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Abstract—Reinforcement Learning is widely adopted in 

industry to approach control tasks in intelligent way. The 

quality of these programs is important especially when they are 

used for critical tasks like autonomous driving. Testing and 

debugging these programs are complex because they behave 

autonomously without providing insights about the reasons of 

the decisions taken. Even these decisions could be wrong if they 

learned from faults. In this paper, we present the first approach 

to automatically locate faults in Reinforcement Learning 

programs. This approach called SBFL4RL analyses several 

executions to extract those internal states that commonly reduce 

the performance of the program when they are covered. 

Locating these states can help testers to understand a known 

fault, or even detect an unknown fault. SBFL4RL is validated in 

2 case studies locating correctly an injected fault. Initial results 

suggest that the faults of reinforcement learning programs can 

be automatically located, and there is room for further research. 
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I. INTRODUCTION 

Reinforcement learning (RL) is a type of machine learning 
concerned to solve decision-making problems developing 
agents that learn from experience through trial-and-error 
decisions in an environment. Despite RL is the type of machine 
learning more searched in both Google Scholar and Google, 
the majority of research contributions in testing machine 
learning programs are focused on supervised and 
unsupervised learning [1]. According to the survey of Zhang 
et al. [1] more research is needed in testing RL programs. 

Testing and debugging RL programs is challenging due to 
their opacity and stochasticity, among others. Some research 
works are focused on testing RL programs with mutation [2] 
and with adversarial evaluation [3]. Research is also active to 
explain humans why the agent makes one action [4], and 
Deshpande et al. [5] create a tool for visualizing how the agent 
performs. To the best of our knowledge, there is no previous 
research about locating faults in RL applications. 

This paper proposes a fault localization approach to locate 
automatically which group of states is the root cause of faults 
-or low performance- for an agent. 

II. BACKGROUND 

A. Reinforcement Learning 

The RL problem can be modeled with agent, states, 
actions, and rewards. The agent observes the state from the 
environment, and based on that it makes an action that moves 
it to a new state. This transition of states takes 1 timestep and 
the agent receives a reward indicating good or bad behavior. 

Each execution of the agent from the initial state until the 
end -if any- is called an episode, and the sequence of all state-
action-reward-state of the episode forms a trajectory. The 
total reward obtained by the agent in the trajectory is called 
return, and can be calculated in different ways depending on 
the problem to solve. The simplest return is the finite-horizon 
undiscounted return that is the sum of all rewards from the 
trajectory. The agent is trained to learn which action is the 
best in a given state in order to maximize the return. 

Consider a robotic cart called CartPole [8] that aims to 
balance a rigid pole hinged to it. The actions that the agent can 
take are moving the cart to the right or left. The states are the 
position and velocity of the cart, the angle of the pole, and the 
rate of change of the angle. The rewards are +1 per each 
timestep taken but the episode finishes when the angle passes 
±0.2 radians. During the training the agent only requires few 
timesteps to learn that bigger returns are obtained when its 
actions put the pole in vertical angle and with low velocity. 

B. Spectrum-based Fault Localization (SBFL) 

SBFL is a widely used technique for fault localization [6]. 
Given some test executions, SBFL obtains the so-called 
suspiciousness ranking that contains the most suspicious code 
lines to cause failures. This ranking is obtained calculating 
how much suspicious is each code line based on the number 
of executions that both fail/succeed and cover/uncover the 
line. Different metrics exist that calculate the suspiciousness 
of each code line in different ways. In general, the ranking 
metrics consider that the most suspicious lines are those that 
are usually both covered in the failed executions and not 
covered in the successful ones. Despite SBFL is commonly 
used to locate faulty code lines, it can also be used to locate 
other parts of the software that could cause failures. 

III. SBFL FOR REINFORCEMENT LEARNING (SBFL4RL) 

This paper proposes an SBFL approach (SBFL4RL) that 
analyzes the agent executions with the goal to automatically 
locate those group of states in which the agent does not 
perform well or even fails. To this end, SBFL4RL considers 
that a group of states is more suspicious when the episodes 
cover it with low returns or do not cover with high returns. As 
Fig. 1 summarizes, SBFL4RL receives the agent and 
automatically obtains a ranking of the most suspicious group 
of states. First, the agent is tested several times to collect 
trajectories, from which both the group of states covered in 
each episode and their returns are obtained. Next, SBFL4RL 
uses the returns as test oracle to classify the episodes into two, 
those that perform well and those that do not. Finally, a 

 

Fig. 1. SBFL approach for Reinforcement Learning applications 
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ranking metric obtains the suspiciousness ranking of group of 
states that are more suspicious to either cause failures or 
reduce the performance. Each phase is detailed below. 

Testing: the agent is executed in an instrumented 
environment during several episodes to collect the trajectories 
of the episodes. The number of episodes, denoted as E, is 
determined by the tester and each one starts in a random state. 

