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Abstract
Considering the fast technological advancements and population growth, the significance

of smart production processes, Industrial Internet of Things (IIoT) and 5G communication
systems in driving manufacturing enhancements cannot be overstated. By applying the para-
digm of Industry 4.0, digital technologies are integrated within automation in manufacturing
leading to more intelligent and interconnected systems. As a consequence, increased pro-
ductivity, efficiency, flexibility, scalability, real-time monitoring and optimized production
processes will be possible, increasing competitiveness in the global market. This work aims
investigating, designing, and deploying an IIoT solution based on edge-cloud and 5G techno-
logies that enables the migration of the control logic wired robotic cell towards a cloudified
and wireless solution. This will be accomplished through a series of sequential objectives
based on the application of the main IIoT protocols (MQTT and OPC-UA) in both Ethernet
and 5G scenarios, starting from a basic solution and scaling up to a final concept where an
operational robotic arm is controlled from a remote PLC executed in the edge-cloud and ex-
changing data over 5G.

The study first considers the analysis of the main MQTT and OPC-UA communication
protocols and their associated architectures, including a reference testbed implementation
and preliminary performance evaluation of the protocols in wired Ethernet settings. The
analysis is later extended to 5G and edge-cloud by elaborating on the different Ethernet-5G
operational integration aspects, and the performance of the protocols is re-evaluated in this
scenario. From these studies, it was found that, in general, MQTT with QoS 0 performs better
than OPC-UA in terms of closed control loop latency in both the Ethernet and 5G scenarios
for both small and large packet sizes, independently of the underlying network load. From
an implementation point of view, MQTT manages data payloads in a more efficient way than
OPC-UA, which, together with the fact that the MQTT broker performance has a negligible
impact on link performance, translates into potential superior scalability capabilities than
OPC-UA PubSub, which is heavily-dependent on the configured scheduling period.

The final step of the project considers a real industrial solution based on an operational
robotic cell composed by a robotic arm controlled from a PLC. Based on the previous lear-
nings, the application is architectured to be operated from a cloudified PLC located in an
enterprise edge-cloud, exchanging control commands via MQTT and OPC-UA over priva-
te 5G. The design was implemented and validated in operational settings by analyzing the
execution cycles times. It was observed that, 5G edge-cloud operation of the industrial use
case was successful, providing the required flexibility and re-configurability, at expenses of
an increased cycle elapsed time of 0.3-0.5 s.

The project has generated a great impact towards industrial partners. Future lines of work
may include the integration of more robotic arms into the cell to further explore scalability
and optimization of the IIoT protocols, as well as the re-evaluation of the performance over
future 5G Releases with URLLC capabilities.
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Resumen en español
Considerando los rápidos avances tecnológicos y el crecimiento de la población, no se

puede subestimar la importancia de los procesos de producción inteligentes, el Internet In-
dustrial de las Cosas (IIoT) y los sistemas de comunicación 5G en el impulso de las mejoras
en la fabricación. Al aplicar el paradigma de la Industria 4.0, las tecnologı́as digitales se inte-
gran en la automatización de procesos, lo que conduce a sistemas más inteligentes e interco-
nectados. Como consecuencia, es posible aumentar la productividad, eficiencia, flexibilidad,
escalabilidad, monitoreo en tiempo real y la optimización de los procesos de producción,
lo que aumentará la competitividad en el mercado global. Este trabajo tiene como objetivo
investigar, diseñar e implementar una solución IIoT basada en tecnologı́as de edge-cloude
y 5G que permita la migración de la lógica de control de una celda robótica cableada hacia
una solución inalámbrica en la nube. Esto se logrará a través de una serie de objetivos se-
cuenciales basados en la aplicación de los principales protocolos IIoT (MQTT y OPC-UA)
en escenarios Ethernet y 5G, partiendo de una solución básica y escalando hacia un concepto
final en el cual un brazo robótico operativo es controlado desde un PLC remoto ejecutado en
el edge-cloud y comunicándose a través de 5G.

El estudio considera inicialmente el análisis de los principales protocolos de comunica-
ción MQTT y OPC-UA ası́ como sus arquitecturas asociadas, incluyendo una implementa-
ción de referencia en un entorno de pruebas y una evaluación preliminar del rendimiento de
los protocolos en configuraciones cableadas. Después el análisis se amplı́a al ámbito de 5G y
edge-cloud al detallar los diferentes aspectos de integración entre Ethernet y 5G, y volviendo
a evaluar el rendimiento de los protocolos en este escenario. A partir de estos estudios, se en-
contró que en general MQTT con una configuración QoS 0 tiene un mejor rendimiento que
OPC-UA en términos de latencia de bucle de control cerrado tanto en escenarios de Ethernet
como de 5G, para tamaños de paquete pequeños como grandes, independientemente de la
carga de red subyacente. Desde el punto de vista de la implementación, MQTT gestiona las
cargas útiles de datos de manera más eficiente que OPC-UA, lo que, junto con el hecho de
que el rendimiento del broker MQTT tiene un impacto insignificante en el rendimiento del
enlace, se traduce en una capacidad de escalabilidad potencialmente superior en compara-
ción con OPC-UA PubSub, que depende en gran medida del periodo de subscripción.

El último paso del proyecto considera una solución industrial real basada en una celda
robótica operativa con un brazo robótico controlado desde un PLC. La aplicación se diseña
para ser operada desde un PLC ubicado en un edge-cloud empresarial, intercambiando co-
mandos de control a través de MQTT y OPC-UA sobre una red 5G privada. El diseño se
implementó y validó en entornos operativos mediante el análisis de los tiempos de ejecución
de los ciclos operacionales. Se pudo observar que el despliegue y configuración del esce-
nario sobre 5G y edge-cloud fue exitoso, proporcionando la flexibilidad y reconfigurabilidd
esperadas, a expensas de aumentar el tiempo de ciclo operacional en 0.3-0.5 s respecto al
caso de Ethernet.

El proyecto ha generado gran interés e impacto sobre las empresas colaboradoras de esta
iniciativa. En cuanto a las lineas futuras de investigación, se plantea la posibilidad de incluir
más brazos robóticos para explorar la escalabilidad y la optimización de los protocolos uti-
lizados ası́ como la reevaluación del rendimiento en futuras Release de 5G que toleren las
capacidades del URLLCC (comunicaciones ultra fiables de baja latencia).

David Arias-Cachero Rincón
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 9 of 154

D. Closed Control Loop Latency plots 122
D.1. CCLL for MQTT over Ethernet: QoS comparison . . . . . . . . . . . . . . 122
D.2. CCLL for MQTT over Ethernet: Network load study . . . . . . . . . . . . 126
D.3. CCLL for MQTT-SN over Ethernet . . . . . . . . . . . . . . . . . . . . . 128
D.4. CCLL for MQTT-SN over Ethernet: Network load study . . . . . . . . . . 131
D.5. CCLL for OPC-UA over Ethernet . . . . . . . . . . . . . . . . . . . . . . 132
D.6. CCLL for OPC-UA over Ethernet: Network load study . . . . . . . . . . . 137
D.7. CCLL for MQTT over 5G: Testbed scenario . . . . . . . . . . . . . . . . . 139
D.8. CCLL for MQTT over 5G: Network load study (testbed) . . . . . . . . . . 142
D.9. CCLL for MQTT-SN over 5G: Testbed scenario . . . . . . . . . . . . . . . 144
D.10.CCLL for MQTT-SN over 5G: Network load study (testbed) . . . . . . . . 147
D.11.CCLL for OPC-UA over 5G: Testbed scenario . . . . . . . . . . . . . . . . 148
D.12.CCLL for OPC-UA over 5G: Network load study (testbed) . . . . . . . . . 153

David Arias-Cachero Rincón



Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

Page 10 of 154

List of figures
1.1. The four industrial revolutions. . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2. ISA-95 pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3. Handover in WiFi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4. 5G applications [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5. Wired production chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6. Current architecture of a typical wired robotic cell. . . . . . . . . . . . . . 26
1.7. Proposed architecture of a robotic cell using 5G and edge-cloud technologies. 26

2.1. Segment fields of Tranmission Control Protocol (TCP) and User Datagram
Protocol (UDP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2. Message Queuing Telemetry Transport (MQTT) packet structure. . . . . . . 32
2.3. MQTT Publish-Subscribe architecture. . . . . . . . . . . . . . . . . . . . . 34
2.4. Open Systems Interconnection (OSI) model. . . . . . . . . . . . . . . . . . 34
2.5. Quality of Service (QoS) 0 level. . . . . . . . . . . . . . . . . . . . . . . . 35
2.6. QoS 1 level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7. QoS 1 level: duplicated message. . . . . . . . . . . . . . . . . . . . . . . . 36
2.8. QoS 2 level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.9. MQTT (TCP) connection packet flow. . . . . . . . . . . . . . . . . . . . . 38
2.10. MQTT for Sensor Networks (MQTT-SN) (UDP) connection packet flow. . 39
2.11. OPC-UA Object model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.12. Open Platform Communications Unified Architecture (OPC-UA) use case

example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.13. OPC-UA Connection establishment, data transmission and closing procedures. 45
2.14. Ethernet testbed used for the study of MQTT. . . . . . . . . . . . . . . . . 47
2.15. Real scenario of the Ethernet testbed used for the study of MQTT. . . . . . 47
2.16. Ethernet testbed used for the study of OPC-UA. . . . . . . . . . . . . . . . 47
2.17. Real scenario of the Ethernet testbed used for the study of OPC-UA. . . . . 47
2.21. Flowchart of Closed Control Loop Latency (CCLL) in MQTT. . . . . . . . 50
2.22. Flowchart of CCLL in OPC-UA Client-Server. . . . . . . . . . . . . . . . . 50
2.23. Flowchart of CCLL in OPC-UA PubSub. . . . . . . . . . . . . . . . . . . 51
2.24. Testbed set up used during broker processing time study. . . . . . . . . . . 53
2.25. Real scenario of the Ethernet testbed used for the study of MQTT’s broker

processing time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.26. WireShark inside the TCP/Internet Protocol (IP) model. . . . . . . . . . . . 55

3.1. 5G architecture used in AAU 5G Smart Production Lab. . . . . . . . . . . . 67
3.2. Hardware needed for setting up one 5G Box. . . . . . . . . . . . . . . . . . 68
3.3. Subscriber Identity/Identification Module (SIM) card mounted on the USB3.0

board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4. SimCom modem mounted on the Gateworks’s USB 3.0 port. . . . . . . . . 69
3.5. Final set up of the 5G Box . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6. 5G Box integration within AAU 5G Smart Production Lab network. . . . . 70
3.7. MQTT testbed architecture integrated with the 5G edge cloud. . . . . . . . 74
3.8. OPC-UA testbed architecture integrated with the 5G edge cloud. . . . . . . 74

4.1. Disassembled UR5 robotic arms . . . . . . . . . . . . . . . . . . . . . . . 85

David Arias-Cachero Rincón
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 15 of 154

NAT Network Address Translation. 70–72

NFV Network Function Virtualization. 66

OPC Open Platform Communications. 40

OPC AE Open Platform Communications Alarms & Events. 40

OPC DA Open Platform Communications Data Access. 40

OPC HDA Open Platform Communications Historical Data Access. 40

OPC-UA Open Platform Communications Unified Architecture. 10–12, 27, 31, 40–52, 54–
65, 71–74, 76–83, 85–89, 91–93, 95–98, 105, 106, 110–114, 132–138, 148–154

OPCCLL Operational Closed Control Loop Latency. 11, 88–92

OPCET Operational Cycle Elapsed Time. 89, 91

OSI Open Systems Interconnection. 10, 30, 34

PCIe Peripheral Component Interconnect Express. 68

PLC Programmable Logic Controller. 19, 25, 27, 28, 40, 41, 52, 74, 84, 86, 88, 89, 95, 105,
106

PP Payload Percentage. 55, 61

QoS Quality of Service. 10, 23, 33–37, 54, 56–60, 62, 64, 65, 75–79, 81, 87, 95, 126, 127,
131, 142, 143, 147

RAN Radio Access Network. 26

RSMB Realy Small Message Broker. 108

RTDE Real-Time Data Exchange. 89, 105, 106

SCADA Supervisory Control and Data Acquisition. 19, 40

SDN Software Defined Networks. 66

SIM Subscriber Identity/Identification Module. 10, 68, 69

SSH Secure Socket Shell. 72

TCP Tranmission Control Protocol. 10, 30–35, 37–39, 43, 55, 56, 72, 108, 109

UDP User Datagram Protocol. 10, 30–32, 38, 39, 51, 56, 62, 75

UE User Equipment. 26, 67

UL Uplink. 68, 75

David Arias-Cachero Rincón
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1. Introduction
1.1.- Motivation

Most of the wireless communications applications are visible on a daily basis thanks
to the use of our smart devices but, how did these devices reach us? Everything that is tan-
gible has been the result of a certain production process. Due to population growth and the
fast advancement of technology, smart production processes, Industrial Internet of Things
(IIoT) and 5G communication systems are really important when it comes to manufacturing
enhancement. Industry 4.0 can be applied to an industrial scenario to achieve the following
aspects:

Efficiency improvement: through the use of IIoT and smart production processes, it
is possible to improve efficiency by optimizing operations, tasks, reducing costs and
waste.

Quality improvement: with IIoT and 5G technologies is possible to track, collect data
and monitor production to identify quality problems or even predict them before they
become a bigger issue.

Better decision-making: thanks to all the data collected by machines, sensors and con-
nected devices in general, improved and more accurate decisions can be made due to
data-driven models. This is particularly interesting at the time of identifying patterns,
optimizing processes and making predictions.

Safety improvement: sensors can also be used to study and monitor worker’s safety in
the factory using technologies such as computer vision which require the high band-
width and low latency that 5G communication technologies offer.

1.2.- Historical approach

It is clear that before we knew about the concept of Industry 4.0, there were three pre-
vious important industrial revolutions [1]. The First Industrial Revolution began in the mid-
18th and brought really important changes in the economical and social organisation. It was
mainly triggered by the emergence of capitalism, mechanisation of production and the use
of steam power. Although steam power had been known for years, it was it’s application for
industrial purposes that achieved the paradigm shift.
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Just over a century later and thanks to the discovery of electricity and advances in the
creation of steel and chemicals, the society met The Second Industrial Revolution. Well
known tycoon Henry Ford got closer to what we know about industrial processes nowadays
thanks to the inclusion of conveyor belts in the mass production process used for his card
company.

Moving closer in time, around the 1970’s, mankind witnessed the birth of The Third
Industrial Revolution whose drivers were partial automation and the use of electronic devices
in manufacturing processes.

Last but not least, we are living in The Fourth Industrial Revolution which is charac-
terised by the use of smart devices, digitalization, IIoT and Cyber-Physical Systems (CPS)
among other causes. The following thesis will cover one of the main aspects of this huge and
new ecosystem: the smart production processes.

In Figure 1.1 a small diagram illustrates the key concepts of each industrial revolution.

Figure 1.1: The four industrial revolutions.

1.2.1.- Industry 4.0

Industrial environments are one of the main players when it comes to the fast and disrup-
tive evolution of the communication technologies. This new industrial revolution based on
that technologies is called Industry 4.0. It focuses in Machine to Machine (M2M) commu-
nications so all those processes can be seen as data exchanges. In this way, physical devices
are converted to data terminals whose main function is to gather information that combined
with the power and benefits of cloud and egde-computing technologies, can lead to a deeper
and more intelligent analysis that optimises operations.

If we stop to think about the scenarios that can be covered by industrial automation, the
options are endless but the most known are mining, energy production, agriculture, logistics
and manufacturing. The main thing they all have in common is the huge amount of devices
connected in order to control their systems. That’s why scalability, latency, reliability and
security are key requirements when it comes to the deployment of these environments.
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 19 of 154

It is important to understand the ISA-95 (IEC 62264) [2] standard. This model labels the
industrial automation elements into five main layers according to their functionality and time
dependence (some of them are time-critical). It is depicted in Figure 1.2

Layer 0 - Field level: IoT sensors and actuators of the factory. It is the physical pro-
duction process.

Layer 1 - Control level: the main task is to sense and manipulate the production pro-
cesses. It is usually done using Programmable Logic Controllers (PLCs).

Layer 2 - Supervisory level: the main tasks are the supervisory, monitoring and auto-
mated control of the production processes. Supervisory Control and Data Acquisition
(SCADA) and Human Machine Interface (HMI) are used in this layer.

Layer 3 - Planning level: here is where the Manufacturing Execution System (MES)
takes place. It’s main goal is to ensure effectiveness of the operations by maintining
records and optimizing the production process.

Layer 4 - Management level: it’s the top layer. Here the Enterprise Resource Planning
(ERP) system is exploited.

Figure 1.2: ISA-95 pyramid.
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1.3.- Industrial networks

1.3.1.- Ethernet

Network architecture in today’s industry is mainly Ethernet based [3]. This well known
technology has been the principal component when it comes to real-time communications
within all industrial automation levels. Although there are cable categories that cover really
high bandwidth, speed, latency and compatibility demands such as the CAT6 [4], there is
still some major disadvantages that have not been solved:

Mobility: Ethernet cables are limited in terms of mobility. It is a clear disadvantage
when it comes to scenarios where devices need to move around or be repositioned,
such as in industrial manufacturing environments.

Set up complexity: these cables can be difficult to manage in big industrial environ-
ments where there can be found a high density of devices.

1.3.2.- WiFi

Legacy industrial systems won’t disappear with the introduction of new wireless com-
munication systems to industry scene since not all scenarios will require ultra low latencies
[5]. Known technologies such as WiFi are able to cover most of the requirements demanded
by certain kind of applications but using them is not always the best option. One of main is-
sues when it comes to the deployment of WiFi is related to its operation in unlicensed bands.
Resources have to be shared and therefore interference from neighbour networks might be
present.

Some mechanisms such as Listen-Before-Talk (LBT) are used to avoid collision between
devices sharing the same frequency bands. It is the de-facto access mechanism in Wi-Fi. This
is really important in the 2.4 and 5 GHz bands (although it also applies 6 and 60 GHz) since
they are usually heavy congested due its adoption many general-purpose communication
technologies such as Bluetooth [6] and Zigbee [7] and there is a limited number of available
channels. These methods can have an impact on latency because they introduce a delay
between the time a device wants to transmit data and the time when it actually begins to
transmit. This delay is necessary in order to allow the device to ensure there is no one using
the channel.

Another important point to consider in IIoT scenarios is the mobility of the devices since
it is desired to ensure a full flexibility of the scenario. Handover behaviour is different when
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using 5G or Wi-Fi. While 5G’s handover is managed by the own network, in Wi-Fi it is
done by the Base Station (BS). It computes how and when to handle a roaming event at
the time the devices leaves a certain area covered by a particular Access Point (AP). In the
process of abandoning the current AP connection and linking to a different AP, there is a
brief period of time in which the beacon is lost. This happens because Wi-Fi handover is
“break before make” so the connection to the first AP is broken before establishing a new
one to the second AP [8]. This is shown in Figure 1.3, where an Autonomous Mobile Robot
(AMR) moves from the covering area of the AP 1 to the one covered by AP 2 finding itself
without connection in the border region between both of them.

