

Afección por desprendimientos rocosos entre los PK 41+000 y 51+750 de la carretera autonómica AS-15 (valle del río Narcea, Asturias)

Trabajo Fin de Máster

Máster en Recursos Geológicos e Ingeniería Geológica

Sergio Fernández Carnero

Julio 2023

Agradecimientos

Quiero expresar mi sincero agradecimiento a las personas clave que han sido fundamentales para el desarrollo de este proyecto:

A mi tutor, Carlos López, por su orientación y apoyo a lo largo de este trabajo. Su experiencia y dedicación fueron invaluables.

A mis padres, por su constante apoyo y ánimo. Su respaldo ha sido fundamental en mi camino académico.

A Noa, Sofía y, especialmente, a María, por enseñarme todo lo que sé sobre ArcGis. Su ayuda y conocimientos compartidos fueron de gran valor.

Y finalmente, a mi pareja, por su apoyo incondicional durante este último año. Su compañía y respaldo me han dado la fuerza para superar los desafíos y seguir adelante.

A todos ustedes, les agradezco sinceramente por su contribución a este proyecto. Sin su apoyo, esto no hubiera sido posible.

INDICE

Resumen2
Abstract2
I. INTRODUCCIÓN
1.1. Antecedentes
1.2. Objetivos5
II. CONTEXTO GEOGRÁFICO Y GEOLÓGICO6
2.1. Contexto geográfico6
2.2. Contexto geológico8
III. METODOLOGÍA12
3.1. Recopilación bibliográfica12
3.2. Recopilación de información y elaboración de base cartográfica12
3.3. Trabajo de campo14
3.4. Modelización de caída de rocas en sectores de interés17
IV. RESULTADOS
4.1. Cartografía de las zonas activas de acumulación de bloques desprendidos20
4.2. Sectorización del trazado en función de la peligrosidad21
4.3. Caracterización geomecánica del macizo rocoso24
4.4. Modelización de los sectores de interés mediante RocFall230
V. CONCLUSIONES40
VI. BIBLIOGRAFÍA42
ANEXOS44

Resumen

En este Trabajo de Fin de Máster se ha analizado la caída de rocas en el tramo de la carretera autonómica AS-15 que discurre entre los P. K 41+000 y P. K 51+750 (Cangas del Narcea, Asturias). Esta vía, que transcurre al pie de una ladera de importante pendiente siguiendo el curso del río Narcea, se caracteriza por una marcada problemática (cortes parciales o totales de tráfico, accidentes por impacto, etc.) en relación con este tipo de movimientos de ladera. El análisis de las características topográficas y geológicas del entorno de la vía, la caracterización geomecánica del macizo rocoso y la modelización de la caída de rocas en algunos puntos del trazado ha permitido sectorizar el trazado en función del tipo de inestabilidad y establecer la trayectoria y energía de llegada de las rocas desprendidas desde las laderas. Por último, se presenta una propuesta de medidas de estabilización de taludes y protección de la vía frente a desprendimientos rocosos.

Abstract

In this Master's thesis we have analysed rockfall on the section of the AS-15 regional road running between P. K 41+000 and P. K 51+750 (Cangas del Narcea, Asturias). This road, which runs at the foot of a steep slope following the course of the river Narcea, is characterised by marked problems (partial or total interruption of traffic, accidents due to impact, etc.) in relation to this type of slope movement. The analysis of the topographical and geological characteristics of the surroundings of the road, the geomechanical characterisation of the rock massif and the modelling of rockfall at some points along the route have made it possible to sectorise the route according to the type of instability and to establish the trajectory and energy of arrival of the rocks falling from the slopes. Finally, a proposal is presented for measures to stabilise slopes and protect the road against rock falls.

I. INTRODUCCIÓN

1.1. Antecedentes

Esta memoria corresponde al Trabajo de Fin de Máster (en adelante TFM), asignatura de 18 créditos ECTS del Máster universitario en Recursos Geológicos e Ingeniería Geológica que se imparte en la Facultad de Geología de la Universidad de Oviedo.

El TFM aborda la problemática relacionada con los frecuentes desprendimientos rocosos que se producen desde las laderas y taludes hacia la calzada de la carretera autonómica AS-15 en el tramo comprendido entre las localidades de Villar de Lantero y Puente del Infierno (Principado de Asturias).

Esta carretera se integra formalmente dentro de la Red Regional de Carreteras del Principado de Asturias y transcurre entre las localidades de La Rodriga (municipio de Salas) y el Puerto de Cerredo (municipio de Degaña), en el límite con la provincia de León, con una longitud de 113 km (*Boletín Oficial del Principado de Asturias*, 2019). Esta carretera discurre por los concejos asturianos de Salas, Belmonte de Miranda, Tineo, Cangas del Narcea y Degaña. Comenzó a construirse en el año 1934 con el tramo Ouviaño-Cangas del Narcea (Gutiérrez, 2018) y se ha ido reformando, ampliando y mejorando en sucesivas ocasiones desde entonces.

Esta carretera ha sufrido problemas de desprendimientos de mayor o menor entidad a lo largo de toda su historia y, a pesar de las medidas de estabilización aplicadas en diferentes puntos (muros de escollera, las mallas de guiado y barreras dinámicas de protección), estos se siguen produciendo con frecuencia.

El tramo objeto de estudio en este TFM comprende el tramo de carretera comprendido entre los PK 41+000 y 51+750, comenzando en un punto intermedio entre las localidades de Villar de Lantero y Villanueva de Sorriba y terminando poco antes del Puente del Infierno (Fig. 1-1).

Figura 1-1. Trazado del tramo de carretera AS-15 entre los PK 41+000 y 51+750 (Base Topográfica Nacional 1:100.000 de España 2021 del Instituto Geográfico Nacional)

Los desprendimientos rocosos y las caídas son procesos geológicos condicionados por diversos factores (litología, condiciones hidrogeológicas, estructura del macizo rocoso, meteorología, gravedad, etc.) y desencadenados en esta zona principalmente por las precipitaciones y la intervención humana sobre las laderas. La carretera AS-15 ha sufrido con frecuencia estos fenómenos desde su construcción, cuyas consecuencias han sido de diverso alcance:

(i) daños a los vehículos por impacto directo;

(ii) cortes de la carretera, imposibilitando el tránsito de vehículos hasta la retirada de los materiales desprendidos, con el consiguiente perjuicio económico y social;

(iii) daños en la propia infraestructura (firme, señalización, muros de contención, etc.) y

(iv) pérdida de vidas humanas, como la ocurrida el 29 de noviembre de 2021 en la localidad de Soto de la Barca como consecuencia del impacto directo de rocas desprendidas desde la ladera (Álvarez, 2021).

1.2 Objetivos

El objetivo principal de este estudio es identificar los sectores de la carretera AS-15 entre los PK 41+000 y 51+750 donde existe un mayor peligro de desprendimientos rocosos y proponer alternativas de estabilización y/o protección de la vía frente a los mismos. Para alcanzar este objetivo se ha planteado la consecución de los siguientes objetivos de carácter más concreto: (i) identificar las potenciales áreas fuente de desprendimientos, (ii) identificar las zonas activas de acumulación de bloques desprendidos, (iii) diferenciar las zonas de caída de roca desde laderas naturales y desde taludes de origen antrópico, (iv) modelizar las trayectorias de caída de rocas en secciones representativas de las zonas con mayor peligrosidad del trazado, (v) caracterizar geomecánicamente el macizo rocoso e (iv) identificar potenciales medidas de estabilización y protección en los sectores más críticos.

II. CONTEXTO GEOGRÁFICO Y GEOLÓGICO

2.1. Contexto geográfico

El tramo de carretera objeto de estudio se encuentra en la zona sudoccidental del Principado de Asturias (NO de España), concretamente en la mitad septentrional del municipio de Cangas del Narcea, colindando con el de Tineo (Fig. 2-1). Presenta una longitud de 10 km, entre los PK 41+000 y 51+750, correspondientes a las localidades de Villar de Lantero y El Puelo, que discurren principalmente al pie de la ladera occidental del valle del río Narcea y, puntualmente, sobre la llanura de inundación de éste.

Figura 2-1. Trazado del tramo estudiado de la AS-15 sobre la ortofotografía fechada en 2022 y tomada del Plan Nacional de Ortofotografía Aérea, Instituto Geográfico Nacional.

El relieve de este lado del valle consta principalmente de pendientes bastante acusadas que llegan a alcanzar los 50°, aunque estas alternan con zonas cuya pendiente no supera los 10° (Fig 2-2A). El fondo del valle se encuentra a una altitud cercana a los 300 m, oscilando las mayores elevaciones de la zona entre los 500 y los 650 m a lo largo de todo el tramo (Fig. 2-2B). El trazado del cauce describe una

trayectoria sinuosa general Norte- Sur, siendo frecuentes los meandros y escaseando los tramos rectos.

Figura 2-2. (A) Mapa de pendientes de la zona de estudio. (B) Mapa de rangos de elevaciones de la zona de estudio. Imágenes realizadas con el programa ArcGis (v.10.3.1).

El clima de esta zona se caracteriza por unas precipitaciones anuales elevadas, entre 1.000 y 1.400 mm de media, siendo estas uno de los factores desencadenantes de los desprendimientos. Las precipitaciones en esta zona están influenciadas por el clima atlántico característico de la región cantábrica.

Según el criterio de Köeppen (1900), se trataría de un clima *Cfb* (clima sin estación seca y verano templado). Dentro de los climas tipo *C*, en los que la temperatura media del mes más frío está comprendida entre los 0 y los 18° C, se distingue el subtipo *f* que indica que no hay estación seca. La letra *b* indica verano templado (el mes más cálido presenta una temperatura menor o igual a 22° C) y con cuatro meses o más con una temperatura media mayor a 10° C (*Agencia Estatal de Meteorología*, 2011).

2.2 Contexto geológico

El tramo de carretera a analizar se encuentra en uno de los flancos del Antiforme del Narcea (Lotze, 1945 y Julivert, 1971), estructura que separa la Zona Astur occidental-Leonesa y la Zona Cantábrica (Fig. 2-3).

Figura 2-3. Unidades principales de la Zona Cantábrica de acuerdo Julivert (1971) tomado de Vera (2004). En rojo se indica la zona donde se sitúa la carretera objeto de estudio.

