
UNIVERSITY OF OVIEDO

SCHOOL OF COMPUTER ENGINEERING

DEGREE PROJECT

BACHELOR OF SOFTWARE ENGINEERING

“Collaborative Cloud-based Shape Expressions Editor”

Seen and approved

ADVISOR:

 José Emilio Labra Gayo

 (@uniovi.es)

AUTHOR:

 Iván Álvarez López

 (@uniovi.es)

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of introduction. Page 1 of 12

Declaration of Honesty in Academic

Work

I declare that I have read and checked that all parts of the piece of work here submitted are

original, except for source material explicitly acknowledged.

I declare that the piece of work, or a part of the piece of work has not been submitted for

more than one purpose (e.g., to satisfy the requirements in two different courses) without

declaration.

I declare that the submitted soft copy with details listed in the submission is identical to the

hard copy, if any, which has been submitted. I also acknowledge that I am aware of the

University's policy and regulations on honesty in academic work, and of the disciplinary

guidelines and procedures applicable to breaches of such policy and regulations, as contained

in the University website: https://www.innova.uniovi.es/ceonline/propiedadintelectual.

Signed: Iván Álvarez López

https://www.innova.uniovi.es/ceonline/propiedadintelectual

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 2 of 12 Section of introduction. Iván Álvarez López

Copyright disclaimer

ShareYASHE. Collaborative Cloud-based Shape Expressions Editor.

Copyright © 2023 Iván Álvarez López. University of Oviedo. School of Informatics Engineering.

This program is free software: you can redistribute it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation, version 3 of the

License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details (see Appendix III).

You should have received a copy of the GNU General Public License along with this program. If

not, see https://www.gnu.org/licenses/.

https://www.gnu.org/licenses/

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of introduction. Page 3 of 12

Acknowledgements

I would like to extend my sincere appreciation to the following individuals, who have played a

pivotal role in the completion of my degree project:

First and foremost, I am deeply grateful to my advisor, J. E. Labra, for granting me the

opportunity to undertake this captivating piece of work. His guidance, expertise, and support

have been invaluable throughout this journey.

I am indebted to my parents, Isidro, and Pilar, for their love, constant encouragement, and

assistance. Without their selfless sacrifices and unconditional belief in my abilities, this project

would not have come to fruition. Their support has been the cornerstone of my success.

I would like to express my heartfelt appreciation to my friend Miguel, whose consistent

friendship and support have been an integral part of my life since our time together in middle

school. His belief in my abilities and continuous encouragement have played a great role in my

progress.

To my cousin Raúl, I am grateful for the inspiration you have provided since our childhood.

Your enthusiasm, creativity, and courageousness have motivated me to surpass my limitations

and strive for excellence in all areas of my work.

To my dear friend Lucía, I am immensely grateful for the profound impact you have had on my

life, particularly during the final years of my degree. Your friendship and understanding have

been a beacon of light during the darkest moments. Your words of wisdom and guidance have

provided clarity and perspective, enabling me to navigate through challenges with renewed

strength and determination.

Lastly, I want to pay a heartfelt tribute to my grandfathers, with a special mention of my

beloved late grandfather, José. His belief in my abilities and encouragement to pursue higher

education have left an indelible mark on my academic journey. His words have fuelled my

determination and instilled in me the confidence to overcome challenges. Although he is no

longer physically with us, his enduring legacy of inspiration continues to guide me, serving as a

constant reminder of the strength and resilience that lies within me. I am forever grateful for

his presence in my life and the profound impact he has had on shaping the person I have

become.

To all these exceptional individuals, your unwavering support, guidance, and belief in my

abilities have formed the foundation upon which I have built my academic achievements. I am

profoundly grateful for your presence in my life and the profound impact you have had on my

personal and academic growth.

From the depths of my heart, thank you all.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 4 of 12 Section of introduction. Iván Álvarez López

Abstract

It will be developed a System which allows ShEx (Shape Expressions) code editing in a

collaborative way. A person editing a file will be able to see changes made by another person

in real time. This application will be cloud-based, that is, it will be deployed as a Website. Every

user will have ShEx files on their own, and these files could be shared with other users for their

collaborative editing.

As a Software developing project, this one will be focused on the analysis, design, and

implementation of Software Systems that will solve the problem previously described.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of introduction. Page 5 of 12

Keywords

ShEx, collaborative, editor, ShareYASHE, YASHE, Web Semantics, HTML, CSS, JavaScript,

WebSockets, Software, testing, development, engineering, usability, adaptability, accessibility,

design, architecture.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 6 of 12 Section of introduction. Iván Álvarez López

Table of contents

DECLARATION OF HONESTY IN ACADEMIC WORK ... 1

COPYRIGHT DISCLAIMER .. 2

ACKNOWLEDGEMENTS .. 3

ABSTRACT .. 4

KEYWORDS .. 5

TABLE OF CONTENTS .. 6

TABLE OF FIGURES ... 10

1 SUMMARY ... 1

1.1 INTRODUCTION .. 1

1.2 PURPOSE .. 2

1.3 OBJECTIVE .. 2

1.4 SCOPE ... 3

1.4.1 Web-based editor ... 3

1.4.2 Real-time collaboration .. 3

2 PROJECT PLANNING ... 4

2.1 INITIAL PLANNING .. 4

2.1.1 Gantt chart ... 4

2.1.2 List of project tasks ... 5

2.2 INITIAL BUDGET ... 6

3 SOFTWARE REQUIREMENTS ENGINEERING ... 7

3.1 SOFTWARE REQUIREMENTS ELICITATION ... 7

3.1.1 Identified stakeholders and other sources of information .. 7

3.1.2 Elicitation technique: interviews ... 8

3.2 SOFTWARE REQUIREMENTS ANALYSIS ... 8

3.2.1 System actors .. 8

3.3 SYSTEM REQUIREMENTS SPECIFICATION .. 9

3.4 USE CASES AND SCENARIOS .. 11

3.4.1 Use case 1. Register .. 11

3.4.2 Use case 2. Login .. 11

3.4.3 Use case 3. Logout .. 12

3.4.4 Use case 4. Unregister .. 12

3.4.5 Use case 5. Create a ShEx document .. 13

3.4.6 Use case 6. See the owned ShEx document .. 13

3.4.7 Use case 7. Edit an owned ShEx document ... 14

3.4.8 Use case 8. Add an owner to a ShEx document .. 14

3.4.9 Use case 9.1. Leave the ownership of a ShEx document that the user created 15

3.4.10 Use case 9.2. Leave the ownership of a ShEx document invited by another user 15

4 SOFTWARE DESIGN AND ARCHITECTURE ... 16

4.1 OVERVIEW .. 16

4.2 OVERALL ARCHITECTURE .. 17

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of introduction. Page 7 of 12

4.3 WEBSOCKET SERVER COMPONENT .. 18

4.4 5 LAYERS ARCHITECTURE .. 18

4.4.1 Routes layer .. 18

4.4.2 Application layer ... 19

4.4.3 Business layer ... 21

4.4.4 Presentation layer ... 22

4.4.5 Persistence layer ... 22

4.5 STRUCTURE IN DEPLOYMENT .. 23

4.5.1 Deployment of ShareYASHE server ... 23

4.5.2 Deployment of ShareYASHE client .. 24

4.6 DESIGN OF THE DBMS ... 25

4.6.1 Document-oriented DBMS .. 25

4.6.2 Data model ... 26

4.7 USER INTERFACE DESIGN.. 27

4.7.1 Main intention .. 27

4.7.2 Styles of the application.. 30

4.7.3 Possible views ... 31

4.8 TEST PLANNING ... 35

4.8.1 Specification-based testing ... 35

4.8.2 Usability testing .. 46

4.8.3 Accessibility testing ... 46

5 SYSTEM DEVELOPMENT... 47

5.1 TECHNOLOGIES .. 47

5.1.1 ECMAScript ES6 (JavaScript) ... 47

5.1.2 Node.js .. 47

5.1.3 Express .. 48

5.1.4 Yjs framework ... 48

5.1.5 WebSocket (y-websocket) ... 49

5.1.6 Codemirror (y-codemirror) .. 49

5.1.7 YASHE.. 50

5.1.8 MongoDB (y-mongodb-provider) ... 50

5.1.9 dotenv ... 51

5.1.10 body-parser .. 51

5.1.11 Pug.js .. 51

5.2 TOOLS AND PROGRAMS ... 52

5.2.1 Git ... 52

5.2.2 GitHub ... 52

5.2.3 PowerShell 7 ... 52

5.2.4 PlantUML .. 53

5.2.5 IntelliJ IDEA ... 53

5.2.6 Visual Studio Code .. 53

5.2.7 GanttProject ... 54

6 TEST DEVELOPMENT .. 55

6.1 REPORTING OF THE SPECIFICATION-BASED TESTING ... 55

6.1.1 Scenario 1. Registration .. 55

6.1.2 Scenario 2. Login ... 55

6.1.3 Scenario 3. Create ShEx document ... 55

6.1.4 Scenario 4. Leave ownership... 56

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 8 of 12 Section of introduction. Iván Álvarez López

6.1.5 Scenario 5. Add owner .. 56

6.2 USABILITY TESTING ... 57

6.2.1 Results of task 1 .. 57

6.2.2 Results of task 2 .. 58

6.3 ACCESSIBILITY TESTING .. 59

6.3.1 Summary ... 59

6.3.2 Results... 60

7 SYSTEM DOCUMENTATION ... 85

7.1 MANUAL OF DEPLOYMENT ON PREMISES WITH WINDOWS ... 85

7.1.1 Install Node.js and NPM ... 85

7.1.2 Install MongoDB and run it ... 88

7.1.3 Obtain the ShareYASHE source code, customise its environment parameters, and run it ... 90

7.1.4 Access from the external network .. 90

7.1.5 Ensure external projection capability ... 91

7.1.6 Open ports .. 92

7.1.7 Get your external address ... 92

7.1.8 Set up a DNS ... 93

7.2 MANUAL OF DEPLOYMENT ON THE CLOUD WITH LINUX.. 93

7.2.1 Set up an account in a cloud Website ... 93

7.2.2 Create a cloud machine .. 94

7.2.3 Open ports .. 95

7.2.4 Access the cloud machine ... 96

7.2.5 Install Node.js and NPM ... 97

7.2.6 Install MongoDB and run it ... 97

7.2.7 Obtain the ShareYASHE source code, customise its environment parameters, and run it ... 98

7.3 DEVELOPER’S GUIDE ... 100

7.3.1 Define a new route ... 100

7.3.2 Define a new application command ... 101

7.3.3 Define new business methods... 102

7.3.4 Instantiate new presentation service objects ... 103

7.3.5 Define a new entity ... 103

7.4 USER’S MANUAL .. 104

7.4.1 Create an account ... 104

7.4.2 Login into your account .. 106

7.4.3 Create a collaborative ShEx document ... 107

7.4.4 Access your ShEx document .. 108

7.4.5 Share your ShEx document ... 109

7.4.6 Leave the ownership of a ShEx document .. 110

7.4.7 Add an owner to a ShEx document ... 111

7.4.8 Delete your account .. 112

8 CONCLUDING REMARKS .. 113

8.1 CONCLUSIONS ... 113

8.2 CONTEMPLATED UPGRADES ... 113

9 BIBLIOGRAPHY .. 114

9.1 BOOKS AND ARTICLES .. 114

9.2 REFERENCES ON THE INTERNET ... 114

APPENDIX I. CONTENTS ATTACHED TO THIS SUBMISSION ... 1

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of introduction. Page 9 of 12

APPENDIX II. GNU AFFERO GENERAL PUBLIC LICENSE V3.0 .. 2

PREAMBLE ... 2

TERMS AND CONDITIONS .. 3

Definitions .. 3

Source Code ... 4

Basic Permissions ... 5

Protecting Users' Legal Rights From Anti-Circumvention Law ... 5

Conveying Verbatim Copies ... 5

Conveying Modified Source Versions ... 6

Conveying Non-Source Forms .. 6

Additional Terms .. 8

Termination ... 10

Acceptance Not Required for Having Copies ... 10

Automatic Licensing of Downstream Recipients .. 10

Patents ... 11

No Surrender of Others' Freedom .. 12

Use with the GNU Affero General Public License ... 12

Revised Versions of this License ... 13

Disclaimer of Warranty .. 13

Limitation of Liability ... 13

Interpretation of Sections 15 and 16 ... 14

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 10 of 12 Section of introduction. Iván Álvarez López

Table of figures

Figure 1. Gantt chart of the project. ... 4

Figure 2. Initial budget of the project. .. 6

Figure 3. System requirements specification (1 of 2). ... 9

Figure 4. System requirements specification (2 of 2). ... 10

Figure 5. Use case of register. .. 11

Figure 6. Use case of login. ... 11

Figure 7. Use case of logout. .. 12

Figure 8. Use case of unregister. .. 12

Figure 9. Use case of create a ShEx document. .. 13

Figure 10. Use case of see the owned ShEx document. .. 13

Figure 11. Use case of edit an owned ShEx document. ... 14

Figure 12. Use case of add an owner to a ShEx document. ... 14

Figure 13. Use case of leave the ownership of a ShEx document that the user created. 15

Figure 14. Use case of leave the ownership of a ShEx document invited by another user. 15

Figure 15. Representation of client-server connection. .. 16

Figure 16. ShareYASHE overall architecture. .. 17

Figure 17. Routes layer architecture. ... 18

Figure 18. Application layer architecture. .. 20

Figure 19. Business layer architecture. ... 21

Figure 20. Persistence layer architecture. .. 22

Figure 21. Deployment of ShareYASHE server. ... 23

Figure 22. Deployment of ShareYASHE client. .. 24

Figure 23. ShareYASHE data model. ... 26

Figure 24. Inspirational layout for ShareYASHE. ... 27

Figure 25. Sample of ShareYASHE layout. .. 28

Figure 26. Griding of ShareYASHE layout. .. 28

Figure 27. Griding of ShareYASHE editor layout. .. 28

Figure 28. ShareYASHE layout in smartphone. ... 29

Figure 29. ShareYASHE non-authenticated user layout. ... 31

Figure 30. ShareYASHE authenticated layout. .. 31

Figure 31. ShareYASHE main view layout. .. 32

Figure 32. ShareYASHE ShEx document editing view layout. .. 32

Figure 33. ShareYASHE create ShEx document view layout. ... 33

Figure 34. ShareYASHE unregister view layout. .. 33

Figure 35. ShareYASHE log-in view layout. ... 34

Figure 36. ShareYASHE register view layout. .. 34

Figure 37. Scenario of registration. .. 36

Figure 38. Scenario of login. ... 36

Figure 39. Scenario of create ShEx document. ... 36

Figure 40. Scenario of leave ownership. ... 37

Figure 41. Scenario of add owner. .. 37

Figure 42. Test cases for scenario of registration (1 of 3). .. 37

Figure 43. Test cases for scenario of registration (2 of 3). .. 38

Figure 44. Test cases for scenario of registration (3 of 3). .. 39

Figure 45. Test cases for scenario of login (1 of 2). ... 39

Figure 46. Test cases for scenario of login (2 of 2). ... 40

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of introduction. Page 11 of 12