Even though there have been some advances in the latest versions of Wi-Fi such as Wi-Fi
6 (IEEE 802.11ax) [9] that target mobility enhancements, they are still not enough to fully
meet the actual demanding IIoT requirements [10].

Figure 1.3: Handover in WiFi.

1.4.- 5G for industrial environments

5G technology supports different services with specific requirements. Three main catego-
ries defined by the 3rd Generation Partnership Project (3GPP) provide different capabilities
and levels of performance for wireless communication systems [11]. Figure 1.4 displays
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a common way of explaining the three main categories of 5G technology related to their
most important features. Industry 4.0 goals mainly focused on Ultra-Reliable Low Latency
(URLLC) due to the low latency requirements but as the blue square shows, in order to
achieve them it is important to consider some other aspects included in Enhanced Mobile
Broadband (eMBB) and Massive Machine-Type Communication (mMTC).

Figure 1.4: 5G applications [12].

eMBB: this service category is designed for applications such as Virtual Reality (VR),
Augmented Reality (AR), video streaming and cloud-based gaming due to their high-
speed, high bandwidth and low latency requirements [13].

URLLC: this service category is designed to provide (as the name implies) ultra-
reliable and low-latency communications for scenarios such as autonomous systems,
industrial automation or remote surgery. Release 15 sets a latency target as low as 1
millisecond while providing high reliability making it suitable for fast response times
[13].

mMTC: this latter category is designed to support a massive quantity of sensors, actua-
tors and other Internet of Things (IoT) devices. The focus here is not on latency but on
low data rates and low power consumption, making it a great candidate for applications
that require long battery life [13].

The area highlighted in green shown in Figure 1.4 represents approximately the targets
of industrial 5G which, in addition to requiring really low latencies (URLLC), also demands
for large bandwidths (eMBB) that can be used for deploying VR and AR solutions as well as
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a high number of devices (mMTC), particularly relevant when numerous IIoT devices and
sensors need to communicate and collect data. It is important to emphasize that although not
all requirements are provided at the same time, 5G is flexible by design allowing to configure
multiple uses simultaneously.

1.4.1.- Benefits of using 5G in industry

Once the current industrial networks and 5G technology are introduced, it is time to
highlight the advantages of using the latter one for industrial applications. Apart from all
the supported use cases, 5G is scheduled and its handover offers the introduction of mobi-
le elements within the industrial production environment and mobility support. Due to the
capacity of 5G of handling a massive number of devices, flexibility, efficiency and cloudifi-
cation are other interesting advantages offered by this technology. Another key feature of 5G
is its operation in licensed spectrum which translates into that Quality of Service (QoS) can
be guaranteed [5].

Due to the use of mobile devices, it is possible to achieve reconfiguration inside the
industrial scenario. It is the ability of modifying the configuration of the environment in
order to meet changing requirements or to correct issues. This allows the manufacturer to
make changes in its industrial topology changing the roles or even the number of devices
used to develop an specific task. Thus, if we have a wired production chain consisting of a
controller and three machines as shown in the Figure 1.5, in case we wanted to reorder their
elements so we could face a different production task it would be an issue because everything
would have to be disconnected and reconnected again, and there could even be the possibility
of getting compatibility problems between the different interfaces [5].

By using 5G this would not be a problem since we could swap between machines and
reconfigure their tasks faster. We could even achieve a plug and play environment reducing
the time and effort required for their setup and configuration.

Following this same idea, we run into another of the great advantages of using 5G: mobi-
lity support. It is a key feature that enables devices to seamlessly transition between different
network environments. This can be used for Automated Guided Vehicles (AVGs) and AMRs
as depicted in Figure 1.5. These deices are usually intended for material handling, transpor-
tation tasks and logistics processes.
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Figure 1.5: Wired production chain.

1.5.- Edge-cloud computing for industrial environments

Smart manufacturing and Industry 4.0 are are characterized by the presence of inter-
connected systems and processes. Their output consists on real-time exchange of data that
controls the events taking place inside the factory and their connection to the outside world.
Due to the large number of devices that make up an intelligent manufacturing network, there
is a massive amount of data that has to be collected, analyzed and used in order to create
value and improve security, efficiency, costs and customer needs [14]. In order to do so, it
is necessary to have high computational resources. Current trend achieves it by using two
paradigms: cloud and edge-cloud computing [15].

Within a cloud industrial environment there is a data exchange between IIoT devices and
the internet by making use of a centralized computing unit, the cloud. In these kind of sce-
narios where desired transmission delays are around a few milliseconds [16] and reliability,
privacy and security of data is expected, this is not the most suitable option due to the greater
distance and number of hops between where the data is produced and analyzed.

Moving the computing closer to the IIoT devices, results in the edge-cloud paradigm
[17]. Here, acquired data is analyzed and processed in the network’s edge. This architecture
offers lower latencies and response timing due to the proximity between both ends therefore
it is more suitable for real-time applications. Security and privacy is also enhanced since cre-
dentials and critical data could be treated and encrypted in the edge-cloud and only remaining
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payload is sent across the internet [14].

The combination of edge-cloud and 5G technologies is an enabler for cloudification in
industrial scenarios. This refers to the process of migrating computing resources that are
currently used in local devices to cloud infrastructure and data centers so that it is possible
to take advantage of the high capacity, low latency and reliability of those technologies.
Typical cloudified application scenarios can range from storage or processing of data or
control software to virtual replication of complex tasks and machines. The common benefits
of cloudification are [18]:

Elasticity: resources can be increased or decreased freely.

Flexibility: new services or add-ons can be easily attached to the cloudified process
leading to more custom solutions.

Information exchange: it enables seamless information sharing and coordination among
various manufacturing elements.

1.6.- Thesis application scenario

This last section of Chapter 1 gathers all important information needed in order to un-
derstand and segment the different concepts and goals of the thesis: relocating the logic of a
PLC within an edge-cloud architecture.

1.6.1.- Robotic cell

The term robotic cell in manufacturing refers to a specific configuration or deployment
of industrial robots and their supporting equipment within a production facility. Its design
is thought with the objective of developing an specific manufacturing task or process which
usually requires high levels of efficiency and automation [19].

Figure 1.6 displays a diagram of what a typical robotic cell architecture looks like in
factories. As depicted in the figure, the robotic cell is composed by a robotic arm (sensor and
actuator) and a PLC which controls the manufacturing action performed by the arm itself.
Since these scenarios are mainly wired [5], they are therefore limited by the disadvantages
explained in Section 1.3.1. The main research lines and work done in this project will deal
with migrating the PLC from an on-site scenario to a cloudified one using 5G technology as
depicted in Figure 1.7. The advantages of this deployment are given in Section 1.5.
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Figure 1.6: Current architecture of a typical wired robotic cell.

Figure 1.7: Proposed architecture of a robotic cell using 5G and edge-cloud technologies.

While the current scenario is only composed by two elements, the proposed one gathers
the following:

5G Modem: device that enables connectivity of the robotic arm to a 5G network. This
kind of elements are also usually referred as User Equipment (UE) or 5G industrial
UE (more specifically in this type of scenarios).

Radio Access Network (RAN): part of the the cellular network that is in charge of
managing the communication between the UE and the core infrastructure.

5G Core: it is the heart of a 5G New Radio (5G NR) network. Its main tasks consist
on providing access to the services, routing data and establishing secure and reliable
communications between the end users and the network.
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Network management device: equipment used for interconnecting different networks.

Edge Cloud: distributed computing system used to bring computational resources clo-
ser to generation, collection and consumption of data. Differs from the internet-based
cloud in that the data processing happens closer to the user devices leading to lower
latencies and higher efficiency.

Cloudified PLC: software implementation of an on-site PLC running on a edge cloud
that performs exactly the same operations as the on-site PLC. This will be used for
controlling and communicating with the robotic cell due to the use of industrial com-
munication protocols.

1.6.2.- Industrial communication protocols

Since the main communication needs in industrial ecosystems are mainly related to
gathering telemetry data and control machines, sending and receiving data to/from devi-
ces is needed. This is typically done by using reference industrial communication protocols.
They are standardized sets of rules and formats that enable devices and systems in indus-
trial environments to exchange information effectively and reliably. In such scenarios where
automated systems, complex machinery and processes are prevalent, these protocols must
ensure seamless interoperability and coordination among different components [20].

The project will also investigate two prominent industrial communication protocols:
Message Queuing Telemetry Transport (MQTT) and Open Platform Communications Uni-
fied Architecture (OPC-UA). Both are great candidates for the development of the project
due to their widespread adoption, versatility, and relevance in modern industrial applications
[21]. A thorough performance study and comparison of both protocols will be made in order
to evaluate their behavior and characteristics when deployed over Ethernet and 5G technolo-
gies.

1.6.3.- 5G

As explained in Section 1.4.1, 5G holds great potential for industrial scenarios due to its
unique capabilities and advantages. Exploring them and how they affect the behaviour of our
robotic cell scenario is other of the main aspects to be analyzed in the project.
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1.6.4.- Edge-cloud and cloudification

By embracing edge-cloud and implementing cloudification, organizations can leverage
the benefits explained in Section 1.5, enabling the transformation of industrial processes,
enhances operational efficiency, and empowers businesses to embrace digital transformation
in the Industry 4.0 era.

1.7.- Objectives

The main objective of this project is:

OBJ: To investigate, design, and implement a wireless industrial network solution to
enable the control of a robotic cell environment from a remote PLC situated in the
edge-cloud using 5G technology.

In order to achieve the main goal, a subset of partial objectives were set:

OBJ1: Investigation of the main control network architectures for the different IIoT
protocols and performance evaluation under realistic network conditions in both typi-
cal wired setups and in 5G wireless settings.

OBJ2: Design and development of control network architectures for real-world ope-
rational robotic equipment based on the reference IIoT protocols, using 5G and edge-
cloud technologies.

OBJ3: Deployment and performance evaluation of the designed 5G edge-cloud control
network solutions with real-world robotic equipment in operational conditions.

1.8.- Thesis outline

This document will be organized into five main chapters, each focusing on specific as-
pects of the project. The following are detailed below, accompanied by a brief description:

Chapter 1: this introductory chapter provides an overview of the project, discussing
the motivation behind it and presenting the current state of the oart of relevant techno-
logies in the field of IIoT. It also outlines the objectives of the research and introduces
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the selected case study.

Chapter 2: it includes a deep theoretical and practical study of the main IIoT control
protocols and architectures, as well as their performance evaluation over wired Ether-
net.

Chapter 3: this chapter describes a framework for Ethernet to 5G system integration
and includes a performance evaluation of the IIoT protocols over 5G and edge-cloud
technologies.

Chapter 4: it includes a description of the operational robotic cell environment. Within
this environment, a functional solution was designed, implemented, deployed, and tes-
ted, using 5G and edge-cloud technologies. The chapter provides an overview of the
specific setup and infrastructure used for the development and execution of the so-
lution, highlighting the integration of cutting-edge technologies to enhance robotic
operations.

Chapter 5: concludes the thesis with an outline of the main conclusions and some
thoughts about potential future research lines.

In addition to the aforementioned elements, the thesis incorporates a section that eluci-
dates the impact of the project and significance within the smart manufacturing ecosystem.
Furthermore, it features four appendices which provide a more comprehensive understanding
of some of the topics illustrated in the preceding chapters.
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2. IIoT control protocols
When it comes to deploying an IIoT scenario, we need to make a deep study on which

protocol we should use in order to get the most out of our application. How, when and in
which way we need to collect, analyze and share the data are some of the most important
variables at the time of choosing the protocol. Actually almost all the details that we need to
evaluate are related to the information we want to transmit and receive between the different
elements of the scenario.The most important concepts to consider are [22]:

Data collection: it is important to choose an IIoT protocol that supports the types and
amount of data that our application requires.

Data transmission: the chosen IIoT protocol should handle the data transmission re-
quirements of our application such as bandwidth and latency.

Data processing: if our application requires a specific data processing such as real-
time, it is important to adopt an IIoT protocol that can handle it.

Interoperability: this is one of the most important features to cover when deploying an
IIoT environment. Different devices and systems are thought to work together seam-
lessly so it s important to choose a protocol that ensures the communication between
them regardless of the manufacturer or technology.

Reliablity: as in most cases, industrial environments need to ensure reliability as any
downtime or communication error can lead to significant production losses, safety ha-
zards or any other negative consequences. It is important to implement a protocol that
ensures reliable data delivery even in the worst network conditions.

Security: most valuable and vulnerable elements within an IIoT ecosystem are data
and devices. The chosen protocol should include robust security features in order to
ensure that our data and machines are protected from cyber threats and unauthorized
users.

In addition to the above bullet points, from a pure communication-related point of view,
apart from their specific application layer features, the IIoT protocols are dominated by their
characteristics at transport layer. At this level, the two main characters of this Open Sys-
tems Interconnection (OSI) model layer are Tranmission Control Protocol (TCP) and User
Datagram Protocol (UDP) and they can be compared using the following concepts [23]:
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Reliability: TCP offers reliability while UDP does not. TCP guarantees that data will
be delivered to the receiver in an orderly and error-free way (it is possible since it adds
sequence numbers to the packets). If for some reason any packets are damaged or lost
during the transmission, TCP will take care of re-transmitting them. UDP’s scenario
is different since it does not guarantee an ordered delivery of the packets and does not
offer any error-correction mechanisms.

Packet structure: It is clear that since they are different protocols, their packet structure
will vary. TCP includes more headers, acknowledgments, sequence numbers and other
control information in order to ensure reliable data transmission while UDP is set in a
smaller packet and therefore lighter.

Connection: TCP is what is known as a connection-oriented protocol. This means that
it has to establish an initial virtual connection between the sender and receiver before
transmitting any data. UDP, on the other hand, is not connection-oriented so it just
encapsulates the data into a datagram and sends it over the network.

Flow and congestion control: TCP is able to regulate the amount of data that is being
sent by implementing flow and congestion control mechanisms. UDP does not offer
this feature.

Figure 2.1 shows the packet structure of both transport layer protocols where the above
concepts can be corroborated. TCP segments include fields such as checksum, acknowled-
gement number and sequence number (among others) that lead to a reliable and ordered data
transmission. Other important differences between them are the flags, windows size and ur-
gent pointer found within a TCP segment. First ones are used to indicate specific status and
control conditions of the communication. Window size is used by a TCP receiver to indicate
how many bytes it desires to receive. Urgent pointer, as the name implies, is intended to
advertise data that should be delivered as soon as possible [23].

Just as TCP and UDP are known as the main protocols of the transport layer, going up
to the application layer within an industrial scenario, MQTT [24] and OPC-UA [25] are the
two of the most important and used IIoT protocols.
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Figure 2.1: Segment fields of TCP and UDP.

2.1.- MQTT

MQTT is a very lightweight publish-subscribe application layer protocol mainly desig-
ned for low-bandwidth and constrained environments. It is used in a wide variety of scenarios
including industrial automation, telecommunications, smart homes and even healthcare.

2.1.1.- Packet structure

As displayed in Figure 2.2 MQTT’s packet structure is made up of a fixed header, a
variable-length header and the payload [26]. The fixed header gathers the control header and
the packet length. This is always present in all MQTT message types. The variable-length
header is not always present and it depends on the message type. Focusing on “PUBLISH”
messages, MQTT’s packet size will increase depending on the name of the topic because its
value and length will be stored in the variable-length header. MQTT standard defines what
is the architecture of the packet but not which is the direct limit of “X” and “Y”. It only
indicates that the maximum packet size is 256 MB. Finally, payload field will contain the
data being sent (in case of an acknowledge packet it won’t be there since there is no data to
send).

Figure 2.2: MQTT packet structure.
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2.1.2.- Publish-Subscribe architecture

MQTT’s communication happens between two main components: the client and the bro-
ker. An MQTT client is any application or device that is able to communicate with an MQTT
broker using the MQTT protocol. A client can publish messages, subscribe to topics or both.
They can be deployed on a wide range of devices such as sensors, supercomputers, micro-
controllers, servers... There is also a wide variety of programming languages and frameworks
that can be used in order to implement MQTT clients. In this project, Python will be used
for this task.

On the other hand, an MQTT broker is a server whose role is to act as a central hub for
communicating MQTT clients sending the messages to those who have subscribed to certain
topics. MQTT brokers are able to manage thousands of concurrent connections while being
highly available and scalable. Brokers can be deployed in different platforms such as edge
devices, cloud or even dedicated servers. In the same way that there are many programming
languages and frameworks to implement MQTT clients, there is also a wide variety of libra-
ries to implement brokers, for example RabittMQ [27], HiveMQ [28] or Mosquitto [29] (the
one we will use for our project).

MQTT is publish-subscribe architecture based [26]. This is exemplified in Figure 2.3,
where publishers send messages to a MQTT broker which then distributes them to the subs-
cribers interested on those messages. Messages are published to a given topic, which is
basically an identifier for the messages. Subscribers can subscribe to one or more topics,
receiving the messages once they are sent to the broker by the publishers. The way topics
are organised is hierarchical and they can be seen as a directory whose different levels are
separated by a forward slashes.

Thus, given a robotic arm publishing to two topics called arm/status and arm/temp, subs-
cribers interested in how the arm is performing would have to subscribe to that topic but in
case they wanted to know the arm’s temperature, they should have to subscribe to the to-
pic arm/temp. MQTT clients (i.e publishers, subscribers or applications) are able to publish
messages to the broker without the need of knowing the identity or location of other clients.
It is the broker’s task to route the messages to the subscribers interested on them.

One of the most important and noteworthy features of MQTT is what is known as QoS.
It adds an extra level of reliability at application layer to guarantee the successful exchange
of information between the publisher and the subscriber. MQTT can resend messages and
guarantee their delivery even when transport layer protocol fails (for example when a TCP
disconnection happens).
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Figure 2.3: MQTT Publish-Subscribe architecture.

Figure 2.4 shows each layer of the OSI model [30] in which the physical connection
(either wired or wireless) between the sending and receiving devices represented with a solid
arrow happens at physical layer, while the logical connection of the rest of layers is repre-
sented with dashed arrows. As explained in the previous sub chapter, TCP offers reliability
at transport layer and setting a QoS level on MQTT does it at application layer.

Figure 2.4: OSI model.

At the time of exchanging data between two clients using MQTT, there are two different
segments in the communication from broker’s point of view: in the first one acts as receiver
and in the second one as sender. When a client sends a message to the broker using a desired
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QoS level the broker won’t use this level when transmitting the message to the subscriber
clients, it will use the one specified by each on them. That way, when a subscriber defines a
lower QoS than the publishing client, the broker will send the message with the lowest QoS.
MQTT supports the following levels of QoS [31]:

QoS 0 (at most once): with this QoS level there is a best-effort delivery but there is no
guarantee it is always delivered. There is no Acknowledgement (ACK) at application
layer from the receiver side and the message is not stored so it can’t be re-transmitted.
This level is also called “fire and forget” and its reliability depends on the stability of
the underlying TCP connection. With a stable TCP connection, there is a successful
delivery of messages. However, if the connection is reset or closed, there is a risk that
messages get lost. As it is illustrated in Figure 2.5, publisher sends a “PUBLISH” mes-
sage to the broker who later will do the same with the subscriber.

Figure 2.5: QoS 0 level.