En esta zona afloran materiales Precámbricos de edad Proterozoica como areniscas y pizarras, sobre los que se disponen areniscas feldespáticas de la formación Herrería y conglomerados del Carbonífero superior. En algunas zonas se han formado aluviones y coluviones de edad Cuaternaria en discordancia con los materiales inferiores (Fig. 2-4).

Figura 2-4. Mapa geológico de la zona de estudio. Tomado de la Cartografía Geológica Continuo 1:25.000 del Instituto Geológico y Minero de España.

A lo largo del tramo de carretera objeto de este estudio afloran tres grandes unidades que, de más antigua a más moderna son: (i) Pizarras del Narcea, antiguamente conocidas como Formación Narcea y que actualmente se dividen en cuatro unidades diferentes, encontrándose la zona de estudio en el sector más occidental, sobre el Antiforme del Narcea (Pérez-Estaún *et al.*, 1988); (ii) las alternancias entre areniscas y pizarras de la Formación Herrería y, iii) los conglomerados del Estefaniense.

Precámbrico

El Precámbrico que aparece en la zona de la carretera se encuentra dentro de la ventana tectónica del Narcea y se caracteriza por una alternancia de areniscas y pizarras. Se trata de una sucesión turbidítica ya que existen diversos tipos de estructuras en el interior de los estratos (laminación cruzada y paralela, ripples, slumps, etc.) dispuestas según la secuencia de Bouma, y también se pueden encontrar marcas de corriente en el muro de estas (flute casts, groove casts, etc.). Estos materiales se denominan tradicionalmente Pizarras del Narcea (Lotze, 1956) o Formación Narcea.

Cámbrico Inferior

El Cámbrico Inferior se apoya discordantemente sobre el Precámbrico y está formado por las areniscas de la Formación Herrería. Estas areniscas constituyen una formación detrítica que, en su mayor parte, está formada por areniscas feldespáticas de grano grueso con un color rosado característico, en alternancia con niveles pelíticos. La formación consta esencialmente de tres partes: una parte inferior de unos 150 m compuesta de areniscas de grano muy grueso, una parte media de unos 300 m más pelítica y con bancos de dolomía, y una parte superior que aflora en la zona del tramo de carretera, de unos 1000 m con predominio de las areniscas de grano grueso (Julivert *et al.*, 1977).

Carbonífero Superior

El Carbonífero Superior que se observa en la zona de estudio corresponde con conglomerados rojizos de edad Estefaniense. En otras zonas se pueden encontrar capas de carbón en la base de la sucesión, siendo explotadas en el pasado en la denominada "Cuenca de Tineo" (Álvarez-Ramis, 1967).

Sobre el sustrato rocoso se disponen de forma discordante diferentes formaciones superficiales. Destacan ocupando el fondo de valle excavado por el río Narcea los depósitos aluviales ligados a este cauce y que dan lugar a la llanura de inundación adyacente al mismo. Asimismo, aparecen terrazas aluviales de reducida extensión en las zonas más alejadas del cauce. En la parte media e inferior de las laderas aparecen depósitos de gravedad de diferente entidad, generalmente compuestos por bloques decimétricos de roca sin apenas matriz. Julivert *et al.* (1977) describió, asimismo, que en algunas zonas aparecen derrubios desordenados, cuyo origen presume ligado a la última glaciación.

III. METODOLOGÍA

A lo largo de este capítulo se describe la metodología llevada a cabo en este TFM, que constó de los siguientes puntos: (i) recopilación de trabajos previos sobre la geología de la zona; (ii) recopilación de información y elaboración de una base cartográfica implementada en un sistema de información geográfica (en adelante SIG); (iii) trabajo de campo, para elaborar la cartografía de la zona y caracterizar el macizo rocoso; (iv) modelización informática de la caída de rocas.

Recopilación bibliográfica

En una primera etapa se abordó la recopilación de trabajos geológicos realizados en la zona del tramo de carretera estudiado en este TFM. También se llevó a cabo una prospección en los medios de prensa escrita sobre desprendimientos previos y los efectos socioeconómicos que pudieron provocar.

Recopilación de información y elaboración de base cartográfica

En primer lugar, se procedió a la descarga de la información necesaria para elaborar una base de datos cartográfica de la zona de estudio. Así, se han recopilado la Hoja número 0051-3 del Mapa Topográfico Nacional a escala 1:25.000 (MTN25), el fichero de carreteras incluido en la base Topográfica Nacional a similar escala (BTN0605L), el fichero del trazado de los cauces fluviales (BTN0302L) y las curvas de nivel (BTN0201L) a escala 1:10.000 editadas por el Gobierno del Principado de Asturias, las ortofotos de máxima actualidad correspondientes al año 2022 (PNOA_MA_OF_ETRS89_HU29_h50_0050 y PNOA_MA_OF_ETRS_HU29_h50_0051) editadas en el marco del Plan Nacional de Ortofotografía Aérea y suministradas por el Instituto Geográfico Nacional, el modelo de elevaciones de la zona de estudio (1:5.000), la Cartografía Temática Ambiental a escala 1:25.000 para todo el Principado de Asturias y el mapa de susceptibilidad de desprendimientos rocosos, información asociada al trabajo "Riesgos Naturales en el Principado de Asturias", a escala 1:200.000, del Sistema de Información Territorial e Infraestructura de Datos Espaciales del Principado de Asturias (SITPA Ideas). Mediante el programa *ArcGIS* (v.10.3.1), se procedió a integrar toda esta información vectorial y ráster dentro de una base de datos, tomando como zona de interés la franja de terreno comprendida entre unos márgenes de 1 km tomando como centro la carretera AS-15. Esto conllevó la fusión de ficheros ráster y vectoriales, y su posterior recorte a la zona de estudio. El sistema de referencia utilizado ha sido el (ETRS89 UTM29N).

A continuación, se procedió a identificar el trazado de la carretera y a delimitar la zona de ladera por la que discurre esta, hasta la divisoria de aguas.

A partir de las curvas de nivel, mediante el mismo software, se elaboró un modelo digital de elevaciones con un tamaño de celda de 5 x 5 metros, a partir del cual se generó un modelo de sombreados (herramienta *Hillshade*), uno de pendientes (herramienta *Slope*) y uno de orientaciones (herramienta *Aspect*).

El análisis de toda la documentación disponible permitió elaborar una cartografía de canchales activos y de potenciales áreas fuente de desprendimientos. Asimismo, se elaboraron tres perfiles a lo largo de la carretera por sus zonas más vulnerables a partir del modelo de pendientes (herramienta *Create TIN*), usando como criterio la cartografía realizada y el mapa de susceptibilidad de desprendimientos rocosos extraído del SITPA ideas. Una vez creados los perfiles en 3D, se exportaron sus datos a una hoja Excel mediante la herramienta *Profile Graph* para, posteriormente, analizar las posibles trayectorias de caídas de rocas mediante modelizaciones con el programa *RocFall2* (v.8.818, Rocscience).

Por último, se realizó la sectorización en función de la peligrosidad de todo el trazado mediante el programa *ArcGis* (v. 10.3.1) usando las observaciones de campo descritas en el siguiente apartado y las observaciones tomadas del programa *Google Earth Pro* (v 7.3.6).

Trabajo de campo

Partiendo del conocimiento adquirido sobre la zona de estudio en la fase de gabinete, el trabajo de campo consistió en visitar la zona de estudio para elaborar la cartografía y analizar in situ las características de los perfiles trazados transversalmente a la carretera. Asimismo, en estos se levantaron las correspondientes estaciones geomecánicas con el objetivo de caracterizar el macizo rocoso.

Para abordar el trabajo de campo, se elaboraron las correspondientes cartografías topográficas de la zona de estudio (topografía, ortofotografía, modelos de pendientes, etc.). Para levantar las estaciones geomecánicas, se prepararon los oportunos estadillos (Fig. 3-1) y el material necesario (martillo, lupa, cinta métrica, esclerómetro, etc.).

En cada estación se tomaron los datos estructurales precisos para caracterizar el macizo rocoso y se calculó, de manera indirecta, la resistencia a la compresión simple con el uso del martillo Schmidt de tipo L mediante el gráfico de Miller (1965) (Fig. 3-3). Una vez tomadas las medidas de los planos de discontinuidad, se comenzó a medir el RQD, el espaciado de las juntas, la longitud de las discontinuidades, su abertura, rugosidad, relleno y alteración, y la presencia de agua (Fig. 3-2) para realizar el cálculo del RMR de Bienawski (1976).

Tras la toma de los datos estructurales, se llevó a cabo el ensayo Tilt Test para estimar el ángulo de rozamiento básico de las discontinuidades en las tres estaciones geomecánicas.

Asimismo, se efectuó un análisis in situ de las medidas de estabilización presentes a lo largo del tramo de carretera, comprobando en cada caso su eficacia y estado.

LITOLOGÍA:	PRO FEC GEÓ	YECT HA: LOGO	ю: D:					ESTA LOCA	CIÓN: LIZAC	CIÓN:				НО)JA / PLANO:		
RECUBRIMIENTO:	(NATURALE	Z4, TEXTUR	LL, ESPESOR	,			-										
ESTRUCTURA SUSTRATO:	PLIEGU	IES						FALLA	s				от	TROS	S		
FRACTURACIÓN	BL J¥	.OQUE	ES m²	M	uy gran < 1	ides		Grande 1-3	s	Me 3	dios -10	Pequ 10-	eños 30	Τ	Muy pequeño > 30	s	Muy brechificado > 60
RESISTENCIA DE MATRIZ ROCOSA	Ext	Elanda (Uňa) 0	am a	N	luy blaı (Navaja 1	nda a)	(p	Blanda unta mar 2	a tillo)	Me (1 Golp	e dia e martillo) 3	Du (+ 1 Golpe	ra : martillo)	T	Muy dura (Varios golpes) 5		Extremadam. Dura (Sólo raya con madil.) 6
GRADOS DE METEORIZACIÓN		l Sana	a	4	Algo me	ll eteoriza	ıda	Me m	III dianan eteoriz	nente ada	Muy me	IV eteorizada	Co	omp met	V pletamente teorizada		VI Suelo residual
HIDROGEOLOGÍA	Sin	presen agua	ncia de a	5	Seco (s ag	eñales gua)	de		Húmeo	do	Go	oteos			Flujo	(040	Col ESTMADO)
RESISTENCIA "R" ESCLERÔMETRO (cada junta)								OBS	ERVAC	CIONES:	A						
											-						

Figura 3-1. Ejemplo de estadillo utilizado para recopilar la información del macizo rocoso en cada estación geomecánica.