Coverage: SBFL4RL obtains per each episode the group 
of states covered and not covered. To this end, it groups the 
states with their neighborhood creating G groups of states, 
each one denoted as gsi. The tester could vary the number of 
groups to obtain more/less fine-grain localization. 

Oracle: SBFL4RL obtains per each episode the finite-
horizon undiscounted return. Some episodes have higher 
returns and others lower. The tester wants to locate the groups 
of states that reduces the performance of the agent. Therefore, 
SBFL4RL divides the episodes in two depending on the 
returns: highest and lowest. This division is done with the 
percentile P established by the tester, i.e. if P = 50 means that 
half of the episodes are classified as lowest return. 

Rank: the previous phases obtain per each episode (1) the 
group of states covered, and (2) if it has highest/lowest 
returns. Finally, SBFL4RL obtains a suspiciousness ranking 
that contains in the first positions the groups of states that are 
the root cause of the lowest returns. This ranking is obtained 
using Ochiai2 [7] that is a state-of-the-art ranking metric. 

Suppose a faulty implementation of CartPole that receives 
wrong rewards when the angle of the pole is -0.02 radians 
receiving -25 as reward. During the training, the agent 
erroneously learns to avoid the pole in this angle. SBFL4RL 
instruments the environment, and the tester executes 100 
episodes (E = 100) to collect their trajectories. The tester 
wants to analyze in which angles of the pole the agent does 
not perform well, and selects G = 20 for the angle. This means 
that the sates are grouped in ranges of 0.22 radians e.g. gs9 is 
the interval of angles (-0.022, 0]. This group of states gs9 is 
the faulty one because the state with -0.02 radians is in this 
group. Next, SBFL4RL obtains which group of states are 
covered in each episode, for example gs9 is covered in 48 
episodes and not covered in 51. The returns of the episodes 
vary between 10 and -68, and the tester classifies them in 
highest/lowest with percentile 50 (P = 50). In total, 51 
episodes with returns between 10 and 8 are classified as the 
highest returns and the remainder as the lowest. Finally, the 
ranking metric Ochiai2 indicates correctly that the group of 
states most suspicious is gs9 with a suspiciousness of 0.33.  

IV. CASE STUDIES 

We evaluate SBFL4RL using two different RL programs 
as case studies: the already mentioned CartPole and 
LunarLander, a  rocket trajectory optimization problem [8]. 
The agents are trained using the PPO algorithm until there is 
no improvement in 3 evaluations, each one after 1000 
timesteps. For each agent, 100 episodes are executed (E = 
100), and half of them are classified as highest returns (P = 
50). The localization is done grouping the states in 20 groups 
(G = 20), in the case of CartPole we are focused on the angle 
of the pole, and in LunarLander in the horizontal position of 
the rocket. We have injected a fault in the programs to evaluate 
if SBFL4RL locates it: for both programs, the reward of gs9 is 
mutated to -25. The fault localization is repeated 30 times, this 
means that 30 agents are trained, tested and debugged in each 

program. For each one, we check if SBFL4RL is able to locate 
the faulty group of states in the top of the suspiciousness 
ranking. Note that the ranking could have ties when at least 
two group of states have the same suspiciousness, but the 
tester can only analyze one at time and the ties must be broken. 
It is common to analyze the best, average and worst scenarios. 

Fig. 2 depicts the distribution of the position of each group 
of states in the suspiciousness ranking per each RL program, 
CartPole (top) and LunarLander (bottom). The X-axis is the 
group of states, Y-axis the position, and the color indicates the 
tie-breaking strategies. We can observe that SBFL4RL locates 
automatically the fault (gs9) in the first positions of the 
ranking. SBFL4RL also indicates that the neighborhood states 
like gs8 and gs10 are still suspicious. Note that these states are 
not faulty, but they are usually covered just before or after the 
faulty one. The ranking obtained by SBFL4RL gives hints 
about a possible fault around the group of states gs8 - gs10. 
Once the tester analyzes these states, it could detect a new 
unknown fault or understand better a known fault. 

V. CONCLUSIONS AND FUTURE WORK 

Fault localization can be used to help tester during the 
testing/debugging of Reinforcement Learning applications. 
On one hand, it can help tester to understand better a known 
fault -or performance issue- providing the location of the 
states that cause low performance. On the other hand, it can 
help tester to discover new unknown faults because it 
automatically locates those states in which the agent does not 
work well. RL is one of the artificial intelligence areas that 
receive more attention in research, and there are opportunities 
to further research in testing/debugging these applications.  

As future work, we plan to improve SBFL4RL to 
test/localize faults considering also which pairs of state-action 
are covered. Another improvement could be analyzing how 
much times each state is covered because SBFL4RL now only 
considers if it is covered or not. The same happen for the 
returns because SBFL4RL only considers two classes (lowest 
and highest returns), but analyzing the whole distribution of 
returns could improve the fault localization. 
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