of the extrinsic curvature and γ the boundary metric.

In this way the complete on-shell action is a total derivative.
This is generically UV-divergent and has to be regularized by introducing a UV cutoff

ΛUV. To renormalize we need to add the Gibbons-Hawking term

IGH = 1
κ2

4

∫ √
−γKd3x , (B.49)
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with K the trace of the extrinsic curvature. The appropriate counterterm to regularize the
scalar contributions (we do not expect divergencies from the vectors) is

Ict = − 1
2κ2

4

∫ √
−γ4Wd3x (B.50)

with W the superpotential

W = e−4V + 2e−2U−2V − 8e−3U−6V−Φ/4 [2aJ (bJ + bX) + qc (bX − bJ)] . (B.51)

In this way, the on-shell action plus these contributions is finite and we can remove the
cutoff. The complete renormalized action is then

Iren = −βV2
κ2

4
lim

ΛUV→∞

[√
−γ

(
Kt

t −K + 2W
)
−
√
−gHIJA

I
tF

J rt − ε̃trxyLIJAItF Jxy
]

ΛUV

+ βV2
κ2

4

[√
−γKt

t −
√
−gHIJA

I
tF

J rt − ε̃trxyLIJAItF Jxy
]
rH

(B.52)
for solutions that have a horizon, such as the black branes of section E.3. For the solutions
with confining IR conditions of section E.2 the only contribution comes from the boundary,
so the second line is absent.

From this renormalized action we can compute the energy momentum tensor of the dual
gauge theory by varying with respect to the induced metric, evaluated at the boundary. It
is related to the energy density, pressure, magnetic field and magnetization density as [42]

T ij = − 1
κ4

lim
ΛUV→∞

[√
−γ

(
Ki

j − δij(K − 2W)
)]

ΛUV
= diag(−E, P − BM, P − BM) ,

(B.53)
where E is the energy density, P is the pressure, B is the magnetic field and M is the
magnetization.

C Ground state

The confining ground state solution is given by the D2-like string-frame metric

ds2
st = h−1/2dx2

1,2 + h1/2ds2
7 , (C.1)

with the transverse metric

ds2
7 = dρ2(

1− ρ4
0
ρ4

) + 1
4 ρ

2
(

1− ρ4
0
ρ4

)[(
E1
)2

+
(
E2
)2
]

+ 1
2 ρ

2 dΩ2
4 . (C.2)

This space ends at ρ = ρ0, where the metric in the radial coordinate ρ0 (ρ− ρ0) = ρ̃2 turns
into

ds2
7 = dρ̃2 + ρ̃2

[(
E1
)2

+
(
E2
)2
]

+ 1
2 ρ

2
0 dΩ2

4 . (C.3)
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which is regular.10 Moreover, in terms of the dimensionless radial coordinate z = ρ/ρ0 the
warp factor is given by

h = 128 q2
c

9 ρ6
0

∫ ∞
z

[
2− 3σ4

σ3 (σ4 − 1)2 +
(
4− 9σ4 + 9σ8)U(σ)
σ4 (σ4 − 1)5/2 + 2

(
1− 3σ4)U(σ)2

σ5 (σ4 − 1)3

]
dσ . (C.4)

The (dimensionless) function U is defined as

U(z) =
∫ z

1

(
σ4 − 1

)−1/2
dσ = K (−1)−F (arccsc z| − 1) =

√
π Γ (5/4)
Γ (3/4) −F (arccsc z| − 1) ,

(C.5)
with K (m) the complete elliptic integral of the first kind and F (φ|m) the elliptic integral
of the first kind. This warp factor is finite as z → 1 so the entire ten-dimensional metric is
regular in this limit. On the other hand, it has the following leading behavior at the UV

h = 128 q2
c K (−1)
5 ρ6

0

1
z5

[
1 +O

(1
z

)]
= 128 q2

c K (−1)
5 ρ0

1
ρ5

[
1 +O

(1
ρ

)]
. (C.6)

Notice that the warp factor does not depend at all on the parameter Qc that, according
to (B.24), counts the number of (ordinary) D2-branes, so in particular one could force it
to vanish.