F	MR	PR FE GE	OYECTO: CHA: ÓLOGO:		_	ESTAC	IÓN: IZACIÒN:			но	JA / PL	ANO:	
	Resistencia roc	a	E. carga puntual	> 10 MPa	4-1	10 MPa	2-4 MPa	1-2 MP	9				
1	matriz		Compresión simple	> 250 MPa	100-	250 MPa	50-100 MP	a 25-50 M	Pa	5-25 MPa	1-5 M	IPa	< 1 MPa
			Valor	15		12	7	4		2	1		0
		RQ	0	90 - 100 %	6	75	-90 %	50 - 75	%	25 - 50	96		< 25 %
2			Valor	20			17	13		6			3
	E	spaci	ado	> 2 m		0.6	3 – 2 m	0.2 - 0.6	m	6 - 20 (m		< 6 cm
3			Valor	20			15	10		8			5
	Longitud	disco	ntinuidades	< 1 m		1	-3 m	3-10 m	1	10-20	m		> 20 m
			Valor	6			4	2		1			0
		Aberti	ura	Nada		< ().1 mm	0.0-1.0 n	nm	1-5 m	m		> 5 mm
			Valor	6			5	3		1			0
	F	ugosi	idad	Muy rugos	9	R	ugosa	Ligeram, ru	gosa	Ondula	da		Suave
4			Valor	6			5	3		1			0
		Relle	no	Ninguno		Relle	eno duro	Relleno d	uro	Relleno b	lando	R	elleno blando
						<	5 mm	> 5 mn	n	< 5 m	m		> 5 mm
			Valor	6			4	2		2			0
		lterad	nòin	Inalterada	1	Ligera	n, alterada	Moderad. alt	erada	Muy alter	rada	D	escompuesta
			Valor	6			5	3		1			0
5	Agua freática		Estado general	seco		Lige hi	ramente imedo	Húmed	0	Gotean	do	A	gua fluyendo
			Valor	15			10	7		4			0
Corrección	por la orientació	n de	las discontinuidade	25									
				Muy favorat	ble	Fa	vorable	Medias	5	Desfavor	ables	Muy	desfavorables
Taludes			Valor	0			-5	-25		-50			-60
Clasificació	n RMR												
C	ase		I		I					IV			v
Ca	lidad		MUY BUENA	BUE	NA		MEDI	A		MALA		MU	Y MALA
Punt	Puntusción 100-81			80-	61		60-4	1		40-21		< 20	

Figura 3-2. Ejemplo de estadillo utilizado para calcular el RMR en cada estación geomecánica.

Figura 3-3. Gráfico de dispersión media de la resistencia para un martillo Schmidt tipo L (Miller, 1965).

Los valores de dirección y buzamiento de las discontinuidades que se tomaron en el campo fueron representados estereográficamente mediante el programa Dips (v.8.021) con el objetivo de definir las familias de discontinuidades existentes elaborando mapas de densidad de polos.

Figura 3-4. Toma de datos de la estación geomecánica correspondiente al perfil 2.

Modelización de caída de rocas en sectores de interés

En tres zonas seleccionadas a lo largo del trazado por su mayor peligrosidad (Fig. 3-5), se llevó a cabo un análisis detallado de caída de rocas mediante el programa RocFall2 (v.8.818 Rocscience), software de análisis estadístico 2D diseñado para evaluar taludes y laderas con peligro de desprendimiento de rocas (Fig. 3-6).

Figura 3-5. Situación de los perfiles modelizados a lo largo de la carretera.

Figura 3-6. Ejemplo de perfil modelizado con el RocFall2. En rojo se muestran las trayectorias seguidas por las rocas desprendidas desde el área fuente. Las líneas verdes verticales simulan vegetación arbórea. La banda gris representa la carretera AS-15.

En primer lugar, se configuraron los principales parámetros de análisis del modelo, seleccionando el método *Rigid body*. Este, asume que las rocas son cuerpos volumétricos que durante la caída pueden deslizar, rebotar y rodar. A continuación, se importaron las coordenadas del perfil topográfico a modelizar, obtenidas con la herramienta *Profile Graph* del programa *ArcGIS*. Los perfiles se trazaron de forma ortogonal a la carretera AS-15 de manera que cortasen los escarpes de roca en los que se podrían producir desprendimientos y las zonas más deprimidas topográficamente por donde las rocas serían "canalizadas" hacia la carretera.

Con la herramienta *Seeder* y aplicando el criterio experto, se seleccionó la zona del perfil que se presume como área fuente de desprendimientos rocosos, simulándose la caída de 150 rocas a una velocidad horizontal inicial de 0, 1 m/s. Se estimó la masa media de las rocas a partir de un volumen promedio obtenido del espaciado de las discontinuidades observadas en campo y se usó una densidad media de cada litología (Tabla I).

PERFIL	LITOLOGÍA	MASA (kg)	DENSIDAD (kg/m ³)	VOLUMEN (m ³)
1	ARENISCA	150	2700	5, 55*10 ⁻²
2	ARENISCA	100	2700	3, 70*10 ⁻²
3	PIZARRA	15	2800	5, 36 [*] 10 ⁻³

Tabla I. Características de las rocas consideradas en la modelización de cada perfil.

Después de establecer estos parámetros, se configuraron las formas de las rocas que se desprenderán de la *Seeder Line* usando como criterio las discontinuidades y la resistencia que presenta cada litología. En el caso de las cuarcitas se han seleccionado formas poligonales como pentágonos, hexágonos y octógonos debido a la forma de rotura característica de las mismas y a la resistencia de la roca. Para las pizarras se seleccionaron formas más planas, alargadas y con los vértices y aristas suavizados como elipsoides con una relación longitud-altura 1:2 y 2:3, debido a su forma de rotura y a que presentan menor dureza respecto a las cuarcitas.

Configuradas las propiedades de las rocas, se configuraron los principales parámetros de las litologías que aparecen en cada perfil. Con la herramienta *Slope Material Library* se añadieron las litologías aflorantes de cada perfil: (i) las cuarcitas y pizarras de la formación Herrería; (ii) las pizarras de la formación Narcea; (iii) los canchales activos, y (iv) el asfalto de la carretera. Para todas ellas se establecieron los parámetros por defecto, siendo éstos diferentes entre roca, canchal y asfalto.

Para las zonas rocosas que presentan vegetación se utilizó una configuración diferente, teniendo que añadir la altura y la densidad de la vegetación. Estas características fueron establecidas en función de las observaciones de la vegetación que se realizaron en el campo y de las observaciones de las ortofotos de la zona.

Por último, se procedió al cálculo y análisis de trayectorias usando la opción *Results*. Los resultados obtenidos en la modelización son: trayectoria seguida por cada bloque individual de roca, energía cinética total de cada roca al pasar a la altura de la carretera, altura máxima del rebote de las rocas en cada punto de la carretera y la distribución de la localización de cada roca al final de su recorrido.

IV. RESULTADOS

En este apartado se presentan los resultados obtenidos tras abordar el trabajo de gabinete, campo y el análisis de trayectorias de caídas RocFall2.

4.1. Cartografía de las zonas activas de acumulación de bloques desprendidos.

En primer lugar, se identificó el área de influencia de caída de rocas sobre la carretera (Fig. 4-1), tomando como criterio la ladera sobre la que transcurre esta y el límite superior que constituye la divisoria de aguas.

En general, la distancia entre la divisoria de aguas y la carretera oscila entre los 700 m y los 100 m de distancia. Dentro de esta área se cartografiaron dos canchales activos principales, en cuya zona baja transcurre la AS-15. El primer canchal cartografiado se encuentra, aproximadamente, en el P. K. 50+750 y el segundo canchal en el P. K. 46+750.

Figura 4-1. Área de influencia de las caídas de rocas sobre la carretera AS-15 y situación de los canchales activos.

4.2. Sectorización del trazado en función de la peligrosidad.

Integrando toda la información disponible, se realizó una sectorización del trazado en función de su peligrosidad, que se presenta en la figura 4-2, definiéndose las siguientes zonas

(i) zonas de baja peligrosidad: corresponden a sectores de la carretera en que no es esperable la ocurrencia de desprendimientos rocosos ni la caída de derrubios, por lo que no sería necesario aplicar ninguna medida de contención. En total, estas zonas comprenden 4, 20 km del tramo de carretera objeto de estudio.

(ii) zonas con peligro de caída de rocas desde el talud de la carretera: corresponden a sectores de la carretera en los que existe un riesgo elevado de que se produzcan desprendimientos rocosos desde el talud excavado para ejecutar la vía. Estas zonas ocupan 2, 50 km a lo largo de todo el tramo de carretera estudiado. Se trata de zonas en las que habría que realizar estudios específicos con el fin de determinar, en su caso, las medidas de estabilización necesarias.

(iii) zonas con taludes protegidos con mallas de triple torsión. Estas zonas corresponden a sectores ataluzados de la carretera que contienen sistemas de estabilización basados en el empleo de mallas de triple torsión. Aún con esta medida de protección, en estas zonas se observan mallas que se encuentran en mal estado y necesitan mantenimiento. También hay que tener en cuenta que la caída de una roca de tamaño decimétrico o métrico puede hacer insuficiente esta medida de contención. Estas zonas ocupan 1,60 km del tramo de carretera estudiado.

(iv) zonas con peligro de caída de derrubios. Estas zonas corresponden a sectores de la carretera en las que existe riesgo de que se produzcan caída de derrubios desde el talud artificial de la carretera. Son zonas en las que se podrían de adoptar medidas de contención indicadas para este tipo de suelos. Estos sectores ocupan 1 km a lo largo de todo el tramo de carretera estudiado.