QoS 1 (at least once): this is the middle level of quality of service in MQTT. Here the
message is delivered at least once to the receiver. The message is stored in the sen-
der until it receives a “PUBACK” packet to check the status of sent data. In this QoS
configuration there is a risk of sending a message multiple times. QoS level 1 guaran-
tees that a message is delivered at least one time to the receiver. Figure 2.6 illustrates
the entire process. There is a “PUBACK” on both sides of the communication (from
broker to “Node 1” and “Node 2”). It is possible for a message to be sent or delivered
multiple times. The sender uses Packet ID in each packet to match the “PUBLISH”
packet to the corresponding “PUBACK” packet. If the sender does not receive a “PU-
BACK” packet in a reasonable amount of time, it will resend the “PUBLISH” packet.
When a receiver gets a message with QoS 1, it can process it immediately. For exam-
ple, if the receiver is a broker, the broker sends the message to all subscribing clients
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and then replies with a “PUBACK” packet. If the packet does not reach destination,
sender won’t receive “PUBACK” so it will re-transmit the message and that way the
receiver will get it only once. There is an opposite case in which if the packet reaches
destination but “PUBACK” doesn’t make it to the sender, it will figure out that initially
the package didn’t arrived to the receiver, even though it did, so it will resend it again
leading to a duplicated packet in destination. This whole process is displayed in Figu-
re 2.7 where it is shown a “PUBLISH” packet whose Packet ID is 17 and its duplicated
flag DUP is set to zero. It’s “PUBACK” message never reaches the sender so the next
“PUBLISH” sets DUP flag to one.

Figure 2.6: QoS 1 level.

Figure 2.7: QoS 1 level: duplicated message.
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 37 of 154

QoS 2 (exactly once): this is the highest level of QoS service in MQTT. It introduces
the highest level of redundancy to guarantee the information is correctly transferred
and the message is received only once. QoS 2 provides the safest scenario using a
4-way handshake (“PUBLISH”, “PUBREC”, “PUBREL” and “PUBCOMP” packets)
that also leads to a relatively longer end-to-end delays. The whole flow of messages is
shown in Figure 2.8.

Figure 2.8: QoS 2 level.

2.1.3.- MQTT over TCP

Connection establishment of MQTT over TCP happens in two steps. First, the TCP 3-
way handshake takes place. Once the virtual connection is set at transport layer, MQTT
establishes its connection at application level using the “CONNECT” and “CONNACK”
packets. This last packet includes a return code which is an important parameter at the time of
developing and debugging MQTT applications. The whole connection process is displayed
in Figure 2.9 while the most common return codes are gathered in Table 2.1.
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Return Code Meaning
0 Connection accepted
1 Server does not support the level of MQTT requested by the client
2 Client ID is correct in UTF-8 but is not allowed by the server
3 Network connection has been made but MQTT service is not available
4 Connection refused due to an error in MQTT credentials
5 Connection refused. Client is not authorized to connect

6 to 255 Reserved for future use cases

Table 2.1: MQTT connect return code [32].

Figure 2.9: MQTT (TCP) connection packet flow.

2.1.4.- MQTT-SN: MQTT over UDP

MQTT for Sensor Networks (MQTT-SN) [33] was designed as a variation of the MQTT
protocol thought to be used in constrained environments operating over various transport
protocols including UDP. MQTT-SN accommodates specific requirements for devices with
limited memory, processing power and network capabilities.
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Using UDP as underlaying transport protocol enables efficient communication scenarios
where TCP’s overheard is not feasible. Thus, it can reduce network bandwidth usage, com-
munication latency and power consumption (key points studied in this project). An important
thing to consider is the inability of detecting if data has been lost both at transport and ap-
plication layer. Therefore, MQTT-SN should be used in use cases that do not require high
sensitivity of closed-loop control unless there is assured reliability on physical and Medium
Access Control (MAC) layers as it happens with 5G.

Main differences between MQTT and MQTT-SN are related to their connection esta-
blishment and payload size. While MQTT establishes a dedicated connection through the
3-way handshake explained above, MQTT-SN removes that need due to the use of UDP.
Although the exact payload size limit in MQTT-SN varies depending on the specific imple-
mentation, it is common to transmit less data than in MQTT scenarios.

Figure 2.10 illustrates the exchange of messages between a publisher, broker and subs-
criber when using MQTT-SN. Although there is no connection establishment based on the
underlying transport protocol, there is still an exchange of messages that set a connection at
application level between the clients and the broker (“CONNECT” and “CONNACK” mes-
sages). This does not guarantee reliability given that in the case a packet is lost, UDP does
not have built-in mechanisms for reliable and ordered delivery like TCP. This is important
because it is not as critical to lose a “CONNECT” packet sent by a publisher to the broker as
it is to lose a sample of data sent from a sensor.

Figure 2.10: MQTT-SN (UDP) connection packet flow.
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2.2.- OPC-UA

OPC-UA is one of the most famous and widely used data exchange standards for indus-
trial applications. It was developed by the Open Platform Communications (OPC) Founda-
tion, industry conglomerate that designs and maintains open connectivity standards focused
on industrial automation [34]. This foundation has released different standards suitable for
a big range of uses cases before developing OPC-UA. Some examples are Open Platform
Communications Data Access (OPC DA) for data accessing, Open Platform Communica-
tions Historical Data Access (OPC HDA) for historical data and Open Platform Communi-
cations Alarms & Events (OPC AE) for accessing alarms and events [35].

The situation inside factories prior to the creation of the OPC Foundation was quite diffe-
rent: HMI and SCADA system collected, analysed and showed data from diverse devices by
using several networks and protocols. This implied the need for manufacturers to create and
distribute their own drivers so if there were changes in the specifications, the environment
experienced malfunctioning communications. Solving those issues cost money and time as
well as the need of stopping production or operations of some important parts of the industrial
system. The biggest achieve from the OPC Foundation was the development of OPC-UA sin-
ce it replaced the older single-purpose standards (there were not connection between values
read with the OPC DA specification and those read with the OPC HDA standard). OPC-UA
proves multi-platform support, web services, better security, scalability and data handling.

In OPC-UA there are two main roles: the client and the server. The client is the one that
starts a connection to an OPC-UA server and requests data from its resources. An OPC-UA
client can range from a hardware device such a PLC to a fully software application running
on a personal laptop. On the other side of the communication, we can find the OPC-UA server
which provides services and data to the clients. It is in charge of managing the resources
on the system and making them accessible to the clients over the network. In addition to
providing data, OPC-UA servers can also offer authentication and security services.

As depicted in Figure 2.11, the way data is organised inside an OPC-UA environment
is defined by the OPC-UA’s object model. It specifies data’s structure and behavior as a
hierarchical tree-like format. The OPC-UA’s object represents a physical or logical device
such as sensors, actuators, robotic arms, conveyor belts, PLCs... The OPC-UA object model
is defined by the following concepts:

Variables: it is the basic data element. In a manufacturing scenario it could represent
the temperature or the status of a device.
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Methods: it is an action that can be applied on a variable or object inside a modelled
system. They are used to change the value of variables or trigger certain actions in the
environment. A common example would be a method used to close the gripper of a
robotic arm.

Events: within the OPC-UA standard, an event is a notification that is generated when
a specific condition is achieved inside the system. They can be used whether to alert
OPC-UA clients or to trigger a certain action inside the environment. An example of
this would be a low battery event for a sensor inside a manufacturing plant.

Figure 2.11: OPC-UA Object model.

From now on, it is important to highlight that OPC-UA is a whole architecture where
the communication process is only a small part of it, unlike MQTT which is a lightweight
messaging protocol. Data structure is more complex in OPC-UA and it is usually considered
more capable of dealing with more sophisticated data and functionalities within industrial
scenarios where devices form different manufactures coexist.

2.2.1.- Client-Server architecture

An OPC-UA ecosystem consists mainly of clients and servers [36]. Compared with
MQTT, where data is not stored at any of the nodes, in OPC-UA data is saved in the ser-
vers. Clients can whether read and write data as well as subscribing to changes on it (this
will be further explained in the next section). Although it is a fixed data architecture, users
can freely define how and how many components of the object they desire to use in order
to control their industrial environment. Figure 2.12 exemplifies an industrial environment in
which some OPC-UA Clients control two different scenarios:

Robotic arms: There is an OPC-UA Server installed in a PLC that is in charge of con-
trolling two robotic arms from different manufacturers (KUKA [37] and UR [38]).
Each of them will be represented inside the server as an object that contains different
variables, methods and events.
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 42 of 154

Lighting and ventilation systems: The OPC-UA Server installed here will take care of
two light bulbs called Light 1 and Light 2 besides controlling the ventilation system of
the factory.

OPC-UA clients can access to the data reading and writing it regardless of the device’s
manufacturer. Here we can once again understand the main advantage of using this standard
in a factory since that way it is possible to switch any time to other devices if your application
or other factors require it.

Figure 2.12: OPC-UA use case example.

2.2.2.- PubSub architecture

The other architecture offered by OPC-UA is known as PubSub model [36]. Here the
OPC-UA clients subscribe to variables or events stored inside an OPC-UA object. The server
notifies them every time the data has changed according a refreshing period specified by the
clients. The clients don’t have to ask for resources every time they want them as it happens
in Client-Server, so this is a good model for applications in which several clients need to
receive or access the same data. This leads to a reduction in the load on the server and the
network.
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The main differences between both OPC-UA communication models are:

Communication establishment: in PubSub model the server starts the communication
when it publishes data while in client-server model it is done by the client when it asks
for resources.

Scalability: Client-Server model is suitable for applications where there is a limited
amount of clients while PubSub model fits uses cases with a large amount of clients.

Use of resources: since PubSub model reduces the load on the server and network,
resources are more optimized when using this architecture.

2.2.3.- OPC-UA over TCP

OPC-UA is a TCP-based technology [39]. Due to this, it’s connection establishment is
based on a 3-way handshake in transport layer. Once this process is finished, OPC-UA con-
nection starts with a “Hello” message used to specify the buffer sizes that the client supports.
If the OPC-UA server accepts it, answers with an “Acknowledge” message completing the
buffer negotiation. Thereafter, the client requests for a secure channel and a secure session
are later created and activated. Once the OPC-UA connection establishment is done, data can
be accessed from the client by requesting its reading or writing. Finally the connection is clo-
sed whenever the client requests. All these steps are illustrated in detail in Figure 2.13 where
connection between Client 1 and Server follows a Client-Server model whereas connection
between Client 2 and Server follows a PubSub model. Both TCP connection and OPC-UA
connection establishment are the same but messages differ when it comes to OPC-UA data
transmission and closing OPC-UA connection.

In the first case, the following messages are exchanged in a Client-Server model:

“Read Request”: sent by an OPC-UA client to an OPC-UA server in order to request
values of one or more variables.

“Read Response”: sent by an OPC-UA server to an OPC-UA client in response to a
Read Request message, containing the values of the requested variables.

“Write Request”: sent by an OPC-UA client to an OPC-UA server in order to write
one or more variables.

“Write Response”: sent by an OPC-UA server to an OPC-UA client in response to a
Write Request message, containing the status and result of the writing operation.
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In a PubSub model, the following messages are exchanged:

“Publish Request”: sent by an OPC-UA subscriber to an OPC-UA publisher in order
to request new events or data.

“Publish Response”: sent by an OPC-UA publisher to an OPC-UA subscriber in res-
ponse to a Publish Request message, containing the data or information the subscriber
asked for.

Finally, PubSub model exchanges four extra messages before closing the OPC-UA con-
nection compared to Client-Server model:

“Delete Monitored Items Request”: sent by an OPC-UA subscriber to an OPC-UA
publisher in order to stop monitoring one or more items within a subscription.

“Delete Monitored Items Response”: sent by an OPC-UA publisher to an OPC-UA
subscriber in response to a Delete Monitored Items Request message.

“Delete Subscriptions Request”: sent by an OPC-UA subscriber to an OPC-UA pu-
blisher in order to delete a given subscription.

“Delete Subscriptions Response”: sent by an OPC-UA publisher to an OPC-UA subs-
criber in response to a Delete Subscriptions Response message, indicating the status
of the unsubscribing process.
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Figure 2.13: OPC-UA Connection establishment, data transmission and closing procedures.
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2.3.- Performance evaluation of IIoT protocols over Ethernet

The first step for understanding how both protocols work and what is their performance,
consists on the deployment of a testbed connected over wired Ethernet. The hardware used
and their main technical specs are listed below:

UP Squared Pro Board [40]: this 8 GB RAM and 64 GB of storage single-board com-
puter is used to perform the roles of client and broker in the MQTT scenario and the
roles of client and server in OPC-UA.

Switch: the communication within the boards in the Local Area Network (LAN) is
done by using a Zyxel GS-105B v2 switch [41]. This 5-port device can reach up to 2
Gigabit per second (Gbps) per port while offering low latency and error-free packet
delivering.

CAT 6 Ethernet cables: the UP Squared Boards are connected to the switch using CAT
6 Ethernet cables that provide around 1 Gbps of data transfer speed [4].

The specific implementation based on the described hardware for the different architec-
tures to be evaluated is detailed in the next sections.

2.4.- Test KPIs, setups and configurations

The performance of both protocols will be studied based on three main variables: Closed
Control Loop Latency (CCLL), link outage and effective payload size. For MQTT we will
make an extra test in order to understand its broker processing time and how it affects latency.

2.4.1.- Closed Control Loop Latency

This test is used to understand how protocols behave in terms of latency. The main idea
is to send a packet from “Node 1” to “Node 2” who will finally re-transmit it back to “Node
1”. Two timestamps will be calculated in Node’s 1 side: one just before sending the packet
and another just after receiving it. It is important to remember that MQTT’s testbed has three
boards (“Node 1”, broker and “Node 2”) whereas OPC-UA’s has only two. The architectural
diagram of both testbeds is displayed in Figures 2.14 and 2.16, while a picture of the real
setup is displayed in Figures 2.15 and 2.17, for MQTT and OPC-UA, respectively.
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Figure 2.14: Ethernet testbed used for the
study of MQTT.

Figure 2.15: Real scenario of the Ethernet
testbed used for the study of MQTT.

Figure 2.16: Ethernet testbed used for the
study of OPC-UA.

Figure 2.17: Real scenario of the Ethernet
testbed used for the study of OPC-UA.

The following figures illustrate how the CCLL is measured within the different scenarios
and protocols. Packets are depicted as envelopes with the following colour coding: blue for
packets sent by “Node 1”, orange for packets sent by the MQTT broker and green for packets
sent by “Node 2”.

Figure 2.18 shows the path followed by the data at the time of measuring the CCLL in a
MQTT scenario. In the “STEP1”, “Node 1” measures “Timestamp 1” and publishes data to
the topic “request”. “STEP 2” happens just after the broker receives the packet from “Node
1” and sends it to “Node 2”, who is subscribed to that topic. Once “Node 2” receives data
from the broker, it retransmits it to the topic “response”, to which “Node 1” is subscribed
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and resulting to “STEP 3”. Finally, the broker sends the packet received from “Node 2” to
“Node 1”, which measures “Timestamp 2” after receiving the packet and closes the loop.

Figure 2.18: Steps of the CCLL for MQTT using the testbed.

When it comes to OPC-UA, the process is different depending on whether we are using
Client-Server or PubSub architectures. In the first scenario, the way of computing CCLL is
by following the steps shown in Figure 2.19. “Node 1” measures “Timestamp1” just before
reading the variable stored in “Node 2”. Once it knows its value, the next step is to write a
new value on it and right after that “Node 1” measures ’Timestamp2’. This way, a closed
loop packet can be generated since the packet goes from “Node 2” to “Node 1” during the
reading process and from “Node 1” to “Node 2” during the writing.

Figure 2.19: Steps of the CCLL for OPC-UA Client-Server using the testbed.
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The computing of CCLL for a OPC-UA PubSub scenario depicted in Figure 2.20, follows
the same idea proposed for MQTT but it differs in some details. Since this protocol has no
broker, the closed loop starts on “Node 1” and ends on “Node 2”, without going through a
third device. Since in OPC-UA’s address space there are not topics but variables, two of them
will be created in “Node 2” since it will play the role of an OPC-UA’s Server. The aim is that
both protocols are studied as similarly as possible, so the variables will be called “request”
and “response”.

Instead of publishing and subscribing to topics, when it comes to OPC-UA PubSub, the
nodes change and detect changes in variables. That way, “STEP 1” begins when “Node 1”
measures ’Timestamp 1’ and changes the value of the variable “request” inside “Node 2”s.
Once the “Node 1” acts over ’request’, a notification is triggered to “Node 2” who detects the
change finishing “STEP2”. Just after that, “Node 2” changes the value of “response” within
“STEP3”. Finally, the loop is closed on “Node 1” who detects this last change carried out by
“Node 1” and finally measures “Timestamp 2”.

Figure 2.20: Steps of the CCLL for OPC-UA PubSub using the testbed.

For both MQTT and OPC-UA, its value is obtained by subtracting “Timestamp1” from
“Timestamp2” as indicated in Equation 2.1 and according to the timestamp references in
Figures 2.21, 2.22 and 2.23.

CCLL [ms] = Timestamp2 [ms]−Timestamp1 [ms] (2.1)
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Figure 2.21: Flowchart of CCLL in MQTT.

Figure 2.22: Flowchart of CCLL in OPC-UA Client-Server.
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Figure 2.23: Flowchart of CCLL in OPC-UA PubSub.

Results of the CCLL will be studied by measuring it 500 times for different payload
sizes and network load levels. 2 and 1300 bytes will be used in order to understand how both
protocols behave when dealing with small and near Maximum Transmission Unit (MTU)
packet sizes. Load on the network will be generated sending UDP packets from “Node 1” to
“Node 2” and vice versa with an approximate bitrate of 0, 25, 50, 50, 75 and 100% of the
total bandwidth of the link by using the open-source network testing tool iPerf3 [42]. This
way it will be possible to test how the different IIoT communication protocols perform over
variable network conditions and how different levels of external traffic affect CCLL.
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From the 500 samples of CCLL we will be able to analyze the results statistically by
using the Empirical Cumulative Distribution Function (ECDF). The formula of this function
follows the expression written in Equation 2.2 where the indicator function I(Xi ≤ x) is equal
to 1 if the i-th CCLL sample Xi is less or equal to x. The factor 1

n is used to normalize the
sum of the indicator function values.

F̂(x) =
1
n

n

∑
i=1

I(Xi ≤ x) (2.2)

Results will be based on the minimum, P50 or median, P90 or 90th percentile and maxi-
mum values so it will be possible to gain a complete understanding of the CCLL’s samples
range.

2.4.2.- Link outage

This Key Performance Indicator (KPI) is highly related to CCLL. We define link outa-
ge as the situation where a package would not be valid for a certain application based on a
Maximum Tolerable Latency (MTL). This is a typical parameter used in industry as a mal-
functioning threshold in operational machinery. In many cases, if the MTL is exceeded, the
manufacturing process is stopped and an alarm is issued to capture the attention of the human
operator [5]. For example, if our MTL is 10 ms, a packet with CCLL higher than that value
would be seen as if it had never reached destination so its functionality would had never been
performed.