Figure 47. Test cases for scenario of create ShEx document. .. 40

Figure 48. Test cases for scenario of leave ownership (1 of 2). ... 41

Figure 49. Test cases for scenario of leave ownership (2 of 2). ... 42

Figure 50. Test cases for scenario of add owner (1 of 4). .. 42

Figure 51. Test cases for scenario of add owner (2 of 4). .. 43

Figure 52. Test cases for scenario of add owner (3 of 4). .. 44

Figure 53. Test cases for scenario of add owner (4 of 4). .. 45

Figure 54. JavaScript ES6 logo. ... 47

Figure 55. Node.js logo. ... 47

Figure 56. Node.js Express logo. ... 48

Figure 57. The Yjs framework logo. .. 48

Figure 58. WebSocket logo. ... 49

Figure 59. CodeMirror logo. ... 49

Figure 60. YASHE banner. ... 50

Figure 61. MongoDB logo. .. 50

Figure 62. Pug.js logo. .. 51

Figure 63. Git logo. ... 52

Figure 64. GitHub logo. .. 52

Figure 65. PoweShell 7 logo. .. 52

Figure 66. PlantUML logo. .. 53

Figure 67. IntelliJ IDEA logo. ... 53

Figure 68. Visual Studio Code logo. .. 53

Figure 69. GanttProject logo. ... 54

Figure 70. Results of test for scenario of registration. .. 55

Figure 71. Results of test for scenario of login. .. 55

Figure 72. Results of test for scenario of create ShEx document. ... 55

Figure 73. Results of test for scenario of leave ownership. .. 56

Figure 74. Results of test for scenario of add owner. ... 56

Figure 75. Results of task 1 of usability testing. ... 57

Figure 76. Results of task 2 of usability testing. ... 58

Figure 77. Results of HTML markup validation for main view. ... 60

Figure 78. Results of HTML markup validation for ShEx document editing view. 60

Figure 79. Results of HTML markup validation for log-in view. .. 61

Figure 80. Results of HTML markup validation for register view. ... 61

Figure 81. Results of CSS validation for main view. .. 62

Figure 82. Results of CSS validation for ShEx document editing view. .. 63

Figure 83. Results of CSS validation for log-in view. ... 64

Figure 84. Results of CSS validation for register view. .. 65

Figure 85. Results of mobile optimization check for main view. ... 66

Figure 86. Results of mobile optimization check for ShEx document editing view. 66

Figure 87. Results of mobile optimization check for log-in view. .. 67

Figure 88. Results of mobile optimization check for register view. .. 67

Figure 89. Results of WAVE test for main view. ... 68

Figure 90. Results of WAVE test for ShEx document editing view. ... 68

Figure 91. Results of WAVE test for log-in view. .. 69

Figure 92. Results of WAVE test for register view. ... 69

Figure 93. Results of aChecker test for main view. ... 70

Figure 94. Results of aChecker test for ShEx document editing view. ... 71

Figure 95. Results of aChecker test for log-in view. .. 72

Figure 96. Results of aChecker test for register view. ... 73

https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051129
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051130
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051131
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051132
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051133
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051134
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051136
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051137
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051138
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051139
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051140
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051141
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051142
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051143
https://d.docs.live.net/c636457ddc5a3e84/Documents/EII/TFG%20-%20Collaborative%20Cloud-based%20ShEx%20Editor/TFG%20UO264862%20-%20Collaborative%20Cloud-based%20ShEx%20Editor.docx#_Toc139051144

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 12 of 12 Section of introduction. Iván Álvarez López

Figure 97. Results of TAW test for main view. .. 74

Figure 98. Results of TAW test for ShEx document editing view (1 of 13). .. 75

Figure 99. Results of TAW test for ShEx document editing view (2 of 13). .. 75

Figure 100. Results of TAW test for ShEx document editing view (3 of 13). .. 75

Figure 101. Results of TAW test for ShEx document editing view (4 of 13). .. 76

Figure 102. Results of TAW test for ShEx document editing view (5 of 13). .. 76

Figure 103. Results of TAW test for ShEx document editing view (6 of 13). .. 76

Figure 104. Results of TAW test for ShEx document editing view (7 of 13). .. 77

Figure 105. Results of TAW test for ShEx document editing view (8 of 13). .. 77

Figure 106. Results of TAW test for ShEx document editing view (9 of 13). .. 77

Figure 107. Results of TAW test for ShEx document editing view (10 of 13). .. 78

Figure 108. Results of TAW test for ShEx document editing view (11 of 13). .. 78

Figure 109. Results of TAW test for ShEx document editing view (12 of 13). .. 78

Figure 110. Results of TAW test for ShEx document editing view (13 of 13). .. 78

Figure 111. Results of TAW test for log-in view. ... 79

Figure 112. Results of TAW test for register view. .. 79

Figure 113. Main style colours. .. 80

Figure 114. Main style contrast check. ... 80

Figure 115. Unused links colours. ... 81

Figure 116. Unused links contrast check. ... 81

Figure 117. Unused links when hover colours. ... 82

Figure 118. Unused links when hover contrast check. .. 82

Figure 119. Used links colours. ... 83

Figure 120. Used links contrast check. ... 83

Figure 121. Used links when hover colours. ... 84

Figure 122. Used links when hover contrast check. .. 84

Figure 123. List of contents attached to this submission. ... 1

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 1 of 115

1 Summary

1.1 Introduction

Shape Expressions (ShEx)[ShEx13] is a formal language and framework used for specifying and

validating the structural constraints of data, particularly in the context of the Semantic Web

and Linked Data. It provides a concise and expressive syntax for defining the shapes or

structures that data should conform to. These shapes can be applied to various data models,

including RDF (Resource Description Framework) graphs, JSON documents, XML, and more.

The fundamental concept behind Shape Expressions is that of a shape, which represents a

pattern or template for specifying the structure and constraints that data should adhere to. A

shape consists of a collection of constraints and rules that define the allowed properties, their

cardinality, value types, and interrelationships within the data.

ShareYASHE is an innovative project aimed at providing a user-friendly and efficient platform

for creating, editing, and collaborating on Shape Expressions specifications in a distributed and

collaborative manner. This web-based editor leverages the power of the cloud to enable teams

of users to work together seamlessly, regardless of their geographical locations. The term

“ShareYASHE” is a reference to ShareLaTeX (a collaborative cloud-based LaTeX editor), using

YASHE as the base term instead of LaTeX.

Shape Expressions, being a powerful language for specifying structural constraints, plays a

crucial role in the Semantic Web and Linked Data domains. However, creating and managing

Shape Expressions specifications can be a challenging task, especially when multiple

stakeholders are involved. Traditional text-based editors lack the collaborative features

required for efficient teamwork, often leading to coordination issues, version conflicts, and

time-consuming manual merging of changes.

This collaborative cloud-based ShEx editor addresses these challenges by providing a rich set of

features that empower teams to work collaboratively and efficiently. The editor's web-based

nature allows users to access and work on Shape Expressions specifications from anywhere,

using a standard web browser. This eliminates the need for installing specialized software on

individual machines and facilitates easy onboarding for team members.

Imagine a seamless collaboration experience where you and your team members can work on

Shape Expressions specifications together, regardless of your geographical locations. With real-

time collaboration, you can make edits, provide feedback, and engage in discussions in a

synchronized environment. Say goodbye to tedious email chains and manual merging of

changes. This editor empowers you to work efficiently, ensuring that everyone is on the same

page and accelerating the specification development process.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 2 of 115 Main section. Iván Álvarez López

1.2 Purpose

The purpose of ShareYASHE is to provide a powerful and user-friendly platform for creating,

editing, and collaborating on Shape Expressions (ShEx) specifications. The project aims to

address the challenges faced by teams working on ShEx by offering a comprehensive solution

that promotes seamless collaboration, improves productivity, and simplifies the overall

process of managing ShEx specifications.

The primary purpose of the project is to facilitate effective collaboration among team

members. The editor enables real-time collaboration, allowing multiple users to work

simultaneously on the same ShEx specification. This eliminates the need for manual

coordination and the risk of version conflicts. By providing a synchronized environment for

editing and discussion, the project enhances teamwork, fosters communication, and

accelerates the development of ShEx specifications.

Another key purpose of the project is to enhance productivity. The editor offers a user-friendly

interface with features such as syntax highlighting, auto-completion, and error checking. These

features assist users in writing valid and error-free ShEx specifications, reducing the time spent

on manual troubleshooting. By streamlining the specification creation process and minimizing

errors, the project empowers users to focus on shaping their data efficiently.

The project also aims to simplify access and onboarding. As a cloud-based editor, it eliminates

the need for users to install specialized software on their machines. Users can access and work

on ShEx specifications from anywhere, using a standard web browser. This ease of access

ensures that team members can collaborate seamlessly, regardless of their geographical

locations. Furthermore, the user-friendly interface reduces the learning curve, making it easier

for new users to onboard and contribute to the project quickly.

1.3 Objective

The objective of creating a collaborative cloud-based Shape Expressions (ShEx) editor is to

develop a robust and feature-rich platform that enables teams to collaborate seamlessly on

ShEx specifications in a distributed and efficient manner. The primary goal is to address the

limitations of traditional text-based editors and provide a comprehensive solution that

promotes real-time collaboration, enhances productivity, and simplifies the process of working

with ShEx.

One of the main objectives of the project is to facilitate effective collaboration among team

members. By leveraging cloud-based technologies, the editor allows multiple users to work on

the same ShEx specification simultaneously. Real-time collaboration ensures that changes

made by one user are instantly reflected to others, enabling a synchronized environment for

teamwork. This objective aims to eliminate coordination issues, version conflicts, and delays in

the collaboration process.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 3 of 115

1.4 Scope

The scope of the ShareYASHE project encompasses the development of a comprehensive

platform that allows users to create, edit, and collaborate on Shape Expressions (ShEx)

specifications. The project aims to provide a robust set of features and functionalities that

enable seamless collaboration, enhance productivity, and simplify the overall process of

working with ShEx.

The scope of the project also covers considerations such as performance, scalability, and

security. The editor should be designed to handle a considerable number of concurrent users

and ensure data privacy and integrity. It should also support efficient search and navigation

within specifications, as well as offer export/import functionalities to facilitate interoperability

with other tools and platforms.

It is important to note that the scope of the project does not extend to the actual specification

of the ShEx language itself. The focus is on providing a collaborative editing environment for

working with ShEx specifications rather than defining the language's syntax or semantics.

The project's scope includes the following key components.

1.4.1 Web-based editor

The project focuses on developing a web-based editor that allows users to access and work on

ShEx specifications through a standard web browser. The editor will provide an intuitive and

user-friendly interface with features such as syntax highlighting, auto-completion, and error

checking to facilitate efficient specification creation and editing.

1.4.2 Real-time collaboration

The project aims to enable real-time collaboration, allowing multiple users to work on the

same ShEx specification simultaneously. This feature ensures that changes made by one user

are instantly reflected to others, promoting synchronized teamwork and reducing coordination

issues and version conflicts.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 4 of 115 Main section. Iván Álvarez López

2 Project planning

2.1 Initial planning

The project is expected to take place between 1st January 2023 and 1st July 2023. In this

chapter we will see the initial planning for the project. The project objectives will be defined,

and a comprehensive plan for the project execution will be established. The project planning

phase is indeed part of the project planning.

There will only be one developer involved in this project, who will adjust himself to a full-time

flexible schedule to carry out these labours: 8h per day, from Monday to Friday; this makes 40

hours per week.

The following Gantt chart presents a visual representation of the project schedule that shows

the tasks, milestones, and dependencies over time. It provides a graphical view of the project's

timeline, intended to allow the understanding of the project's progress, track tasks, and

manage resources effectively.

2.1.1 Gantt chart

Figure 1. Gantt chart of the project.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 5 of 115

2.1.2 List of project tasks

The project is initially planned to have the following tasks.

1. Project planning.

2. Requirements engineering.

a. Requirements elicitation.

b. Requirements analysis and specification.

i. Specify use cases.

ii. Specify use scenarios.

3. Design and architecture.

a. Define Software architecture.

b. Define classes, interactions, and states.

c. Design user interface.

d. Define data model.

e. Specify test planning.

4. Development.

a. System development.

b. Test development.

5. System documentation.

a. Deployment manual.

b. Developer’s manual.

c. User’s manual.

6. Deployment.

7. Release.

These tasks may vary from those at the end of the project, due to this being an initial planning.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 6 of 115 Main section. Iván Álvarez López

2.2 Initial budget

The initial budget section of this document provides a comprehensive overview of the

estimated costs associated with the execution of the project. It presents a breakdown of

various cost categories, allocations, and total budget projections.

Even though some resources, such as a personal computer, are already given to the developer,

it must be written as if the project started from scratch.

The budget is organized into specific cost components, including personnel costs, hardware

and software expenses, external services, communication and travel expenses, licensing and

intellectual property fees, marketing and promotion costs, contingency, and miscellaneous

expenses. Detailed cost estimates are provided for each category, outlining the assumptions

and calculations used in the estimation process.

By presenting this initial budget, we ensure a clear understanding of the financial resources

required to successfully execute the project while allowing for effective cost management and

control.

Item Concept Quantity Amortization Price per unit Total

1 Software resources

1.1 Microsoft
Windows 11

1 5% 150€ 157.5€

1.2 Microsoft Office
365

1 7% 150€ 160.5€

2 Hardware resources

2.1 Server on the
cloud

1 40% 300 €/month 2520€

2.2 Personal
computer

2 20% 1000€ 1200€

2.3 Tools: Internet,
electricity, paper,

pencils…

- 40% 300€ 420€

3 Human resources

3.1 Software
developer

1 70% 1200
€/month

6120€

Subtotal 10578€

Beneficio (7%) 740.46€

IVA (21%) 2221.38€

TOTAL 13539.84€

Figure 2. Initial budget of the project.

The total cost of this project is 13 539.84€.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 7 of 115

3 Software requirements engineering

The Software requirements engineering process is a crucial phase in any Software

development project, which involves gathering, analysing, documenting, and managing the

requirements for a Software System[IanS11].

For this project, the three following phases were considered necessary.

• Requirements elicitation. This involves understanding and defining the needs of

stakeholders, such as clients, end-users, and domain experts.

• Requirements analysis. The collected requirements are analysed to ensure clarity,

consistency, and completeness. Conflicting or ambiguous requirements are resolved,

and dependencies between different requirements are identified.