(v) zonas con peligro de caída de roca desde la ladera. Estas zonas corresponden a sectores de la carretera en la que existe un alto riesgo de que se produzcan caídas de roca desde la ladera adyacente. El área fuente de desprendimiento de estas rocas son generalmente escarpes naturales situados en la parte media y alta de las laderas. Son los sectores más peligrosos del tramo de carretera y que, en consecuencia, requieren mayores medidas de estabilización. Estos sectores ocupan 700 m a lo largo de todo el tramo de carretera estudiado.

Figura 4-2. Sectorización del tramo de carretera objeto de estudio y situación de los perfiles modelizados.

4.3. Caracterización geomecánica del macizo rocoso.

Se levantaron tres estaciones geomecánicas a lo largo del tramo de la carretera (Fig. 4-3) objeto de estudio, coincidiendo éstas con la situación de los perfiles considerados para abordar los estudios de caída de roca.

Figura 4-3. Situación de las estaciones geomecánicas.

Estación geomecánica 1

En el afloramiento elegido para levantar la estación geomecánica 1, se encuentra sobre el perfil 1, en una litología correspondiente a las areniscas de la Fm. Herrería. No hay presencia de recubrimiento vegetal y no se observan estructuras como pliegues o fallas que puedan favorecer la caída de rocas. La roca presenta una fracturación que genera un tamaño de bloque medio, encontrando unas seis juntas por metro cúbico. La resistencia de la matriz rocosa es extremadamente dura al ser rayada únicamente con el martillo. La roca presenta un grado II de meteorización, y no hay presencia de agua. La resistencia media de cada plano de discontinuidad, medida con el martillo Schmidt, es: Jv1=38; Jv2=43; Jv3=40; Jv4=35. Todos estos datos han sido reflejados en la Figura 4-4.

	PRO FEC	DYECT CHA: 1 ÓLOG	FO: De 5/06/20 O: SER	sprei 23 GIO	ndimient FERNÁ	os roco NDEZ	sos e	ntre lo: ESTA LOC/	SPK 41 CIÓN: ALIZAC	+000 y 51 1 (PERF :IÓN: PU	+000 de la IL 1) ENTE DE	carretera aut L INFIERNO	onómic	a AS-15 (Valle de HOJA / PL	el río Nar ANO:	cea, Asturias)
LITOLOGÍA:	AREN	NISCA	s						FORM	ACIÓN:	HERRER	A				
RECUBRIMIENTO:	(NUTURUU	EZA, TEXTU	P.J., 539530	8												
ESTRUCTURA SUSTRATO:	PLIEG	UES						FALL	AS				OTF	105		
FRACTURACIÓN	B	LOQU	ES /m²	,	4uy grar ⊲1	ndes	8	Grande 1-3	25	Me 3	dios -10	Pequeñ 10-30	05	Muy pequeño ⊳ 30	s Muy	brechificado > 60
RESISTENCIA DE MATRIZ ROCOSA	Ex	Bland (Uña) 0	iam. a		Muy bla (Navaja 1	nda a)	(P	Bland unta ma 2	a rtilio)	Me (1 Golp	edia e martilio) 3	Dura (+ 1 Golpe n 4	artilio)	Muy dura (Varios golpes) 5	(Sold	tremadam. Dura raya con madi 6
GRADOS DE METEORIZACIÓN		l San	а		Algo mi	II eteoriza	sda	Me	III edianan neteoriz	nente ada	Muy me	IV eteorizada	Co	V mpletamente ieteorizada	Sue	VI lo residual
HIDROGEOLOGÍA	Sin	prese agu	ncia de a		Seco (s a	eñales gua)	de		Húmeo	io	Go	oteos		Flujo	(COUDOL EST	VILDO)
RESISTENCIA "R" ESCLERÓMETRO (cada junta)	Jv ₁ 38	Jv ₂ 43	Jv ₃ 40	JV4 35				OBS	ERVA	CIONES:						
		and the second			A REAL PROPERTY AND A REAL				E	SQUEM	A					

Figura 4-4. Caracterización geomecánica del macizo rocoso en la estación EG-1.

Una vez descrito con carácter general el macizo rocoso, se tomaron los datos estructurales del mismo, determinándose la dirección de buzamiento de cada una de las familias de discontinuidades y las características de cada una de ellas. Se midió el espaciado en mm, la continuidad, su abertura en mm, su rugosidad y el relleno, teniendo en cuenta la meteorización, las condiciones hidrogeológicas y la resistencia. Los resultados detallados se muestran en el Anexo 4.

A continuación, se procedió al cálculo del RMR (Bieniawski, 1989) usando para ello el estadillo que se muestra en la figura 4-5. Para ello, en primer lugar, se calculó la resistencia de la roca matriz para calcular la resistencia a la compresión simple de manera indirecta, obteniendo valores ligeramente superiores a 100MPa (Anexo 10). Luego, se midió el espaciado entre las familias de discontinuidades, siendo de unos 30 cm. Después se estimó el RQD, utilizando como criterio el espaciado entre las familias de diaclasas, presentando éste un valor del 65%. Una vez definidos el RQD, el espaciado y la resistencia de la roca matriz, se realizó un estudio de las discontinuidades en el que se definió una longitud mayor de 20 metros en todas las familias con una abertura que oscila entre los 2 y 3 mm sin presencia de relleno, siendo los planos ligeramente rugosos. Los planos de las discontinuidades están ligeramente alterados y no hay presencia de agua. Estos parámetros nos permiten clasificar el macizo rocoso como una clase II, calidad Buena y puntuación 65.

F	RMR	PROYECTO: Deeprer FECHA: 15/06/2023 GEÓLOGO: SERGIO	dimientos rocoso D FERNÁNDEZ	e entre los PK 41 ESTAC LOCA	+000 y 51+000 d CIÓN: 1 (PER LIZACIÓN: P	de la carretera auton FIL 1) UENTE DEL INFI	ómica A \$-15 (Vali ERNO I	e del rio Narce HOJA / PLA	a, Asturias) NO:		
	Resistencia roc	E. carga puntual	> 10 MPa	4-10 MPa	2-4 MPa	1-2 MPa					
1	matriz	Compresión simple	> 250 MPa	100-250 MPa	50-100 MPa	a 25-50 MPa	MPa 5-25 MPa 1-5 MPa 2 1				
		Valor	15	12	7	4	2	2 1 25-50% <			
2		RQD	90 - 100 %	75	-90 %	50 - 75 %	25 - 50	0%	< 25 %		
2		Valor	20		17	13	6		3		
2	E	spaciado	> 2 m	0.	8–2 m	0.2 - 0.8 m	0.6 m 6 - 20 cm		< 6 cm		
3		Valor	20		15	10	8	8			
	Longitud	discontinuidades	< 1 m		1-3 m	3-10 m	10-20	10-20 m			
		Valor	6		4	2	1		0		
		Abertura	Nada	<	0.1 mm	0.0-1.0 mm	1-5 m	m	> 5 mm		
		Valor	6		5	3	1		0		
	R	ugosidad	Muy rugosa	a R	ugosa	Ligecam, rugosa	Ondula	ada	Suave		
4		Valor	6		5	3	1	Ondulada 1			
		Relleno	Ninguno	Rel	eno duro	Relieno duro	Relleno b	olando	Relleno blando		
				<	5 mm	> 5 mm	< 5 m	m	> 5 mm		
		Valor	6		4	2	2		0		
	A	Iteración	Inalterada	Lizeca	m, alterada	Moderad. alterada	a Muyalte	erada	Descompuesta		
		Valor	6		5	3	1		0		
5	Agua freática	Estado general	seco	Lige h	ramente úmedo	Húmedo	Gotea	ndo	Agua fluyendo		
		Valor	15		10	7	4		0		
Corrección	por la orientació	n de las discontinuidad	es								
			Muy favorab	le Fa	vorable	Medias	Desfavo	rables M	Muy desfavorables		
Taludes		Valor	0		-5	-25	-50		-60		
Clasificació	n RMR										
a	ase	I					IV		v		
Ca	lidad	MUY BUENA	BUE	NA	MEDU	A	MALA		MUY MALA		
Punt	Puntuación 100-81 80-61 60-41 40-21 <20				< 20						

Figura 4-5. Clasificación RMR del macizo rocoso en la estación geomecánica 1.

Después de caracterizar y clasificar el macizo rocoso se procedió a realizar el ensayo Tilt Test para estimar el ángulo de rozamiento básico de las discontinuidades de las areniscas de la Fm. Herrería, obteniéndose un valor promedio de 35º.

Estación geomecánica 2

En el afloramiento elegido para levantar la estación geomecánica 2, se encuentra sobre el perfil 2 en litología correspondiente a las areniscas de la Fm. Herrería. No hay presencia de recubrimiento vegetal y no se observan estructuras como pliegues o fallas que puedan favorecer la caída de rocas. La roca presenta una fracturación que genera un tamaño de bloque medio, encontrando unas 8 juntas por metro cúbico. La resistencia de la matriz rocosa es extremadamente dura al ser rayada únicamente con el martillo. La roca presenta un grado II de meteorización y no hay presencia de agua. La resistencia media de cada plano de discontinuidad es: Jv₁=43; Jv₂=39; Jv₃=41. Todos estos datos han sido reflejados en la figura 4-6.