The general fluxes regularizing the solution are given by (B.3) with b2 = a1 = a3 =
ã1 = â1 = aX = 0 and

bJ = Qc
4qc

+ 2qc
3ρ0

[
z
√
z4 − 1−

(
3z4 − 1

)
U(z)

z4 − 1

]
,

bX = −Qc4qc
− 2qc

3ρ0

[
z
√
z4 − 1−

(
3z4 − 1

)
U(z)

z4

]
,

aJ = qc
6 + 2qc U(z)

3z
√
z4 − 1

.

(C.7)

Moreover, the two-form F2 is vanishing, which in particular means that Qk = 0 and
therefore there is no Chern-Simons term.

The three-form flux is non-vanishing in the IR. In terms of the flat-space radial coor-
dinate reads

HIR = − 4qc
3ρ2

0
dρ̃ ∧ J2 , (C.8)

while the only remaining piece of the four-form is the flux on the four-cycle

F IR
4 = 2qc J2 ∧ J2 . (C.9)

Throughout the paper we will encounter several quantities defined in the gravity theory
that translate to different field theory parameters. Although the map is explained at the
relevant points in the discussion, in order to facilitate the reader the conversion between
the two, we give a complete set of relations in table 1.

10It is topologically an R3 bundle over S4.

– 37 –



J
H
E
P
0
3
(
2
0
2
3
)
2
1
8

2κ2
10 = (2π)7g2

s`
8
s 2κ2

4 = 3 · 26π4g2
s`

8
s

TDp = 1
(2π`s)pgs`s

qc = 3π
4 gs`

3
sM QD2 = 3π2gs`

5
sN ρ0 = |b0|2 gs`s

M2

N

b0(B = 0) = −3K(−1) λ = gs`
−1
s N ΛQCD = λ

(
M

N

)3

Table 1. Dictionary between gravity and field theory parameters. N and M determine the rank
of the gauge groups, λ is the ’t Hooft coupling and ΛQCD the characteristic scale of confinement.
On the gravity side qc is the F4 flux in the internal space, QD2 is the coefficient of the warp factor
when the geometry asymptotes to that of color D2-branes, ρ0 determines the radial position where
the two-cycle in the geometry collapses to zero size and b0 is a numerical integration constant
determined by the equations of motion and regularity. The remaining gs and `s are the string
coupling and length, κ2

10 and κ2
4 are the gravitational constants in the ten- and four-dimensional

theories respectively, and TDp is the Dp-brane tension.

C.1 The cascade

In this section we discuss how the supergravity solution implements the gauge-theory cas-
cade, which is similar to the cascade of N = 3 deformations of ABJ [30]. A related analysis,
in the presence of Chern-Simons terms, can be found in [27].

The two-form potential on the two-cycle — corresponding to the difference between
the (inverse) gauge couplings of both gauge groups in the quiver — is

1
(2π`s)2

∫
CP1

B2 = bX
π`2s

= b∞ B (z) + Qc
4π`2sqc

[B(z)− 1] , (C.10)

with

B (z) =
(
3z4 − 1

)
U(z)− z

√
z4 − 1

3K(−1)z4 . (C.11)

This of course runs with the energy, identified with the holographic radial coordinate, and
interpolates smoothly between B (∞) = 1 and B (1) = 0. Its UV and IR values are

b∞ = − Qc
4πqc`2s

+ 2qcK (−1)
πρ0`2s

, bIR = − Qc
4πqc`2s

. (C.12)

This forces
Qc = 0 (C.13)

if we want this flux to vanish at the point where the two-sphere shrinks, as it should if the
background is to be regular. Following eq. (B.24), this seems to indicate that there are
no (ordinary) D2-branes on the background. Nevertheless, as we have observed the warp
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factor does not depend on Qc. Moreover, it has the asymptotic behavior of a D2-brane,
which in our radial coordinate would be

h = 16QD2

5 ρ5 , (C.14)

with QD2 quantized as Qc in (B.24). Comparing with (C.6), this suggests an identifica-
tion of the parameter ρ0, which has dimensions of length, as (see [43] for an equivalent
identification)