MTL values of 10, 100, and 1000 milliseconds will be studied in order to develop this test
since they are representative of MTL in industrial processes with different communication
requirements. MTL level of 10 ms represents a very quick Input/Output (I/O) robotic link
while the 1000 ms threshold represents the current MTL levels in general PLC-orchestrated
production modules [5].

2.4.3.- Broker processing time in MQTT

In addition to the architecture of both protocols, the main difference between OPC-UA
and MQTT is the existence of a broker in the latter one. Since it is an additional hop in the
communication path, the broker will introduce extra latency to our application. It is our task
to study how it behaves under different conditions in order to know and understand how
much extra time it adds.
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Two additional devices called “Node 3” and “Node 4” were deployed in our testbed as
illustrated in Figure 2.24. They were set up using the same boards specified in Section 2.3.
A picture of the real set up of this new testbed is exemplified in Figure 2.25.

Figure 2.24: Testbed set up used during broker processing time study.

Figure 2.25: Real scenario of the Ethernet testbed used for the study of MQTT’s broker
processing time.
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Each of the new nodes runs 100 threads that publish a packet every 5 milliseconds to a
laptop subscribed to both of them. This way, we are left with the following scenarios:

Scenario 1: 1 publisher. “Node 1” publishes to “Node 2”.

Scenario 2: 101 publishers. “Node 1” and 100 threads of “Node 3” publish to “Node
2”.

Scenario 3: 201 publishers. “Node 1”, 100 threads of “Node 3” and 101 threads of
“Node 4” publish to “Node 2”.

In the first scenario, the broker has to deal with 1 publisher. In the the second one it has
to manage 101 publishers, and in the third one 201 publishers. This way we are covering the
performance from one sensor network to a high density IoT scenario.

Another experiment that will be made in this test is the study of the time that elapses
since the broker receives a message from a publisher and publishes it to a subscriber. This
will be made by studying the different packets of the different MQTT QoS configurations
when there is a data exchange between “Node 1” and “Node 2”. The scenarios in the list
shown above are also considered in this analysis.

2.4.4.- Effective payload

A deep study of the packet structure of both protocols will be made by focusing on the
comparison of their payload. Different scenarios will be considered in order to analyse how
effective are the protocols at the time of storing data.

OPC-UA offers a complex architecture that is able to distinguish from different built-in
data types by default. They are part of the OPC-UA information model and grant a standar-
dized data-exchange between OPC-UA clients and servers. There are 25 built-in data types
[43] but only Int64, String, Float and Boolean will be considered in our study.

On the other hand, MQTT primary deals with payload data as binary or plain text [24].
In the first case, its data is treated as a sequence of bytes used to represent any form of
binary information. In the second case, data is treated as a set of characters that can be
used to transmit commands, sensor readings, numerical values... In this last scenario, data is
encoded using American Standard Code for Information Interchange (ASCII).

In order to understand the results presented in this chapter, a detailed extensive study can
be found in Appendix B.
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Messages exchanged by higher layer protocols such as OPC-UA and MQTT are encap-
sulated in frames. They are link-layer based and are transmitted over physical media like
Ethernet cables. Assuming this, all upper-layer protocols (Internet Protocol (IP), TCP and
MQTT for example) are encapsulated in an Ethernet frame. As shown in Figure 2.26, frame
size will be the total byte value that WireShark captures in each packet transmitted through
the network whereas MQTT/OPC-UA packet size will be the amount of bytes used on to
transmit the actual data excluding any transport or network layer headers.

Figure 2.26: WireShark inside the TCP/IP model.

Payload size in both protocols will be compared using the following parameters:

Bytes Reserved for Payload (BRP): this value indicates the number of bytes used in
the application packet for storing the payload.

Bytes Actually Used for Paylaod (BAUP): this value indicates the number of bytes
from among the BRP used to store the payload and do not contain zeros.

Payload Percentage (PP): percentage of the frame size reserved for the payload.

PP [%] =
BRP [bytes]

Frame size [bytes]
×100 (2.3)

Effective Payload Percentage (EPP): percentage of BRP that are actually used to store
the data.

EPP [%] =
BAUP [bytes]
BRP [bytes]

×100 (2.4)
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2.5.- Performance results

This section summarizes the main statistical results of the CCLL and link outage per-
formance tests for the different configurations of the MQTT and OPC-UA protocols in the
cabled Ethernet testbed versions as well as the effective payload study and the MQTT broker
management. For further details on the full statistics, all ECDF plots are given in Appendix
D.

2.5.1.- Closed Control Loop Latency

As indicated in Table 2.2, QoS 0 exhibits a lower CCLL than other cases. This is particu-
larly noticeable at P50 and higher percentile levels. For example, at P50, for 1300B, QoS 0
results in 3-4 ms, while QoS 1 and QoS 2 result in 7-8 and 23-27 ms, respectively. In general,
the CCLL performance of MQTT seems stable with respect to network load. However, inter-
estingly, the CCLL performance for 2B packet sizes is worse than the one at 1300B for QoS
1 and QoS 2. The exact cause of this effect will not be further studied, as it is not relevant for
this project itself; but we speculate that it is probably due to the switch in the setup, which
might be filtering and handling short MQTT packages with lower priority than larger ones.

0% load 50% load 100% load
Min P50 P90 Max Min P50 P90 Max Min P50 P90 Max

2 B
QoS 0 3.32 3.77 3.91 8.33 2.17 3.02 3.27 6.88 1.67 2.46 2.78 5.64
QoS 1 2.46 33.86 66.57 93.69 2.55 44.57 80.95 123.04 2.21 33.68 68.55 105.05
QoS 2 10.57 53.47 91.72 130.34 6.66 59.39 91.62 131.55 8.98 38.90 56.22 134.88

1300 B
QoS 0 3.58 3.97 4.13 8.36 2.34 3.21 3.63 6.15 2.36 3.10 3.45 7.01
QoS 1 3.23 7.36 11.87 15.93 2.61 8.73 10.53 88.69 3.04 8.83 10.02 85.82
QoS 2 9.18 26.56 42.41 133.98 5.55 24.16 39.01 86.68 7.10 22.63 34.79 89.07

Table 2.2: CCLL in MQTT for Testbed over Ethernet.

In MQTT-SN, the MQTT protocol version over UDP, the performance for both packet
sizes is stable and similar for all network loads. CCLL values, which are summarized Table
2.3, are approximately 3 ms at median level, similar to those from QoS in MQTT over TCP;
however, maximum values in MQTT-SN are approximate half from the ones in MQTT, due
to fact that UDP transmissions does not implement any reliability mechanism, resulting in a
contained latency at the risk of experiencing packet loss.

0% load 50% load 100% load
Min P50 P90 Max Min P50 P90 Max Min P50 P90 Max

2 B QoS 0 2.53 3.05 3.28 3.56 1.81 2.85 3.47 4.44 2.06 2.61 2.91 3.50
1300 B QoS 0 2.67 3.47 3.86 4.18 2.27 3.14 3.84 4.72 2.45 3.02 3.24 5.60

Table 2.3: CCLL in MQTT-SN for Testbed over Ethernet.
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In the case of OPC-UA, Table 2.4 shows that Client-Server architecture offers higher
CCLL values for both payload sizes with P50 values in the range 11.5-12.5 ms and P90
values around 12-13.5 ms. Results obtained using the PubSub architecture are worse than
for the Client-Server case as the configured scheduling/transmission period increases. For
PubSub scenario of 1 ms the performance for both 2B and 1300B packet sizes at the P50
and P90 values are in the range of 6-8 ms and 7-8 ms, respectively. Incrementing the PubSub
period to 10 and 50 ms, results in increased CCLL latency as compared to the 1 ms period.
CCLL is 9 ms higher at P50 and 10-15 ms higher at P90 for the 10 ms period with respect to
the 1 ms one. This increases further in 30-40 ms at P50 and 50-60 ms for the 50 ms period.
The effect of the different payload size is small for all PubSub configured refreshing periods.
Although low CCLL values are expected for our IIoT applications it is important to find
a seek a balance at the time of setting the OPC-UA PubSub refreshing period since small
values overload the network and over time lead to situations that are the opposite of those
originally intended. For a given OPC-UA PubSub period and payload size, CCLL values are
very similar for all network load levels.

0% load 50% load 100% load
Min P50 P90 Max Min P50 P90 Max Min P50 P90 Max

2 B
Client Server 9.47 11.82 11.96 14.45 8.97 11.35 11.69 14.20 8.86 12.28 12.56 15.23
PubSub 1ms 6.14 7.63 8.04 14.12 6.18 7.33 8.10 9.72 5.62 6.19 6.85 7.96
PubSub 10ms 9.75 14.43 18.51 21.12 8.99 15.19 19.34 21.11 6.48 10.90 15.25 17.98
PubSub 50ms 30.65 55.49 71.93 83.04 28.35 54 72.08 82.45 9.02 34.17 54.94 60.79

1300 B
Client Server 9.49 12.16 12.32 15.26 9.53 11.48 12.09 18.81 8.84 12.51 13.52 18.01
PubSub 1ms 6.76 7.89 8.31 13.25 6.26 7.22 7.92 11.58 5.85 6.34 6.89 8.94
PubSub 10ms 8.53 17.44 24.09 26.95 8.92 14.65 18.67 20.85 11.47 16.57 21.03 23.04
PubSub 50ms 41.68 68.31 87.37 95.03 39.11 66.21 84.99 91.26 42.39 68.40 87.47 93.88

Table 2.4: CCLL in OPC-UA for Testbed over Ethernet.

Based on all collected results, the following summary observations can be made:

• MQTT-SN offers the best CCLL performance, similar to that of MQTT QoS 0,
at the price of reduced reliability reliability.

• MQTT QoS 0 offers better CCLL performance than QoS 1 and QoS 2.

• MQTT performs better for large packets than for small packets.

• OPC-UA PubSub CCLL performance depends heavily on the configured PubSub
refreshing period. In general, the higher the period, the higher the experienced
CCLL.

• OPC-UA Client-Server CCLL performance for both packet sizes is similar to
OPC-UA PubSub with a refreshing period of 10 ms.
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2.5.2.- Link outage

The CCLL results described in the previous section are now put in perspective of the
target MTL values. Table 2.5 gathers link outage results for MQTT. With QoS levels greater
than 0, link outage becomes an issue for MTL values of 10 ms, both in 2 and 1300B. First
payload size experiences around 88-94% of link outage when QoS 1 is used while bigger
payloads lead to the half of it approximately (42-55%). If we apply QoS 2 level, 2B payload
packets grow up to around 100% of link outage whereas 1300B do it up to 95% appro-
ximately. Moving to higher MTL values, link outage is negligible in all scenarios, with an
exception in some isolated cases where it is less than 5%. Gathering all results, it seems
that network load does not increase link outage whereas bigger payloads tend to show lower
values. This makes sense in perspective of the results in Table 2.2.

0% load 50% load 100% load
10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms

2 B
QoS 0 0% 0% 0% 0% 0% 0% 0% 0% 0%
QoS 1 93.8% 0% 0% 88.4% 0% 0% 92.2% 0% 0%
QoS 2 99.6% 2.4% 0% 99.8% 2.4% 0% 100% 4% 0%

1300 B
QoS 0 0.4% 0% 0% 0.2% 0% 0% 0% 0% 0%
QoS 1 47.4% 0% 0% 55.6% 0% 0% 42.2% 0% 0%
QoS 2 93.8% 0% 0% 94.6% 0% 0% 96.4% 0% 0%

Table 2.5: Link outage in MQTT for Testbed over Ethernet.

Table 2.6 depicts link outage results for MQTT-SN. There is no scenario in which link
outage exists. It is an expected result since there are not CCLL values greater than 10 ms
(see Table 2.3). It is important to highlight that even though these could be seen as the best
link outage results until now, there is no guarantee of reliability in this protocol.

0% load 50% load 100% load
10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms

2 B QoS 0 0% 0% 0% 0% 0% 0% 0% 0% 0%
1300 B QoS 0 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 2.6: Link outage in MQTT-SN for Testbed over Ethernet.

Table 2.7 illustrates link outage results for OPC-UA over Ethernet. Client-Server model
offers around 100% for MTL of 10 ms both in small and big payload sizes. By moving
to higher MTL values, it is possible not to suffer from link outage. In PubSub model, link
outage starts to be noticeable only when high scheduling periods are used. Based on the
entirety of the results, it is possible to assert that network load and payload size do not affect
link outage.
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0% load 50% load 100% load
10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms

2 B

Client Server 99.6% 0% 0% 99.4% 0% 0% 99.6% 0% 0%
PubSub 1ms 0.2% 0% 0% 0% 0% 0% 0% 0% 0%

PubSub 10ms 0.2% 0% 0% 0% 0% 0% 0% 0% 0%
PubSub 50ms 100% 0% 0% 100% 0% 0% 99% 0% 0%

1300 B

Client Server 99.8% 0% 0% 99.4% 0% 0% 99% 0% 0%
PubSub 1ms 0.2% 0% 0% 0.2% 0% 0% 0% 0% 0%

PubSub 10ms 0.2% 0% 0% 0% 0% 0% 0% 0% 0%
PubSub 50ms 100% 0% 0% 100% 0% 0% 100% 0% 0%

Table 2.7: Link outage in OPC-UA for Testbed over Ethernet.

In terms of link outage analysis, the following observations serve as a summary:

• MQTT provides reliable support for MTLs of 1s and above for all QoS levels,
independently of packet size and network load.

• MQTT provides reliable support for MTLs of 100 ms and above for QoS 0 and
QoS 1, independently of packet size and network load.

• MQTT provides reliable support for MTLs of 10 ms and above for QoS 0, inde-
pendently of packet size and network load.

• MQTT-SN can support MTLs of 10 ms and above at expenses of some potential
packet loss.

• OPC-UA Client-Server and PubSub provide reliable support for MTLs of 100 ms
and above independently of packet size and network load.

2.5.3.- Broker processing time in MQTT

Table 2.8 shows statistics regarding the CCLL for the different MQTT QoS configura-
tions with increasing number of publishers and scenarios. Results were obtained without any
other extra load (apart from the one created by the multiple publishers themselves). For all
QoS, MQTT CCLL appears to be independent on the number of the publishers. Further, the
observed values are well aligned with those previously presented in Table 2.2. This means
that broker capacity is not a limiting factor in MQTT, at least when simultaneously operating
201 or less publisher sessions.
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MQTT Configuration Scenario Min P50 P90 Max
1 publisher 2.86 ms 3.78 ms 4.13 ms 7.72 ms

QoS 0 101 publishers 2.33 ms 3.17 ms 3.66 ms 4.34 ms
201 publishers 2.24 ms 2.83 ms 2.29 ms 5.18 ms

1 publisher 2.57 ms 13.86 ms 44.7 ms 88.01 ms
QoS 1 101 publishers 2.2 ms 14 ms 44.8 ms 88.9 ms

201 publishers 2.47 ms 14.65 ms 44.3 ms 86.97 ms
1 publisher 9.18 ms 38.56 ms 78.32 ms 134.44 ms

QoS 2 101 publishers 8 ms 45.45 ms 77.65 ms 132.3 ms
201 publishers 13.16 ms 44.65 ms 68.46 ms 130.29 ms

Table 2.8: MQTT CCLL for different number of publishers.

Once we have studied how the number of publishers affects the CCLL, it is time to study
the MQTT broker processing time in detail (elapsed time between the broker receiving a
message from a publisher and transmitting it to the subscriber). As summarized in Table 2.9,
the processing time is in the range 0.1-0.6 ms for all QoS levels.

MQTT Configuration Min P50 P90 Max
QoS 0 0.27 ms 0.33 ms 0.43 ms 0.51 ms
QoS 1 0.27 ms 0.39 ms 0.40 ms 0.55 ms
QoS 2 0.14 ms 0.33 ms 0.38 ms 0.58 ms

Table 2.9: Time elapsed in MQTT broker

It is possible to partially conclude the following:

• MQTT’s broker processing time is stable and appears to be independent of the
number of connections managed for any level of QoS.

• MQTT processing time was found to be below 0.6 ms for all tested configurations.

2.5.4.- Effective payload

It is important to remember that OPC-UA has built-in data types so the protocol is able
to distinguish between integer, boolean and string values (among others) before sending the
data whereas MQTT sends all data as string. Thus, rows “Int (ASCII)” and “Float (ASCII)”
of MQTT refer to the scenarios in which those data types are sent as text. In order to perform
a better comparison and make a deeper study of both protocols, two algorithms were design
and applied so it was able to send integer and floating data as hexadecimal values. Results
obtained in these last two scenarios appear “Int (HEX)” and “Floating (HEX)” rows. The
steps followed in order to perform this study and get the results shown in Table 2.10 are
detailed explained in Section C.

David Arias-Cachero Rincón
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Protocol Data type Payload Frame size Packet size BRP BAUP EPP PP

MQTT

Int (ASCII) 123456789 84 bytes 18 bytes 9 bytes 9 bytes 100% 10.71%
Int (HEX) 123456789 79 bytes 13 bytes 4 bytes 4 bytes 100% 5%

Float (ASCII) 3.14159 83 bytes 16 bytes 7 bytes 7 bytes 100% 8.43%
Float (HEX) 3.14159 79 bytes 13 bytes 4 byte 4 byte 100% 5%

String
’x’ 76 bytes 10 bytes 1 byte 1 byte 100% 1.32%

’Claudia’ 82 bytes 16 bytes 7 byte 7 byte 100% 8.54%

OPC-UA

Int64
Min value 181 bytes 97 bytes 8 bytes 8 bytes 100% 4.42%
Max value 181 bytes 97 bytes 8 bytes 8 bytes 100% 4.42%
123456789 181 bytes 97 bytes 8 bytes 4 bytes 50% 2.21%

Bool
True 174 bytes 90 bytes 1 byte 1 byte 100% 0.57%
False 174 bytes 90 bytes 1 byte 1 byte 100% 0.57%

String
’x’ 178 bytes 95 bytes 1 byte 1 byte 100% 0.56%

’Claudia’ 184 bytes 100 bytes 7 bytes 7 bytes 100% 3.8%

Table 2.10: Payload size comparison.

In terms of frame size, OPC-UA considers around 129% and 124% larger sizes than
MQTT for integer value payload of “123456789” (using HEX encoding) and string value
“Claudia” respectively. If we go deeper and only focus on packet size for the same examples,
MQTT’s packet is only around 21.5% of frame size for the integer case whereas OPC-UA
grows up to 54%. In the string scenario, both results are 19.5% and 54% approximately. BRP
values are the same in both protocols for those cases but if we use the default ASCII encoding
for MQTT it grows from 4 to 9 bytes, which means that it needs more twice the space for
sending the same payload. This shows that the idea of MQTT as an lightweight protocol
seems to make sense and reflects the impact of implementing extra encoding solutions for
MQTT in addition to he default one.

For both MQTT and OPC-UA, EPP is 100%, except in the case of OPC-UA Int64 nume-
ric payload which is only 50%. This is due to the fact that OPC-UA assigns 8 bytes to store
the value regardless of whether they are filled or not. That is why if a value different from the
maximum or minimum, payload efficiency decreases because those reserved bytes that are
not used will be stored as zeros. Finally, in terms of PP, MQTT tends to have higher values
than OPC-UA because the proportion of payload size within the packet frame is bigger for
that protocol.