	PR FEC	OYECT CHA: 1 ÓLOG	TO: Des 5/06/20 O: SER	prendimier 23 GIO FERN	itos roco ÁNDEZ	sos e	ntre los PK ESTACIÓ LOCALIZ	(41+000 y 51 Ón: 2 (Perf Zación: Te	+000 de la IL 2) BONGO	carretera auto	onómie	ca AS-15 (Valle d HOJA / F	el río	o Narcea, Asturias) NO:
LITOLOGÍA:	ARE	NISCA	S				FO	RMACIÓN:	HERRER	A				
RECUBRIMIENTO:	(NATURA)	LEZS, TEXTU	R.L. ESPESOR											
ESTRUCTURA SUSTRATO:	PLIEG	IUES					FALLAS				OTF	ROS		
FRACTURACIÓN	B	SLOQU	IES s/m²	Muy gra < 1	ndes	1	Grandes 1-3	M	edios 10	Pequeñ 10-30	os	Muy pequeño > 30	os	Muy brechificado > 60
RESISTENCIA DE MATRIZ ROCOSA	Ex	tremac Bland (Uňa) 0	lam a	Muy bla (Nava 1	anda ia)	(p	Blanda unta martilio) 2	M (1 Golg	edia e martillo) 3	Dura (+ 1 Golpe mi 4	artillo)	Muy dura (Varios golpes 5)	Extremadam Dura (Sólo raya con matil.) 6
GRADOS DE METEORIZACIÓN		l San	a	Algo n	ll ieteoriza	da	Mediar meteo	III namente orizada	Muy m	IV eteorizada	Co	V mpletamente neteorizada		VI Suelo residual
HIDROGEOLOGÍA	Sin	preset agu	ncia de a	Seco (señales agua)	de	Húr	medo	G	oteos		Flujo	(640	Col SSTMADO)
RESISTENCIA "R" ESCLERÔMETRO (cada junta)	Jv1 43	Jv2 39	Jv3 41				OBSER	VACIONES						
FOTOGRAFÍA								ESQUEM	A					

Figura 4-6. Caracterización geomecánica del macizo rocoso en la estación EG-2

Una vez descrito con carácter general el macizo rocoso, se tomaron los datos estructurales del mismo, para lo que se determinó la dirección de buzamiento de cada una de las familias de discontinuidades y se definieron las características de cada una de ellas. Asimismo, se midió el espaciado en mm, la continuidad, su abertura en mm, su rugosidad y el relleno, teniendo en cuenta la meteorización, las condiciones hidrogeológicas y la resistencia. Los resultados detallados se muestran en el Anexo 5.

A continuación, se procedió al cálculo del RMR, usando para ello el estadillo de la figura 4-7. En primer lugar, se calculó la resistencia de la roca matriz empleando el martillo Schmidt para calcular la resistencia a la compresión simple de manera indirecta, obteniendo valores ligeramente superiores a 100 MPa (Anexo 10). Luego, se midió el espacio entre las familias de discontinuidades, siendo de unos 15 cm. Después, se estimó el RQD, utilizando como criterio el espaciado entre las diaclasas, presentando éste un valor de 55%. Una vez definido el RQD, el espaciado y la resistencia de la roca matriz, se realizó un estudio de las discontinuidades en el que

se definió una longitud de entre 10 y 20 metros en todas las familias, con una abertura menor de 1 mm sin presencia de relleno. Los planos de las discontinuidades están ligeramente alterados y no hay presencia de agua. Estos parámetros nos permiten clasificar el macizo rocoso como una clase II, calidad Buena y puntuación 66.

R	MR	PROYECTO: Despr FECHA: 15/06/202 GEOLOGO: SERG	endimientos rocoso 3 10 FERNÁNDEZ	os entre los E Z L	STAC	1000 y 51+000 1ÓN: 2 (PER JZACIÓN: T	de la carreter FIL 2) EBONGO	a autonóm	nica AS-15 (Valle	e del río Nar HOJA / PL	cea, Asturias) ANO:
	Resistencia roca	E. carga puntual	> 10 MPa	4-10 N	/IPa	2-4 MPa	1-2 M	IPa			
1	matriz	Compresión simple	> 250 MPa	100-250) MPa	50-100 MPs	a 25-50	MPa	5-25 MPa	1-5 MP	a <1 MPa
		Valor	15	12		7	4		2	1	0
		RQD	90 - 100 9	6	75 -	-90 %	50 - 7	5 %	25 - 50	96	< 25 %
2		Valor	20			17	13		6		3
	E	spaciado	> 2 m		0.6	- 2 m	0.2 - 0	.6 m	6 - 20	om	< 6 cm
3		Valo	20			15	10)	8		5
	Longitud	discontinuidades	< 1 m		1	-3 m	3-10	m	10-20	m	> 20 m
		Valo	6			4	2		1		0
		Abertura	Nada		< 0	.1 mm	0.0-1.0) mm	1-5 m	m	> 5 mm
		Valo	6			5	3		1		0
	R	ugosidad	Muy rugos	i9	Ru	ugosa	Ligeran	rugosa	Ondula	da	Suave
4		Valo	6			5	3		1		0
		Relleno	Ninguno		Relle	eno duro	Relienc	duro	Relleno b	lando	Relleno blando
					<	5 mm	> 5 n	nm	< 5 m	m	> 5 mm
		Valor	6			4	2		2		0
	A	Iteración	Inalterada	3	Ligeran	n, alterada	Moderad.	alterada	Muy alte	rada	Descompuesta
		Valo	6			5	3		1		0
5	Agua freática	Estado general	seco		Liger hú	ramente medo	Húme	edo	Gotear	ndo	Agua fluyendo
		Valor	15			10	7		4		0
Corrección	por la orientació	n de las discontinuida	des								
			Muy favorab	ble	Fav	vorable	Medi	85	Desfavor	ables	Muy desfavorables
Taludes		Valor	0			-5	-25	5	-50		-60
Clasificació	n RMR		-								
CI	ase	1		1 - C					IV		v
Ca	lidad	MUY BUENA	BUE	ENA		MEDI	A		MALA		MUY MALA
Punt	uación	100-81	80-	-61		60-41	1		40-21		< 20

Figura 4-7. Clasificación RMR del macizo rocoso en la estación geomecánica 2.

Después de caracterizar y clasificar el macizo rocoso se procedió a realizar el ensayo Tilt Test para estimar el ángulo de rozamiento básico de las discontinuidades de las areniscas de la Fm. Herrería, obteniéndose un valor promedio de 34º.

Estación geomecánica 3

En el afloramiento elegido para levantar la estación geomecánica 3, se encuentra sobre el perfil 3 en litología correspondiente a las pizarras de la Fm. Narcea. No hay presencia de recubrimiento vegetal y no se observan estructuras como pliegues y fallas que favorezcan la caída de rocas. La roca presenta una fracturación que genera un tamaño de bloque pequeño, encontrando unas 18 juntas por metro cúbico. La resistencia de la matriz rocosa es media al rayarse con un golpe de martillo. La roca presenta un grado III de meteorización estando medianamente meteorizada y no hay presencia de agua. La resistencia media de cada plano de discontinuidad es $Jv_1=16$; $Jv_2=20$; $Jv_3=17$. Todos estos datos han sido reflejados en la figura 4-8.

	PR FEC GE	OYEC CHA: 1 ÓLOG	TO: De: 5/06/2 O: SEF	spren 023 RGIO	dimient FERNÁ	ns roco	sos en	tre los ESTA LOC/	PK 41+ CIÓN:	+000 y 51+ 3 (PERF CIÓN: PO	000 de la o IL 3) RTIELLA	carretera auto	nómic	a AS-15 (Valle de HOJA / P	el río	Narcea, Asturias)
LITOLOGÍA:	PIZA	RRA							FORM	IACIÓN:	PIZARRA	S DEL NAR	EA			
RECUBRIMIENTO:	(NATURAL	EZ4, TEXTU	IRA, ESPESO	R)												
ESTRUCTURA SUSTRATO:	PLIEG	UES						FALLA	\S				OTF	ROS		
FRACTURACIÓN	B	LOQU	IES s/m²	N	luy grai < 1	ndes		Grande 1-3	es	Me 3	edios -10	Pequeñ 10-30	os	Muy pequeño > 30	os	Muy brechificado > 60
RESISTENCIA DE MATRIZ ROCOSA	Ex	trema Bland (Uňa) 0	lam a	N	/luy bla (Navaj: 1	nda a)	(pi	Blanda unta mar 2	a tillo)	M (1 Golp	edia e martillo) 3	Dura (+ 1 Golpe m 4	artillo}	Muy dura (Varios golpes) 5)	Extremadam Dura (Sólo raya con martil.) 6
GRADOS DE METEORIZACIÓN		l San	a		Algo m	II eteoriza	ada	Me m	III dianan eteoriz	nente ada	Muy me	IV eteorizada	Co	V mpletamente neteorizada		VI Suelo residual
HIDROGEOLOGÍA	Sin	prese agu	ncia de a		Seco (s a	eñales gua)	de		Húmeo	do	G	oteos		Flujo	(040	Dol ESTMADO)
RESISTENCIA "R" ESCLERÓMETRO (cada junta)	Jv1 16	Jv2 20	Jv3 17					OBS	ERVA	CIONES:						
FOTOGRAFIA									E	ESQUEM	A					

Figura 4-8. Caracterización geomecánica del macizo rocoso en la estación EG-3.

Una vez descrito con carácter general el macizo rocoso, se tomaron los datos estructurales del mismo, para lo que se determinó la dirección de buzamiento de cada una de las familias de discontinuidades y se definieron las características de cada una de ellas. Asimismo, se midió el espaciado en mm, la continuidad, su abertura en mm, su rugosidad y el relleno, teniendo en cuenta la meteorización, las condiciones hidrogeológicas y la resistencia. Los resultados detallados se muestran en el Anexo 6.

A continuación, se procedió al cálculo del RMR de Bieniawski, usando para ello el estadillo de la figura 4-9. En primer lugar, se calculó la resistencia de la roca empleando el martillo Schmidt para calcular la resistencia a la compresión simple de manera indirecta, obteniendo valores cercanos a los 35 MPa (Anexo 10). Luego, se midió el espaciado entre las familias de discontinuidades, siendo de unos 10 cm. Después se estimó el RQD, utilizando como criterio el espaciado entre las familias de diaclasas, presentando éste un valor menor al 25%. Una vez definidos el RQD, el espaciado y la resistencia de la roca matriz, se realizó un estudio de las discontinuidades en el que se definió una longitud cercana a los 20 metros en todas las familias con una abertura que oscila entre los 2 y 3 mm sin presencia de relleno,

siendo los planos suaves. Los planos de las discontinuidades están moderadamente alterados y no hay presencia de agua. Estos parámetros nos permiten clasificar el macizo rocoso como una clase III, calidad Media y puntuación 41.