ρ0 = 8 q2
c K (−1)
QD2

= 3gs`sK (−1)
2

M2

N
. (C.15)

Using this, the difference between the UV and IR values of the two-form flux is exactly

b∞ − bIR = b∞ = 2qcK (−1)
πρ0`2s

= N

M
. (C.16)

It is also instructive to compute the Maxwell charges for the D2- and D4-branes

NMax
4 = 1

2κ2
10TD4

∫
CP2

F4 ,

NMax
2 = 1

2κ2
10TD2

∫
CP3

(− ∗ F4) .
(C.17)

The one for the D4 brane does not run and coincides with the Page charge. Taking already
Qc = 0, the one for the D2-branes reads

NMax
2 = 64π3

3gs (2π`s)5 [2aJ (bJ + bX) + qc (bX − bJ)] . (C.18)

This charge vanishes in the IR, while it takes the UV value

NMax
UV = 16

√
2q2
cΓ (5/4)2

3ρ0gs`5sπ
5/2 = N , (C.19)

where we have used in the last step the identification (C.15). This means that we have lost
exactly N branes from the UV to the IR, suggesting the cascade

U(N)×U(N +M) → U(M) (C.20)

whose IR is confining.
Each step of the cascade proceeds as follows. The quantized Page charges for ordi-

nary D2- and D4-branes are not gauge invariant, since they change under a large gauge
transformation for B2. This is because we can add to the NS-form a closed but non-exact
piece

B2 → B2 + B (X2 − J2) , (C.21)

with B constant, that does not change the supergravity solution but does alter the Page
charges, as seen in (B.23). Changing the flux (C.10) by one unit corresponds to B = π`2s.
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The quantities that do not change under this transformation are the Maxwell charges (C.17).
Indeed, this large gauge transformation can be seen as the shift in the Page charges

b∞ → b∞ − 1 , N → N +M , M →M , (C.22)

under which the Maxwell charges are invariant.
Crucially, the correct gravitational description requires the two-form flux to be in the

range (0, 1). If that is not the case, we can add or subtract one unit of flux to put it back to
the correct range. Imagine that we follow the flow from the IR, where the gauge theory is
expected to be purely U(M). As we flow towards the UV, the two-form flux (C.10) (with
Qc = 0), which was initially vanishing, grows. The moment it reaches 1, we perform a
gauge transformation to put it back to zero, so the rank of the gauge groups in the dual
field theory jumps M units to

U(M) → U(M)×U(2M) . (C.23)

The flux will then continue growing, and when it reaches unity again we perform once more
a gauge transformation that shifts the rank M units. This continues as long as the flux
can grow above 1. Since it is bounded by b∞ in (C.16),11 this can happen N/M times,
resulting in the UV gauge group stated in (C.20). Notice that if N/M is not an integer,
the last step of the cascade in the IR would take us to

U(p)×U(p+M) . (C.24)

There are now two possibilities. If p � M the second gauge group is weakly (’t Hooft)
coupled and its dynamics plays no role in our supergravity approximation, the background
being equal to the one with p = 0 to leading order in M . On the other hand, if p ∼M the
flux due to this additional D2-branes should be included, resulting in a singularity and the
spoiling of confinement. See [6] for the analogous discussion in the four-dimensional case.

D Calculation of the monopole-antimonopole action

The ten-dimensional string-frame metric and dilaton are given in (3.3). Consider a D2-
brane wrapping the CP1 two-cycle and extended in the radial direction and on a curve in
the (x1, x2)-plane, with an embedding profile X1 = x(r), X2 = y(r). The induced metric
on the brane is

ds2
D2 = h

1
2

b

[
1 + b

h

((
x′
)2 +

(
y′
)2)] dr2 + h

1
2 e2g

(
dθ2 + sin2 θ dϕ2

)
. (D.1)

The D2-brane also couples to the components of the B2 field along the two-cycle, whose
pullback reads

P [B2] = bXP [X2] = bX sin θ dθ ∧ dϕ . (D.2)
11This is in sharp contrast with the cascade on the conifold [6], whose two-form flux is not bounded and

grows indefinitely towards the UV, resulting in infinitely many duality steps. This might be a reflection of
the fact that three-dimensional Yang-Mills theories are asymptotically free.