Based on the analysis of the previous results, the following summary observations can be
derived:

• Frame and packet sizes in MQTT are considerably smaller at the time of trans-
mitting the same payload.

• MQTT is more efficient when it comes to storing the payload as it offers higher
PP values.
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• OPC-UA offers more built-in data types than MQTT, which facilitates the treat-
ment of data in transmission and reception. This comes at the cost of increased
packet/frame size.

2.6.- Discussion of results

Previous sections of this chapter gather a deep investigation and understanding of both
protocols and their architectures in a wired scenario. This gives a partial answer to OBJ1.

In terms of implementation, the MQTT solution was found to be simpler to design and
deploy due to the wide availability of online resources and the low complexity of the pro-
tocol architecture and the structure of its packets. Moving to its UDP version MQTT-SN,
its deployment was just as easy but the library used to it was still under development so
although this protocol stands out for having the best CCLL and link outage results, it is bet-
ter to keep it as an extra and interesting case of study and not as a candidate for further and
more complex scenarios due to the big amount of crashes, unknown errors and lack of relia-
bility, something crucial in industrial applications that must be highly considered from the
very first moment within this discipline. On the other hand, OPC-UA implementation was
found to be the most difficult one starting from the complexity at the time of understanding
how the whole OPC-UA architecture works.

Figures 2.27, 2.28 and 2.29 illustrate selected CCLL statistics, comparing relevant per-
formance results exhibited by the different IIoT protocols over Ethernet considering large
packet sizes (1300 B) and the highest level of network load (100%). Thus, these results can
be interpreted as a performance boundary reference.

In terms of wired communication performance, Figure 2.27 depicts how both MQTT
QoS 0 and MQTT-SN show a stable and similar trend with median values of approximately
3-4 ms. Half of the MQTT QoS 1 CCLL performance values follow a similar trend to QoS
0 with levels of approximately 5 ms, however, the other half exhibits values of 25 ms and
higher. MQTT QoS 2 is the worst case in terms of CCLL, reaching values that can be larger
than 50 ms.

As depicted in Figure 2.28, OPC-UA Client-Server and OPC-UA PubSub with 1 ms
publishing rate behave both very stably. However, OPC-UA Client-Server presents 6 ms
increased CCLL performance as compared to OPC-UA PubSub with 1 ms period. Increasing
the PubSub scheduling period to 10 and 50 ms results in a less stable and slower CCLL
performance, with values of up to 25 and 100 ms, respectively.
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Figure 2.27: ECDF for MQTT vs MQTT-SN over Ethernet for packets with 1300 B payload
and 100% of network load.

Figure 2.28: ECDF for OPC-UA Client-Server and OPC-UA PuBSub over Ethernet for pac-
kets with 1300 B payload and 100% of network load.
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 64 of 154

Finally, Figure 2.29 serves a final conclusion to this chapter with a comparison between
MQTT and OPC-UA CCLL performance. In particular, MQTT QoS 0 and OPC-UA PubSub
with scheduling rate of 10 ms have been chosen for benchmarking. The motivation for this
choice will be further explained in details in Chapter 4, as it is related to the implementation
of the protocols to control real robotic hardware, but for the moment they can just be taken as
two representative configurations in the analysis. For the comparison, the following metrics
are defined:

OMQT T [ms] = P50MQT T−QoS01300B [ms]−P50MQT T−QoS02B [ms] (2.5)

OOPC−UA [ms] = P50OPC−UA−10ms1300B [ms]−P50OPC−UA−10ms2B [ms] (2.6)

∆2B [ms] = P50OPC−UA−10ms2B [ms]−P50MQT T−QoS02B [ms] (2.7)

∆1300B [ms] = P50OPC−UA−10ms1300B [ms]−P50MQT T−QoS01300B [ms] (2.8)

OMQT T and OOPC−UA, both in ms, provide a quick insight on the operational CCLL
performance range expected in the MQTT and OPC-UA selected configurations at P50 level,
respectively. ∆2B and ∆1300B quantify the performance difference between MQTT QoS 0 and
OPC-UA PubSub 10 ms at P50 level for 2B and 1300B payload, respectively.

Figure 2.29: ECDF for MQTT vs OPC-UA over Ethernet for 100% of network load.
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Table 2.11 collects the defined metrics for wired Ethernet performance. In summary,
MQTT QoS 0 with 1300 B is 26% slower than with 2B. For OPC-UA PubSub 10 ms, 2B
payloads perform approximately 34% faster than 1300 B. Comparing MQTT and OPC-UA,
MQTT QoS 0 performs around 78% and 81% faster than OPC-UA 10 ms in terms of CCLL
considering packets sizes of 2B and 1300B, respectively.

Metric Value [ms]
OMQT T 0.64

OOPC−UA 5.67
∆2B 8.48

∆1300B 13.47

Table 2.11: Summary of performance indicators over Ethernet.

Thus, the following observation can be made:

• MQTT CCLL performance is 80% better than OPC-UA for the reference selec-
ted configurations.
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3. Ethernet to 5G system integration
Now that the IIoT control communication architectures and protocols have been analy-

zed, the next step considers integration of these with 5G technology in order to replace the
main Ethernet wired connections, enabling the flexibility and reconfigurability explained in
Section 1.4.1.

3.1.- 5G architectures

Two of the main components of a mobile network are the base stations and the core. 4G
Long Term Evolution (LTE) base stations are known as Evolved Node B (eNB) whereas 5G
ones are called Next-generation Node B (gNB). Evolved Packet Core (EPC) is the core of a
LTE network. 5G Core (5GC) is the one corresponding to a 5G network [44].

Depending on how the above elements are combined, different 5G architectures can be
achieved. The two main 5G deployments are known as 5G Non-Standalone (5G NSA) and
5G Standalone (5G SA) [44]. The main characteristic of 5G NSA is that the control plane
occurs always over the 4G eNBs, while the data plane is steered over the 5G gNBs. It con-
siders both eNB and gNB connected to EPC. With 5G NSA, network operators are able to
provide the benefits of 5G technology such as Software Defined Networks (SDN), Network
Function Virtualization (NFV) and network slicing. On the other hand, in 5G SA, only gNBs
are connected to a 5GC. In this case both the control and data plane are over the 5G gNB
interfaces. This way, operators can free themselves from legacy LTE components and install
5G base stations in areas without LTE coverage.

Figure 3.1 shows a high-level architecture of the AAU 5G Smart Production Lab [45]. It
offers both 5G NSA and 5G SA architectures and it can be segmented into three main parts
[46]:

5G Network: this network is deployed in a 5G SA architecture composed by a gNB,
private 5GC and an enterprise edge cloud.

Wire Area Network (WAN): this second network is deployed in a 5G NSA configu-
ration using Telenor’s public core, located a few km from the lab. In this case, the
edge cloud service can still be accessed to the core via Multiprotocol Label Switching
(MPLS).
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Internet: is used to provide general internet access to the UE and edge cloud within the
lab; but also to connect to the Telenor public core via an alternative IPsec connection
different from the dedicated MPLS WAN tunnel.

Figure 3.1: 5G architecture used in AAU 5G Smart Production Lab.

3.2.- 5G Box deployment

The network element used to integrate our devices within the 5G network is called
5G Box. It mainly consists of a Gateworks Newport GW6404 SBC [47] and a SIMCom
SIM8262E-M2 modem [48]. The first one acts as the main computing unit of the 5G Box
whereas the second one is allows the connection to the 5G network.

3.2.1.- Gateworks Newport GW6404 SBC

As explained above, this device is the “brain” of the 5G Box. Its tasks include managing
software tools and controlling the modules connected to it. Its main technical specs include:

Quad Core 1.5GHz ARM SoC.
2GB DDR4.
8GB eMMC Flash Memory.
GPS and CAN support.
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 68 of 154

3.2.2.- SIM8262E-M2

This is a multi-mode wireless module that provides 5G/LTE/Evolved HSPA (HSPA+)
connectivity. It is designed following 3GPP Release 16 and supports 5G NSA and 5G SA
up to 3.4 Gbps of data transfer in Downlink (DL) and 1 Gbps in Uplink (UL). It also pro-
vides Global Navigation Satellite System (GNSS) technologies such as GPS, GLONASS,
Galileo and BeiDou. Among its interfaces, it is worth mentioning Peripheral Component
Interconnect Express (PCIe), USB 3.1 and General Purpose Input/Output (GPIO).

3.2.3.- Hardware set up

For the complete set up of the 5G Box, the following items will be needed:

1 Gateworks Newport GW6404 SBC boards.
4 5G/4G/LTE blade dipole antennas.
4 U.FL to SMA female connectors.
2 SIMCom SIM8262E-M2 modems.
2 USB 3.0 boards.
2 NOKIA SIM cards.

Figure 3.2 shows the hardware needed for the deployment one 5G Box. The whole pro-
cess will be explained for the deployment of one device so in order to configure the others it
would be enough to repeat it. The first step consists on mounting the SIM card in the “SIM1”
slot of the USB 3.0 board as shown in Figure 3.3. Once it is done, we can connect the anten-
nas to the U.FL ports of the SIM8262E-M2, connect the modem to the USB 3.0 board, and
mount all on the USB3.0 slot of the Gateworks as illustrated in Figure 3.4.

Figure 3.2: Hardware needed for setting up one 5G Box.

Finally we mount the antennas connecting them to the SMA connectors of the 5G Box.
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Figure 3.3: SIM card mounted on the USB3.0 board.

Figure 3.4: SimCom modem mounted on the Gateworks’s USB 3.0 port.

The completed setup is shown in Figure 3.5.

Figure 3.5: Final set up of the 5G Box
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Figure 3.6 illustrates how the 5G Box is integrated in the AAU 5G Smart Production
Lab environment. Since it will be the boundary between the LAN where “Node 2” will be
deployed and the 5G network. Edge cloud will be in its own network so in order to achieve
communication between “Node 2” and “Node 1” it will be necessary to set up some Network
Address Translation (NAT) rules as explained in next section.

Figure 3.6: 5G Box integration within AAU 5G Smart Production Lab network.

The enterprise edge-cloud implemented in the AAU 5G Smart Production Lab consists
on 12 servers [17]. Although it is possible to access the internet from inside the lab, it won’t
be necessary for our application. We will only need to go until the edge of the network. One
of the servers will be used to install a Linux-based virtual machine in which “Node 1” and
MQTT broker will be deployed. The technical specs of the server are the following:

56 CPU Logical cores.
125 GiB of RAM.
932 GiB of storage.

From the resources listed above, the virtual machine will use 32 CPU logical cores, 60
GiB of RAM and 128 GiB of storage.

3.2.4.- Software set up

The modem’s firmware is Linux based so its setup will be made using a Command Line
Interface (CLI). In order to access it, it is necessary to power on the modem and connect the
laptop to the blue Ethernet port (Figure 3.5) so it is possible to check if we are getting an IP
in the subnet 10.42.0.0/24. Using PuTTY [49], we will connect to the modem via 10.42.0.1
(it is the gateway’s IP) Once we are logged in the modem, we have to create a new 5G
NetworkManager profile so we can access the network. The command is specified below:

1 $ nmcli c add type gsm ifname cdc -wdm0 con -name nsa -aau5g -dave apn

2 internet
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There we find the following parameters:

“type”: we specify the connection as Global System for Mobile Communications
(GSM).
“ifname”: the name of the network interface used for the communication. In our ca-
se, cdc-wdm0 is a generic USB communication interface used for mobile broadband
devices, such as modems and cellular routers.
“con-name”: name of the connection profile.
“apn”:used for specifying the Access Point Name (APN).

With the connection successfully created, we can activate it by running the following
command:

1 $ nmcli c up sa-aau5g -dave

It is important to know that since the “Node 2” is in the modem’s LAN, there is a need of
using NAT to communicate with the “Node 1” because this last one is in the edge-Cloud and
without configuring it there is no way both of them know each other as depicted in Figure
3.6.

The next step is to connect “Node 2” to the red Ethernet port of the 5G modem and check
which IP is given. In our case, we are getting 10.42.0.233. Once we know “Node’s 2” IP, it
is time to create the Destination NAT (DNAT) rules. They will be written inside FireHOL’s
configuration file. FireHOL [50] is a Linux tool that provides an easy-to-use interface for
configuring and managing firewall rules. It offers a simple syntax that translates the rules
and policies into “iptables” or “nftables” commands
We need these rules because since we will be launching an iPerf3 server to study both pro-
tocols performance over loaded network links and an OPC-UA server to study the protocol
itself, we would not be able to access “Node 2” without redirecting the traffic. There is no
need of writing a rule for MQTT because the broker is deployed in the Edge cloud side. This
means that when “Node 2” sends the request to the MQTT broker, the connection is set so
DNAT is not needed later in order to send messages to “Node 2” from outside its network.

In order to do edit the configuration file, we have to run the following command:

1 $ nano /etc/firehol/firehol.conf

Then the following configuration needs to be applied:

1 dnat4 to 10.42.0.233:4840 dst 10.94.132.8 dport 4840

2 dnat4 to 10.42.0.233:22 dst 10.94.132.8 dport 22

3
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4 interface eth2 config_iface

5 client all accept

6 server all accept

7
8 interface wwan0 5g

9 client all accept

10 server all accept

11
12 router eth -to -5g inface eth2 outface wwan0

13 masquerade

14 client all accept

15 server all accept

16
17 router 5g-to -eth inface wwan0 outface eth2

18 masquerade

19 client all accept

20 server all accept

Each of the first two lines specify a different DNAT rule for the “Node 2”. The first one
is used for the OPC-UA protocol which will listen on the TCP port 4840 and the second one
is dedicated to the Secure Socket Shell (SSH) protocol which uses its known TCP port 22.

Below the TCP rules, the network interfaces are defined. The “eth2” is the one that joins
“Node 2” and the 5G modem. ”wwan0” is the wireless interface used to connect the 5G
modem to the 5G core.

The last two sections are used to define the routing rules for the traffic that flows between
the interfaces. There is one for the data going from “eth2” to “wwan0” and vice versa. With
the “masquerade” option we enable NAT.

Once all this is done, we will find ourselves in the situation where OPC-UA packets
coming form the edge-loud won’t reach the server in “Node 2” even though we have just
wrote a DNAT rule to solve it. This happen because FireHOL and Network Manager use
different firewall configurations that leads to a conflict between their iptables. FireHOL uses
the “legacy” version of iptables whereas Network Manager uses the “nft” version. When
executing Firehol configuration, it can’t clear the rules generated by Network Manager so it
won’t work. There are two possible ways of solving this issue.

The first option is to set the iptables to “nft” version in the Gateworks as follows:

1 $ sudo update -alternatives --set iptables /usr/sbin/iptables -nft

2 $ sudo update -alternatives --set ip6tables /usr/sbin/ip6tables -nft

3 $ update -alternatives --set arptables /usr/sbin/arptables -nft
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4 $ sudo update -alternatives --set ebtables /usr/sbin/ebtables -nft

Once the iptables are set to the “nft” version, we need to create the following script called
“delete all ip tables rules.sh”:

1 for table in $(cat /proc/net/ip_tables_names)

2 do

3 iptables -t $table -F

4 iptables -t $table -X

5 done

The first command inside the loop flushes all the rules in the iptables of the system and
the second one deletes any custom rules. It is important to reboot the system before running
the script. Once it is rebooted, we can execute it. By running the script, all the iptables rules
on the system will be cleared. From now on, we can use OPC-UA since our iptables are reset
and running only one configuration.

The second way of solving the iptables conflict is by setting their version to “legacy”,
rebooting the modem and finally running the command “sudo firehol try”. We can set the
desired iptables version as follows:

1 $ sudo update -alternatives --set iptables /usr/sbin/iptables -legacy

2 $ sudo update -alternatives --set ip6tables /usr/sbin/ip6tables -

legacy

3 $ update -alternatives --set arptables /usr/sbin/arptables -legacy

4 $ sudo update -alternatives --set ebtables /usr/sbin/ebtables -legacy

Using any of both options will lead to a working environment where the 5G Box is connected
to the 5G network and ready to operate industrial traffic connections to and from the edge
cloud.

3.3.- Performance evaluation of IIoT industrial protocols over 5G

Now that we know how to integrate devices into the 5G network and the edge-cloud, the
same performance evaluation done for the cabled Ethernet case, can be repeated over 5G
and edge cloud. Given that the broker processing time in MQTT and payload comparison of
both protocols has already been done over Ethernet, (and the same results also apply to the
5G edge cloud case), only CCLL and link outage will be addressed in this case. Edge-cloud
is now included in the scheme of both testbeds and it will play different roles depending on
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the protocol so both testbed architectures for OPC-UA and MQTT will be different from the
ones shown in Chapter 2.

For MQTT protocol, both the broker and “Node 1” will be running on the edge-cloud
instead of being deployed in UP Squared Boards. Thus, “Node 1” representing a Cloudified
PLC, will enjoy the advantages explained in Section 1.6. Running the broker on the Edge
Cloud will provide scalability, mobility, and elasticity as explained in Section 1.4.1. “Node 2”
will still be running on the same device used for the Ethernet performance study. Figure 3.7
details the testbed architecture for MQTT over 5G.

Figure 3.7: MQTT testbed architecture integrated with the 5G edge cloud.

Since OPC-UA is not broker-based, Node 1 will be the only process running on the Edge
Cloud and will be subscribed to the OPC-UA server, which will still be deployed in “Node
1” board as shown in Figure 3.8.

Figure 3.8: OPC-UA testbed architecture integrated with the 5G edge cloud.

In order to achieve load on the 5G network, an external device that introduces noisy
traffic will be needed. The specifications of this component are the same as “Node 2”. The
5G Box used to connect it to the 5G network is the one discussed in Section 3.2.
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The 5G network of the AAU 5G Smart Production Lab does not offer the same bandwidth
over UL and DL. In order to develop these performance tests in terms of network load, the
first step is to measure both channel bandwidths by using running the tool iPerf3 in the
“noisy device” and edge-cloud. It was found that the UL channel offers 98.5 Mbps whereas
the DL channel reaches 550 Mbps. Based on these values, the following main network load
scenarios are proposed:

0% load: UL and DL bandwidths will be fully used to perform the CCLL study.

50% load: 49.25 Mbps out of 98.5 Mbps of the UL channel will be used for sending
noisy traffic. 275 Mbps out of 550 Mbps of the DL channel will be used for the same
purpose.

100% load: the entire UL and DL bandwidths will be used for sending noisy traffic.
This can be considered the worst scenario.

3.3.1.- Performance test configurations

Although we are now working on a different physical layer technology, CCLL will be
measured on both protocols using the same payload sizes (2B and 1300B), network load
levels and applying the same algorithms explained in Section 2.4.1. The main difference
occurs at the “Node 1” level, which, as mentioned in the previous section, will be running on
the edge cloud. Since 5G has asymmetrical bandwidths, the load on the network is triggered
on two different links: an iPerf3 client is set on the “noisy device” and an iPerf3 server on
the edge-cloud. We send UDP traffic from the client to the server loading the UL channel.
In order to load the DL channel, an iPerf3 client is set on the edge cloud whereas the “noisy
device” acts as an iPerf3 server receiving UDP traffic from the edge-cloud. This way both
links are loaded simultaneously, and by changing the amount of traffic based on percentages
explained in Section 3.3, we are able to achieve different network conditions.