F	MR	F	ROYECTO: Despren ECHA: 15/06/2023	dimientos rocoso	os entre 7	ESTAC	+000 y 51+000 IÓN: 3 (PEF	de la carretera a RFIL 3) PORTIFI I A	utonóm	ica AS-15 (Valle H	del río Na	arcea, A	sturias)
	Resistencia roc	Ĩ	E. carga puntual	> 10 MPa	4-1	10 MPa	2-4 MPa	1-2 MP	9	i	100/1/1	Critic	
1	matriz		Compresión simple	> 250 MPa	100-	250 MPa	50-100 MP	a 25-50 M	Pa	5-25 MPa	1-5 M	Pa	<1 MPa
		-	Valor	15		12	7	4		2	1		0
-		R	QD	90 - 100 9	6	75	-90 %	50 - 75	96	25 - 50	96		< 25 %
2			Valor	20			17	13		6			3
-	E	spa	iciado	> 2 m		0.6	3 – 2 m	0.2 - 0.6	m	6 - 20 d	m		< 6 cm
3			Valor	20			15	10		8			5
	Longitud	dis	continuidades	< 1 m		1	-3 m	3-10 m	1	10-20	m		> 20 m
			Valor	6			4	2		1			0
		Abe	rtura	Nada		< ().1 mm	0.0-1.0 n	nm	1-5 m	m		> 5 mm
			Valor	6			5	3		1			0
	F	ugo	osidad	Muy rugos	9	R	ugosa	Ligeram, ru	gosa	Ondula	da		Suave
4			Valor	6			5	3		1			0
		Re	leno	Ninguno		Relie	eno duro	Relleno d	uro	Relleno bl	lando	Re	elleno blando
						<	5 mm	> 5 mn	n	< 5 m	m		> 5 mm
			Valor	6			4	2		2			0
		lter	ación	Inalterada	h i	Ligera	n, alterada	Moderad, al	lerada	Muy alter	rada	D	escompuesta
			Valor	6			5	3		1			0
5	Agua freática		Estado general	seco		Lige hú	ramente imedo	Húmed	0	Gotean	do	A	gua fluyendo
			Valor	15			10	7		4			0
Corrección	por la orientació	n d	e las discontinuidad	es									
				Muy favorat	ble	Fa	vorable	Medias	5	Desfavors	ables	Muy	desfavorables
Taludes			Valor	0			-5	-25		-50			-60
Clasificació	n RMR												
CI	lase		1	1	1					IV			v
Ca	lidad		MUY BUENA	BUE	NA		MED	A		MALA		MU	YMALA
Punt	uación		100-81	80-	-61		60-4	1		40-21			< 20

Figura 4-9. Clasificación RMR del macizo rocoso en la estación geomecánica 3.

Después de caracterizar y clasificar el macizo rocoso se procedió a realizar el ensayo Tilt Test para estimar el ángulo de rozamiento básico de las discontinuidades de las pizarras de la Fm. Narcea, obteniéndose un valor promedio de 30º.

4.4. Modelización de caída de rocas.

En este subapartado se presentan los resultados obtenidos en las modelizaciones realizadas de los tres perfiles con el programa de análisis de trayectorias de caída de rocas.

Perfil 1

El perfil 1 se sitúa en el P.K. 50+750, presenta una orientación NE-SO y una longitud de 328 m. Los datos del macizo rocoso en este perfil son los correspondientes a la estación geomecánica EG-1. Se consideró un bloque de roca de 150 kg de masa, estimado a partir del volumen calculado por el espaciado promedio entre las fracturas de la roca, y se situaron varias líneas de lanzamiento

en 3 zonas diferentes. El primer sector se situó entre las coordenadas X=100 y X=110, el segundo sector entre X=130 y X=145, y el tercer sector entre X=180 y X=200. Se estableció una velocidad horizontal inicial de 0, 1 m/s y se dividieron las 150 simulaciones entre las tres zonas de lanzamiento a partes iguales. La velocidad inicial y la situación de las líneas de lanzamiento, junto con la morfología y el material que compone la ladera, son condicionantes del movimiento que van a seguir los bloques al desprenderse.

La topografía del perfil 1 (Fig. 4-10), permite reconocer la existencia de un escarpe rocoso de unos 250 m situado entre dos carreteras. Este tramo del perfil es un área potencial de desprendimientos rocosos, siendo seleccionadas como líneas de tiro las zonas con más pendiente. Este escarpe está compuesto en su totalidad de areniscas de la Fm. Herrería sin apenas vegetación.

Figura 4-10. Modelo de trayectorias de caída de rocas correspondiente al perfil 1.

En la figura 4-11, se representa la distancia final a la que llegan las rocas que caen en el Perfil1, observándose que la gran mayoría alcanzan la carretera o el cauce del río

Figura 4-11. Distancia final alanzada por las rocas desprendidas en el perfil 1.

Las rocas desprendidas en la simulación no presentan un rebote muy significativo. En la figura 4-12, correspondiente a los valores máximos de rebote en cada zona del perfil, se puede observar que la altura máxima de rebote alcanzada por una roca supera los 3 m, encontrándose esta zona a la altura de la carretera. No se observan zonas de rodadura claras, aunque en los primeros metros de la trayectoria de las rocas recién desprendidas podrían hacerlo de este modo.

Figura 4-12. Altura máxima de rebote de las rocas respecto a la ladera respectiva al perfil 1.

Por último, se determinaron los valores máximos de la energía cinética total que poseen las rocas a su llegada a la carretera (Fig. 4-13). La mayor parte de las rocas alcanzan valores entre 1 y 10 kJ, siendo el máximo alcanzado en ese punto del perfil 16 kJ.

Figura 4-13. Energía cinética total de las rocas a la altura de la carretera AS-15 en el perfil 1.

Conocida la energía cinética total de las rocas a su paso por la carretera, se procede a calcular la velocidad máxima alcanzada por una roca en ese punto y la velocidad media de las rocas que al caer llegan a la carretera (Tabla II). Para ello, se utilizará la fórmula de la energía cinética $E_c=1/2^*m^*v^2$, en la que se relaciona la energía cinética de un objeto con la masa y la velocidad del mismo.

FÓRMULA	E _c TOTAL	MASA (kg)	VELOCIDAD (m/s)	VELOCIDAD (km/h)
$E_cmáx=1/2^*m^*v^2$	16.000	150	14, 60	52, 58
Ecmedia=1/2*m*v ²	6.000	150	8, 94	32,20

Tabla II. Valores de velocidad máxima y media alcanzados por las rocas al pasar a la altura de la carretera en el perfil 1.

Perfil 2

El perfil 2 se sitúa en el P.K. 49+250, presenta una orientación N-S y una longitud de 342 m. Los datos del macizo rocoso en este perfil son los correspondientes a la estación geomecánica EG-2. Se consideró un bloque de roca de 100 kg de masa y se situaron varias líneas de lanzamiento en dos zonas diferentes. El primer sector se situó entre las coordenadas X=190 y X=160 y el segundo sector entre X=190 y X=250. Se eligió una velocidad horizontal inicial de 0, 1 m/s y se dividieron las 150 simulaciones entre las dos zonas de lanzamiento a partes iguales.

La topografía del perfil 2 (Fig. 4-14), permite reconocer la existencia de un escarpe rocoso de unos 120 m. Este tramo del perfil es un área potencial de desprendimientos rocosos, siendo seleccionadas como líneas de tiro las zonas con más pendiente. Este escarpe está compuesto en su totalidad de areniscas de la Fm. Herrería sin apenas vegetación.

Figura 4-14. Modelo de trayectorias de caída de rocas correspondiente al perfil 2.

En la figura 4-15 se representa la distancia final a la que llegan las rocas que caen en el perfil 2, observándose que la gran mayoría de las rocas desprendidas acaban en el cauce del río y otra minoría acaban su trayectoria sobre el asfalto de la carretera. Muchas de las rocas que acaban en el río llegan rebotadas de la carretera.

Figura 4-15. Distancia final alanzada por las rocas desprendidas en el perfil 2.

Las rocas desprendidas en la simulación presentan un rebote máximo bastante elevado, especialmente en la zona más próxima a la carretera (Fig. 4-16).

Por último, se determinaron los valores máximos de la energía cinética total que poseen las rocas a su llegada a la carretera (Fig. 4-17). La mayor parte alcanzan valores entre 1 y 18 kJ, siendo el máximo alcanzado en ese punto del perfil 58 kJ.

Figura 4-17. Energía cinética total de las rocas a la altura de la carretera AS-15 en el perfil 2.

Conocida la energía cinética total de las rocas a su paso por la carretera, se procede a calcular la velocidad máxima alcanzada por una roca en ese punto y la velocidad media de las rocas que al caer llegan a la carretera (Tabla III).

Tabla III. Valores de velocidad máxima y media alcanzados por las rocas al pasar a la altura de la carretera en el Perfil 2.

FÓRMULA	E _c TOTAL	MASA (kg)	VELOCIDAD (m/s)	VELOCIDAD (km/h)
$E_cmáx=1/2^*m^*v^2$	58.000	100	34,06	122, 61
Ecmedia=1/2*m*v ²	16.000	100	17, 89	64, 40

Perfil 3

El perfil 3 se sitúa en el P.K. 46+750, presenta una orientación NO-SE y una longitud de 405 m. Los datos del macizo rocoso en este perfil son los correspondientes a la estación geomecánica EG-3. Se consideró un bloque de roca de 15 kg de masa, a partir del volumen calculado por el espaciado promedio entre las fracturas de la roca, y se situó una única línea de lanzamiento entre las coordenadas X=120 y X=175. Al igual que en los casos anteriores, se fijó una velocidad horizontal inicial de 0, 1 m/s.

La topografía del perfil 1 (Fig. 4-18) permite reconocer la existencia de un escarpe rocoso de unos 100 m formado en su totalidad por las pizarras de la Fm. Narcea, donde se ubicó la zona de desprendimientos entre las coordenadas X=125 y X=175. Por debajo del escarpe se encuentran 140 m de canchal activo y, a continuación, el asfalto de la carretera. A mayor altitud de estas dos zonas encontramos otra vez las areniscas de la Fm. Herrería. En este perfil no se observa vegetación de entidad.

Figura 4-18. Modelo de trayectorias de caída de rocas correspondiente al perfil 3.

En la figura 4-19, se representa la distancia final a la que llegan las rocas que caen en el Perfil 3, observándose que la mayoría acaban en la carretera. Otra cantidad importante de rocas finalizan su trayectoria en el canchal, y la minoría de ellas llegan al cauce del río Narcea.