• Requirements specification. The requirements are documented in a formal and

structured manner.

3.1 Software requirements elicitation

3.1.1 Identified stakeholders and other sources of

information

The requirements elicitation phase requires to identify and involve all relevant stakeholders

and any other source of information. The identified stakeholders and sources of information

are listed below.

• The advisor. This project is a request made directly by the degree project advisor, who

intends to use it as a tool for the labours of the WESO research group. He is both the

advisor of this degree project, and the product owner.

• The WESO research group. The WESO research group works with Shape Expressions,

and already uses similar tools to the intended product of this project. YASHE, the

library which will work a supporting Software for the product of this project, was

developed by the WESO group.

• Shape Expressions reference. The Shape Expressions language has its documentation

on the W3C website: W3C - ShEx.

• Kevin Jahns, creator of the Yjs Project. He is the creator of the supporting Software

module which will be used for implementing the collaborativity of the ShareYASHE

editor instances.

• Similar products, such as Overleaf.

https://www.weso.es/
https://shex.io/
https://www.linkedin.com/in/kevin-jahns/

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 8 of 115 Main section. Iván Álvarez López

3.1.2 Elicitation technique: interviews

Due to the size and complexity of the project, the availability of stakeholders, and the nature

of the requirements, I reckon that only one technique of elicitation will be enough: interviews.

Interviews are one of the most common and effective techniques for requirements elicitation.

One-on-one discussions are held with stakeholders to understand their needs, expectations,

and constraints. Interviews allow for a deeper exploration of stakeholders' perspectives and

enable the elicitor to ask follow-up questions and clarify any ambiguities.

The stakeholders’ requirements will be elicited from interviews with the product owner, who

also is the advisor of this degree project.

3.2 Software requirements analysis

The analysis of the requirements of this System has resulted straightforward, as its

requirements were planned from the beginning.

3.2.1 System actors

The users of ShareYASHE may have two roles, in base of its authorisation, and of its ownership

of a ShEx document.

3.2.1.1 Authorised user versus non-authorised user

A user will be authorised if he has successfully made the registration process once, and the

login process once in the session. Otherwise, he will be a non-authorised user.

3.2.1.2 Owner user versus non-owner user

A user will be an owner of a given ShEx document if he has created the ShEx document, or if he

has been added as an owner of a ShEx document created by another owner user of the same

ShEx document. He will be able to leave the ownership of the ShEx document.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 9 of 115

3.3 System requirements specification

The information provided by the requirements elicitation and analysis phases is specified as

follows to ensure clarity, consistency, and completeness.

ID Requirement description

R.1. The System will provide a collaborative cloud-based ShEx editor.

R.1.1. The System will provide user management.

R.1.1.
1.

The System will provide users with a registration in which the following fields will be
requested.

R.1.1.
1.1.

User’s nickname.

R.1.1.
1.1.1.

This field will be mandatory and longer than 3 characters.

R.1.1.
1.1.2.

This field will be unique for each user.

R.1.1.
1.2.

User’s email address.

R.1.1.
1.2.1.

This field will be mandatory.

R.1.1.
1.2.2.

This field will be unique for each user.

R.1.1.
1.2.3.

This field will follow the RFC 5322 structure.

R.1.1.
1.3.

User’s password.

R.1.1.
1.3.1.

This field will be mandatory and longer than 3 characters.

R.1.1.
2.

The System will provide users with a login in which the following fields will be
requested. These fields are mandatory and must match with those given in the
registration (see R.1.1.1.).

R.1.1.
2.1.

User’s nickname.

R.1.1.
2.2.

User’s password.

R.1.1.
3.

The System will provide users with a logout.

R.1.1.
3.1.

This will finish the login status, if there is, specified in R.1.1.2.

R.1.1.
4.

The System will provide users with an unregister.

R.1.1.
4.1.

This will finish the register status, if there is, specified in R.1.1.1.

R.1.1.
4.2.

This will remove the user’s ownership of all of his ShEx docs (see R.1.2.1.4.).

Figure 3. System requirements specification (1 of 2).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 10 of 115 Main section. Iván Álvarez López

ID Requirement description

R.1.2. The System will provide users ShEx docs management.

R.1.2.
1.

The System will provide users with a ShEx doc creation.

R.1.2.
1.1.

The ShEx doc’s title will be mandatorily requested.

R.1.2.
1.2.

A ShEx doc’s unique ID will be generated.

R.1.2.
1.3.

Only registered (see R.1.1.1.) and logged in (see R.1.1.2.) users will be permitted by
the System to do this.

R.1.2.
1.4.

The user will be owner of this ShEx doc.

R.1.2.
2.

The System will provide users with a ShEx doc owned list.

R.1.2.
2.1.

The list will show each ShEx doc’s title.

R.1.2.
2.2.

Each entry of the list will grant access to the content edition of its ShEx doc (see
R.1.2.3.).

R.1.2.
2.3.

Only registered (see R.1.1.1.) and logged in (see R.1.1.2.) users will have this.

R.1.2.
3.

The System will provide users with a ShEx doc content editing.

R.1.2.
3.1.

The content of the ShEx doc will be able to be edited by any user.

R.1.2.
3.2.

This editing will be shown to any user editing this content in real time.

R.1.2.
3.3.

The System will provide a share option. With this option the user will be able to invite
other users to the content editing section of this ShEx doc.

R.1.2.
4.

The System will provide users with the capability to add an owner to the ShEx doc.

R.1.2.
4.1.

The user adding a new owner must be owner of the ShEx doc.

R.1.2.
4.2.

The user added as a new owner must not already own the ShEx doc.

R.1.2.
4.3.

The new owner will be owner of the ShEx doc (see R.1.2.1.4.), besides the previous
owners.

R.1.2.
5.

The System will provide users with the capability to leave the ownership of the ShEx
doc.

R.1.2.
5.1.

The user leaving the ownership must be owner of the ShEx doc.

R.1.2.
5.2.

The new owner will no longer be owner of the ShEx doc (see R.1.2.1.4.). This does not
apply to the previous owners.

Figure 4. System requirements specification (2 of 2).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 11 of 115

3.4 Use cases and scenarios

3.4.1 Use case 1. Register

Use case 1. Register

Requirements R.1.1.1.

Preconditions -

Actors Non-authorised users.

Description A non- authorised user will create an account.

Sequence of
steps 1. The user will open the ShareYASHE application.

2. The user will click the “Register” button.
3. The user will fill the formulary with a random username and a

password.
4. The user will submit the formulary.

Postconditions -

Exceptions If the username is already taken, the user may repeat the process, using
another username.

Figure 5. Use case of register.

3.4.2 Use case 2. Login

Use case 2. Login

Requirements R.1.1.2.

Preconditions The user must have made the registration process (see use case 1)
successfully.

Actors Non-authorised users.

Description A non-authorised user will login into an account.

Sequence of
steps 1. The user will open the ShareYASHE application.

2. The user will click the “Log in” button.
3. The user will fill the formulary with the username and the password

that he used in the registration process.
4. The user will submit the formulary

Postconditions -

Exceptions -

Figure 6. Use case of login.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 12 of 115 Main section. Iván Álvarez López

3.4.3 Use case 3. Logout

Use case 3. Logout

Requirements R.1.1.3.

Preconditions The user must have made the login process (see use case 2) successfully.

Actors Authorised users.

Description An authorised user will logout from an account.

Sequence of
steps 1. The user will click the “Log out” button.

Postconditions The user will be able to carry out the login process again with the username
and password that he used.

Exceptions -

Figure 7. Use case of logout.

3.4.4 Use case 4. Unregister

Use case 4. Unregister

Requirements R.1.1.4.

Preconditions The user must have made the login process (see use case 2) successfully.

Actors Authorised users.

Description An authorised user will delete his account.

Sequence of
steps 1. The user will click the “Unregister” button.

2. The user will click the confirmation button.

Postconditions The user will not be able to carry out the login process again with the
username and password that he used.

Exceptions -

Figure 8. Use case of unregister.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 13 of 115

3.4.5 Use case 5. Create a ShEx document

Use case 5. Create a ShEx document

Requirements R.1.2.1.

Preconditions The user must have made the login process (see use case 2) successfully.

Actors Authorised and non-owner users.

Description An authorised user will create a new ShEx document.

Sequence of
steps 1. The user will click the “Create a ShEx doc” button.

2. The user will write a non-empty title for the ShEx document.

Postconditions -

Exceptions -

Figure 9. Use case of create a ShEx document.

3.4.6 Use case 6. See the owned ShEx document

Use case 6. See the owned ShEx document

Requirements R.1.2.2.

Preconditions The user must have made the login process (see use case 2) successfully.
The user must also have made the ShEx document creation process (see use
case 5) successfully.

Actors Authorised and owner users.

Description An authorised and owner user will be able to see its ShEx documents.

Sequence of
steps 1. The user will open the ShareYASHE application.

Postconditions The user will be able to see the name of the ShEx document in a list, shown
on the Website.

Exceptions -

Figure 10. Use case of see the owned ShEx document.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 14 of 115 Main section. Iván Álvarez López

3.4.7 Use case 7. Edit an owned ShEx document

Use case 7. Edit an owned ShEx document

Requirements R.1.2.3.

Preconditions One user must have seen the ShEx document (see use case 6) successfully.

Actors Authorised users, and owner and non-owner users.

Description Two authorised and owner users will be able to edit a ShEx document.

Sequence of
steps 1. The user 1 will open the ShareYASHE application.

2. The user 1 will click on the ShEx document in the owned ShEx
documents list.

3. The user 1 will share the ShEx document with the user 2.
4. The user 2 will open the ShareYASHE application through the sharing

option that the user 1 shared with him.
5. Both user 1 and user 2 will write random words in the ShEx

document at the same time.

Postconditions Both user 1 and user 2 will be able to see the content of the ShEx document.
Both user 1 and user 2 will be able to edit the content of the ShEx document.
User 1 will be able to see the user 2 editing the document.
User 2 will be able to see the user 1 editing the document.

Exceptions -

Figure 11. Use case of edit an owned ShEx document.

3.4.8 Use case 8. Add an owner to a ShEx document

Use case 8. Add an owner to a ShEx document

Requirements R.1.2.4.

Preconditions One user (user 1) must have seen the ShEx document (see use case 6)
successfully.

Actors Authorised and owner users.

Description An authorised and owner user will be able to add a new owner to its ShEx
documents.

Sequence of
steps 1. The user 1 will open the ShareYASHE application.

2. The user 1 will click on the ShEx document in the owned ShEx
documents list.

3. The user 1 will type the username of user 2 in the “Add a new
owner” field.

Postconditions The user will be able to see the name of the ShEx document in a list, shown
on the Website.

Exceptions -

Figure 12. Use case of add an owner to a ShEx document.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 15 of 115

3.4.9 Use case 9.1. Leave the ownership of a ShEx

document that the user created

Use case 9.1. Leave the ownership of a ShEx document that the user created

Requirements R.1.2.5.

Preconditions One user (user 1) must have seen the ShEx document (see use case 6)
successfully.

Actors Authorised and owner users.

Description An authorised and owner user will be able to leave the ownership of its ShEx
documents, that he created.

Sequence of
steps 1. The user 1 will open the ShareYASHE application.

2. The user 1 will click on the ShEx document in the owned ShEx
documents list.

3. The user 1 will click on the “Leave the ownership” option.

Postconditions The user 1 will not be able to see the name of the ShEx document in a list,
shown on the Website.

Exceptions -

Figure 13. Use case of leave the ownership of a ShEx document that the user created.

3.4.10 Use case 9.2. Leave the ownership of a ShEx

document invited by another user

Use case 9.2. Leave the ownership of a ShEx document invited by another user

Requirements R.1.2.5.

Preconditions One user (user 1) must have made the ShEx document creation process (see
use case 5) successfully.
This user (user 1) must have made the ShEx document invitation process (see
use case 8) to the other user (user 2) successfully.
The other user (user 2) must have seen the ShEx document (see use case 6)
successfully.

Actors Authorised and owner users.

Description An authorised and owner user will be able to leave the ownership of its ShEx
documents, that he was invited by another user.

Sequence of
steps 1. The user 2 will open the ShareYASHE application.

2. The user 2 will click on the ShEx document in the owned ShEx
documents list.

3. The user 2 will click on the “Leave the ownership” option.

Postconditions The user 2 will not be able to see the name of the ShEx document in a list,
shown on the Website.

Exceptions -

Figure 14. Use case of leave the ownership of a ShEx document invited by another user.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 16 of 115 Main section. Iván Álvarez López

4 Software design and architecture

4.1 Overview

The ShareYASHE application presents itself as two collaborating Software units: the

ShareYASHE server, and the ShareYASHE client.

When the client makes an HTTP request against the ShareYASHE server (for example: GET

/shEx/123456789), the server replies with an HTTP response. Not only this response comes

with an HTML rendered view, but also with a single JavaScript sheet which will run on client-

side; we will name this scriptsheet as ShareYASHE client.

The responsibility of this Software unit is to stablish a parallel WebSocket connection which

subscribes the user’s YASHE editor to its Ydoc object in the WebSocket server of ShareYASHE

server. Every ShEx doc on ShareYASHE has its Ydoc object, which works as a version control

(like Git does), and which all the users editing it must subscribe to.

Since the ShareYASHE client is a single codesheet, it lacks any structure. Thus, we will be solely

reviewing the ShareYASHE server architecture.

Figure 15. Representation of client-server connection.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 17 of 115

4.2 Overall architecture

The general structure of the ShareYASHE server presents two parallel servers: one following

the HTTP protocol, which is the core of the application, and the other following the

WebSocket protocol.

The ShareYASHE HTTP server implementation follows a 5 layer architecture, which separates:

HTTP request handling (Routes), high level functionality (Application layer), view rendering

(Presentation layer), low level functionality (Business layer), and data storage (Persistence

layer).

Figure 16. ShareYASHE overall architecture.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 18 of 115 Main section. Iván Álvarez López

4.3 WebSocket server component

The WebSocket server component will contain the logic for carrying out petitions from the

user’s ShareYASHE client. These petitions are limited to just synchronising the ShEx doc

content in real time. It will rely on the database, so changes would persist, even if the server

shuts down, or crashes.

4.4 5 layers architecture

4.4.1 Routes layer

The routes component is responsible for grabbing any HTTP request and redirect it to its

corresponding implementation.

Each class of this layer responds to a conceptual family of HTTP requests, being those:

“ShExDocs”, “Auth”, and “Index”. The handling of the request is delegated to an application

layer class through its factory “AppLayerFactory”. Note that this layer is the only one whose

implementation follows the functional paradigm.

Figure 17. Routes layer architecture.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 19 of 115

4.4.2 Application layer

This layer will provide high level implementation for each HTTP petition, taking advantage of

several Software patterns[GoF94]. This layer must be only accessed from a functional factory,

which is responsible for dynamically importing each command class from the business layer

and instantiating it. Ultimately, errors are unconditionally trapped here.

