
This paper is a pre-print paper accepted in the 2023 IEEE International Conference on Artificial Intelligence Testing

Citation information: Morán, J., Bertolino, A., De la Riva, C., Tuya, J. Fault Localization for Reinforcement Learning. 2023 IEEE

International Conference On Artificial Intelligence Testing (AITest)

IEEE copyright notice. © 2023 IEEE. Permission from IEEE must be obtained for all uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective Works, for release redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Fault Localization for Reinforcement Learning

Jesús Morán

Department of Computing

University Of Oviedo

Gijón, Spain

moranjesus@uniovi.es

Antonia Bertolino

 ISTI-CNR

Consiglio Nazionale delle

Ricerche

Pisa, Italy

antonia.bertolino@isti.cnr.it

Claudio de la Riva

Department of Computing

University Of Oviedo

Gijón, Spain

claudio@uniovi.es

Javier Tuya

Department of Computing

University Of Oviedo

Gijón, Spain

tuya@uniovi.es

Abstract—Reinforcement Learning is widely adopted in

industry to approach control tasks in intelligent way. The

quality of these programs is important especially when they are

used for critical tasks like autonomous driving. Testing and

debugging these programs are complex because they behave

autonomously without providing insights about the reasons of

the decisions taken. Even these decisions could be wrong if they

learned from faults. In this paper, we present the first approach

to automatically locate faults in Reinforcement Learning

programs. This approach called SBFL4RL analyses several

executions to extract those internal states that commonly reduce

the performance of the program when they are covered.

Locating these states can help testers to understand a known

fault, or even detect an unknown fault. SBFL4RL is validated in

2 case studies locating correctly an injected fault. Initial results

suggest that the faults of reinforcement learning programs can

be automatically located, and there is room for further research.

Keywords—software testing, debugging, fault localization,

reinforcement learning

I. INTRODUCTION

Reinforcement learning (RL) is a type of machine learning
concerned to solve decision-making problems developing
agents that learn from experience through trial-and-error
decisions in an environment. Despite RL is the type of machine
learning more searched in both Google Scholar and Google,
the majority of research contributions in testing machine
learning programs are focused on supervised and
unsupervised learning [1]. According to the survey of Zhang
et al. [1] more research is needed in testing RL programs.

Testing and debugging RL programs is challenging due to
their opacity and stochasticity, among others. Some research
works are focused on testing RL programs with mutation [2]
and with adversarial evaluation [3]. Research is also active to
explain humans why the agent makes one action [4], and
Deshpande et al. [5] create a tool for visualizing how the agent
performs. To the best of our knowledge, there is no previous
research about locating faults in RL applications.

This paper proposes a fault localization approach to locate
automatically which group of states is the root cause of faults
-or low performance- for an agent.

II. BACKGROUND

A. Reinforcement Learning

The RL problem can be modeled with agent, states,
actions, and rewards. The agent observes the state from the
environment, and based on that it makes an action that moves
it to a new state. This transition of states takes 1 timestep and
the agent receives a reward indicating good or bad behavior.

Each execution of the agent from the initial state until the
end -if any- is called an episode, and the sequence of all state-
action-reward-state of the episode forms a trajectory. The
total reward obtained by the agent in the trajectory is called
return, and can be calculated in different ways depending on
the problem to solve. The simplest return is the finite-horizon
undiscounted return that is the sum of all rewards from the
trajectory. The agent is trained to learn which action is the
best in a given state in order to maximize the return.

Consider a robotic cart called CartPole [8] that aims to
balance a rigid pole hinged to it. The actions that the agent can
take are moving the cart to the right or left. The states are the
position and velocity of the cart, the angle of the pole, and the
rate of change of the angle. The rewards are +1 per each
timestep taken but the episode finishes when the angle passes
±0.2 radians. During the training the agent only requires few
timesteps to learn that bigger returns are obtained when its
actions put the pole in vertical angle and with low velocity.