Figura 4-19. Distancia final alanzada por las rocas desprendidas en el perfil 3.

Las rocas desprendidas en la simulación presentan un rebote máximo bastante elevado y, al igual que en el perfil anteiror, este se produce en las inmediaciones de la AS-15 (Fig. 4-20).

Figura 4-20. Altura máxima de rebote de las rocas respecto a la ladera respectiva al perfil 3.

Por último, se determinaron los valores máximos de la energía cinética total que poseen las rocas a su llegada a la carretera (Fig. 4-21). Todas las rocas alcanzan valores entre 1 y 10 kJ, siendo este último el valor máximo que llegan a alcanzar.

Figura 4-21. Energía cinética total de las rocas a la altura de la carretera AS-15 en el perfil 3.

Conocida la energía cinética total de las rocas a su paso por la carretera, se procede a calcular la velocidad máxima alcanzada por una roca en ese punto y la velocidad media de las rocas que al caer llegan a la carretera (Tabla IV).

Tabla IV. Valores de velocidad máxima y media alcanzados por las rocas al pasar a la altura de la carretera en el perfil 3.

FÓRMULA	E _c TOTAL	MASA (kg)	VELOCIDAD (m/s)	VELOCIDAD (km/h)
Ecmáx=1/2*m*v ²	10.000	15	36, 51	131, 44
Ecmedia=1/2*m*v ²	6.000	15	28, 28	101, 82

V. CONCLUSIONES

Este Trabajo Fin de Máster ha analizado la afección por desprendimientos rocosos a la carretera autonómica AS-15 entre los PK 41+000 y 51+750 (Valle del río Narcea, Asturias). Como principales resultados de este trabajo se pueden destacar los siguientes.

Esta carretera transcurre geológicamente por uno de los flancos del Antiforme del Narcea, al oeste de la Zona Cantábrica, donde afloran materiales del Precámbrico como las Pizarras del Narcea, materiales del Cámbrico Inferior como las areniscas de la Fm. Herrería, y materiales del Carbonífero Inferior como los conglomerados del Estefaniense.

Se ha sectorizado el trazado en función de la peligrosidad por movimientos de ladera evidenciando, un 58% de este, peligrosidad frente a algún proceso. El 10% del trazado lo hace por caída de derrubios; el 25% del tramo es propenso a sufrir caídas de roca desde el talud de la carretera; el 7 % del tramo estudiado podría sufrir caída de rocas procedentes de la ladera; por último, el 16 % restante del tramo estudiado presenta taludes estabilizados parcial o totalmente con mallas de triple torsión, que en algunas zonas están dañadas o requieren mantenimiento para mantener su efectividad.

Se ha identificado la existencia de dos canchales activos de entidad a lo largo del trazado estudiado, que se sitúan en los PK 50+750 y 46+750. La vía transcurre por la parte inferior de estos depósitos a lo largo de 150 m.

La modelización de caída de rocas efectuada en tres zonas del trazado, dos de ellas correspondientes a los canchales activos identificados, evidencia una alta peligrosidad por impacto directo en la carretera de rocas desprendidas desde las zonas de ladera. Las áreas fuente de desprendimientos corresponden a los escarpes rocosos situados en las partes media y alta de las laderas. La práctica totalidad de estos tramos carecen de medidas de estabilización frente a este fenómeno.

Como potenciales alternativas de estabilización para las distintas zonas con peligrosidad en el tramo estudiado, a falta de los oportunos estudios específicos, se proponen: (i) instalación mallas de triple torsión, redes de cable y bulonado en los taludes rocosos de la vía, (ii) construcción de muros de escollera en aquellas zonas con peligrosidad por caída de derrubios; y (iii) barreras dinámicas apropiadas a cada zona susceptible de sufrir caídas de rocas desde las zonas de ladera.

VI. BIBLIOGRAFÍA

- Acuerdo del Consejo de Gobierno, de 26 de julio de 2019, por el que se aprueba el nuevo Catálogo de Carreteras del Principado de Asturias. *Boletín Oficial del Principado de Asturias*, 153, de 1 de agosto de 2019. http://www.asturias.es/bopa
- Atlas Climatológico Ibérico, 1971-2000: Temperatura del aire y precipitación, *Agencia Estatal de Meteorología*. Madrid, 2011.
- Álvarez, D. (2021, 29 noviembre). Conmoción en el Occidente por el argayo mortal de Tineo. La Nueva España. <u>https://www.lne.es/asturias/2021/11/29/conmocion-occidente-argayomortal-tineo-60087450.html</u>
- Álvarez-Ramis, C. (1964). Contribución al estudio de la flora carbonífera de Tineo (Asturias). *Brev. Geol. Ast.,* año VII, pp. 69-74.
- Bieniawski Z.T. (1976): Rock mass classification in rock engineering. In Exploration for Rock Engineering, *Proc. of the Symp.*, (ed. Z.T. Bieniawski) 1, 97-106. Cape Town, Balkema.
- Bieniawski, Z. (1989). Engineering Rock Mass Classifications: A complete manual for engineers and geologists in mining, civil, and petroleum engineering.
- Gutiérrez, F. R. (2018). Las carreteras proyectadas en Asturias entre 1893 y 1936.
 Encuadre conceptual y potencial actual como carreteras escénicas. Departamento de Geografía y CeCodet. Universidad de Oviedo, 38(3), 307-325.
- Julivert, M (1971 a) Décollement tectonics in Hercvnian Cordillera of NW Spain. *Am. Jour. Sc.*, vol. 270, núm. 1, pp 1-29.
- Julivert, M., Martínez, F., Truyols, J (1977). Mapa Geológico y Memoria de la Hoja nº 51 (Belmonte de Miranda). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), Primera edición. IGME. Depósito Legal: M-41.654-1977.

- Köppen, W. P. (1900). Versuch einer Klassifikation der Klimate: vorzugsweise nach ihren Beziehungen zur Pflanzenwelt (Vol. 6, Número 593611, pp. 657-679).
- Lotze, F. (1945). Zur Gliederung der Varisziden der Iberischen Mesetas. *Geotekt. Forsch.*, núm. 6, pp. 78-92, Berlín. (Traducido por J. M^a. Ríos: Observaciones respecto a la división de las varíscides de la Meseta Ibérica. *Pub. Extr. Geol. España*, t. V. pp.149-166, Madrid 1950.).
- Lotze, F. (1956 b). Das Präkambrium Spaniens. *N. Jb. Geol. Paläont. Min.,* vol. 8, pp. 377-380. (Traducción "El Precámbrico en España". *Not. y Com. Inst. Geol. Min. Esp.,* núm 60, pp. 227-239.).
- Miller, E. P. (1965). Engineering classification and index properties for intact rock. *Tesis doctoral.* Universidad de Illinois.
- Pérez-Estaún, A., Bastida, F., Alonso, J.L., Marquínez, J., Aller, J., Álvarez-Marrón, J., Marcos, A., Pulgar, J.A. (1988). Thin-skinned tectonics model for an arcuate fold and thrust belt: The Cantabrian Zone. *Tectonics*, 7: 517-538.

Vera, J. A. (Ed.). (2004). Geología de España. SGE-IGME, Madrid, 890 p.

ANEXOS

ANEXO 1. Modelo de elevaciones.

ANEXO 2. Modelo de susceptibilidad de desprendimientos rocosos (extraído del SITPA Ideas).

ANEXO 3. Modelo de susceptibilidad de deslizamientos (extraído del SITPA Ideas).

E C.		ίλι			ESP	ACIA	٩DO				CON	TINU	IDAD					AB	RTU	JRA						ы		2010												16					
ĽJ	ACI				e	n mi	m			Rum	bo	Bu	zamie	n				е	n mr	n							UG	J 31L	AD									VELL							
																																		N	leteo	oriza	ción		Filtra	ición		Re	esiste	ncia	
	ō O.		em. juntas	/ juntas	as	lerad. juntas	aradas	/ separadas	. separadas	y baja		derada		y alta	y cerrada	rada	cialm. abierta	erta	dera. abierta	ha	y ancha	em. ancha	ernosa	- - -	Escalonada			Undulada		Plana							rizadas								
	1IENT		Extr	Μu)	Junt	Mod	Sepa	Μu	Extr	Mu	Baja	Ň	Alta	Mu	Mu	Cer	Par	Abi	Ň	Anc	Mu	Extr	Cav												S	a as	neteo								
TIPO DE PLANO	DIREC. DE BUZAN	3UZAMIENTO (⁰)	< 20 (2 cm)	20-60 (2-6 cm)	50-200(20cm)	200-600(60cm)	500-2000(2m)	2000-6000(6m)	> 6000(>6m)	< 1 m	L-3 m	3-10 m	10-20 m	• 20 m	< 0,1),1-0,25),25-0,5),5-2,5	2,5-10	> 10	10-100	100-1000	> 1000	Rugosa	l Lisa	II Slickensided	V Rugosa	/ Lisa	/I Slickensided	/II Rugosa	X Slinckensided	Composición	Espesor mm	Sana	I Algo meteorizada	<u>II Media meteoriza</u> V Mily meteorizda	/ Completamente I	/I Suelo residual	beco Liúmedo	Soteos	Linio Minu blando	r Nuy Danuo 2 Blanco	3 Consistente	1 Muv consistente	5 Duro 5 Muv duro
Jv ₁	163	84			Ū					v				X		0	J	Ű									_																		
Jv_1	139	79																																											
Jv_1	157	78																																											
Jv_1	144	79																																											
Jv_1	167	70																																											
Jv ₁	160	78																																											
Jv ₁	142	83																																											
Jv ₂	357	80																																											
Jv ₂	54	75																																							T				
Jv ₂	53	73																																											
Jv ₂	70	78																																							Τ				

ANEXO 4. Estadillo con los datos estructurales de la EG-1.