As we dive into the ShareYASHE server architecture, from top (App) to bottom (Persistence

layer), we realise that it follows the procedural paradigm, until we reach any command class

from this application layer. Any piece of code down below will pursue the object-oriented

paradigm.

All these command objects must implement an “execute(req, res)” façade method, which will

carry a chain of responsibility for the “req” and the “res” objects.

Another chain of responsibility exists for the “app” object (from the Express framework), and

for the “mongoClient” object. This is carried out in the constructor of the command.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 20 of 115 Main section. Iván Álvarez López

Figure 18. Application layer architecture.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 21 of 115

4.4.3 Business layer

The business layer implements common operations relating to the domain of the application,

such as validating a user login, or creating a new ShEx doc given an owner user.

The instantiation of any object from this layer upwards converges in a “Business Factory” static

class, which follows the simple factory pattern.

This factory is responsible for instantiating a service object, in which associated functionality is

encapsulated, as seen in the service layer pattern[Fowler02]. The chains of responsibility that we

were talking about in the previous layer join themselves here, in the constructor of the service

object.

Figure 19. Business layer architecture.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 22 of 115 Main section. Iván Álvarez López

4.4.4 Presentation layer

The presentation layer (named as “Render” in the diagram of the previous section) will be

responsible for rendering the templates into Web pages, which the user’s navigator will

interpret. Depending on how the execution of each command from the application layer flows,

the rendering logic will be one or another; that must be encapsulated in this layer.

Despite this layer being not different from the business layer, I realised that this differentiation

must be created, at least conceptually, because the service objects instantiated here are

slightly different from those created in the actual business layer.

The presentation layer service calls the template for rendering the user’s final view, and they

must never call the persistence layer. This decouples business and persistence

implementation from rendering implementation.

4.4.5 Persistence layer

The persistence layer directly manipulates the database API in order to abstract it into simple

CRUD operations.

This layer has a similar structure to the business layer, given that every DAO object gets

created in a “Persistence Factory”, another simple factory. In this case, the intention of the

objects of this layer is different: they will give functionality for CRUD operations, as specified in

the DAO pattern[Fowler02].

Figure 20. Persistence layer architecture.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 23 of 115

4.5 Structure in deployment

4.5.1 Deployment of ShareYASHE server

ShareYASHE server can be deployed in any machine. The database shall be deployed in the

same machine, but we can easily change the reference to an external database. By default,

ShareYASHE server is deployed as a two-headed server, which listens both HTTP and

WebSockets requests.

Figure 21. Deployment of ShareYASHE server.

The ShareYASHE client is automatically deployed in the client machine through the HTTP

response of the ShEx doc GET request.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 24 of 115 Main section. Iván Álvarez López

4.5.2 Deployment of ShareYASHE client

With the previous information, the deployment of ShareYASHE client can be difficult to

understand. Thus, we are going to see in this chapter a more detailed diagram of its

deployment.

As we can see, the ShareYASHE server renders the HTML view after an HTTP request was

received and returns it to the user. However, when the user accesses the edition of a ShEx

document, the server also responds with client-side JavaScript source code, which is

ShareYASHE client. ShareYASHE client subscribes itself to the ShareYASHE WebSocket server.

This lets the user’s editor to subscribe to the updatable content of the ShEx document.

Figure 22. Deployment of ShareYASHE client.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 25 of 115

4.6 Design of the DBMS

4.6.1 Document-oriented DBMS

In the development of ShareYASHE, we will be using a document-oriented database, which is

a type of NoSQL database that stores and retrieves data in a document-like format. In a

document-oriented database, data is typically represented using a standardized format such as

JSON (JavaScript Object Notation), XML (eXtensible Markup Language), or BSON (Binary JSON).

These formats provide a way to store data in a hierarchical structure, similar to nested key-

value pairs or a tree-like structure.

Instead of storing data in rows and columns like relational databases, document-oriented

databases store data as self-contained documents. Each document represents a single entity

or object and contains all related information. Documents can have different structures,

allowing for schema flexibility.

Document-oriented databases have a dynamic schema, meaning that each document can

have its own structure and fields. This flexibility enables developers to easily add or modify

fields within a document without requiring a predefined schema alteration. It accommodates

evolving data models and simplifies application development.

Documents in a document-oriented database can have nested structures, allowing for

complex and rich data models. This hierarchical representation enables the storage of related

data together within a single document, reducing the need for complex joins and facilitating

efficient data retrieval.

Document-oriented databases provide powerful querying capabilities to retrieve and

manipulate data. They typically support querying based on the structure and values within

documents, allowing for flexible searches across multiple fields and nested structures. Query

languages like MongoDB's Query Language (MQL) or Couchbase's N1QL are used for this

purpose.

Document-oriented databases are designed to scale horizontally, allowing for distributing data

across multiple servers or clusters. This scalability is achieved through techniques such as

sharding, where data is partitioned and stored on different machines, enabling high-

performance and efficient handling of large data volumes.

Document-oriented databases often offer built-in replication mechanisms to ensure data

durability and availability. Replication involves creating multiple copies of data across

different servers, enabling fault tolerance and high availability in case of failures.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 26 of 115 Main section. Iván Álvarez López

4.6.2 Data model

The data model tends to be simple, due to the DBMS being document-oriented. In this DBMS,

we can find two databases: “Entities” and “Ydocs”. “Entities” will have two collections: “Users”

and “ShExDocs”. The first one will store the user info, and the second one will store the

metadata of every ShEx document in the System.

Meanwhile, the “Ydocs” database will store one collection per ShEx document. This database

is set up and used by the Yjs library in order to save the real-time updates of the concurrent

document. Conceptually, the persistence of each shareable ShEx document is treated as if it

were a Git repository; this means, there is no “content” field for a ShEx document, in fact there

is a collection for each ShEx document, whose entries are each of them updates made to the

ShEx document’s content, for example: an insertion of a character, a deletion of one, etc.

Figure 23. ShareYASHE data model.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 27 of 115

4.7 User interface design

4.7.1 Main intention

The design of the user interface of ShareYASHE is meant to be both accessible and usable. As a

accessibility reference, the WCAG 2.0 recommendation was followed[WCAG08], besides usability

guidelines[Krug13].

The basic concept of the layout of ShareYASHE was inspired in Overleaf’s.

Figure 24. Inspirational layout for ShareYASHE.

I reinterpreted the layout using pure HTML & CSS to guarantee a fully adaptable, and

accessible, Website.

<header>

<main>

<footer>

<a
si

d
e>

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 28 of 115 Main section. Iván Álvarez López

As you can see, the intended look and feel for the index Webpage was completed.

Figure 25. Sample of ShareYASHE layout.

This was achieved thanks to the grid layout of CSS, which was intended for adaptability from

its conception.

Figure 26. Griding of ShareYASHE layout.

This structure is followed in any page of ShareYASHE. The grid layout will take care of

automatic adaption.

Figure 27. Griding of ShareYASHE editor layout.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 29 of 115

Even in smartphones, ShareYASHE will be fully adaptable.

Figure 28. ShareYASHE layout in smartphone.

A main template is shared between views, in which each one will override its <main> content

for its particular purpose.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 30 of 115 Main section. Iván Álvarez López

4.7.2 Styles of the application

4.7.2.1 General style

As we have already seen, ShareYASHE is governed by a principal layout: a grid-based layout.

However, there are several style definitions that I have made to make more friendly the look

and feel of the Website.

• A blue background colour (#2A5A95) that achieves enough contrast for the WCAG

guidelines to be granted, given that the foreground colour of the application is full

white (#FFFFFF).

• For every main element of the Website (header, main, aside, and footer), I defined a

semi-white (#E0E0E0) solid border, a semi-grey (#C0C0C0) box shadow, and a border

radius of 6px to reduce their sharpness.

• For links (<a> element), inputs, and buttons, I also defined a semi-white (#E0E0E0)

solid border, a semi-grey (#C0C0C0) box shadow, and a border radius of 6px to reduce

their sharpness. This, with a semi-white background colour (#FAFBFC) will let the users

perceive the change of its state, this means, I can then apply a darker white tone

(#F4F4F4) to achieve a hover style. For the active pseudoclass, I remove the box

shadow to make these elements brighter.

4.7.2.2 General layout

The principal layout of ShareYASHE is a grid layout, having a size of 3x3. Its columns will follow

the pattern of: 0.35fr, 1fr, and 1fr. A gap of 0.25em is defined, so elements don’t overlap each

other, and I also defined word breaking, with the word wrap property, so very long names

don’t get out of sight for users.

4.7.2.3 Specific layout for the editor actions

When we access the edition of the ShEx document, we can see that there are some actions,

which are represented by form elements, which we can make, if we are owners of that ShEx

document. These actions appear, by default, in the same row, thanks to a specific stylesheet

that is inserted into this only view.

However, this becomes a problem if the width of the window is too small. In this case, using

media queries, I remove this specific layout, letting the default flow layout to do its work, and

stack the elements which perform these actions.

4.7.2.4 External stylesheets

We must remember that there are some stylesheets that are imported for the correct

functionality of the Website. Nevertheless, they are restrained to be applied only to the YASHE

editor, which is embedded in a text area element.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 31 of 115

4.7.3 Possible views

In this chapter, we will review each view that ShareYASHE can render to the user.

4.7.3.1 Authenticated versus non authenticated

Depending on the state of authentication of the user, the content of the header element

changes, also for the aside element. It shows the operations that the user can perform, given

his state of authentication.

A non authenticated user will see this.

Figure 29. ShareYASHE non-authenticated user layout.

An authenticated user will see this.

Figure 30. ShareYASHE authenticated layout.

When the user is logged in, he can view its owned ShEx documents. On the other hand, if he

does not own any ShEx document, he will see the same content for the aside element as if he

was not logged in.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 32 of 115 Main section. Iván Álvarez López

4.7.3.2 Concrete views

The concrete views of ShareYASHE inherit the shape described in the previous chapter, except

for the content of the main element. In this chapter, we will see how the content of the main

element is shown to a user.

4.7.3.2.1 Main view

Figure 31. ShareYASHE main view layout.

4.7.3.2.2 ShEx document editing view

Figure 32. ShareYASHE ShEx document editing view layout.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 33 of 115

4.7.3.2.3 Create ShEx document view

Figure 33. ShareYASHE create ShEx document view layout.

4.7.3.2.4 Unregister view

Figure 34. ShareYASHE unregister view layout.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 34 of 115 Main section. Iván Álvarez López

4.7.3.2.5 Log-in view

Figure 35. ShareYASHE log-in view layout.

4.7.3.2.6 Register view

Figure 36. ShareYASHE register view layout.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 35 of 115

4.8 Test planning

4.8.1 Specification-based testing

In this chapter we will make a design based on the specification of the application.

4.8.1.1 Equivalence classes

These are the found equivalence classes in the ShareYASHE application.

• Username.

o Empty.

o Shorter than three characters.

o Already taken.

o Not taken.

o Not taken and longer than three characters.

• Password.

o Empty.

o Shorter than three characters.

o Longer than three characters.

o Matches with the username.

o Does not match with the username.

• Email.

o Empty.

o Not valid (RFC 5322).

o Valid (RFC 5322).

• ShEx document title.

o Empty.

o Not empty.

• Ownership.

o Not an owner.

o Owner by creation.

o Added as an owner.

4.8.1.2 Combination strategy

In order to combinate the equivalence classes, we are going to take a strategy of combination.

In this case, I considered using a base choice for the login and registration classes (a

combination of “username”, “password”, and “email”), and an each choice for the rest of

equivalence classes.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 36 of 115 Main section. Iván Álvarez López

4.8.1.3 Test situations

This is the result of combination the equivalence classes with the chosen strategy.

4.8.1.3.1 Scenario 1. Registration

1. Scenario 1. Registration.

1.1. All the parameters of registration are valid.

• The username is longer than three characters and not taken.

• The password is longer than three characters.

• The email is valid (RFC 5322).

1.2. One parameter of registration is not valid.

1.2.1. The username is empty.

1.2.2. The username is shorter than three characters.

1.2.3. The username is already taken.

1.2.4. The password is empty.

1.2.5. The password is shorter than three characters.

1.2.6. The email is empty.

1.2.7. The email is not valid (RFC 5322).

Figure 37. Scenario of registration.

4.8.1.3.2 Scenario 2. Login

2. Scenario 2. Login.

2.1. All the parameters of login are valid.

• The username is longer than three characters and already taken.

• The password is longer than three characters and matches the
username.

2.2. One parameter of login is not valid.

2.2.1. The username is empty.

2.2.2. The username is shorter than three characters.

2.2.3. The username is not taken.

2.2.4. The password is empty.

2.2.5. The password is shorter than three characters.

2.2.6. The password does not match the username

Figure 38. Scenario of login.

4.8.1.3.3 Scenario 3. Create ShEx document

3. Scenario 3. Create ShEx document.

3.1. The title is empty.

3.2. The title is not empty.

Figure 39. Scenario of create ShEx document.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 37 of 115

4.8.1.3.4 Scenario 4. Leave ownership

4. Scenario 4. Leave ownership.

4.1. The user owns the ShEx document.

4.2. The user does not own the ShEx document.

4.3. The user is not logged in.

Figure 40. Scenario of leave ownership.

4.8.1.3.5 Scenario 5. Add owner

5. Scenario 5. Add owner.

5.1. The user does not own the ShEx document.

5.2. The user owns the ShEx document.

5.2.1. The username is empty.

5.2.2. The username is shorter than three characters.

5.2.3. The username is not taken.

5.2.4. The username equals the user’s username.

5.2.5. The username is already taken by someone else.

Figure 41. Scenario of add owner.

4.8.1.4 Test cases

4.8.1.4.1 Scenario 1. Registration

TSs ID Description Initial conditions Test case steps Expected output

- 1. Scenario 1.
Registration

1.1. 1.1. All the
parameters of
registration are
valid.

There is not any
user in the
database.

Enter to the
registration form.
Type username
“user”. Type
password “user123”.
Type email
“user@email.com”.
Submit registration.

The database has
one user with the
data specified in
the test case
steps.

1.2.
1.

1.2. The username is
empty.

There is not any
user in the
database.

Enter to the
registration form. Do
not type any
username. Type
password “user123”.
Type email
“user@email.com”.
Submit registration.

The database is
not modified.

Figure 42. Test cases for scenario of registration (1 of 3).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 38 of 115 Main section. Iván Álvarez López

TSs ID Description Initial conditions Test case steps Expected output

1.2.
2.

1.3. The username is
shorter than
three
characters.

There is not any
user in the
database.

Enter to the
registration form.
Type username
“us”. Type
password
“user123”. Type
email
“user@email.com”.
Submit
registration.