– 40 –



J
H
E
P
0
3
(
2
0
2
3
)
2
1
8

It is possible to turn on a magnetic field on the brane along those same directions

2π`2sF = β2P [X2] = β2 sin θ dθ ∧ dϕ . (D.3)

Finally, we need to take into account the pullback of the RR one-form C1 on the D2-brane
worldvolume

P [C1] = gs`s
M2

N

B
2
(
xy′ − yx′

)
dr . (D.4)

In Euclidean signature, the Dirac-Born-Infeld (DBI) part of the D2-brane action is then

SDBI = 1
(2π)2gs`3s

∫
D2

d3η e−Φ
√
gD2 +B2 + 2π`2sF

= 1
πgs`3s

∫
dr
(
h

b

) 1
2
e2g−Λ

√(
1 + b

h

[
(x′)2 + (y′)2

]) (
1 + h−1e−4g (bX + β2)2

)
.

(D.5)

On the other hand, the Wess-Zumino (WZ) terms are

SWZ = − 1
(2π)2gs`3s

∫
D2
C1 ∧

(
B2 + 2π`2sF

)
= −M

2

N

B
2π`2s

∫
dr
(
xy′ − yx′

)
(bX + β2) .

(D.6)
When the magnetic field is vanishing, B = 0, the configuration that becomes tensionless in
the IR has β2 = 0. At the boundary, the D2-brane carries an amount of D0 charge that is
determined by the WZ coupling

SWZ = − 1
(2π)2gs`3s

(
lim
r→∞

∫
CP1

B2

)∫
C1 = − 1

gs`s

N

M

∫
C1 . (D.7)

Therefore this wrapped D2 corresponds to a bound state of a D2-brane and N/M D0-
branes.

D.1 Vanishing magnetic field

In the absence of magnetic field, B = 0, the WZ term vanishes, and the embedding can lie
along one of the directions in the (x1, x2)-plane. For definiteness, we will take X2 = y = 0
and X1 = x(r). From (D.5) we can derive the equation of motion for the embedding, using
that x is a cyclic variable(b

h

) 1
2
e2g−Λ

√
1 + h−1e−4g (bX + β2)2 x′√

1 + b
h(x′)2

= px , (D.8)

with px an integration constant. Solving for x′ we get

x′ =
(
h

b

) 1
2 px√

A2 − p2
x

, A = e2g−Λ
√

1 + h−1e−4g (bX + β2)2 . (D.9)

For a connected configuration, it is possible to relate the integration constant with the
lowest point in the radial direction reached by the embedding, r∗, as

px = A(r∗) ≡ A∗ . (D.10)
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Therefore, the separation between the monopole and anti-monopole at the boundary is

L = 2A∗
∫ ∞
r∗

dr
h

1
2 b− 1

2√
A2 −A2

∗
. (D.11)

In terms of the dimensionless functions and radial coordinate defined in (E.1), (E.2)
and (3.16) this reads

L = `D2A∗
∫ ξ∗

0

dξ

ξ2
√

1− ξ4
h

1
2 b− 1

2√
A2 −A2

∗
, (D.12)

where we have defined

A = e2G−Λ
√

1 + 1
32h−1e−4G(BX − β̄2)2 , β2 = 2qc

3ρ0
β̄2 . (D.13)

The characteristic length scale is

`D2 = 2ρ0

(
128q2

c

9ρ6
0

) 1
2

= 16
√

2π
|b0|2

Λ−1
QCD . (D.14)

Introducing (D.9) in the action (D.5), one finds

SD2 = 1
πgs`3s

∫
dr h

1
2 b− 1

2 A2√
A2 −A2

∗
. (D.15)

The disconnected configuration corresponds to the case where the branes reach the bottom
of the geometry, r∗ = r0, and therefore A∗ = px = 0. Then, the difference in the action
between the connected and disconnected configurations is