3.4.- Performance results

3.4.1.- Closed Control Loop Latency

As depicted in Table 3.1, QoS 0 in a 2B scenario offers lower CCLL values than other
cases. Its P50 and P90 are around 12 ms and 15 ms respectively. Keeping the same QoS
configuration but increasing payload size up to 1300B leads to P50 and P90 values of 47 ms
and 54-56 ms. Moving to QoS level 1 and 2B payloads, we face P50 and P90 values of 31
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ms and 47-62 ms. Studying the same QoS with a bigger payload, shifts P50 and P90 values
to 52-55 ms and 64-67 ms. Finally, analyzing QoS 2 with 2B of payload reflects P50 and
P90 figures of 98-107 ms and 116-124 ms. Upgrading to a bigger payload size results in P50
and P90 values of around 133-138 ms and 157-165 ms. CCLL for MQTT over 5G is not
load-dependant but it is payload-dependant since 1300B leads to higher CCLL results in all
QoS configurations.

0% load 50% load 100% load
Min P50 P90 Max Min P50 P90 Max Min P50 P90 Max

2 B
QoS 0 7.57 11.90 15.37 20.17 8.49 11.52 15.57 23.96 8.13 12.04 15.24 21.24
QoS 1 13.49 31.52 61.99 92.59 12.58 31.07 46.95 92.16 9.43 30.99 61.34 122.56
QoS 2 62.20 107 123.93 139.78 61.64 107 122.75 153.35 61.39 97.75 115.95 138.42

1300 B
QoS 0 20.72 47.29 55.68 77.65 24.39 46.63 54.44 75.25 30.89 46.54 54 95.57
QoS 1 26.21 55.03 64.52 92.67 21.63 51.80 63.97 92.16 21.86 54.08 67.09 91.94
QoS 2 77.97 138.36 157.47 186.17 77.39 133.23 164.62 199.81 76.99 137.88 158.33 199.36

Table 3.1: CCLL for Testbed over 5G using MQTT.

Table 3.2, illustrates CCLL results for MQTT-SN over 5G. Payloads of 2B lead to P50
and P90 values of around 13 ms and 16ms whereas payloads of 1300B causes P50 and
P90 figures of 22-24 ms and 24-24.5 ms approximately. It takes around 5 ms longer to a
1300B payload packet to complete the closed loop compared to a 2B paylaod. The overall
performance is stable and unaffected by the network load.

0% load 50% load 100% load
Min P50 P90 Max Min P50 P90 Max Min P50 P90 Max

2 B QoS 0 8.40 13.02 16.01 19.76 7.72 12.94 15.90 21.1 8.25 13.24 16.59 21.75
1300 B QoS 0 13.86 23.95 27.43 36.04 11.29 23.77 28.35 35.65 13.20 22.01 24.61 28.17

Table 3.2: CCLL for Testbed over 5G using MQTT-SN.

Finally, the CCLL performance results for OPC-UA over 5G are gathered in Table 3.3.
Client-Server model offers P50 of around 32 ms and P90 of 35-37 ms for 2B of payload.
Increasing the payload to 1300B results in CCLL values 8-10 ms higher. Within PubSub
model, there is a big variation between the different configurations. Starting from the lowest
payload and scheduling period, we get P50 values of 21-23 ms and P90 values of 25 ms.
Keeping that same period but increasing the payload size keeps us in similar ranges of CCLL.
Differences start to be noticeable when we increase the scheduling period. For 10 ms and 2B
of payload, P50 and P90 are now around 26 and 30 ms whereas for 1300B they are in the
vicinity of 30 ms and 35-40 ms. It is not until the highest studied period when we find the
biggest variation between PubSub scenarios. 2B and 50 ms of scheduling lead to 50-80 ms of
P50 and 70-90 ms of P90 whereas 1300B increases those values up to 70-97 ms and 88-120
ms. As with most of the analyzed cases, OPC-UA CCLL performance is quite stable and
the impact of the 5G network load is small. The wide variations suffered when using high
scheduling periods such as 50 ms, could be due to the timing of the notification. When an
OPC-UA client subscribes to a variable with such an update rate, there is a larger waiting
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window possibility, which increases the probability of having delays closer to the configured
PubSub period.

0% load 50% load 100% load
Min P50 P90 Max Min P50 P90 Max Min P50 P90 Max

2 B
Client Server 25.01 31.95 35.19 46.98 24.80 32.22 36.60 41.94 25.97 32.47 36.57 45.40
PubSub 1ms 15.10 22.73 25.24 29.35 14.83 20.58 25.03 30.59 15.15 22.85 25.29 32.99
PubSub 10ms 20.22 25.73 30.52 38.14 17.61 25.21 28.29 32.60 18.20 25.35 28.64 33.44
PubSub 50ms 22.73 50.04 70.71 83.20 55.22 80.13 100.80 110.39 43.57 72.17 90.59 98.02

1300 B
Client Server 29.90 42.06 47.91 63.03 29.83 40.17 45.04 52.20 27.14 41.56 45.10 51.95
PubSub 1ms 15.18 23.40 28.33 35.62 14.98 25.29 28.51 35.52 17.49 25.16 28.94 33.68
PubSub 10ms 22.80 30.37 35.38 43.45 22.99 33.33 38.13 43.56 22.77 30.41 39.59 48.14
PubSub 50ms 35.46 68.29 88.32 98.68 68.31 95.16 117.77 125.28 65.13 97.74 120.01 128.55

Table 3.3: CCLL for Testbed over 5G using OPC-UA.

After analyzing all the CCLL data collected, the following summary observations can be
highlighted:

• MQTT-SN over 5G depends on payload size and performs better for small pac-
kets.

• MQTT QoS 0 performs better that QoS 1 and QoS 2 also over 5G.

• Differently from the Ethernet case, MQTT over 5G performs better for small pac-
kets than for large packets.

• Also over 5G, OPC-UA PubSub CCLL performance depends heavily on the con-
figured PubSub refreshing period. In general, the higher the period, the higher
the experienced CCLL.

3.4.2.- Link outage

The collected data in Table 3.4 demonstrates that link outage presents a challenge for
MQTT over 5G, specifically for MTL targets of 10 ms. This issue persists across all QoS
configurations and payload sizes. If we move to a MTL of 100 ms, only QoS 2 becomes pro-
blematic and high payloads are more affected (98%) than small payloads (47-62%). Similar
outage level values are achieved over 5G for all network load levels.
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0% load 50% load 100% load
10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms

2 B
QoS 0 89.8% 0% 0% 85.4% 0% 0% 90.8% 0% 0%
QoS 1 100% 0% 0% 100% 0% 0% 99.8% 0.4% 0%
QoS 2 100% 56.8% 0% 100% 62% 0% 100% 46.8% 0%

1300 B
QoS 0 100% 0% 0% 100% 0% 0% 100% 0% 0%
QoS 1 100% 0% 0% 100% 0% 0% 100% 0% 0%
QoS 2 100% 98% 0% 100% 98% 0% 100% 98.8% 0%

Table 3.4: Link outage in MQTT for Testbed over 5G.

Table 3.5 depicts link outage results for MQTT-SN over 5G. Differently from the Ether-
net case, outage levels are now observed over 5G for the MTL target of 10 ms for both
payload sizes. This would add negatively to the fact that this protocol does not offer underl-
ying reliability.

0% load 50% load 100% load
10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms

2 B QoS 0 91.8% 0% 0% 92.4% 0% 0% 94.8% 0% 0%
1300 B QoS 0 100% 0% 0% 100% 0% 0% 100% 0% 0%

Table 3.5: Link outage in MQTT-SN for Testbed over 5G.

The results for link outage in OPC-UA over 5G are presented in Table 3.6. In this case,
it is noticeable the fact that there is full outage for MTL targets of 10 ms. There are some
isolated cases for 50 ms of scheduling period in which it is possible to observe link outage
with a MTL of 100 ms. This phenomenon can be related to the pseudo-stochastic behavior
of CCLL on this kind of scenarios as explained in the previous section. Link outage for
OPC-UA over 5G appears to be independent of network load and packet size.

0% load 50% load 100% load
10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms 10 ms 100 ms 1000 ms

2 B

Client Server 100% 0% 0% 100% 0% 0% 100% 0% 0%
PubSub 1ms 100% 0% 0% 100% 0% 0% 100% 0% 0%
PubSub 10ms 100% 0% 0% 100% 0% 0% 100% 0% 0%
PubSub 50ms 100% 0% 0% 100% 14% 0% 100% 0% 0%

1300 B

Client Server 100% 0% 0% 100% 0% 0% 100% 0% 0%
PubSub 1ms 100% 0% 0% 100% 0% 0% 100% 0% 100%
PubSub 10ms 100% 0% 0% 100% 0% 0% 100% 0% 0%
PubSub 50ms 100% 0% 0% 100% 36.6% 0% 100% 40.4% 0%

Table 3.6: Link outage in OPC-UA for Testbed over 5G.

To summarize the link outage analysis, the following observations can be made:

• MQTT over 5G provides reliable support for MTLs of 1s and above for all QoS
levels, independently of packet size and network load.
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• MQTT over 5G can support MTLs of 100 ms and above only when using QoS 0
and QoS 1.

• MQTT-SN over 5G can support MTLs of 100 ms and above at expenses of some
potential packet loss.

• OPC-UA provide reliable support for MTLs of 100 ms and above independently
of packet size and network load for scheduling periods below 50 ms.

3.5.- Discussion of results

The preceding sections of this chapter provide an in-depth exploration and comprehen-
sion of the MQTT and OPC-UA IIoT protocols their architectures, and performance within
a 5G context. Along with the details presented in Chapter 2 for the wired Ethernet scenario,
OBJ1 is completed.

Since the algorithms and libraries used for the performance tests were the same used in a
wired setting, the conclusions about complexity of the deployment of the different solutions
over 5G and egde-cloud is similar: MQTT and MQTT-SN were easier to implement than
OPC-UA. Over 5G and edge cloud technologies higher latencies and link outages than over
the wired Ethernet setup are experienced. Due to the asymmetrical bandwidth and how is the
access to the medium, it is important to find a balance in the OPC-UA PubSub scheduling
period. If set to low values (high scheduling rate), the 5G network could congest rapidly,
whereas if set to high values (low publishing period) it will result in large CCLL values. This
did not happen over wired Ethernet.

As in the previous chapter, selected CCLL statistics are presented as summary for the 5G
scenarios, comparing relevant performance results of the different IIoT protocols. Figures 3.9
and 3.10 display the ECDFs of CCLL considering the different protocols, for large payload
sizes (1300 B) and the highest level of network load (100%).

Figure 3.9 depicts how MQTT-SN exhibits a very stable performance with an approxima-
tely constant CCLL of 25 ms. Differently from the Ethernet case, the MQTT QoS 0 CCLL
performance is now approximate double than for MQTT-SN. MQTT QoS 1 is close to that of
QoS 0 for 30% of the cases, but in the other 70% it can reach values of up to approximately
75-100 ms. MQTT QoS 2 is the worst scenario, with very variable performance and CCLL
values reaching close to 200 ms.
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Figure 3.9: ECDF for MQTT vs MQTT-SN over 5G for packets with 1300 B payload and
100% of network load.

Figure 3.10: ECDF for OPC-UA over 5G for packets with 1300 B payload and 100% of
network load.
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In Figure 3.10 it is noticeable how OPC-UA Client-Server and PubSub with scheduling
periods 1 and 10 ms present very stable CCLL performance, being the best the PubSub 1 ms
case with CCLL values of approximately 25 ms. The PubSub 10 ms case presents an increase
of approximately 5 ms as compared to the PubSub 1 ms case. OPC-UA Client-Server is
increased in further 10 ms as compared to the PubSub 10 ms case. OPC-UA PubSub with
publishing rate 50 ms is far in terms of CCLL performance from the previous cases reaching
values of up to 150 ms.

Figure 3.11 and Table 3.7 illustrate and summarize the comparison between MQTT and
OPC-UA performance over 5G, based on the MQTT QoS 0 and OPC-UA PubSub with
scheduling rate of 10 ms previously selected for reference benchmarking. For the 5G case in
particular, MQTT QoS 0 with 1300 B is 286.5% slower than with 2B. For OPC-UA PubSub
10 ms, 2B payloads perform 16.6% faster than 1300 B. Comparing MQTT and OPC-UA,
MQTT QoS 0 performs 52.5% faster and 53% slower than OPC-UA 10 ms in terms of
CCLL considering packets sizes of 2B and 1300 B, respectively.

Metric Value [ms]
OMQT T 34.5

OOPC−UA 5.06
∆2B 13.31

∆1300B -16.13

Table 3.7: Summary of performance indicators over 5G

Based on the previous, the following observation can be made:

• Over 5G, MQTT CCLL performance is 52.5% better than OPC-UA for the re-
ference selected configurations when payload size is 2B. With big payload sizes
(1300B) it is 53% slower.

To conclude this chapter, a comparison of the CCLL performance of MQTT and OPC-UA
over wired Ethernet and 5G is done. Figures 3.12 combines the information from Figure 2.29
(for the Ethernet) and 3.11 (for the 5G case). Similarly, Table 3.8 combines the information
from Table 2.11 (for the Ethernet case) and Table 3.7 (for the 5G case). From the figure it is
observed that, in general, the CCLL performance in the Ethernet cases is more stable than in
the 5G case. It is also observed that 5G performance is well bounded below 50 ms, except in
the case of MQTT QoS 0 ms with 1300 B, where CCLL values can reach up to 125 ms. This
is 75-90 ms higher than for all other protocol configurations.
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Figure 3.11: ECDF for MQTT vs OPC-UA over 5G for 100% of network load.

Figure 3.12: ECDF for MQTT and OPC-UA over Ethernet and 5G with 100% of network
load.
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Metric Ethernet Value [ms] 5G Value [ms]
OMQT T 0.64 34.5

OOPC−UA 5.67 5.06
∆2B 8.48 13.31

∆1300B 13.47 -16.13

Table 3.8: Comparison of performance indicators over Ethernet and 5G

To quantify the CCLL performance difference between the Ethernet and 5G cases, the
following metrics are defined:

Θ2B [ms] =
1
2

{
(P50MQT T−QoS02B5G −P50MQT T−QoS02BEth) [ms]

+(P50OPC−UA−10ms2B5G −P50OPC−UA−10ms2BEth) [ms]
}

(3.1)

Θ1300B [ms] =
1
2

{
(P50MQT T−QoS01300B5G −P50MQT T−QoS01300BEth) [ms]

+(P50OPC−UA−10ms1300B5G −P50OPC−UA−10ms1300BEth) [ms]
}

(3.2)

Θ2B and Θ1300B, therefore, quantify the average performance difference between the IIoT
protocols being operated over Ethernet and 5G, computed at P50 level. These values are co-
llected in Table 3.9. As detailed, the performance of the IIoT MQTT and OPC-UA protocols
is degraded in 13.41%, on average, when operated over 5G as compared to Ethernet.

Metric Value [ms]
Θ2B 12.01

Θ1300B 14.8

Table 3.9: Performance difference over Ethernet and 5G

From this analysis, it can be concluded the following:

• For the reference selected configurations, CCLL performance is 13.41% inferior
over 5G than over wired Ethernet.
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

Page 84 of 154

4. Operational robotic cell environment
4.1.- Robotic arms for industrial manufacturing

Historically, the idea of a factory was conceived as a large noisy building full of workers
who using different tools performed repetitive, dangerous and demanding tasks on a daily
basis in order to assemble or manufacture a specific item. Things have changed a lot since
then, and due to the automation of the industry, today some of those jobs are carried out
by complex machines such as robotic arms. Their adoption only leads to advantages that
directly or indirectly have a positive impact on people’s working and life conditions [2]. The
main enhancements that robotic arms bring to the industrial scenario are:

Efficiency: robotic arms are able to carry out tasks faster and more accurate than hu-
mans (in some cases).

Quality: by using robotic arms, there is a significant reduction in the risk of making
mistakes. This encourages the manufacturing of higher quality products.

Flexibility: robotic arms can be programmed to develop a big range of different tasks
in a short period of time whereas humans are usually specialized in a limited amount
of jobs. This is very useful when it comes to the changing market and customer needs.

Costs: investing in a robotic arm will lately save long-term costs.

Safety: factories can be hostile and hazardous environments so using robotic arms
to complete certain tasks such as holding toxic chemicals or working under extreme
temperatures leads to an improvement in safety.

The concept of robotic cell that will be leveraged in this project consists on an operational
robotic arm connected to an on-site PLC via Ethernet (Figure 1.6). Its standard configuration
limits its flexibility, mobility and reconfigurability (among other disadvantages). Therefore,
migrating the PLC capabilities to the edge-cloud (Figure 1.7) will be the focus since it brings
many advantages, as explained in Section 1.5
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4.2.- Deployment of the robotic cells and integration with 5G edge cloud

With the architectural design and performance study of both protocols over Ethernet and
5G already done, the next step is to apply the learnings in a realistic operational robotic cell
environment. While the previous cabled Ethernet and wireless 5G edge cloud testbeds con-
sidered simplified computing nodes as end points for the evaluation of the different MQTT
and OPC-UA architectures, here real-world industrial-grade equipment is used to validate
the previous designs.

In this case, two identical robotic cells were deployed, based on commercial UR5e robo-
tic arms [51] from the Danish company Univeral Robots (UR) [38]. The UR5e arm weights
around 21 kg and can handle payloads up to 5 kg. It has six joints (base, shoulder, elbow and
three wrists) allowing it to move in a lot of directions.

Each one of the robotic cells will be made up of one Universal Robots UR5 [51], an OEM
Control Box [52] and a Polyscope [53] as depicted in Figure 4.1. The Polyscope is a touch-
screen tablet device with which an operator can control, manage and supervise the robotic
arm through an intuitive and functional GUI. By using the Polyscope, it is possible to create
programs, change the position of the robot and monitor its performance without the need
of programming skills. The control box is the “brain” of the robotic arm. It is a dedicated
computer that contains all the software and hardware needed to control the movement and
behavior of the arm. This computer has several I/O ports that communicate with the UR5
sensors and actuators.

Figure 4.1: Disassembled UR5 robotic arms
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The main technical features of the OEM Control Box are the following:

Operating System: Linux based.
CPU: Intel Atom E3845 (4 cores).
RAM: 2GB.
Storage: 8GB.

The robotic arm will use a power and data transmission cable. The Polyscope will use its
own custom cable connected to the OEM Control box whereas the 5G Box will be connected
to the UR5e using a CAT6 Ethernet cable. Finally, the OEM Control Box will be connected
to the power line. Figure 4.2 shows the integrated architecture of our operational robotic cells
unified with the 5G network and the edge cloud. In this final complete engineered solution,
the edge cloud hosts the PLC functionality (“Cloudified PLC”) together with the MQTT and
OPC-UA control sides of the logic, as well as the MQTT broker functionality. At the robotic
cell side, the OEM control box hosts the user device side of the protocols.