The database is not
modified.

1.2.
3.

1.4. The username is
already taken.

There is a user in
the database with
the data specified
in the test case
steps.

Enter to the
registration form.
Type username
“user”. Type
password
“user123”. Type
email
“user@email.com”.
Submit
registration.

The database is not
modified.

1.2.
4.

1.5. The password is
empty.

There is not any
user in the
database.

Enter to the
registration form.
Type username
“user”. Do not type
any password.
Type email
“user@email.com”.
Submit
registration.

The database is not
modified.

1.2.
5.

1.6. The password is
shorter than
three
characters.

There is not any
user in the
database.

Enter to the
registration form.
Type username
“user”. Type
password “us”.
Type email
“user@email.com”.
Submit
registration.

The database is not
modified.

1.2.
6.

1.7. The email is
empty.

There is not any
user in the
database.

Enter to the
registration form.
Type username
“user”. Type
password
“user123”. Do not
type any email.
Submit
registration.

The database is not
modified.

Figure 43. Test cases for scenario of registration (2 of 3).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 39 of 115

TSs ID Description Initial conditions Test case steps Expected output

1.2.
7.

1.8. The email is not
valid (RFC
5322).

There is not any
user in the
database.

Enter to the
registration form.
Type username
“user”. Type
password
“user123”. Type
email
“useremail.com”.
Submit
registration.

The database is not
modified.

Figure 44. Test cases for scenario of registration (3 of 3).

4.8.1.4.2 Scenario 2. Login

TSs ID Description Initial conditions Test case steps Expected output

- 2. Scenario 2.
Login

2.1. 2.1. All the
parameters of
login are valid.

There is a user in
the database,
having username
“user”, password
“user123”, and
email
“user@email.com”.

Enter to the login
form. Type
username “user”.
Type password
“user123”. Submit
login.

The database is not
modified. The user
logs in successfully.

2.2.
1.

2.2. The username
is empty.

There is a user in
the database,
having username
“user”, password
“user123”, and
email
“user@email.com”.

Enter to the login
form. Do not type
any username.
Type password
“user123”. Submit
login.

The database is not
modified. The user
does not log in.

2.2.
2.

2.3. The username
is shorter than
three
characters.

There is a user in
the database,
having username
“user”, password
“user123”, and
email
“user@email.com”.

Enter to the login
form. Type
username “us”.
Type password
“user123”. Submit
login.

The database is not
modified. The user
does not log in.

2.2.
3.

2.4. The username
is not taken.

There is a user in
the database,
having username
“user”, password
“user123”, and
email
“user@email.com”.

Enter to the login
form. Type
username “userX”.
Type password
“user123”. Submit
login.

The database is not
modified. The user
does not log in.

Figure 45. Test cases for scenario of login (1 of 2).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 40 of 115 Main section. Iván Álvarez López

TSs ID Description Initial conditions Test case steps Expected output

2.2.
4.

2.5. The password is
empty.

There is a user in
the database,
having username
“user”, password
“user123”, and
email
“user@email.com”.

Enter to the login
form. Type
username “user”.
Do not type any
password. Submit
login.

The database is not
modified. The user
does not log in.

2.2.
5.

2.6. The password is
shorter than
three
characters.

There is a user in
the database,
having username
“user”, password
“user123”, and
email
“user@email.com”.

Enter to the login
form. Type
username “user”.
Type password
“us”. Submit login.

The database is not
modified. The user
does not log in.

2.2.
6.

2.7. The password is
shorter than
three
characters.

There is a user in
the database,
having username
“user”, password
“user123”, and
email
“user@email.com”.

Enter to the login
form. Type
username “user”.
Type password
“user321”. Submit
login.

The database is not
modified. The user
does not log in.

Figure 46. Test cases for scenario of login (2 of 2).

4.8.1.4.3 Scenario 3. Create ShEx document

TSs ID Description Initial conditions Test case steps Expected output

- 3. Scenario 3.
Create
ShEx
document

3.1. 3.1. The title is
empty.

There is a user in the
database, having
username “user”,
password
“user123”, and
email
“user@email.com”.

Login with username
“user” and password
“user123”. Enter to
the ShEx document
creation form. Do not
type any title. Submit
ShEx document
creation.

The database is
not modified.

3.2. 3.2. The title is
not empty.

There is a user in the
database, having
username “user”,
password
“user123”, and
email
“user@email.com”.

Login with username
“user” and password
“user123”. Enter to
the ShEx document
creation form. Type
title “Example”.
Submit ShEx
document creation.

There is a new
ShEx document in
the database with
title “Example”,
and one owner
“user”.

Figure 47. Test cases for scenario of create ShEx document.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 41 of 115

4.8.1.4.4 Scenario 4. Leave ownership

TSs ID Description Initial conditions Test case steps Expected output

- 4. Scenario 4.
Leave
ownership

4.1. 4.1. The user owns
the ShEx
document.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a user in the
database, having
username “user2”,
password
“user123”, and
email
“user2@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
two owners: “user1”
and “user2”.

Login with
username “user2”
and password
“user123”. Enter to
the edition of ShEx
document with
title “Example”.
Use the “leave
ownership” option.

In the database,
the ShEx
document with
title “Example”
has now only one
owner: “user1”.

4.2. 4.2. The user does
not own the
ShEx
document.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a user in the
database, having
username “user2”,
password
“user123”, and
email
“user2@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
one owner: “user1”.

Login with
username “user2”
and password
“user123”. Enter to
the edition of ShEx
document with
title “Example”.
Use the “leave
ownership” option.

The database is
not modified.

Figure 48. Test cases for scenario of leave ownership (1 of 2).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 42 of 115 Main section. Iván Álvarez López

TSs ID Description Initial conditions Test case steps Expected output

4.3. 4.3. The user is not
logged in.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
one owner: “user1”.

Enter to the edition
of ShEx document
with title
“Example”. Use the
“leave ownership”
option.

The database is
not modified.

Figure 49. Test cases for scenario of leave ownership (2 of 2).

4.8.1.4.5 Scenario 5. Add owner

TSs ID Description Initial conditions Test case steps Expected output

- 5. Scenario 5. Add
owner

5.1. 5.1. The user does
not own the
ShEx
document.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a user in the
database, having
username “user2”,
password
“user123”, and
email
“user2@email.com”.
There is a user in the
database, having
username “user3”,
password
“user123”, and
email
“user3@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
one owner: “user1”.

Login with
username “user2”
and password
“user123”. Enter to
the edition of ShEx
document with
title “Example”.
Use the “add
owner” option for
adding the user
with username
“user3”.

The database is
not modified.

Figure 50. Test cases for scenario of add owner (1 of 4).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 43 of 115

TSs ID Description Initial conditions Test case steps Expected output

5.2.
1.

5.2. The user owns
the ShEx
document, but
the username
is empty.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a user in the
database, having
username “user2”,
password
“user123”, and
email
“user2@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
one owner: “user1”.

Login with
username “user1”
and password
“user123”. Enter to
the edition of ShEx
document with
title “Example”.
Use the “add
owner” option, and
do not type any
username.

The database is
not modified.

5.2.
2.

5.3. The user owns
the ShEx
document, but
the username
is shorter than
three
characters.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a user in the
database, having
username “user2”,
password
“user123”, and
email
“user2@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
one owner: “user1”.

Login with
username “user1”
and password
“user123”. Enter to
the edition of ShEx
document with
title “Example”.
Use the “add
owner” option and
type the username
“us”.

The database is
not modified.

Figure 51. Test cases for scenario of add owner (2 of 4).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 44 of 115 Main section. Iván Álvarez López

TSs ID Description Initial conditions Test case steps Expected output

5.2.
3.

5.4. The user owns
the ShEx
document, but
the username
is not taken by
anybody.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a user in the
database, having
username “user2”,
password
“user123”, and
email
“user2@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
one owner: “user1”.

Login with
username “user1”
and password
“user123”. Enter to
the edition of ShEx
document with
title “Example”.
Use the “add
owner” option and
type the username
“user3”.

The database is
not modified.

5.2.
4.

5.5. The user owns
the ShEx
document, but
the username
is the current
owner’s
username.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a user in the
database, having
username “user2”,
password
“user123”, and
email
“user2@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
one owner: “user1”.

Login with
username “user1”
and password
“user123”. Enter to
the edition of ShEx
document with
title “Example”.
Use the “add
owner” option and
type the username
“user1”.

The database is
not modified.

Figure 52. Test cases for scenario of add owner (3 of 4).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 45 of 115

TSs ID Description Initial conditions Test case steps Expected output

5.2.
5.

5.6. The user owns
the ShEx
document, and
the username
added as
owner is
correct.

There is a user in the
database, having
username “user1”,
password
“user123”, and
email
“user1@email.com”.
There is a user in the
database, having
username “user2”,
password
“user123”, and
email
“user2@email.com”.
There is a ShEx
document in the
database, having
title “Example”, and
one owner: “user1”.

Login with
username “user1”
and password
“user123”. Enter to
the edition of ShEx
document with
title “Example”.
Use the “add
owner” option and
type the username
“user2”.

In the database,
the ShEx
document with
title “Example”
has now two
owners: “user1”
and “user2”.

Figure 53. Test cases for scenario of add owner (4 of 4).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 46 of 115 Main section. Iván Álvarez López

4.8.2 Usability testing

For the usability testing, the following tasks will be performed by a given group of users.

1. Register an account, login, and create a ShEx document.

a. Register an account.

b. Login into that account.

c. Create a ShEx document.

2. Share a ShEx document and edit it collaboratively.

a. Login into the account that the user registered in task 1.

b. Access to the ShEx document that the user created in task 1.

c. Share the ShEx document with another user.

d. Both users, edit the ShEx document at the same time.

The first task will be performed individually, while the second task will be made in pairs.

4.8.3 Accessibility testing

Some aspects of accessibility may be taken into consideration in the usability testing. However,

accessibility is meant to grant access in our application to every user, regardless of its

conditions. Colour-blinded people must be able to use our application, people who is only able

to use computers through the keyboard must be able to use our application, etc., otherwise

our application will not be accessible.

Because of this, in the accessibility testing we will be taking advantage of tools of automation

of accessibility testing for ensuring a WCAG 2.0 AAA accessibility level. These tools are listed

below.

• W3C HTML Markup Validation Service[W3CHTML23].

• W3C CSS Validation Service[W3CCSS23].

• Google Mobile Optimization Checker[GAdapCheck23].

• Web Accessibility Evaluation Tool[WAVE23].

• aChecker[ACH23].

• Test of Web Accessibility[TAW23].

• WebAIM Contrast Checker[WAIMCC23].

We will be testing the concrete views which are public: main view, ShEx document editing

view, log-in view, and register view, focusing specially in the ShEx document editing view,

because of its YASHE editor, which may be a hotspot for accessibility problems. The other

views shall present a strong reliability in this concern, because of our strict policy in sticking to

the W3C specifications.

I encountered a problem with WAVE having difficulties to import the ShareYASHE CSS

stylesheets. This is why I am using WebAIM Contrast Checker to grant enough colour contrast.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 47 of 115

5 System development

5.1 Technologies

In this chapter, we will see the technologies which were used to carry this project out.

5.1.1 ECMAScript ES6 (JavaScript)

The core of the functionality of ShareYASHE was made using the

JavaScript language. It was developed using the ECMAScript ES6

specification of June 2015.

It's important to note that ES6 is a specific version of the

ECMAScript specification, while JavaScript is a programming

language that implements that specification. JavaScript evolves over

time and new versions are released, introducing several changes.

This is the reason why I considered worth it to use the well stablished ECMAScript ES6 version

of the specification. This technology was used both in the ShareYASHE server (server-side), and

the ShareYASHE client (client-side).

5.1.2 Node.js

Node.js is an open-source, server-side JavaScript runtime

environment that allows developers to run JavaScript code

outside of a web browser. It uses the V8 JavaScript engine,

which is the same engine that powers the Google Chrome

browser, to execute JavaScript code on the server side.

Node.js provides an event-driven, non-blocking I/O

model, making it highly efficient and well-suited for

building scalable and real-time applications. It has a

rich ecosystem of modules and libraries available through its package manager, npm, which

allows developers to easily leverage existing code to build their applications.

For the ShareYASHE server, both HTTP and WebSocket, I used Node.js v18.15.0. Node.js v18,

codenamed “Hydrogen”, has been designated as an LTS version on 25th October 2022, being

the current LTS version in the moment of developing this project.

This means that the Node.js distribution that ShareYASHE uses will be supported with active

maintenance and updates for an extended period. LTS versions typically receive bug fixes,

security updates, and stability improvements, making them suitable for production

environments requiring long-term stability and support.

Figure 54. JavaScript
ES6 logo.

Figure 55. Node.js logo.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 48 of 115 Main section. Iván Álvarez López

5.1.3 Express

Express is a popular web application framework for Node.js,

providing a minimalistic and flexible set of features for

building web applications and APIs. It is designed to simplify

the process of developing server-side applications in Node.js

by providing a robust set of utilities and middleware.

Express is unopinionated, which means it does not impose a

specific structure or architecture on your application. It

allows developers to have greater control and freedom in

designing their application's structure and logic. This flexibility makes Express suitable for a

wide range of applications, from small projects to large-scale, enterprise-level systems.

In the case of ShareYASHE, we will use Express for routing different HTTP methods and URLs.

5.1.4 Yjs framework

The Yjs project is an open-source collaboration

framework, created by Kevin Jahns[Jahns14], that

enables real-time collaboration in web

applications. It provides a simple and efficient way

to synchronize shared data across multiple clients

in real-time, allowing users to collaborate and edit

content simultaneously.

Yjs stands for "Y (Yup)", which represents the data

structure used by the framework. Yjs utilizes a data type called "CRDT" (Conflict-Free

Replicated Data Type) to handle concurrent changes made by different users. CRDTs are

designed to ensure that data remains consistent across distributed systems without the need

for centralized coordination or conflict resolution.

The Yjs project provides client-side libraries for JavaScript and has implementations in various

programming languages, making it accessible for developers working on different platforms.

In ShareYASHE, our Shape Expressions documents’ content will be of this CRDT type.

Figure 56. Node.js Express logo.

Figure 57. The Yjs framework logo.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 49 of 115

5.1.5 WebSocket (y-websocket)

WebSockets is a communication protocol that provides full-

duplex communication channels over a single TCP connection

between a client and a server. It enables real-time, bidirectional

communication between a web browser (or any WebSocket-

enabled client) and a server.

Unlike traditional HTTP communication, which follows a

request-response model, WebSockets allow for ongoing,

persistent connections where both the client and the server can

send data to each other at any time. This real-time, event-driven

nature makes WebSockets well-suited for applications that require instant data updates, such

as chat applications, real-time collaboration tools, live dashboards, multiplayer games, and

more.