∆SD2 = 2
πgs`3s

[∫ ∞
r∗

dr
(
h

1
2 b− 1

2 A2√
A2 −A2

∗
− h

1
2 b−

1
2 A

)
−
∫ r∗

r0
dr h

1
2 b−

1
2 A

]

= ND2

[∫ ξ∗

0

dξ
ξ2
√

1− ξ4

(
h

1
2 b− 1

2 A2√
A2 −A2

∗
− h

1
2 b−

1
2 A

)
−
∫ 1

ξ∗

dξ
ξ2
√

1− ξ4 h
1
2 b−

1
2 A

]
,

(D.16)

where
ND2 = 4

√
2M. (D.17)

The dominant configuration will be the one with least action, so the point where ∆SD2 = 0
determines the screening length for the monopoles. In addition, there is maximal possible
separation L for the connected configuration.

E Numerics

In this appendix we give some details of the numerical strategy, including the boundary
conditions (expansions) imposed both at the UV and the two possible IRs. These expansion
are available to use upon request.
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In solving the equations numerically, it will be convenient to work with dimensionless
quantities by rescaling the fields. For the functions in the metric we take

e2f = ρ2
0 e

2F , e2g = ρ2
0 e

2G , h = 128 q2
c

9ρ6
0

h , (E.1)

with ρ0 some constant with dimensions of length.12 Similarly, the scalars are redefined to

bJ = 2qc
3ρ0
BJ , bX = − 2qc

3ρ0
BX , aJ = −qc2 − qcAJ , (E.2)

while the vector potentials and magnetic field are written as

at = ρ3
0
qc
At, ât = ρ2

0 Ât, ãt = ρ2
0 Ãt, B = 1

gs`s

N

M2
ρ5

0
q2
c

b . (E.3)

The functions eΛ and b are already dimensionless and do not need rescaling. Written in
terms of the dimensionless radial coordinate ξ defined in (3.16) and the rescaled functions
in (E.1), (E.2) and (E.3), the dimensionful quantities ρ0 and qc factor out and one ends up
with a completely dimensionless set of equations.

E.1 UV expansion

The expansion of the dimensionless functions compatible with the desired D2-brane UV
asymptotics takes the following form13

e2F =
( 1

2ξ2

)(
1 +

∞∑
k=1

∞∑
l=1

f UV
l,k ξ

k logl ξ
)
,

e2G =
( 1

4ξ2

)(
1 +

∞∑
k=1

∞∑
l=0

gUV
l,k ξ

k logl ξ
)
,

e2Λ = 1 +
∞∑
k=1

∞∑
l=0

lUV
l,k ξ

k logl ξ , b = 1 +
∞∑
k=5

∞∑
l=0

bUV
l,k ξ

k logl ξ ,

h = ξ5
∞∑
k=0

∞∑
l=0

hUV
l,k ξ

k logl ξ , AJ =
∞∑
k=0

∞∑
l=0

AUV
J ; l,k ξ

k logl ξ ,

BJ =
∞∑
k=0

∞∑
l=0

BUV
J ; l,k ξ

k logl ξ , BX =
∞∑
k=0

∞∑
l=0

BUV
X; l,k ξ

k logl ξ ,

At =
∞∑
k=0

∞∑
l=0

AUV
l,k ξ

k logl ξ , Ât =
∞∑
k=1

∞∑
l=0

ÂUV
l,k ξ

k logl ξ ,

Ãt =
∞∑
k=1

∞∑
l=0

ÃUV
l,k ξ

k logl ξ .