Figure 4.2: Robotic cell architecture integrated with 5G and edge-cloud

Each of the robotic cells will be used to study a different protocol. It is important to
highlight that the UR5 inside OPC-UA Robotic Cell will act as an OPC-UA Server (which is
the same role played by “Node 2” in Chapters 2 and 3) when running the performance tests.
Figure 4.3 illustrates the real scenario once it is fully deployed. It is possible to distinguish
the two robotic cells, each one composed by an UR5e robotic arm, OEM Control box, 5G
Box and Polyscope.
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 87 of 154

Figure 4.3: Final setup for the operational robotic cell

Specifically, for the MQTT robotic cell, MQTT QoS 0 is used. In the case of the OPC-
UA robotic cell, OPC-UA PubSub with scheduling rate 10 ms is configured. The reason for
choosing this specific version of the protocols for the operational implementations is that
MQTT QoS 0 delivered the best CCLL performance in both the testbed tests over wired
Ethernet and 5G. Choosing QoS 0 will also avoid all unnecessary overhead and redundant
exchange of packets introduced by the QoS 1 and QoS 2 configurations. In the case of OPC-
UA, the refreshing period of 10 ms is chosen as it provides a good trade-off between the
refresh rate of the protocol and the 5G scheduling configuration. Moreover, the physical
movements of the robot are not as fast as 1 ms, and therefore a more relaxed period is suitable
in this specific industrial use case. Further, it is desirable to avoid large CCLL performances
as the ones introduced with the 50 ms period. The choice of PubSub rate was also validates
by the vendor of the robot as it matches closely the sensor-actuator rate of the operational
robotic arm.

Based on the above, OBJ2 is fulfilled and a number of observations and recommendations
can be made:

• Integrating 5G and edge-cloud with the operational equipment was at the same
level of difficulty as in the testbed case.
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• For the operational equipment chosen, MQTT was easier to implement and inte-
grate than OPC-UA.

• In current operational OPC-UA-capable equipment, the server is typically deplo-
yed at the robotic device side.

• Current operational OPC-UA-capable equipment has limited computing capabi-
lities, therefore configured OPC-UA PubSub rates should be balanced.

4.3.- Operational cycle performance study in operational settings

Now that a real industrial scenario has been deployed, the MQTT and OPC-UA beha-
vior will be studied in operational setting based on a functional solution designed to move
the robotic arms in different directions inside a predefined routine. In this operational im-
plementation, the payload of the packets transmitted via MQTT and OPC-UA over 5G and
edge-cloud will contain the data related to the control and steering of the robotic arm (from
PLC to robotic arm) and to the current position and status of the robotic arm (from the robotic
arm to the PLC).

The precise packet size will be determined by the protocols themselves and will not
be predefined to static values as in the previous preliminary evaluations from Chapters 2
and 3. No extra load will be applied to the 5G network for this evaluation in operational
settings. This is not a limitation of the study, since it was already demonstrated that the
MQTT and OPC-UA are stable, robust and scalable over 5G, so similar results should be
observed in loaded 5G scenarios. When addressing a realistic operational industrial use case,
as the robotic cells considered in this project, it is important to analyze the performance,
not only from the communications point of view, but also taking into account manufacturing
KPIs as the following:

Operational Closed Control Loop Latency (OPCCLL): defined as the time that takes
to the arm to move from a certain position to a new one after receiving the order
from the cloudified PLC. This can be seen as the elapsed time for a given movement,
including different latency components: LComE2R is the latency of the command which
travels from the edge-cloud to the robotic arm and ETCM (Elapsed Time for Current
Movement) is the time it takes the robotic arm to accomplish the movement requested
by the edge-cloud once it receives the command.

OPCCLL [ms] = LComE2R [ms]+ETCM [ms] (4.1)
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Operational Cycle Elapsed Time (OPCET): defined as the total elapsed time of one
cycle of the robotic cell. In this case one operational cycle is defined by 10 different
sequential movements of the robotic arm (5 in one direction and 5 in the opposite, to
return to the initial home position).

Each of the robotic cells will be operated with a different protocol so it is possible to com-
pare the overall robotic cell performance over MQTT and OPC-UA simultaneously under the
exact same operational conditions. Each of the movements performed by the robotic arm is
triggered by the exchange of data with the Cloudified PLC on the edge.cloud. Although the
initial CCLL study was focused on small (2B) and big (1300B) payload sizes, in this case
payload is subject to the targets of the operational use case. From PLC to robotic arm, the
payload contains the position that the robotic arm joints need to apply in order to rotate.
From the robotic arm to the PLC, the previous values are replaced with the current status
values from the robot. The exact format of the payload is the same in both directions: a 6-
element array of high resolution floats with angular information in radians. Table 4.1 shows
the average payload, packet and frame sizes in the exchange of information in operational
conditions.

Protocol Payload size Packet size Frame size
MQTT 134B 150B 210B

OPC-UA 120B 402B 455B

Table 4.1: Payload, packet and frame sizes in operational settings.

Figure 4.4 illustrates the whole process of measuring the OPCCLL in both MQTT and
OPC-UA. The cloudified PLC, which is subscribed to the robotic arm, measures “Timestamp
1” and just after, it publishes a command whose payload contains the new position the robotic
arm has to move to. Once the robotic arm (which is subscribed to the edge-cloud) receives
the command, it decodes the payload and applies that configuration to its joints by using
Real-Time Data Exchange (RTDE) protocol [54]. It is a proprietary protocol from Universal
Robots used to transmit data between an external client and the robotic arm actuators as
shown in Figure 4.5. In the meantime the robotic arm is moving from its current position to
the new one, it publishes its joints values to the edge-cloud every 5 ms. During this time slot
the cloudified PLC does not publish, it just waits until one of the messages sent by the arm
fits a threshold of radians compared to the new position. Once it happens, it understands that
the arm’s current position is the new one so it continues to send the next position. This whole
process is repeated for every movement. OPCCLL is calculated by subtracting “Timestamp
2” from “Timestamp 1”, just as explained in Equation 4.1.
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Figure 4.4: Diagram of the Operational CCLL.

Figure 4.5: Data acquisition process by the robotic arm.

The exact same setup architecture was also evaluated with wired Ethernet connection
between the edge-cloud and the OEM controller, in order to have the performance baseline
for reference robotic cell operation in real-world settings.

4.4.- Operational performance results

4.4.1.- Operational Closed Control Loop Latency

In Figure 4.6, the ECDFs of the OPCCLL for the operational MQTT use case over Ether-
net and 5G. The ECDFs present 5 steps. This is due to the 5 different movements of the robot
(two of them are very similar in terms of latency and thus, they overlap). Over Ethernet, the
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MQTT-controlled movements exhibit the approximate values of 12, 296, 312, 588, and 771
ms. Over 5G, these values are slightly increased to 12, 333, 372, 620, and 800 ms. The dif-
ference in values is due to the fact that some movements require big transitions, while others
are just a rotation of a small number of radians. As observed, in this case, Ethernet provides
a more stable performance than 5G.

In the OPC-UA case, displayed in Figure 4.7, the values of the movements are 11, 338,
357, 630 and 815 ms for Ethernet. For 5G, the latency values for the 5 movements are: 27,
365, 385, 650, and 835 ms. In this case, there is an outlier step with higher latency values
over 1 s, which means that in this OPC-UA operational evaluation over 5G, some of the
movements exhibited such latency.

Overall, the OPCCLL performance of MQTT over 5G is 33 ms slower as compared
with Ethernet. In the OPC-UA case, this difference is 23 ms. Considering both protocols,
the performance of the operational control of the robotic arms based on IIoT communication
protocols is, on average, 28 ms slower over 5G edge-cloud than over reference Ethernet. This
can be used as a partial conclusion:

• The movements of the robot in operational conditions are delayed by approxima-
tely 25 ms when operated over 5G as compared to Ethernet.

4.4.2.- Operational cycle elapsed time

To conclude the analysis, Table 4.2 collects the OPCET performance results for the dif-
ferent protocols and underlying communication technologies. In order to generate statistics,
the operational cycle of the different MQTT and OPC-UA robotic cells considering the 10
robotic arm movements is executed 40 times. To quantify the difference in OPCET when
operating over 5G and Ethernet, Γ is defined as follows:

Γ [s] = OPCET5G [s]+OPCETEth [s] (4.2)

Protocol Scenario Ethernet OPCET [s] 5G OPCET [s] Θ [s]
MQTT QoS 0 3.96 ± 0.007 4.34 ± 0.09 0.38

OPC-UA PubSub 10ms 4.38 ± 0.05 4.88 ± 0.15 0.5

Table 4.2: Operational cycle elapsed time for the different tested configurations
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Figure 4.6: OPCCLL over MQTT over Ethernet vs 5G.

Figure 4.7: OPCCLL over OPC-UA over Ethernet vs 5G.

David Arias-Cachero Rincón
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The OPCET values indicated in the table are reported as median ± standard deviation in
seconds. The results indicate that in terms of manufacturing KPI (OPCET), the cycle time of
the robotic cell is incremented by 0.38-0.5 s when operating the robotic arm over 5G instead
of Ethernet. This increment is due to the combined effect of all elements described along
this document: communication technology, computing capabilities, and robotic hardware
capabilities. For our specific reference robotic cell use case, the cycle time is increased from
3.96-4.38 s to 4.34-4.88 s.

As detailed in Section 1.4.1, this slightly worsened performance comes with other as-
sociated benefits such as the possibility of rapid reconfiguration of the cell and increased
flexibility.

It is possible to draw the following conclusions:

• In operational conditions, MQTT performs approximately 0.4 s better than OPC-
UA, both over Ethernet and 5G.

• In operational conditions, the performance of MQTT is more stable than OPC-
UA, both over Ethernet and 5G.

• In operational conditions, the performance of the robotic cell is delayed by ap-
proximately 0.4-0.5 ms when operated over 5G as compared to Ethernet.

4.5.- Discussion of results

In order to complete this chapter, it was necessary to research the design and develop-
ment of control network solutions based on industrial robotic architectures using MQTT and
OPC-UA protocols, as well as the edge-cloud paradigm, connecting each node through 5G
technology. Furthermore, it was also necessary to deploy the proposed solution and study its
performance with real industrial equipment to evaluate the behavior of each layer as the final
scenario was partially built. With this, we can consider the partial objectives OBJ2 and OBJ3
satisfactorily achieved since their outcome has resulted in added value to the current state of
the wired robotic cells.

From the above results, and the development of the whole project, it can be concluded
that, for our reference industrial use case, the MQTT solution, based on QoS 0 configuration,
has been easier to design and deploy as compared to the OPC-UA PubSub with scheduling
rate 10 ms. Further, the MQTT performance in operational conditions has been also superior,
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providing 12% shorter operational cycle times than the glsopcua one when operating over
5G and edge-cloud technologies.

In terms of operational performance, the following conclusion is derived:

• In operational conditions, robotic cycle times can be up to approximately 10%
longer with OPC-UA than with MQTT, both over Ethernet and 5G.
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5. Conclusions and future work
This thesis presented the work done towards designing, implementing and testing the

control communication of schemes of an operational industrial robotic cell environment ba-
sed on 5G and edge-cloud technologies. In order to achieve that, an initial in-depth study
of the main capabilities, architectures, and configuration aspects of the two most signifi-
cant IIoT communication protocols (MQTT and OPC-UA) was done, considering different
Ethernet and 5G scenarios. A wireless solution was proposed by exploring the control re-
quirements set to overcome the limitation of current wired industrial manufacturing robotic
cells. The main objective of the project has been successfully achieved by implementing a
functional 5G wireless solution capable of steering a robotic arm from a cloudified PLC,
without any operational distinction from the reference wired scenario beyond specific per-
formance results.

Each one of the subojectvies presented in Section 1.7 has also been completed leading to
a number of interesting outcomes and learnings:

MQTT-SN is not a suitable protocol for controlling industrial machinery since it does
not offer reliability, which is a must within manufacturing due to the big amount of
risky processes that take place inside a factory. Nevertheless, it stands out as the pro-
tocol with the most favorable performance outcomes.

The proposed solution for MQTT, both over Ethernet and 5G, was the easiest to de-
sign, deploy, and test in addition to offering the best performance results. This is ad-
vantageous for manufacturers aiming to generate value with new plug-and-play-based
products focused on smart manufacturing since it does not require highly skilled per-
sonnel to integrate them.

The performance differences between MQTT and OPC-UA were not very large, but
they are significant enough to be considered in respect to the manufacturing processes
and their associated operational cycle times. Faster data exchange results in shorter
operational cycles, leading to increased production or execution of specific processes.

Despite the introduction of an additional delay of approximately 0.35 to 0.5 ms when
using 5G edge-cloud in the operation of the robotic cell, it remains advantageous in
terms of reconfiguration, mobility, scalability, elasticity, and other factors emphasized
consistently throughout the project. For example, the operational cycle elapsed time
for MQTT QoS 0 over Ethernet lasted around 3.96 seconds while in the case of 5G it
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reached 4.34 seconds.

OPC-UA offers a more complex architecture and data structure that requires higher
computing resources; however, can be advantageous when interconnecting various de-
vices within a factory to achieve more sophisticated solutions beyond the scope of this
thesis.

In conclusion, the development of this project has served to understand, analyze, and
propose a roadmap to overcome current architectural limitations of reference industrial use
cases in terms of communication and computing demands and possibilities. This thesis do-
cument can be relevant to telecom engineering professionals and industrial manufacturing
professionals working in the domain of IT/OT integration design and deployment of vertical
connectivity solutions for high-level control in industrial automation scenarios.

5.1.- Future work

Given the interest and impact of the results obtained from this project, it is proposed to
continue exploring new horizons, such as the integration of additional robotic arms, aiming
to study the scalability of the protocols, specially when operated over 5G and edge-cloud
technologies. Based on the performance evaluations reported in this thesis, and potentially
some new other, optimization of the Industrial Internet of Things (IIoT) protocols could be
explored, applying compression methods, for example. Another interesting proposal would
be to evolve the robotic cell to a multi-robotic arm one, integrating the operation of more than
one robot. When doing this, synchronization of the robotic arms is paramount so that they
can operate coordinately. This would allow for a deeper exploration of real-time communi-
cations between devices and opens the door to many exciting applications within the realm
of smart manufacturing. Other slightly more distant but equally interesting proposal involves
the re-evaluation of the observed performance with upgraded 5G versions based on the new
Releases, including features such as Ultra-Reliable Low Latency (URLLC) capabilities and
harnessing the power of data-driven decisions based on artificial intelligence in order to fully
exploit the benefits of 5G and edge-cloud in operational industrial scenarios.
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Impact of the project
The results obtained in this project were attractive to several companies and were used

in several lectures, presentations, demos, and two scientific papers, which are currently in
preparation.

The results in this project have attracted the interest of the following companies:

Universal Robots (UR) [38]: innovative robotics company and world leading manufac-
turer of collaborative industrial robots (cobots). In particular, dedicated weekly mee-
tings were held with their department of Technology and Innovation in Robotics and
Integration, in order to discuss 5G integration into UR products and share the insights
of the MQTT and OPC-UA implementations and performance.

NOKIA [55]: Finnish multinational vendor specialized in information technology, te-
lecommunication networks, and consumer electronics. In this case, the Standardization
Department, was the one following the development of the project, as empirical per-
formance results are always important in future 5G/6G standardization processes. A
number of dedicated meetings based on the findings of the project were held to discuss
the performance results of the IIoT protocols (specially OPC-UA) over private indus-
trial 5G. Some of the results and finding might be forwarded and discussed in details
with 5G-ACIA and the OPC Foundation.

Grundfos [56]: world-leading manufacturer of water pumps and related equipment,
based in Denmark. The project attracted the attention of the Engineering Department
for Factories of the Future, as they already had experiences with private 5G and IIoT
protocols. Face-to-face conversations happened at multiple events.

Intelligent Systems A/S [57]: Danish company expert in software development for au-
tomated logistic solutions and integration and control systems for large-scale robot and
automation systems. They implement control networks based on PLCs with MQTT
support. Face-to-face conversations happened with their CEO and staff from their En-
gineering and software architecture teams during lab work and at multiple events.

Technicon [58]: Danish company that delivers complete automation solutions across
many industries. Face-to-face conversations happened with staff from their Implemen-
tation team during lab work and at multiple events around the use of MQTT for control
of robotic entities.

David Arias-Cachero Rincón
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In terms of demos and presentations of the project at industrial events, the following
activities are reported:

5G-ROBOT Deep Dive Lecture: I delivered a 20 minutes lecture towards industrial
and academic partners in the 5G-ROBOT Danish national project [59] with focus on
MQTT and OPC-UA performance result over 5G.

• Presenter: David Arias-Cachero Rincón
• Date and location: 14th April 2023, remote over MS Teams.

Presentation at Electronics of Tomorrow 2023 (EOT 2023) [60]: EOT is the main Da-
nish conference and knowledge hub for the entire electronics and technology industry.
My supervisor presented slides describing architecturs, images, and videos of the ro-
botic arms setups controlled via OPC-UA and MQTT over 5G.

• Presenter: NOKIA Bell Labs Principal Scientist and AAU Professor Preben Mo-
gensen

• Date and location: 11th May, Herning (Denmark).

5G-ROBOT Demo: I showcased the final implementation of my project with two ope-
rational robotic arms controlled with the different protocols, in front of an audience of
over 30 people from different Industry sector, together with a Senior SW Development
Engineer from UR, who put emphasis on the more robotic commercial aspects.

• Presenter: David Arias-Cachero Rincón
• Date and location: 2nd June 2023, AAU 5G Smart Production Lab, Aalborg

(Denmark).

Further, the following scientific publications containing selected results of this project are
planned:

Paper 1: “Operational 5G Edge Cloud-Controlled Robotic Cell Environment based on
MQTT and OPC UA”, with full focus on the main findings of this project (targeted as
conference paper for one of the main international robotic conferences such as IROS,
ICAR or the like.)

• List of author affiliations: University of Oviedo (main), Aalborg University, UR,
and Yildiz Technical University FBE.

Paper 2: “5G-based Zero Touch Production”, where relevant OPC-UA and MQTT
performance results will be included as part of the concept and description of a fully-
automated wireless robotic production environment (targeted as journal paper for Q1/Q2
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outlets with focus on industrial manufacturing or the like.)
• List of author affiliations: University of Oviedo (main), Aalborg University, NO-

KIA, and FESTO.
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A. Project structure
The code necessary to replicate this study is gathered in the folder “KillThePLC.rar”.

Inside, the following directories and files can be found:

cloud-side: folder containing all the code executed on the edge-cloud.

• ProtocolPerformance: folder containing all the code used to study MQTT, MQTT-
SN and OPC-UA performance over Ethernet and 5G from the edge-cloud side.

◦ mqttsnclient: MQTT-SN library in Python.

◦ “1500bytes.txt”: file used to build payloads for big packets.

◦ “Node 1 MQTT PRFM.py”: script used to study MQTT performance over
Ethernet and 5G. It plays the role of “Node 1”.

◦ “Node 1 MQTTSN PRFM.py”: script used to study MQTT-SN perfor-
mance over Ethernet and 5G. It plays the role of “Node 1”.

◦ “Node 1 OPCUA Client PRFM.py”: script used to study OPC-UA Client-
Server performance over Ethernet and 5G. It plays the role of “Node 1”.

◦ “Node 1 OPCUA PubSub PRFM.py”: script used to study OPC-UA Pub-
Sub performance over Ethernet and 5G. It plays the role of “Node 1”.