The use of the WebSocket technology resulted crucial in the development of ShareYASHE. This

technology perfectly suits our necessity of stablishing a Shape Expressions collaborative editor

in real-time. Both the ShareYASHE server of WebSocket, and the ShareYASHE client will be

supporting this technology for exchanging the real-time updates of any Shape Expressions

document that some users could be editing.

There is an extension of the Yjs framework that simplifies creating a WebSocket publish-

subscribe model for the CRDT object, called y-websocket, which ShareYASHE will be using.

5.1.6 Codemirror (y-codemirror)

Codemirror is an open-source text editor component for web

applications. It provides a versatile and customizable code

editing experience with support for syntax highlighting, code

folding, auto-completion, linting, and many other features

commonly found in code editors.

Developed in JavaScript, CodeMirror is designed to be easily

integrated into web applications, offering a flexible API that

allows developers to tailor the editor's behavior and appearance to their specific needs. It

supports a wide range of programming languages and file formats, making it suitable for

various coding environments and purposes.

Specifically, there is a collaborative code editor built on top of the Yjs framework, which is

called y-codemirror, and whose supporting Software is both Codemirror and Yjs. It combines

the functionality of the CodeMirror text editor with the real-time collaboration capabilities

provided by Yjs. This allows multiple users to edit code simultaneously and see each other's

changes in real-time.

The editor of ShareYASHE will be using the functionality of y-codemirror.

Figure 58. WebSocket logo.

Figure 59. CodeMirror
logo.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 50 of 115 Main section. Iván Álvarez López

5.1.7 YASHE

YASHE is a ShEx editor which started as a fork of YASQE (which is based on SPARQL) This tool

performs lexical and syntactic analysis of the content of the editor, thus offering the user a

realtime syntactic error detector. It has features like: syntax highlighting, visual aid elements

(tooltips) and autocomplete mechanisms. In addition, it offers a simple way of integrating into

other projects.

Figure 60. YASHE banner.

YASHE is registered as a Node.js package (npm), so it can be used in any application that runs

on Node.js. ShareYASHE is conceived to be the direct evolution of YASHE, implementing the

collaborativity addition.

5.1.8 MongoDB (y-mongodb-provider)

MongoDB is a popular open-source, NoSQL database

management system that falls under the category of document-

oriented databases. It is designed to provide high performance,

scalability, and flexibility for handling large volumes of

structured, semi-structured, and unstructured data.

MongoDB is widely used in various applications, ranging from

small-scale projects to enterprise-level systems. It is particularly

well-suited for use cases such as content management, real-time

analytics, cataloguing, logging, and user data management.

The Yjs framework provides an extension called y-mongodb-provider, which lets us to save in

real-time the CRDT type objects into our MongoDB database. This is why I used MongoDB for

the persistence because this extension prevents the lose of changes when the application

closes, or it crashes.

Figure 61. MongoDB logo.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 51 of 115

5.1.9 dotenv

dotenv is a popular npm package used in Node.js applications to manage environment

variables. It simplifies the process of loading configuration settings from environment-specific

files into the application's runtime environment.

ShareYASHE will be using dotenv for declaring references that could possibly change in the

future, such as the URI reference to the MongoDB, which currently is a local MongoDB

database, or the entropy key for encrypting passwords.

5.1.10 body-parser

body-parser is a middleware package for Node.js applications, specifically designed for parsing

HTTP request bodies. It simplifies the process of extracting data from incoming requests by

handling various content types and providing a convenient interface for accessing the parsed

data.

In Node.js, when a client sends an HTTP request with a payload (such as form data or JSON

data), the request body contains that data. However, the raw request body is typically received

as a stream of bytes. Parsing and extracting meaningful data from the request body requires

additional processing.

body-parser eliminates the need for manual parsing of request bodies by providing

middleware that automatically parses the request body and makes it accessible in a

convenient format. It supports different content types, including JSON, URL-encoded, and

multipart form data. ShareYASHE will be using body-parser for this purpose.

5.1.11 Pug.js

Pug.js, formerly known as Jade, is a high-

performance, feature-rich template engine for

Node.js and web browsers. It is designed to simplify

the process of writing HTML markup by providing a

concise and expressive syntax.

Pug.js allows you to create HTML templates using

indentation-based syntax instead of explicit

opening and closing tags, similarly to Python. This

results in cleaner and more readable code.

Pug.js has gained popularity due to its simplicity, readability, and powerful features. It is widely

adopted in the Node.js ecosystem and is used in many web frameworks and applications.

All the views in ShareYASHE are rendered using Pug.js.

Figure 62. Pug.js logo.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 52 of 115 Main section. Iván Álvarez López

5.2 Tools and programs

5.2.1 Git

Git is a widely used distributed version control

system (VCS) designed to track changes to files and

manage software development projects. It provides

a way for multiple developers to collaborate on a

project, making it easier to manage code, track

modifications, and handle different versions of files.

The code of ShareYASHE will be versioned using Git.

5.2.2 GitHub

GitHub is a web-based platform and hosting service for

software development projects that use the Git version

control system. It provides a collaborative environment

for developers to work on code, track changes, manage

projects, and collaborate with others.

The code of ShareYASHE is published in a GitHub

repository[Alv23] as an open-source project.

5.2.3 PowerShell 7

PowerShell 7 is an open-source, cross-platform command-line shell and

scripting language developed by Microsoft. It is the successor to

Windows PowerShell, designed to bring the power and flexibility of

PowerShell to various operating systems, including Windows, macOS,

and Linux.

PowerShell 7 expands the reach of PowerShell beyond the Windows

ecosystem, allowing users to leverage its capabilities in multi-platform

environments. It provides a powerful command-line shell and scripting language that enables

system administrators, developers, and IT professionals to manage and automate tasks

efficiently across different operating systems.

I will be using PowerShell 7 for deploying ShareYASHE locally, with Node.js, for testing

purposes, although ShareYASHE can be deployed in any machine that supports Node.js.

Figure 63. Git logo.

Figure 64. GitHub logo.

Figure 65.
PoweShell 7 logo.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 53 of 115

5.2.4 PlantUML

PlantUML is an open-source tool for creating diagrams using a simple

and intuitive textual syntax. It allows developers, architects, and

designers to express ideas and concepts through a text-based

representation of diagrams, which are then rendered into visual

diagrams.

PlantUML provides a convenient and efficient way to create diagrams

using a simple text-based syntax. It is widely used in software development, system design,

documentation, and other fields where visual representation of concepts and ideas is required.

This tool was used to draw the diagrams in the chapter of Software design and architecture.

5.2.5 IntelliJ IDEA

IntelliJ IDEA, commonly referred to as IntelliJ, is a popular integrated

development environment (IDE) created by JetBrains. It is designed to provide

a comprehensive and productive environment for software development in

various programming languages, including Java, Kotlin, JavaScript, TypeScript,

Python, and more.

IntelliJ is widely regarded as one of the most feature-rich and powerful

IDEs available. It caters to a wide range of programming languages and

provides a comprehensive set of tools to support developers throughout

the entire software development lifecycle.

This is the reason why I began the ShareYASHE project using IntelliJ IDEA, because I thought

that it could serve for depuration purposes, although I finally ended using the following IDE.

5.2.6 Visual Studio Code

Visual Studio Code (VS Code) is a free and open-source source code editor

developed by Microsoft. It is designed to provide a lightweight yet powerful

editing environment for developers working on various programming

languages and platforms.

Visual Studio Code has gained significant popularity among developers due

to its combination of performance, versatility, and extensibility.

I switched to VS Code because it offers a PlantUML extension. At the end, I

realised that switching IDEs did not make a difference, so I stayed in VS

Code.

Figure 66.
PlantUML logo.

Figure 67. IntelliJ
IDEA logo.

Figure 68.
Visual Studio

Code logo.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 54 of 115 Main section. Iván Álvarez López

5.2.7 GanttProject

GanttProject is a free and open-source project management tool

specifically designed to create and manage Gantt charts. It

provides a comprehensive set of features for planning,

scheduling, and tracking projects.

GanttProject is a valuable tool for project managers, teams, and

individuals seeking a straightforward and accessible solution for

creating and managing Gantt charts. It offers essential project

management features, allowing users to plan, visualize, and track

project schedules effectively.

Being an open-source tool, it is free to use and benefits from

contributions and enhancements from a community of users and developers. Despite having a

license of Microsoft Project from my account of the University of Oviedo, I chose GanttProject

because of this. I wanted to get some experience with this open-source tool, which resulted

very helpful.

GanttProject also offers a collaborative way of editing Gantt charts, through an extension

called GanttProject Cloud[GanPr20].

Figure 69. GanttProject
logo.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 55 of 115

6 Test development

6.1 Reporting of the specification-based testing

These are the results of performing the specification-based testing. For each test case, we will

see the output of the test. Note that the ID column represents the ID of the test case. The

result column refers to whether the expected output of the test case was successfully given.

6.1.1 Scenario 1. Registration

ID Description Result

1.1. All the parameters of registration are valid. PASSED

1.2. The username is empty. PASSED

1.3. The username is shorter than three characters. PASSED

1.4. The username is already taken. PASSED

1.5. The password is empty. PASSED

1.6. The password is shorter than three characters. PASSED

1.7. The email is empty. PASSED

1.8. The email is not valid (RFC 5322). PASSED

Figure 70. Results of test for scenario of registration.

6.1.2 Scenario 2. Login

ID Description Result

2.1. All the parameters of login are valid. PASSED

2.2. The username is empty. PASSED

2.3. The username is shorter than three characters. PASSED

2.4. The username is not taken. PASSED

2.5. The password is empty. PASSED

2.6. The password is shorter than three characters. PASSED

2.7. The password is shorter than three characters. PASSED

Figure 71. Results of test for scenario of login.

6.1.3 Scenario 3. Create ShEx document

ID Description Result

3.1. The title is empty. PASSED

3.2. The title is not empty. PASSED

Figure 72. Results of test for scenario of create ShEx document.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 56 of 115 Main section. Iván Álvarez López

6.1.4 Scenario 4. Leave ownership

ID Description Result

4.1. The user owns the ShEx document. PASSED

4.2. The user does not own the ShEx document. PASSED

4.3. The user is not logged in. PASSED

Figure 73. Results of test for scenario of leave ownership.

6.1.5 Scenario 5. Add owner

ID Description Result

5.1. The user does not own the ShEx document. PASSED

5.2. The user owns the ShEx document, but the username is empty. PASSED

5.3. The user owns the ShEx document, but the username is shorter than three
characters.

PASSED

5.4. The user owns the ShEx document, but the username is not taken by
anybody.

PASSED

5.5. The user owns the ShEx document, but the username is the current
owner’s username.

PASSED

5.6. The user owns the ShEx document, and the username added as owner is
correct.

PASSED

Figure 74. Results of test for scenario of add owner.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 57 of 115

6.2 Usability testing

6.2.1 Results of task 1

In this task, each user will have to accomplish the following steps.

1. Register an account.

2. Login into that account.

3. Create a ShEx document.

There were four users, performing the task individually, and the results of the usability testing

are these.

 User 1 User 2 User 3 User 4

Age 46 13 22 34

Level of
expertise in
informatics (out
of 10)

3 6 8 5

Time spent in
step 1

50s 24s 12s 42s

Time spent in
step 2

30s 13s 5s 20s

Time spent in
step 3

56s 32s 22s 46s

User’s appraisal
of ShareYASHE’s
usability (out of
10)

8 9 10 7

Figure 75. Results of task 1 of usability testing.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 58 of 115 Main section. Iván Álvarez López

6.2.2 Results of task 2

In this task, each user will have to accomplish the following steps.

1. Login into the account that the user registered in task 1.

2. Access to the ShEx document that the user created in task 1.

3. Share the ShEx document with another user.

4. Both users, edit the ShEx document at the same time.

There were four users, performing the task in pairs, and the results of the usability testing are

these.

 User 1 User 2 User 3 User 4

Age 46 13 22 34

Level of
expertise in
informatics (out
of 10)

3 6 8 5

Time spent in
step 1

1m 30s 34s 19s 1m 12s

Time spent in
step 2

23s 12s 6s 17s

Time spent in
step 3

3m 23s 1m 49s 1m 20s 2m 43s

Time spent in
step 4

34s 22s 19s 31s

User’s appraisal
of ShareYASHE’s
usability (out of
10)

8 9 10 7

Figure 76. Results of task 2 of usability testing.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 59 of 115

6.3 Accessibility testing

6.3.1 Summary

In this chapter we will see the results of the accessibility testing, which are summarised below.

• W3C HTML Markup Validation. The whole Website has passed this test.

• W3C CSS Validation. The whole Website has passed this test.

• Google Mobile Optimization Check. The whole Website has passed this test.

• WAVE Test. The whole Website has passed this test.

• aChecker Test. The whole Website has passed this test.

• TAW Test. We can see that the ShEx document editing view did not fully passed this

test. This has the following two explanations.

o TAW follows WCAG 2.1, while the purpose of this project is to achieve WCAG

2.0.

o The errors of accessibility that TAW finds in our Website are related to the

YASHE editor, which is an external library, and modifying it by ourselves

exceeds the scope of this project.

• WebAIM Contrast Check. The whole Website has passed this test.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 60 of 115 Main section. Iván Álvarez López

6.3.2 Results

6.3.2.1 HTML Markup Validation

6.3.2.1.1 Main view

Figure 77. Results of HTML markup validation for main view.

6.3.2.1.2 ShEx document editing view

Figure 78. Results of HTML markup validation for ShEx document editing view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 61 of 115

6.3.2.1.3 Log-in view

Figure 79. Results of HTML markup validation for log-in view.

6.3.2.1.4 Register view

Figure 80. Results of HTML markup validation for register view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 62 of 115 Main section. Iván Álvarez López

6.3.2.2 CSS Validation

6.3.2.2.1 Main view

Figure 81. Results of CSS validation for main view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 63 of 115

6.3.2.2.2 ShEx document editing view

Figure 82. Results of CSS validation for ShEx document editing view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 64 of 115 Main section. Iván Álvarez López

6.3.2.2.3 Log-in view

Figure 83. Results of CSS validation for log-in view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 65 of 115

6.3.2.2.4 Register view

Figure 84. Results of CSS validation for register view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 66 of 115 Main section. Iván Álvarez López

6.3.2.3 Mobile Optimization Check

6.3.2.3.1 Main view

Figure 85. Results of mobile optimization check for main view.

6.3.2.3.2 ShEx document editing view

Figure 86. Results of mobile optimization check for ShEx document editing view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 67 of 115

6.3.2.3.3 Log-in view

Figure 87. Results of mobile optimization check for log-in view.

6.3.2.3.4 Register view

Figure 88. Results of mobile optimization check for register view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 68 of 115 Main section. Iván Álvarez López

6.3.2.4 WAVE test

6.3.2.4.1 Main view

Figure 89. Results of WAVE test for main view.