(E.4)
12The notation is not accidental, as it coincides with the parameter ρ0 for the ground state solution in

appendix C. Notice that, as seen in (3.8), the parameter qc has dimensions of length cubed.
13The logarithms appear at a relatively high order; for instance, in the metric function e2F , the first

non-vanishing coefficients in log ξ and log2 ξ are f UV
1,9 and f UV

2,18 respectively. Moreover, all of them vanish if
the magnetic field is set to zero.
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Some parameters in these series are left undetermined by the equations, while the rest are
given in terms of them. We chose the free coefficients in the previous expansions to be

f UV
0,4 f UV

0,5 f UV
0,10 BUV

J ; 0,0 BUV
J ; 0,4 BUV

J ; 0,6

f4 f5 f10 b0 b4 b6

BUV
J ; 0,9 bUV

0,5 AUV
0,0 AUV

0,1 ÃUV
0,4 ÂUV

0,5

b9 b5 v0 v1 v4 v5

We rename them as in the second row for the sake of clarity. This is the notation used in
the bulk of the paper. In terms of these independent coefficients the expansions read

e2F = 1
2ξ2

(
1+f4ξ

4+f5ξ
5+· · ·+f10ξ

10+O
(
ξ11
))

, e2G = 1
4ξ2

(
1+O

(
ξ4
))

,

e2Λ = 1+O
(
ξ5
)
, h =−3b0

5 ξ5+O
(
ξ6
)
, b = 1+b5ξ

5+O
(
ξ6
)
,

BJ = b0+· · ·+b4ξ4+· · ·+b6ξ6+· · ·+b9ξ9+O
(
ξ10
)
,

BX = b0+O (ξ) , AJ =−2
3 +O (ξ) , At = v0+v1ξ+O

(
ξ2
)
,

Ât = 2b0v1
15 ξ+· · ·+v5ξ

5+O
(
ξ6
)
, Ãt =−2b0v1

15 ξ+· · ·+v4ξ
4+O

(
ξ5
)
.

(E.5)
The parameter f UV

0,1 is also free. However, it is related to a shift in the original radial
coordinate r,

r 7→ r + a , (E.6)

and we are free to set it to zero, f UV
0,1 = 0. Some modes, such as f10 and b9, appear

at a relatively high order. Thus, we reached a high order in the expansion so that they
could be resolved in our numerical procedure. Namely, we solved up to the term f UV

0,20ξ
20

in the e2F function and the corresponding terms in the rest of the functions which are
solved at the same order. Below, we show the coefficients that appear in the renormalized
action (B.52), and therefore are needed to obtain the thermodynamic quantities, in terms
of the undetermined ones.

Coefficients appearing in e2F :
f UV

0,1 = f UV
0,2 = f UV

0,3 = 0 . (E.7)

Coefficients appearing in e2G:
gUV

0,1 = gUV
0,2 = gUV

0,3 = 0 , gUV
0,4 = −2f4 − 1 , gUV

0,5 = f5 . (E.8)

Coefficients appearing in eΛ:
lUV

0,1 = lUV
0,2 = lUV

0,3 = lUV
0,4 = 0 , lUV

0,5 = f5 . (E.9)

Coefficients appearing in BJ :
BUV
J ; 0,1 = 4 , BUV

J ; 0,2 = BUV
J ; 0,3 = 0 , BUV

J ; 0,5 = 2
5 (16f4 + 7) . (E.10)
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Coefficients appearing in BX :
BUV
X; 0,0 = b0 , BUV

X; 0,1 = 4 , BUV
X; 0,2 = BUV

X; 0,3 = 0 ,

BUV
X; 0,4 = −b42 , BUV

X; 0,5 = −2
5 (14f4 + 3) .

(E.11)

Coefficients appearing in AJ :
AUV
J ; 0,0 = −2

3 , AUV
J ; 0,1 = 0 . (E.12)

Coefficients appearing in h:
hUV

0,0 = −3b0
5 , hUV

0,1 = −2 , hUV
0,2 = 0 ,

hUV
0,3 = 0 , hUV

0,4 = −b02 , hUV
0,5 = 1

50 (45b0f5 + 24f4 − 92) ,
(E.13)

Coefficients appearing in Ât:
ÂUV

0,1 = 2
15b0v1 , (E.14)

Coefficients appearing in Ãt:
ÃUV

0,1 = − 2
15b0v1 , (E.15)