B. Spectrum-based Fault Localization (SBFL)

SBFL is a widely used technique for fault localization [6].
Given some test executions, SBFL obtains the so-called
suspiciousness ranking that contains the most suspicious code
lines to cause failures. This ranking is obtained calculating
how much suspicious is each code line based on the number
of executions that both fail/succeed and cover/uncover the
line. Different metrics exist that calculate the suspiciousness
of each code line in different ways. In general, the ranking
metrics consider that the most suspicious lines are those that
are usually both covered in the failed executions and not
covered in the successful ones. Despite SBFL is commonly
used to locate faulty code lines, it can also be used to locate
other parts of the software that could cause failures.

III. SBFL FOR REINFORCEMENT LEARNING (SBFL4RL)

This paper proposes an SBFL approach (SBFL4RL) that
analyzes the agent executions with the goal to automatically
locate those group of states in which the agent does not
perform well or even fails. To this end, SBFL4RL considers
that a group of states is more suspicious when the episodes
cover it with low returns or do not cover with high returns. As
Fig. 1 summarizes, SBFL4RL receives the agent and
automatically obtains a ranking of the most suspicious group
of states. First, the agent is tested several times to collect
trajectories, from which both the group of states covered in
each episode and their returns are obtained. Next, SBFL4RL
uses the returns as test oracle to classify the episodes into two,
those that perform well and those that do not. Finally, a

Fig. 1. SBFL approach for Reinforcement Learning applications

Testing
Ranking of the group of

states most suspicious to
cause failure

Agent
Oracle

Coverage
Rank

ranking metric obtains the suspiciousness ranking of group of
states that are more suspicious to either cause failures or
reduce the performance. Each phase is detailed below.

Testing: the agent is executed in an instrumented
environment during several episodes to collect the trajectories
of the episodes. The number of episodes, denoted as E, is
determined by the tester and each one starts in a random state.

Coverage: SBFL4RL obtains per each episode the group
of states covered and not covered. To this end, it groups the
states with their neighborhood creating G groups of states,
each one denoted as gsi. The tester could vary the number of
groups to obtain more/less fine-grain localization.

Oracle: SBFL4RL obtains per each episode the finite-
horizon undiscounted return. Some episodes have higher
returns and others lower. The tester wants to locate the groups
of states that reduces the performance of the agent. Therefore,
SBFL4RL divides the episodes in two depending on the
returns: highest and lowest. This division is done with the
percentile P established by the tester, i.e. if P = 50 means that
half of the episodes are classified as lowest return.

Rank: the previous phases obtain per each episode (1) the
group of states covered, and (2) if it has highest/lowest
returns. Finally, SBFL4RL obtains a suspiciousness ranking
that contains in the first positions the groups of states that are
the root cause of the lowest returns. This ranking is obtained
using Ochiai2 [7] that is a state-of-the-art ranking metric.

Suppose a faulty implementation of CartPole that receives
wrong rewards when the angle of the pole is -0.02 radians
receiving -25 as reward. During the training, the agent
erroneously learns to avoid the pole in this angle. SBFL4RL
instruments the environment, and the tester executes 100
episodes (E = 100) to collect their trajectories. The tester
wants to analyze in which angles of the pole the agent does
not perform well, and selects G = 20 for the angle. This means
that the sates are grouped in ranges of 0.22 radians e.g. gs9 is
the interval of angles (-0.022, 0]. This group of states gs9 is
the faulty one because the state with -0.02 radians is in this
group. Next, SBFL4RL obtains which group of states are
covered in each episode, for example gs9 is covered in 48
episodes and not covered in 51. The returns of the episodes
vary between 10 and -68, and the tester classifies them in
highest/lowest with percentile 50 (P = 50). In total, 51
episodes with returns between 10 and 8 are classified as the
highest returns and the remainder as the lowest. Finally, the
ranking metric Ochiai2 indicates correctly that the group of
states most suspicious is gs9 with a suspiciousness of 0.33.