• RemoteControl: folder containing all the code used to implement the operational
control of the robotic arm from the edge-cloud side.

◦ rtde: RTDE library in Python.

◦ “record configuration.xml”: RTDE configuration file.

◦ “control loop configuration”: RTDE configuration file.

◦ “Cloud PLC MQTT RemoteControl.py”: script used to control the robo-
tic arm from the edge-cloud over MQTT. It plays the role of the “Cloudified
PLC”.

◦ “Cloud PLC OPCUA RemoteControl.py”: script used to control the ro-
botic arm from the edge-cloud over OPC-UA. It plays the role of the “Clou-
dified PLC”.

robot-side: folder containing all the code executed on the robotic arm.

• ProtocolPerformance: folder containing all the code used to study MQTT, MQTT-
SN and OPC-UA performance over Ethernet and 5G from the robotic cell side.

◦ mqttsnclient: MQTT-SN library in Python.

◦ “1500bytes.txt”: file used to build payloads for big packets.
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

page 106 of 154

◦ “Node 2 MQTT PRFM.py”: script used to study MQTT performance over
Ethernet and 5G. It plays the role of “Node 2”

◦ “Node 2 MQTTSN PRFM.py”: script used to study MQTT-SN perfor-
mance over Ethernet and 5G. It plays the role of “Node 2”

◦ “Node 2 OPCUA Client PRFM.py”: script used to study OPC-UA Client-
Server performance over Ethernet and 5G. It plays the role of “Node 2”

◦ “Node 2 OPCUA PubSub PRFM.py”: script used to study OPC-UA Pub-
Sub performance over Ethernet and 5G. It plays the role of “Node 2”

• RemoteControl: folder containing all the code used to implement the operational
control of the robotic arm from the robotic cell side.

◦ rtde: RTDE library in Python.

◦ “record configuration.xml”: RTDE configuration file.

◦ “control loop configuration”: RTDE configuration file.

◦ “Robotic Cell MQTT RemoteControl.py”: script used to receive and pro-
cess commands sent from the Cloudified PLC over MQTT.

◦ “Robotic Cell OPCUA RemoteControl.py”: script used to receive and pro-
cess commands sent from the Cloudified PLC over OPC-UA.
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B. Deployment of MQTT & MQTT-SN
brokers
B.1.- Installation and configuration of Mosquitto broker

In order to replicate the part of this project related to the MQTT protocol it is important
to follow the same steps at the time of installing and configuring the broker. We begin by
running the following commands used to update and upgrade Linux-based system:

1 dave@AAU:∼$ apt update && apt upgrade

Once our packages are up to their latest version, we install the Mosquitto broker:

1 dave@AAU:∼$ apt install -y mosquitto mosquitto -clients

Although the broker is intended to be run on a dedicated device or server that is always
active, it is interesting that it starts automatically every time the server is restarted. The
following command is needed for this purpose:

1 dave@AAU:∼$ systemctl enable mosquitto.service

In order to run the broker once it is installed we need to execute the following command
and the output of it should be similar to the one shown in figure B.1

1 dave@AAU:∼$ mosquitto -v

Figure B.1: Output of the command ’mosquitto -v’.

If we take a closer look to figure B.1 it is possible to read the message ’Connections
will only be possible from clients runnig on this machine’. This is not the scenario we are
looking for since we need connections from other machines. This is solved by editing the
configuration file ’mosquitto.conf’ located in the directory ’/etc/mosquitto/’. We need to
apply the following instructions to it:

1 allow_anonymous false
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2 listener 1883

3 password_file /etc/mosquitto/passwd

4 log_dest file /etc/mosquitto/mosquitto.log

With those statements we are telling the broker to establish authenticated connections in
TCP port 1883 based on the credentials stored in the file ’passwd’. All incoming connections
in which the username and password are not the ones written in that file, will be refused. Last
line of the configuration file specifies the destination for the broker’s log file.

The next step is to create both the ’passwd’ and ’mosquitto.log’ files. Our user will be
’testbed’ and our password ’1234’. That way, in the first one we write ’testbed: 1234’. In the
second one there is no need to write anything.

We execute the following command to encrypt the password. The result should be similar
to the one shown in figure

1 dave@AAU:∼$ mosquitto_passwd -U passwd

Content of the file ’passwd’ after encrypting it.

The final step is to restart the broker so all the above settings are applied:

1 dave@AAU:∼$ systemctl restart mosquitto

B.2.- Installation and configuration of RSMB broker

Following the same idea as in the previous section, it is important to follow these steps at
the time of installing the Realy Small Message Broker (RSMB) broker used for the MQTT-
SN scenario. We start by creating a folder called ’RSMB’ and cloning the broker’s repository
inside it:

1 dave@AAU:∼$ git clone https :// github.com/eclipse/mosquitto.rsmb.git

Once it is cloned, we run the following commands:

1 dave@AAU:∼$ sudo apt install make

2 dave@AAU:∼$ sudo apt install build -essential
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The first command installs the ’make’ package. It is used for compiling and building soft-
ware projects. The second one installs the ’build-essential’ package that includes tools and
libraries needed at the time of building the project. By running these two orders we assu-
re that the necessary dependencies and tools needed to compile and install the project are
available in our system.

We go to ’/RSMB/mosquitto.rsmb/rsmb/src’ and execute the command:

1 testbed5g@ubuntu:∼$ make

Its function is to follow instructions contained in a file called ’Makefile’ which tells
which commands and dependencies use to build the project. Once this process finishes, we
can check if it has been successful by running the command:

1 dave@AAU:∼$ echo $?

If the output is a zero, it means that the process has been executed successfully. Being
that the case, there should be two new files called ’broker’ and ’broker mqtts’. The first
one supports MQTT TCP version whereas the second one is the one we will use since it is
MQTT-SN based. We create a filed called ’conf rsmb.txt’ and add the following content:

1 trace_output protocol

2 listener 1884 INADDR_ANY mqtts

It is important to highlight that in this broker we are using the port 1884 so there is not a
conflict with Mosquitto (it is listening in port 1883).

We apply this configuration file by running:

1 dave@AAU:∼$ ./ broker_mqtts conf_rsmb.txt

Output after applying the configuration to the RSMB broker.

The last step in order to complete the MQTT-SN set up is to install and configure the
clients. It has to be deployed in the Node1, Node2 for the Ethernet performance analysis and
in the UR5 arm and Edge Cloud server for the 5G performance analysis. The library can be
installed as:
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Escuela Politécnica de Ingenierı́a de Gijón
UNIVERSIDAD DE OVIEDO

Page 110 of 154

C. Study of the payload
When analyzing packet size with WireShark, it is important to remember that the values

the tool shows us in the main interface correspond to the total frame, which includes the
payload as well as the encapsulating headers. To determine the size of the packet at a specific
layer, it is necessary to open it and inside it content we will see a hierarchical representation
of the different layers of the packet. Once we have located the desired layer (OPC-UA and
MQTT in our case) we can find its size in the details panel.

C.1.- OPC-UA

OPC-UA has several built-in data types for its messages [43] but we are interested in the
most common ones: Int64, Float, Bool and String.
Inside the OPC-UA packet, the field we need to focus on is called ’WriteValue’. It contains
the following information:

NodeId: identifier of the node to which the value will be written.

AttributeId: the attribute of the node to which the value will be written.

IndexRange

Value: the data that will be written to the node. Inside it we have other fields such as
its type and the data itself.

Int64 data type is used to represent integer values in the range -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807, both included. To test this built-in type, the minimum, maxi-
mum and other values will be sent in order to study how the payload behaves.
The minimum value is encoded in hexadecimal as 800000000000000016 and it is stored
using 8 bytes. The whole frame is 181 bytes while the OPC-UA packet size is 97 bytes.
From those bytes, the field ’WriteValue’ takes up 34 bytes. Figure ?? and subsequent figures
highlight in blue the payload of the packet in this experiment.
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WriteValue fields when minimum Int64 value is sent.

If we send the maximum value, we also get a frame size of 181 bytes and an OPC-UA
packet size of 97 bytes. ’WriteValue’ field will have the same size as before. This time the
payload is encoded as 7FFFFFFFFFFFFFFF16 using 8 bytes.
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Figure C.1: WriteValue fields when maximum Int64 value is sent.

To conclude the study of the built-in type Int64, the value ’123456789’ will be sent. This
can be considered as a small value compared to the constraints of the data type. In this case,
the OPC-UA packet and the ’WriteValue’ field sizes are the same as the two previous exam-
ples. The payload is encoded as 75BCD1516 using 4 bytes while the other remaining bytes,
circled in red, are used to store zeros.
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Figure C.2: WriteValue fields when ’123456789’ Int64 value is sent.

Boolean data type in OPC-UA is used to send two-state logical values, which represent
a true or false. First one is encoded as 116 and second one as 016. When sending a boolean
true value, the frame size is 174 bytes and OPC-UA packet size is 90 bytes containing a
’WriteValue’ field of 27 bytes. From those bytes, only one of them used to store the actual
payload data as shown in figure C.3.
Otherwise, when sending a False value, OPC-UA packet and ’WriteValue’ sizes are the same.
Figure C.4 displays this scenario.
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Figure C.3: WriteValue fields when Bool True value is sent.

OPC-UAuses the IEEE 754 Standard [61] for representing floating-point numbers. Fi-
guring out how the packet size changes in this scenario is a difficult task to perform in a
systematic way so we will therefore not include this built-in type our study.

The last data type that will be studied is the String. It is used to send a sequence of Uni-
code [62] characters. OPC-UA uses ASCII encoding to store the data in the packet.
The smallest amount of data that can be sent in this case is one character. If we transmit the
value ’x’, we get a frame of 178 bytes and an OPC-UA packet size of 95 bytes from which
’WriteValue’ field uses 31 bytes. The character is encoded in ASCII as the value ’78’ so it
only needs 1 byte to be stored as shown in figure C.5.
It is important to highlight that in this built-in data type, OPC-UA uses 4 bytes to indicate
the length of the string as circled in red in the same figure.

In order to see how the packet size varies when sending a bigger amount of information,
we will transmit the word ’Claudia’. The total size of the frame grows up to 184 bytes and
the OPC-UA packet is 100 bytes. The field ’WriteValue’ is 37 bytes long in which our data
is stored in ASCII as 436C6175646961 using 7 bytes.
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Figure C.4: WriteValue fields when Bool False value is sent.

Figure C.5: WriteValue field when string character ’x’ is sent.
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Figure C.6: WriteValue field when string value ’Claudia’ is sent.

C.2.- MQTT

With MQTT we will study Int64, Float and String values since there is not an special
built-in type for boolean data. Although this protocol encodes all its binary data using AS-
CII, there is something to do if we want to reduce the packet size when sending integer and
floating values. Numbers can be encoded as HEX bytes instead of treating them as strings
(which would encode them in ASCII).

We start by sending the integer value ’123456789’ to the topic ”testn”. The whole frame
is 84 bytes and MQTT packet is 18 bytes. Payload is stored using 9 bytes and it is encoded
in ASCII as 313233343536373839.
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Figure C.7: Content of the MQTT packet when sending the value ’123456789’ as a string.

If we send the same data but encoded as HEX for integer values, we get the results shown
in figure . The topic used to publish is the same size as the prior one and its called ”testh”.
Here the full frame size is 79 bytes and the MQTT packet size is 13 bytes. Payload is enco-
ded as 075BCD1516 using 4 bytes.

Figure C.8: Content of the MQTT packet when sending the value ’123456789’ as an integer.

When it comes to floating values it is also possible to reduce packet size by following
a similar algorithm. A floating point number is formed by two integer values separated by
a dot. If we encode each integer part using HEX and the dot using ASCII, it is possible to
gather them and send it all as the packet’s payload.
However, there are some details we have to take care of. It is important to know how to deal
with the dot, encoded as 2E in ASCII, when sending values such in which number 46 is next
to the dot since it is also encoded as 2E16.

Figure C.11 displays the result of sending the value 3.14159 as text. Frame size is 83
bytes. ASCII packet is 16 bytes in which the payload is encoded using 7 bytes.
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Figure C.9: Flowchart of the process of sending integer data encoded as HEX.

The flowchart of the algorithm used to reduce payload size when sending integer data is
shown in figure C.9 . Blue steps are executed in Node1, orange ones in the broker and green
ones in Node2.

If we now send the same value encoding it as explained above, we get the result showed
in figure C.12 . This time the frame is 79 bytes and the size of the ASCII packet is 13 bytes.
Payload is encoded as 032E374F using 4 bytes.
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Figure C.10: Flowchart for the process of sending float data encoded as HEX.
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Figure C.11: Content of the MQTT packet when sending the value ’3.14159’ as a string.

Figure C.12: Content of the MQTT packet when sending the value ’3.14159’ as a an integer.
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Finally, sending different string sizes leads to the results presented in figures C.13 and
C.14. In the first case the packet’s payload is the character ’x’. It results on a 76 byte frame.
MQTT packet is 10 bytes and the data is stored using one byte. For the scenario in which
the payload is the word ’Claudia’, a 82 bytes frame is needed in order to transmit the data.
MQTT’s packet size is 16 bytes and the payload is stored using 7 bytes.

Figure C.13: Content of the MQTT packet when sending the value ’x’.

Figure C.14: Content of the MQTT packet when sending the value ’Claudia’.
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D. Closed Control Loop Latency plots
D.1.- CCLL for MQTT over Ethernet: QoS comparison

Figure D.1: CCLL for testbed scenario: MQTT over Ethernet and 0% of load in the network.
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Figure D.2: Cumulative Distribution Function (CDF) for MQTT over Ethernet and 25% load
in the network.
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Figure D.3: CDF for MQTT over Ethernet and 50% load in the network.
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Figure D.4: CDF for MQTT over Ethernet and 75% load in the network.

Figure D.5: CDF for MQTT over Ethernet and 100% load in the network.
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D.2.- CCLL for MQTT over Ethernet: Network load study

Figure D.6: CDF for MQTT QoS 0 over Ethernet and different network load levels.

Figure D.7: CDF for MQTT QoS 1 over Ethernet and different network load levels.
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Figure D.8: CDF for MQTT QoS 2 over Ethernet and different network load levels.
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D.3.- CCLL for MQTT-SN over Ethernet

Figure D.9: CDF for MQTT-SN over Ethernet and 0% load in the network.

Figure D.10: CDF for MQTT-SN over Ethernet and 25% load in the network.
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Figure D.11: CDF for MQTT-SN over Ethernet and 50% load in the network.

Figure D.12: CDF for MQTT-SN over Ethernet and 75% load in the network.
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Figure D.13: CDF for MQTT-SN over Ethernet and 100% load in the network.
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D.4.- CCLL for MQTT-SN over Ethernet: Network load study

Figure D.14: CDF for MQTT-SN QoS 0 over Ethernet and different network load levels.
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D.5.- CCLL for OPC-UA over Ethernet

Figure D.15: CDF for OPC-UA Client-Server over Ethernet and 0% load in the network.

Figure D.16: CDF for OPC-UA Client-Server over Ethernet and 25% load in the network.

David Arias-Cachero Rincón
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Figure D.17: CDF for OPC-UA Client-Server over Ethernet and 50% load in the network.

Figure D.18: CDF for OPC-UA Client-Server over Ethernet and 75% load in the network.
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Figure D.19: CDF for OPC-UA Client-Server over Ethernet and 100% load in the network.

Figure D.20: CDF for OPC-UA PubSub over Ethernet and 0% load in the network.
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Figure D.21: CDF for OPC-UA PubSub over Ethernet and 25% load in the network.

Figure D.22: CDF for OPC-UA PubSub over Ethernet and 50% load in the network.
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Figure D.23: CDF for OPC-UA PubSub over Ethernet and 75% load in the network.

Figure D.24: CDF for OPC-UA PubSub over Ethernet and 100% load in the network.
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D.6.- CCLL for OPC-UA over Ethernet: Network load study

Figure D.25: CDF for OPC-UA Client-Server over Ethernet and different load levels.

Figure D.26: CDF for OPC-UA PubSub 1ms over Ethernet and different load levels.
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Figure D.27: CDF for OPC-UA PubSub 10ms over Ethernet and different load levels.

Figure D.28: CDF for OPC-UA PubSub 50ms over Ethernet and different load levels.

David Arias-Cachero Rincón
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D.7.- CCLL for MQTT over 5G: Testbed scenario

Figure D.29: CDF for MQTT over 5G and 0% load in the network.

Figure D.30: CDF for MQTT over 5G and 25% load in the network.
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Figure D.31: CDF for MQTT over 5G and 50% load in the network.

Figure D.32: CDF for MQTT over 5G and 75% load in the network.
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Figure D.33: CDF for MQTT over 5G and 100% load in the network.
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D.8.- CCLL for MQTT over 5G: Network load study (testbed)

Figure D.34: CDF for MQTT QoS 0 over 5G and different load levels (testbed).

Figure D.35: CDF for MQTT QoS 1 over 5G and different load levels (testbed).
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Figure D.36: CDF for MQTT QoS 2 over 5G and different load levels (testbed).
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D.9.- CCLL for MQTT-SN over 5G: Testbed scenario

Figure D.37: CDF for MQTT-SN over 5G and 0% load in the network.

Figure D.38: CDF for MQTT-SN over 5G and 25% load in the network.

David Arias-Cachero Rincón
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Figure D.39: CDF for MQTT-SN over 5G and 50% load in the network.

Figure D.40: CDF for MQTT-SN over 5G and 75% load in the network.
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Figure D.41: CDF for MQTT-SN over 5G and 100% load in the network.

David Arias-Cachero Rincón
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D.10.- CCLL for MQTT-SN over 5G: Network load study (testbed)

Figure D.42: CDF for MQTT-SN QoS 0 over 5G and different network load levels (testbed).
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D.11.- CCLL for OPC-UA over 5G: Testbed scenario

Figure D.43: CDF for OPC-UA Client-Server over 5G and 0% load in the network.

Figure D.44: CDF for OPC-UA Client-Server over 5G and 25% load in the network.
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Figure D.45: CDF for OPC-UA Client-Server over 5G and 50% load in the network.

Figure D.46: CDF for OPC-UA Client-Server over 5G and 75% load in the network.

David Arias-Cachero Rincón
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Figure D.47: CDF for OPC-UA Client-Server over 5G and 100% load in the network.

Figure D.48: CDF for OPC-UA PubSub over 5G and 0% load in the network.

David Arias-Cachero Rincón
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Figure D.49: CDF for OPC-UA PubSub over 5G and 25% load in the network.

Figure D.50: CDF for OPC-UA PubSub over 5G and 50% load in the network.
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Figure D.51: CDF for OPC-UA PubSub over 5G and 75% load in the network.

Figure D.52: CDF for OPC-UA PubSub over 5G and 100% load in the network.
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D.12.- CCLL for OPC-UA over 5G: Network load study (testbed)

Figure D.53: CDF for OPC-UA Client-Server over 5G and different load levels (testbed).

Figure D.54: CDF for OPC-UA PubSub 1ms over 5G and different load levels (testbed).
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Figure D.55: CDF for OPC-UA PubSub 10ms over 5G and different load levels (testbed).

Figure D.56: CDF for OPC-UA PubSub 50ms over 5G and different load levels (testbed).
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