Imposing that the different backgrounds have the same leading asymptotic behaviour
— except for At, whose leading term v0 is related to the chemical potential — forces a
relation between the parameter b0 and the length scale ρ0. This is most easily seen in the
scalars bJ and bX . Their leading terms in the UV are

bJ = 2qc
3ρ0
BJ = 2qc

3
b0
ρ0

+ · · · , bX = − 2qc
3ρ0
BX = −2qc

3
b0
ρ0

+ · · · , (E.16)

so the ratio b0/ρ0 must be held fixed in comparing different solutions. To fix its value, we
demand that the warp factor h in the metric has the asymptotic behaviour of a D2-brane,
which in our conventions is

h = 16
5
QD2

r5 + · · · = 128 q2
c

15ρ6
0
|b0| ξ5 + · · · . (E.17)

Using that the relation between radial coordinates is r = ρ0/ξ in the asymptotic UV, one
gets

ρ0
b0

= −8
3
q2
c

QD2
= −`

2
s

2 λ
M2

N2 , (E.18)

where in the last step we assumed that the D2-brane charge QD2 = 3π2`5sgsN is quantized
in the usual manner (see eq. (B.24)). This argument is analogous to that leading to (C.15)
in appendix C.1 for the ground state by selecting the appropriate value b0 = −3K (−1),
with K(m) the complete elliptic integral of the first kind.

Let us now discuss the two different IR boundary conditions. These correspond to two
different phases in the dual gauge theory.
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E.2 Magnetized confining phase

This is a background at finite magnetic field sharing the IR boundary conditions with the
ground state. In particular, the two-sphere collapses in a smooth manner while S4 remains
at finite size (see eq. (C.3)). Moreover, curvature invariants remain finite everywhere.

To be precise, in the radial coordinate (3.16), with the IR located at ξ → 1, the
equations admit the following perturbative solution

e2F = fIR+O(1−ξ)1 , e2G = 1−ξ
bIR

+O(1−ξ)2 , eΛ =λIR+O(1−ξ)1 ,

b = bIR+O(1−ξ)1 , h = hIR+O(1−ξ)1 , BJ =χJ(1−ξ) 1
2 +O(1−ξ) 3

2 ,

BX =χX(1−ξ) 3
2 +O(1−ξ) 5

2 , AJ =−1+αJ(1−ξ)+O(1−ξ)2 ,

At =αIR(1−ξ)+O(1−ξ)2 , Ât = α̂IR(1−ξ) 1
2 +O(1−ξ) 3

2 , Ãt =O(1−ξ) 3
2 .

(E.19)
The equations admit constant terms for the vector potentials. However, the ones for Ât
and Ãt must be set to zero in order to prevent a non-vanishing flux on the collapsing
two-sphere in the IR.14 Additionally, we fix the constant parameter of the massless vector
At to zero, since one can always use gauge invariance to shift its value and we are keeping
the analogous parameter v0 in the UV. The constant parameters we made explicit are the
ones that we chose to leave undetermined by the equations of motion.

As we mentioned, this IR boundary condition gives rise to a regular ten-dimensional
metric. Indeed, solving the change of coordinates (3.16) perturbatively in the IR, one finds
that

1− ξ = 1
ρ2

0
(r − r0)2 − 11

6ρ4
0

(r − r0)4 + 71
18ρ6

0
(r − r0)6 +O (r − r0)8 . (E.20)

Substituting in the metric ansatz

ds2 ≈ 3ρ3
0

8qc
√

2
h−

1
2

IR

(
−bIRdt2 + dx2

1 + dx2
2

)
+ 8qc

√
2

3ρ3
0

h
1
2
IR

bIR

(
dr2 + (r − r0)2

[(
E1
)2

+
(
E2
)2
])

+ 8qc
√

2
3ρ0

h
1
2
IRfIRdΩ2

4 ,

(E.21)
where we are keeping only the leading order in (r− r0) for every metric component. From
this we see that the metric is regular, as the S2 shrinks smoothly and the transverse topology
becomes that of an R3 bundle over S4, exactly as in the ground state geometry (C.3).