IV. CASE STUDIES

We evaluate SBFL4RL using two different RL programs
as case studies: the already mentioned CartPole and
LunarLander, a rocket trajectory optimization problem [8].
The agents are trained using the PPO algorithm until there is
no improvement in 3 evaluations, each one after 1000
timesteps. For each agent, 100 episodes are executed (E =
100), and half of them are classified as highest returns (P =
50). The localization is done grouping the states in 20 groups
(G = 20), in the case of CartPole we are focused on the angle
of the pole, and in LunarLander in the horizontal position of
the rocket. We have injected a fault in the programs to evaluate
if SBFL4RL locates it: for both programs, the reward of gs9 is
mutated to -25. The fault localization is repeated 30 times, this
means that 30 agents are trained, tested and debugged in each

program. For each one, we check if SBFL4RL is able to locate
the faulty group of states in the top of the suspiciousness
ranking. Note that the ranking could have ties when at least
two group of states have the same suspiciousness, but the
tester can only analyze one at time and the ties must be broken.
It is common to analyze the best, average and worst scenarios.

Fig. 2 depicts the distribution of the position of each group
of states in the suspiciousness ranking per each RL program,
CartPole (top) and LunarLander (bottom). The X-axis is the
group of states, Y-axis the position, and the color indicates the
tie-breaking strategies. We can observe that SBFL4RL locates
automatically the fault (gs9) in the first positions of the
ranking. SBFL4RL also indicates that the neighborhood states
like gs8 and gs10 are still suspicious. Note that these states are
not faulty, but they are usually covered just before or after the
faulty one. The ranking obtained by SBFL4RL gives hints
about a possible fault around the group of states gs8 - gs10.
Once the tester analyzes these states, it could detect a new
unknown fault or understand better a known fault.

V. CONCLUSIONS AND FUTURE WORK

Fault localization can be used to help tester during the
testing/debugging of Reinforcement Learning applications.
On one hand, it can help tester to understand better a known
fault -or performance issue- providing the location of the
states that cause low performance. On the other hand, it can
help tester to discover new unknown faults because it
automatically locates those states in which the agent does not
work well. RL is one of the artificial intelligence areas that
receive more attention in research, and there are opportunities
to further research in testing/debugging these applications.

As future work, we plan to improve SBFL4RL to
test/localize faults considering also which pairs of state-action
are covered. Another improvement could be analyzing how
much times each state is covered because SBFL4RL now only
considers if it is covered or not. The same happen for the
returns because SBFL4RL only considers two classes (lowest
and highest returns), but analyzing the whole distribution of
returns could improve the fault localization.

ACKNOWLEDGMENT

 This work was supported by the project PID2019-
105455GB-C32 funded by MCIN/AEI/10.13039/
501100011033 (Spain), and the Italian MIUR PRIN 2017
Project: SISMA (Contract 201752ENYB), and ERDF funds.

REFERENCES

[1] J. M. Zhang et al., “Machine Learning Testing: Survey, Landscapes and

Fig. 2. Positions in suspciciousness ranking: CartPole and

LunarLanderPositions in suspciciousness ranking: CartPole and
LunarLander

Horizons,” IEEE Trans. Softw. Eng., vol. 48, no. 1, Jan. 2022.
[2] Y. Lu, W. Sun, and M. Sun, “Towards mutation testing of

Reinforcement Learning systems,” J. Syst. Archit., vol. 131, p. 102701.

[3] J. Uesato et al., “Rigorous Agent Evaluation: An Adversarial Approach
to Uncover Catastrophic Failures,” 7th Int. Conf. ICLR 2019,

[4] R. Dazeley et al. “Explainable Reinforcement Learning for Broad-XAI:

A Conceptual Framework and Survey,” arXiv:2108.09003, 2021.

[5] S. Deshpande, J. Schneider, “Vizarel: A system to help better

understand rl agents,” arXiv preprint arXiv:2007.05577, 2020.
[6] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on

Software Fault Localization,” IEEE Trans. Softw. Eng., vol. 99, 2016.

[7] L. Naish et al., “A model for spectra-based software diagnosis,” ACM
Trans. Softw. Eng. Methodol., vol. 20, no. 3, pp. 1–32, 2011.

[8] G. Brockman et al., “OpenAI Gym,” arXiv:1606.01540 , Jun. 2016.