Jv_2	49	82																															
Jv ₃	203	81																															
Jv ₃	260	87																															
Jv ₃	240	88																															
Jv ₄	170	28																															
Jv ₄	162	20																															
Тір	o de l	planc	o: So	= es	trati	ficac	ión;	J1	.Jn =	junt	as; S	1 = Es	quisto	osidad	l; F1	Fn =	Falla	is															
Rel	eno:	S = A	rena	a; B =	= Bre	chas	s, M	= Mi	lonit	ta; C	= Cal	cita; F	= Fe	despa	atos;	G = 0	Grava	s; A =	Arci	llas; (Q = C	uarz	o; O =	= Oxi	dos								

FC	τΔΟμ	ŃΝ			ESP	ACIA	AD0				CON	TINU	IDAD					ABE	RTU	JRA						RI	UG	חואר	חמ									2 F I I	FNI	าร					
23					e	n mi	m			Rum	bo	Bu	zamie	n				eı	n mr	n								5510	יקט																
																																		Μ	letec	oriza	ción		Filtra	ación		Re	esiste	ncia	
	JTO		trem. juntas	uy juntas	ntas	oderad. juntas	paradas	uy separadas	tr. separadas	uy baja	ija	oderada	ta	uy alta	uy cerrada	errada	arcialm. abierta	oierta	odera. abierta	icha	uy ancha	trem. ancha	ivernosa	- - -	Escalonada			Ongulada		Plana		-	-				orizadas								
	MIEN	(i	EX	Ā	Inf	ž	Se	Ŵ	Ex	Μ	Ba	Σ	Ā	Σ	Σ	Ű	Ра	Ak	Σ	Ar	Σ	EX	Ca												as adar	as a	e mete								
LIPO DE PLANO	DIREC. DE BUZA	3UZAMIENTO (º	c 20 (2 cm)	20-60 (2-6 cm)	50-200(20cm)	200-600(60cm)	500-2000(2m)	2000-6000(6m)	• 6000(>6m)	< 1 m	L-3 m	3-10 m	l0-20 m	• 20 m	< 0,1),1-0,25),25-0,5),5-2,5	2,5-10	• 10	10-100	100-1000	• 1000	Rugosa	l Lisa	II Slickensided	V Rugosa	/ Lisa	/I Slickensided	/II Rugosa /III Lisa	X Slinckensided	Composición	spesor mm	Sana	I Algo meteorizad	V Muv meteorizd	/ Completamente	/l Suelo residual	ieco Jiímedo	soteos	lluio Administration	Rlanco	S Consistente	H Muv consistente	i Duro Muv duro
Jv ₁	341	71								v					v	0									_		_				_														
Jv_1	328	67																																											
Jv ₁	335	71																														_													
Jv₁	333	65																								-		_				-				-				$\left \right $	+		$\left \right $		
lv _a	246	85																								-	_	_	_												_				
302	240	05																																											
Jv ₂	254	80																																											
Jv ₂	241	77																																											
Jv ₂	250	67																																											
Jv ₃	165	27																																											
Jv ₃	198	18																																											
Jv ₃	185	16																																											

ANEXO 5. Estadillo con los datos estructurales de la EG-2.

Jv ₃	188	25																																			
Jv ₃	209	23																																			
Тіро	de pl	ano:	: So =	= est	ratifi	caci	ón; J	J1	.Jn =	= jur	itas;	S1	= Esc	quist	osid	ad; F:	1F	n = F	allas	5																	
Relle	eno: S	= Ar	rena;	B =	Bred	has,	M =	= Mi	loni	ita; (C = C	Calci	ta; F	= Fe	ldes	pato	s; G	= Gr	avas	; A =	= Arc	illas;	Q =	Cua	rzo;	0 = 0	Oxic	dos									

FS	ταςια	ŃΝ			ESP	ACIA	DO				CON	TINU	IDAD					ABE	ERTU	JRA						R	UG	OSII	חמנ	1							1	RFII	FN	os						
					e	n mr	n			Rum	bo	Bu	zamie	n				е	n mr	n																	-									
																																		N	/leteo	oriza	ción		Filtr	ación	ı	I	Resis	tenci	ia	
	5 O		em. juntas	juntas	SE	erad. juntas	Iradas	separadas	separadas	r baja		derada		r alta	r cerrada	ada	ialm. abierta	erta	lera. abierta	ha	r ancha	em. ancha	ernosa	- -	Escalonada			Ondulada		Plana		_					izadas									
	1IENT		Extre	Muy	Junta	Mod	Sepa	Muy	Extr.	Μu	Baja	Мос	Alta	Mul	ηM	Cerr	Parc	Abie	Mod	Anc	ηų	Extr	Cave												S	uds	neteor									
IPO DE PLANO	DIREC. DE BUZAM	3UZAMIENTO (⁰)	: 20 (2 cm)	:0-60 (2-6 cm)	60-200(20cm)	:00-600(60cm)	00-2000(2m)	:000-6000(6m)	• 6000(>6m)	c 1 m	3 m	-10 m	.0-20 m	• 20 m	: 0,1),1-0,25),25-0,5),5-2,5	1,5-10	• 10	.0-100	.00-1000	• 1000	Rugosa	l Lisa	II Slickensided	V Rugosa	/ Lisa	/I Slickensided	/II Rugosa	X Slinckensided	Composición	ispesor mm	Sana	I Algo meteorizada	u Muy meteorizda	/ Completamente r	/l Suelo residual	eco	larrieuo Boteos	منينا	. Muy blando	Blanco	- Muy consistente	Duro	i Muv duro
Jv ₁	128	85	~	(7			9	(1		v				A	v	0	0	0	(1					-	_	_	_					Ĭ														e e
Jv_1	135	83																																												
Jv ₁	100	85																																							_					_
Jv ₁	123	83																								_												_								-
IV ₂	172	83																								_	_		_					_												-
5v2	106	66																																_		_										_
JV ₂	190	00																																												
Jv ₂	182	70																																												
Jv ₃	93	15																																												
Jv ₃	323	29																																												
Jv ₃	38	21																																												
Jv ₃	60	27																																												

ANEXO 6. Estadillo con los datos estructurales de la EG-3.

S ₁	112	85																																							
S ₁	102	84																																							
S ₁	75	80																																							
S ₁	100	78																																							
Tip	o de j	olano	o: Sc	o = e	estra	atifi	caci has	ón; M	J1	Jn Ailo	n=	junta	as; \$ = Ca	51 =	Esq a. F =	uisto = Fel	sidad	; F1.	Fn	i = Fa	allas vas:	Α = /	Arcil	las: (0 = 0	uar	70° C) = 0	xide)5				·							

ANEXO 7. Grado de meteorización de la roca de la EG-1 según ISMR (1981).

		Grados de meteorización de las rocas según ISRM (1981)
GRADO	TÉRMINO	DESCRIPCIÓN
I	Roca Fresca	No presenta signos visibles de meteorización en la roca: tal vez una leve decoloración en las superficies de las discontinuidades mayores.
II	Levemente Meteorizada	La decoloración indica meteorización de la roca y en las superficies de las discontinuidades. La roca en su totalidad puede estar decolorada por la meteorización y puede estar externamente algo más débil, que en su condición fresca.
	Moderadamente Meteorizada	Menos de la mitad de la roca está descompuesta y/o desintegrada como un suelo. La roca fresca o decolorada se puede presentar como fragmentos o testigos continuos.
IV	Muy Meteorizada	Más de la mitad de la roca está descompuesta y/o desintegrada como un suelo. La roca fresca o decolorada se puede presentar como fragmentos o testigos discontinuos.
V	Completamente Meteorizada	Toda la roca está descompuesta y/o desintegrada como un suelo. La estructura original del macizo aún se mantiene en gran parte intacta.
VI	Suelo Residual	Toda la roca está convertida como suelo. La estructura del macizo y la fábrica del material están destruidas. Existe un gran cambio de volumen, sin embargo el suelo no ha sido transportado significativamente.

ANEXO 8. Grado de meteorización de la roca de la EG-2 según ISMR (1981).

		Grados de meteorización de las rocas según ISRM (1981)
GRADO	TÉRMINO	DESCRIPCIÓN
I	Roca Fresca	No presenta signos visibles de meteorización en la roca: tal vez una leve decoloración en las superficies de las discontinuidades mayores.
Ш	Levemente Meteorizada	La decoloración indica meteorización de la roca y en las superficies de las discontinuidades. La roca en su totalidad puede estar decolorada por la meteorización y puede estar externamente algo más débil, que en su condición fresca.
111	Moderadamente Meteorizada	Menos de la mitad de la roca está descompuesta y/o desintegrada como un suelo. La roca fresca o decolorada se puede presentar como fragmentos o testigos continuos.
IV	Muy Meteorizada	Más de la mitad de la roca está descompuesta y/o desintegrada como un suelo. La roca fresca o decolorada se puede presentar como fragmentos o testigos discontinuos.
V	Completamente Meteorizada	Toda la roca está descompuesta y/o desintegrada como un suelo. La estructura original del macizo aún se mantiene en gran parte intacta.
VI	Suelo Residual	Toda la roca está convertida como suelo. La estructura del macizo y la fábrica del material están destruidas. Existe un gran cambio de volumen, sin embargo el suelo no ha sido transportado significativamente.

ANEXO 9. Grado de meteorización de la roca de la EG-3 según ISMR (1981).

		Grados de meteorización de las rocas según ISRM (1981)
GRADO	TÉRMINO	DESCRIPCIÓN
I	Roca Fresca	No presenta signos visibles de meteorización en la roca: tal vez una leve decoloración en las superficies de las discontinuidades mayores.
II	Levemente Meteorizada	La decoloración indica meteorización de la roca y en las superficies de las discontinuidades. La roca en su totalidad puede estar decolorada por la meteorización y puede estar externamente algo más débil, que en su condición fresca.
Ш	Moderadamente Meteorizada	Menos de la mitad de la roca está descompuesta y/o desintegrada como un suelo. La roca fresca o decolorada se puede presentar como fragmentos o testigos continuos.
IV	Muy Meteorizada	Más de la mitad de la roca está descompuesta y/o desintegrada como un suelo. La roca fresca o decolorada se puede presentar como fragmentos o testigos discontinuos.
v	Completamente Meteorizada	Toda la roca está descompuesta y/o desintegrada como un suelo. La estructura original del macizo aún se mantiene en gran parte intacta.
VI	Suelo Residual	Toda la roca está convertida como suelo. La estructura del macizo y la fábrica del material están destruidas. Existe un gran cambio de volumen, sin embargo el suelo no ha sido transportado significativamente.