The UV and IR asymptotic expansions leave us with undetermined parameters that
have to be found via numerical shooting methods. For each choice of magnetic field, the
set of parameters we shoot for is

{f4, f5, f10, b4, b6, b9; b5; b0; v0; v1, v4, v5; fIR, bIR, λIR, χJ , χX , αJ , hIR, αIR, α̂IR} .
(E.22)

14The equations of motion set Ât = −Ãt in the IR. However, they leave undetermined the component
C3 ⊃ Ãtdt ∧X2. Since X2 is a collapsing cycle, regularity forces this term to vanish in the IR.
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The first 6 are UV parameters associated to normalizable modes in the scalar sector —
comprising six non-axionic scalars, as seen in (B.30) — and would correspond to vacuum
expectation values on the field theory dual. The parameter b5 is a metric deformation
allowed by the breaking of three-dimensional Lorentz invariance, in this case due to the
magnetic field/chemical potential. The constant b0 appears in the leading term of the
scalars bJ and bX , as well as the warp factor h, and is also determined numerically. Since
the ratio in (3.17) must be kept fixed, this forces us to change ρ0 accordingly for each
solution.

The parameter v0 is the leading term in the expansion of the massless vector and
therefore controls the chemical potential associated to the UM(1) symmetry. Its value will
be determined by the shooting procedure, but, since the gauge invariance of the equations
allows us to shift at by an arbitrary constant, we can construct confining solutions with
an arbitrary chemical potential. Equivalently, one could have retained the undetermined
constant in the IR expansion of the vector potential, since the boundary conditions allow
it, and determine it numerically for any fixed value of the chemical potential. This is in
contrast with the black hole case, in which regularity forces the vector potential to vanish
at the non-extremal horizon.

The parameter v1 is the subleading term in the expansion of the massless vector and as
such it will be related to the charge density, while v4 and v5 are the normalizable modes in
the massive vector potentials and thus correspond to vacuum expectation values for their
dual operators. Finally, the remaining 9 constants are simply IR parameters to be found
numerically.

Once the magnetic field is fixed, there are in total 21 parameters to be determined by
the numerical procedure. This matches the number of degrees of freedom of our system of
equations (see section 3.1), which consist of 11 second order differential equations subject to
a first order constraint. This means that, for every value of the temperature and chemical
potential, there is a one-parameter family of solutions labelled by the magnetic field b.

E.3 Magnetized plasma phase

These deconfined states correspond in the gravity dual to non-extremal black branes at
non-vanishing magnetic field. In order to have a horizon the blackening factor b must have
a simple zero. On the other hand, both the scalars and the rest of the metric functions
reach a finite value at the horizon. Denoting the position of the horizon as ξ = ξh in the
dimensionless radial coordinate introduced in equation (3.16), this implies

AJ = Ah +O(ξ − ξh) , BJ = Jh +O(ξ − ξh) , BX = Xh +O(ξ − ξh) ,
e2F = fh +O(ξ − ξh) , e2G = gh +O(ξ − ξh) , eΛ = λh +O(ξ − ξh) ,

h = hh +O(ξ − ξh) , b = bh(ξ − ξh) +O(ξ − ξh)2

(E.23)
Regularity at the horizon implies additionally that the time component of the vectors must
vanish, so they verify an expansion of the form

At = αh(ξ − ξh) +O(ξ − ξh)2 , Ât = α̂h(ξ − ξh) +O(ξ − ξh)2 ,

Ãt = α̃h(ξ − ξh) +O(ξ − ξh)2 ,
(E.24)
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All the subleading coefficients are fixed in terms of these eleven leading-order parameters.
In this way, the constants that are determined by the numerical procedure are

{f4, f5, f10, b4, b6, b9; b5; v1, v4, v5; fh, gh, bh, λh, Jh, Xh, Ah, hh, αh, α̂h, α̃h}. (E.25)

The first ten are UV parameters and have the same meaning as in the previous section.
For these solutions we fix the parameter b0 to its ground-state value, b0 = −3K(−1), as
in [16]. The remaining eleven are horizon parameters that control physical properties such
as the entropy and temperature. The total number matches again the degrees of freedom
of our system of equations. This leaves three unfixed control parameters: v0, ξh and b or,
equivalently, the chemical potential, the temperature and the magnetic field, describing a
three-parameter family of black branes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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