6.3.2.4.2 ShEx document editing view

Figure 90. Results of WAVE test for ShEx document editing view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 69 of 115

6.3.2.4.3 Log-in view

Figure 91. Results of WAVE test for log-in view.

6.3.2.4.4 Register view

Figure 92. Results of WAVE test for register view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 70 of 115 Main section. Iván Álvarez López

6.3.2.5 aChecker test

6.3.2.5.1 Main view

Figure 93. Results of aChecker test for main view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 71 of 115

6.3.2.5.2 ShEx document editing view

Figure 94. Results of aChecker test for ShEx document editing view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 72 of 115 Main section. Iván Álvarez López

6.3.2.5.3 Log-in view

Figure 95. Results of aChecker test for log-in view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 73 of 115

6.3.2.5.4 Register view

Figure 96. Results of aChecker test for register view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 74 of 115 Main section. Iván Álvarez López

6.3.2.6 TAW test

6.3.2.6.1 Main view

Figure 97. Results of TAW test for main view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 75 of 115

6.3.2.6.2 ShEx document editing view

Figure 98. Results of TAW test for ShEx document editing view (1 of 13).

Figure 99. Results of TAW test for ShEx document editing view (2 of 13).

Figure 100. Results of TAW test for ShEx document editing view (3 of 13).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 76 of 115 Main section. Iván Álvarez López

Figure 101. Results of TAW test for ShEx document editing view (4 of 13).

Figure 102. Results of TAW test for ShEx document editing view (5 of 13).

Figure 103. Results of TAW test for ShEx document editing view (6 of 13).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 77 of 115

Figure 104. Results of TAW test for ShEx document editing view (7 of 13).

Figure 105. Results of TAW test for ShEx document editing view (8 of 13).

Figure 106. Results of TAW test for ShEx document editing view (9 of 13).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 78 of 115 Main section. Iván Álvarez López

Figure 107. Results of TAW test for ShEx document editing view (10 of 13).

Figure 108. Results of TAW test for ShEx document editing view (11 of 13).

Figure 109. Results of TAW test for ShEx document editing view (12 of 13).

Figure 110. Results of TAW test for ShEx document editing view (13 of 13).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 79 of 115

6.3.2.6.3 Log-in view

Figure 111. Results of TAW test for log-in view.

6.3.2.6.4 Register view

Figure 112. Results of TAW test for register view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 80 of 115 Main section. Iván Álvarez López

6.3.2.7 WebAIM Contrast Check

6.3.2.7.1 Main style

Figure 113. Main style colours.

Figure 114. Main style contrast check.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 81 of 115

6.3.2.7.2 Unused links

Figure 115. Unused links colours.

Figure 116. Unused links contrast check.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 82 of 115 Main section. Iván Álvarez López

6.3.2.7.3 Unused links when hover

Figure 117. Unused links when hover colours.

Figure 118. Unused links when hover contrast check.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 83 of 115

6.3.2.7.4 Used links

Figure 119. Used links colours.

Figure 120. Used links contrast check.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 84 of 115 Main section. Iván Álvarez López

6.3.2.7.5 Used links when hover

Figure 121. Used links when hover colours.

Figure 122. Used links when hover contrast check.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 85 of 115

7 System documentation

7.1 Manual of deployment on premises with

Windows

ShareYASHE can be deployed in any machine capable of running Node.js. This includes

Windows, Linux, macOS, and any other Unix-like Systems. Node.js is designed to be a cross-

platform. In this chapter, we will see how to deploy ShareYASHE both in Windows and Linux.

In this manual, we will be using a Windows 11 Pro 22H2 machine on premises.

7.1.1 Install Node.js and NPM

The first step for deploying ShareYASHE is installing Node.js, and its package manager: NPM.

Be can obtain the installable file from the Node.js Website[Node23]. At the moment of the

development of ShareYASHE, Node.js v18 was used. However, you can try installing another

version, but it is unsure that ShareYASHE would run correctly.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 86 of 115 Main section. Iván Álvarez López

When the installable file of Node.js is downloaded, we must execute it in order to install

Node.js in the machine.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 87 of 115

At this point, Node.js would be installed and the command prompt could be accessible from

the programs list.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 88 of 115 Main section. Iván Álvarez López

We may prefer access the Node.js functionality either through the native command prompt of

Windows, or through the PowerShell 7. We can check the installation of Node.js and NPM with

the following commands.

7.1.2 Install MongoDB and run it

ShareYASHE needs a MongoDB for its persistence. In this chapter, we will be deploying a local

instance of MongoDB. Firstly, we may download the MongoDB Community Edition installable

from its Website[Mongo23].

We select the “Complete” option.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 89 of 115

At this point, MongoDB would be fully installed, and its service would start with each System

startup. Then, we can refer to the MongoDB database with the loopback address.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 90 of 115 Main section. Iván Álvarez López

7.1.3 Obtain the ShareYASHE source code,

customise its environment parameters, and run it

The code of ShareYASHE is published in a GitHub repository[Alv23] as an open-source project. We

can simply download it and place it in a folder.

In the “.env” file, in the root of the project, we need to specify two parameters:

SHAREYASHE_CRYPTO_KEY (an entropy word, for passwords to be encrypted), and

SHAREYASHE_MONGODB (the reference to the MongoDB database).

After installing the NPM packages, we just call the script “npm start”, after calling “npm

install”, whose steps are declared in the package.json file. “npm install” only needs to be called

the first time you deploy, or every time that you change the packages.json file.

At this point, ShareYASHE would be running on your local network.

7.1.4 Access from the external network

In pursue of users from the external network accessing your ShareYASHE deployment, you

must ensure that the ports are opened, both 80 and 2403, both UDP and TCP. You must also

know your public IP, and you may use a DNS for making the URI of you ShareYASHE

deployment to be friendlier.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 91 of 115

7.1.5 Ensure external projection

capability

Deployment tools, or cloud-based machines, offer a variety of ways to

open ports. Nevertheless, here we will be doing it as if we were deploying

ShareYASHE on premises.

First of all, we must ensure that the machine, in which ShareYASHE is

deployed, is connected via an Ethernet cable to a router which is directly

connected to the Internet. Your router may be connected to the Internet

through a coaxial cable, like that of the picture below, or maybe through a satellite antenna.

If the machine is connected in series to a chain of routers, until the last router is connected

directly to the Internet, we must open the 80 and 2403 ports of each of those routers.

We may know the default access to the router configuration through the “ipconfig” command.

We can then access to that configuration using the address http://192.168.0.1/, because that

is the address that the ipconfig command threw to me, which may be different in your case.

It is probable that a login form may be shown to us. In order to access the configuration, we

must know the credentials, which may be specified in the router’s manual.

http://192.168.0.1/

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 92 of 115 Main section. Iván Álvarez López

7.1.6 Open ports

Then, we must find the forwarding configuration and, using the internal IPv4 address of the

machine in which ShareYASHE is running (the address that I censored in the screenshot of the

ipconfig command), stablish both ports to be forwarded.

7.1.7 Get your external address

We must also find our external IPv4 address, so users can use it to connect to our ShareYASHE

deployment. We can do it with several tools, such as WhatIsMyIPAddress[WIMIPA23].

For security reasons, I must censor my external IPv4 address. Imagine that it is: 55.55.55.55.

Users can then access to you ShareYASHE deployment through this link: http://55.55.55.55/.

http://55.55.55.55/

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 93 of 115

7.1.8 Set up a DNS

Furthermore, we can use a DNS tool in order to hide our external IPv4 address. In my case, I

am using No-IP DUC, so I can use the following domain name for my ShareYASHE deployment

on premises: http://shareyashe.sytes.net.

This does not prevent hackers to know your external IPv4 address, because they can ping the

domain name and obtain your address, but it makes the domain name more friendly for the

users to remind it.

7.2 Manual of deployment on the cloud with Linux

ShareYASHE can be deployed in any machine capable of running Node.js. This includes

Windows, Linux, macOS, and any other Unix-like Systems. Node.js is designed to be a cross-

platform. In this chapter, we will see how to deploy ShareYASHE both in Windows and Linux.

In this manual, we will be using an Ubuntu Server 20.04 machine on a Microsoft Azure cloud.

7.2.1 Set up an account in a cloud Website

Firstly, we need an account in a cloud management Website. My account from the University

of Oviedo grants me some credits for Microsoft Azure, so I will be using this one. Having

received the necessary credits, we must access the portal for managing cloud machines[Azure23].

We create a cloud machine with the option for creating a resource (in the screenshot: “Crear

un recurso”).

http://shareyashe.sytes.net/

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 94 of 115 Main section. Iván Álvarez López

7.2.2 Create a cloud machine

Microsoft Azure lets us create a cloud machine with a simple form. In this case, I will put a

name for the virtual machine: “ShareYASHE-on-the-cloud”, and I will press the blue button at

the bottom.

As we can see, running a machine on the cloud is not free. After clicking on “Create”, we must

download the private SSH key, for accessing to the virtual machine.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 95 of 115

After a few minutes, the cloud would be finally created.

7.2.3 Open ports

Before leaving the Microsoft Azure portal, we will open the ports needed for ShareYASHE: 80

and 2403. This purpose can be achieved in the “Networks” section, in the configuration of our

cloud machine.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 96 of 115 Main section. Iván Álvarez López

7.2.4 Access the cloud machine

This cloud machine can be accessed with tools such as Bitvise SSH Client[Bitvise23]. Having

installed it on our local machine, we must import the private key that we downloaded while

creating the cloud machine.

We can then click on “Log in”, and then in “Accept and save”. After this, we are able to open a

new terminal window. We have then accessed to our cloud machine.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 97 of 115

7.2.5 Install Node.js and NPM

At the moment of this writing, Node.js v18 is not on the Ubuntu repository. Thus, we have to

add it with the following command. Then, we will install Node.js and NPM. We can check the

installation calling the commands with the “--version” option.

7.2.6 Install MongoDB and run it

For setting up the MongoDB database, we need to install its package with the following

package.

We can then check its installation with the “--version” option.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 98 of 115 Main section. Iván Álvarez López

We must also check that the MongoDB service is running, with the following command.

If it is not running, we can restarting it with the following commands.

The MongoDB database would be running by now.

7.2.7 Obtain the ShareYASHE source code,

customise its environment parameters, and run it

The code of ShareYASHE is published in a GitHub repository[Alv23] as an open-source project. We

can download it by cloning it with the Git command.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 99 of 115

In the “.env” file, in the root of the project, we need to specify two parameters:

SHAREYASHE_CRYPTO_KEY (an entropy word, for passwords to be encrypted), and

SHAREYASHE_MONGODB (the reference to the MongoDB database). We can do it with the

command: “nano ./.env”.

After installing the NPM packages, we just call the script “npm start”, whose steps are declared

in the package.json file.

At this point, ShareYASHE would be running publicly.

We can then set up a DNS, like we did on premises, but we will not talk about this again here.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 100 of
115

Main section. Iván Álvarez López

7.3 Developer’s guide

In this chapter, we will review specific questions that must be taken into consideration by any

developer which encounters this project, for its fixing, or for its extension.

ShareYASHE possesses a robust and well-defined architecture that serves as the foundation for

its functionality and future expansion. It follows a five-layer architecture that serves as the

bedrock for its expandability and future development. This thoughtfully crafted architecture

adheres to industry best practices and enables seamless integration of new features and

modules.

Understanding and comprehending this intricate architecture empowers developers to extend

ShareYASHE by effortlessly integrating new modules, refining existing functionalities, and

guaranteeing the application's overall stability, scalability, and success. Thus, I strongly

recommend reading the Software design and architecture section.

However, in this section I will be giving some overall steps for extending the ShareYASHE

functionality.

7.3.1 Define a new route

The most common extension could involve adding a new route. In ShareYASHE, this process is

carried out in the routes layer. The developer must consider the best routes file which will

handle the new route, and add it as follows:

 app.<HTTP_METHOD> ('/NEW_ROUTE', async function (req, res) {

 await appLayerFactory.for<NEW_ROUTE>Command(req, res);

 });

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 101 of
115

7.3.2 Define a new application command

The command classes of the application layer implement every route that is defined in the

routes layer. We must create a factory method for every new route.

 for<NEW_ROUTE>Command: async function (req, res) {

 let CommandExecutor = (await

import('./CommandExecutor.mjs')).CommandExecutor;

 let <NEW_ROUTE>Command = (await import('./

<NEW_ROUTE>Command.mjs')). <NEW_ROUTE>Command;

 let commandExecutor = new CommandExecutor(this.app,

this.mongoClient, ObjectId);

 let <NEW_ROUTE>Command = new <NEW_ROUTE>Command(this.app,

this.mongoClient, ObjectId);

 await commandExecutor.execute(req, res, <NEW_ROUTE>Command);

 },

Then, we must implement that command class.

import {BusinessFactory} from "../../businessLayer/BusinessFactory.mjs";

import {AbstractAppLayerCommand} from "../AbstractAppLayerCommand.mjs";

class <NEW_ROUTE>Command extends AbstractAppLayerCommand {

 async execute(req, res) {

 // Do the implementation

 // Call BusinessFactory for invoking high level actions

 }

}

export {<NEW_ROUTE>Command};

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 102 of
115

Main section. Iván Álvarez López

7.3.3 Define new business methods

The more we dig into the architecture, the less probable is that changes must be made there.

It is possible that a new functionality only requires creating a new application command,

restricting itself to only calling existing business methods. However, it is also possible that we

may need to create new business methods.

I will give you an example of how to create a new method related to the authentication

business logic. Furthermore, you may need to create a new business service class.

import {AbstractBusiness} from "../AbstractBusiness.mjs";

import {PersistenceFactory} from

"../../persistenceLayer/PersistenceFactory.mjs";

class AuthBusiness extends AbstractBusiness {

 /* New method */

 async howeverYouMayCallIt() {

 // Functionality

 }

 /* ... */

}

export {AuthBusiness};

Note that the method must conveniently be noted as asynchronous. This prevents confusions,

because the core of the architecture, the persistence layer, requires calling methods from the

database API asynchronously. If one method of those is called, the whole chain of

responsibility must be asynchronous, waiting for methods down below with the “await”

reserved word.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 103 of
115

7.3.4 Instantiate new presentation service objects

If a new view is created, the first step is creating a Pug.js view. Then, we must declare it in the

interface of the business factory.

class BusinessFactory {

 /* New view method */

 static forRender<name_of_the_new_view>(app, mongoClient, req, res) {

 return new RenderBusiness(app, mongoClient, req, res, "- <Title

of the new view>", "howeverYouCalledThePugFile.pug");

 }

 /* ... */

}

export {BusinessFactory};

The “render” method has the following signature:

render(message, username, ownedShExDocs, shExDoc)

If the user is logged in, you may call this render method from the application command passing

the “username” and “ownedShExDocs” objects; you retrieve them from the service objects

business layer, in the application layer.

Exceptionally, the view for editing a Shape Expressions document takes the “shExDoc” object,

which is the Yjs CRDT type object. Yours may use it too.

7.3.5 Define a new entity

The least likely thing that you may need is having to define a new persistent entity. If that is

the case, I have good news for you: the whole CRUD functionality is implemented in a

superclass: AbstractRepository.

class <NEW_ENTITY>Repository extends AbstractRepository {

 constructor(app, mongoClient) {

 super(app, mongoClient, "<however_the_new_entity_is_called>");

 }

}

export {<NEW_ENTITY>Repository};

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 104 of
115

Main section. Iván Álvarez López

The last step is adding a new factory method in the persistence factory, and you would have a

new entity added to ShareYASHE.

class PersistenceFactory {

 static for<NEW_ENTITY>(app, mongoClient) {

 return new <NEW_ENTITY>Repository(app, mongoClient);

 }

 /* ... */

}

export {PersistenceFactory};

7.4 User’s manual

7.4.1 Create an account

If you want to create an account in ShareYASHE, you must click in the “Register” button and fill

the formulary. You must specify a username and password, longer than three characters,

which could not be already taken by another user. You also must write a correct email. Then,

you click the button at the bottom of the formulary, and, if no message informs you on the

contrary, you would be registered.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 105 of
115

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 106 of
115

Main section. Iván Álvarez López

7.4.2 Login into your account

The login formulary needs you to write the information that you specified in the register form,

the username and password must match with those that you used in the registration. Then,

you click the button at the bottom of the formulary, and, if no message informs you on the

contrary, you would be logged in.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 107 of
115

7.4.3 Create a collaborative ShEx document

For this action, you must have made the login process. You must click on the “Create ShEx doc”

option, write the title of the new ShEx document, and click the button of the formulary for its

creation.

You will be redirected to the index page, and you will be able to see the new collaborative ShEx

document on the left. Clicking it, you will access its edition view.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 108 of
115

Main section. Iván Álvarez López

7.4.4 Access your ShEx document

For this action, you must have made the login process, and created the collaborative ShEx

document. You will always see your ShEx documents on the left of the Website, and access

clicking on them.

Your view as an owner will provide you some actions, that a non-owner will not see.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 109 of
115

7.4.5 Share your ShEx document

For this action, you must have made the login process, be in possession of any collaborative

ShEx document, and accessed it. Sharing your ShEx document means inviting a person, who we

will name as the guest, to edit the file, but not conserving it in his list at the left. By either

copying the URL link, or clicking the sharing button, anybody can access the edition of your

document.

The guest does not need to have made the login process, and he will be able to see and edit

the ShEx document in real time. He will appear to the owner as “Anonymous”, if he is not

logged in, otherwise it will prompt his username.

The ShEx document will not be saved in the list of the left side for the guest, and he will see

your username, as follows:

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 110 of
115

Main section. Iván Álvarez López

7.4.6 Leave the ownership of a ShEx document

For this action, you must have made the login process, and be in possession of any

collaborative ShEx document. All you have to do is clicking the button “Leve as doc owner”.

This will remove it from your list and, if nobody else owns it, it will be deleted.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 111 of
115

7.4.7 Add an owner to a ShEx document

For this action, you must have made the login process, and be in possession of any

collaborative ShEx document. For adding a new owner, we must specify an existing username

in the formulary marked below.

If the user exists, it will appear in the owners list.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 112 of
115

Main section. Iván Álvarez López

The added owner will be able to see the ShEx document in its lists of the left. One ShEx

document can have an indefinite number of owners.

7.4.8 Delete your account

For this action, you must have made the login process. Clicking the “Unregister” button, you

will be redirected to a confirmation view. This is a terminative action which will imply the

deletion of all your user information, as well as the removal of your ownership of any ShEx

document, and its erase if it has no more owners left.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 113 of
115

8 Concluding remarks

8.1 Conclusions

The result of this project is a remarkable Software application which has been designed for

having a flexible and scalable architecture. Despite of the moderate size of the project, the

conception of the product, as well as this documentation, evidences my accomplishment of

becoming a Software engineer.

In the beginning, I meant to draft a very specific piece of Software as a degree project, which I

could emphasise Software architecture with. I am currently interested in fields such as SDV

(Software Defined Vehicles), or distributed systems in general. However, I realised that this

could have been an ambitious job that I would better leave for my future.

Eventually, my expectations were thoroughly met with ShareYASHE. Carrying out this project, I

intended to demonstrate that any good Software development practise, especially object-

oriented ones, could be achieved, independent of which programming language or which tool

is used. I made the most of standards and recommendations, which were the key to peak this

goal.

Not easily have I come to this point of my career. These have been very demanding years,

given the pandemic, and other familiar issues that I will not bother you with. Being the

beginning of my professional career, this project is not the last milestone of my student life.

Software professionals must be constantly learning, and that is what I will do. ShareYASHE is

my first creation and will not be the last. Indeed, I will hold all the knowledge that I was

provided by this degree, and I will strive to become an excellent Software engineer.

8.2 Contemplated upgrades

Further functionality could be implemented in this project. ShareYASHE has a straightforward

purpose, giving support for ShEx editing, so few upgrades may be contemplated. However,

they could be added to the application, if necessary, in the future. These following ideas were

not taken into consideration because they exceeded the scope of the project for this period, or

they were thought after the development of ShareYASHE.

• Automatically send a message to verify user’s email at his registration.

• Creating invitation requests rather than suddenly adding another user as owner of a

ShEx document.

• Dynamically represent Shape Expressions using graphs, while ShEx code is written.

• Support for other programming languages besides ShEx.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 114 of
115

Main section. Iván Álvarez López

9 Bibliography

9.1 Books and articles

[PMI21] Project Management Institute. “A guide to the Project Management Body of

Knowledge (PMBOK guide) and the Standard for project management”. 2021. ISBN 10:

1628256648. ISBN 13: 978-1628256642.

[IanS11] Sommerville, Ian. “Software Engineering (9th edition)”. Pearson. 2011. ISBN 10: 0-13-

703515-2. ISBN 13: 978-0-13-703515-1.

[GoF94] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John; Grady, Booch. “Design

Patterns: Elements of Reusable Object-Oriented Software”. Addison-Wesley Professional.

1999. ISBN 13: 978-0201633610.

[Fowler02] Fowler, Martin; Rice, Dave; Foemmel, Matthew; Hieatt, Edward; Mee, Robert;

Stafford, Randy. “Patterns of Enterprise Application Architecture”. Prentice Hall. 2009. ISBN-

10: 0321127420. ISBN-13: 978-0321127426.

[Krug13] Krug, Steve. “Don't Make Me Think, Revisited: A Common Sense Approach to Web

Usability (3rd Edition)”. New Riders. 2013. ISBN-10: 9780321965516. ISBN-13: 978-

0321965516.

9.2 References on the Internet

[ECMA15] ECMA International. “ECMAScript® 2015 Language Specification”. https://262.ecma-

international.org/6.0/. Last seen: 15th June 2023.

[Wiki12] “Document-oriented database”. https://en.wikipedia.org/wiki/Document-

oriented_database. Last seen: 16th June 2023.

[WCAG08] “Web Content Accessibility Guidelines (WCAG) 2.0”.

https://www.w3.org/TR/WCAG20/. Last seen: 16th June 2023.

[Jahns14] “The Yjs Project”. https://yjs.dev/. Last seen: 17th June 2023.

[Alv23] “ShareYASHE (Git repo)”. https://github.com/ialnavy/ShareYASHE. Last seen: 17th June

2023.

[GanPr20] “What is GanttProject Cloud?”. https://help.ganttproject.biz/t/what-is-ganttproject-

cloud/1955. Last seen: 17th June 2023.

[Node23] “Node.js Website”. https://nodejs.org/es. Last seen: 17th June 2023.

https://262.ecma-international.org/6.0/
https://262.ecma-international.org/6.0/
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database
https://www.w3.org/TR/WCAG20/
https://yjs.dev/
https://github.com/ialnavy/ShareYASHE
https://help.ganttproject.biz/t/what-is-ganttproject-cloud/1955
https://help.ganttproject.biz/t/what-is-ganttproject-cloud/1955
https://nodejs.org/es

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Main section. Page 115 of
115

[Mongo23] “MongoDB Community Edition”.

https://www.mongodb.com/try/download/community-kubernetes-operator. Last seen: 17th

June 2023.

[WIMIPA23] “What Is My IP Address?”. https://whatismyipaddress.com/. Last seen: 17th June

2023.

[Azure23] “Microsoft Azure Portal”. https://portal.azure.com/#home. Last seen: 17th June

2023.

[Bitvise23] “Bitvise SSH Client”. https://www.bitvise.com/. Last seen: 17th June 2023.

[ShEx13] “Shape Expressions Definition”. https://www.w3.org/2013/ShEx/Definition. Last

seen: 18th June 2023.

[W3CHTML23] “W3C HTML Markup Validation Service”. https://validator.w3.org/. Last seen:

21st June 2023.

[W3CCSS23] “W3C CSS Validation Service”. https://jigsaw.w3.org/css-validator/. Last seen: 21st

June 2023.

[GAdapCheck23] “Google Mobile Optimization Checker”.

https://search.google.com/test/mobile-friendly. Last seen: 21st June 2023.

[WAVE23] “Web Accessibility Evaluation Tool”. https://wave.webaim.org/. Last seen: 21st June

2023.

[ACH23] “aChecker”. https://achecks.ca/achecker. Last seen: 21st June 2023.

[TAW23] “Test of Web Accessibility”. https://www.tawdis.net/index. Last seen: 21st June 2023.

[WAIMCC23] “WebAIM Contrast Checker”. https://webaim.org/resources/contrastchecker/.

Last seen: 21st June 2023.

https://www.mongodb.com/try/download/community-kubernetes-operator
https://whatismyipaddress.com/
https://portal.azure.com/#home
https://www.bitvise.com/
https://www.w3.org/2013/ShEx/Definition
https://validator.w3.org/
https://jigsaw.w3.org/css-validator/
https://search.google.com/test/mobile-friendly
https://wave.webaim.org/
https://achecks.ca/achecker
https://www.tawdis.net/index
https://webaim.org/resources/contrastchecker/

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of appendices. Page 1 of 14

Appendix I. Contents attached to this

submission

Along with this document, it will be submitted a .zip file which contains the source code of

ShareYASHE. The content of this .zip file is listed below.

Location Content

ShareYASHE.gan Gantt chart containing a scheme of the initial project planning.

README.md This is a read-me file, used as a Copyright disclaimer.

package.json This file is used by Node.js for knowing which libraries to install.

package-lock.json Idem “package.json”.

.env This file contains the definition of the required environment variables.

app.js This file contains the root source code of the ShareYASHE server
application.

bin/www.js This file is a script which deploys the main ShareYASHE server. The “npm
start” command will begin executing this script.

wsServer/ This folder contains some y-websocket utilities, which were taken from
the Yjs GitHub page, and modified a little bit.

diagrams/ This folder contains the diagrams shown in this document, both in
format .svg and .plantuml.

routes/ This folder contains the source code of the routes layer.

applicationLayer/ This folder contains the source code of the application layer.

businessLayer/ This folder contains the source code of the business layer, and the
presentation layer.

persistenceLayer/ This folder contains the source code of the persistence layer.

Figure 123. List of contents attached to this submission.

Note that ShareYASHE needs more assets in order to be ran: the Node.js engine, a deployed

MongoDB database, and the “node-modules” installed (see any guide of deployment).

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 2 of 14 Section of appendices. Iván Álvarez López

Appendix II. GNU Affero General

Public License v3.0

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of

works.

The licenses for most software and other practical works are designed to take away your

freedom to share and change the works. By contrast, the GNU General Public License is

intended to guarantee your freedom to share and change all versions of a program--to make

sure it remains free software for all its users. We, the Free Software Foundation, use the GNU

General Public License for most of our software; it applies also to any other work released this

way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free

software (and charge for them if you wish), that you receive source code or can get it if you

want it, that you can change the software or use pieces of it in new free programs, and that

you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you

to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of

the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

pass on to the recipients the same freedoms that you received. You must make sure that they,

too, receive or can get the source code. And you must show them these terms so they know

their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on

the software, and (2) offer you this License giving you legal permission to copy, distribute

and/or modify it.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of appendices. Page 3 of 14

For the developers' and authors' protection, the GPL clearly explains that there is no warranty

for this free software. For both users' and authors' sake, the GPL requires that modified

versions be marked as changed, so that their problems will not be attributed erroneously to

authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the

software inside them, although the manufacturer can do so. This is fundamentally

incompatible with the aim of protecting users' freedom to change the software. The

systematic pattern of such abuse occurs in the area of products for individuals to use, which is

precisely where it is most unacceptable. Therefore, we have designed this version of the GPL

to prohibit the practice for those products. If such problems arise substantially in other

domains, we stand ready to extend this provision to those domains in future versions of the

GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow

patents to restrict development and use of software on general-purpose computers, but in

those that do, we wish to avoid the special danger that patents applied to a free program

could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be

used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

Terms and conditions

Definitions

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as

semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is

addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring

copyright permission, other than the making of an exact copy. The resulting work is called a

“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you

directly or secondarily liable for infringement under applicable copyright law, except executing

it on a computer or modifying a private copy. Propagation includes copying, distribution (with

or without modification), making available to the public, and in some countries other activities

as well.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 4 of 14 Section of appendices. Iván Álvarez López

To “convey” a work means any kind of propagation that enables other parties to make or

receive copies. Mere interaction with a user through a computer network, with no transfer of a

copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes

a convenient and prominently visible feature that (1) displays an appropriate copyright notice,

and (2) tells the user that there is no warranty for the work (except to the extent that

warranties are provided), that licensees may convey the work under this License, and how to

view a copy of this License. If the interface presents a list of user commands or options, such as

a menu, a prominent item in the list meets this criterion.

Source Code

The “source code” for a work means the preferred form of the work for making modifications

to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a

recognized standards body, or, in the case of interfaces specified for a particular programming

language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a

whole, that (a) is included in the normal form of packaging a Major Component, but which is

not part of that Major Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an implementation is

available to the public in source code form. A “Major Component”, in this context, means a

major essential component (kernel, window system, and so on) of the specific operating

system (if any) on which the executable work runs, or a compiler used to produce the work, or

an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed

to generate, install, and (for an executable work) run the object code and to modify the work,

including scripts to control those activities. However, it does not include the work's System

Libraries, or general-purpose tools or generally available free programs which are used

unmodified in performing those activities but which are not part of the work. For example,

Corresponding Source includes interface definition files associated with source files for the

work, and the source code for shared libraries and dynamically linked subprograms that the

work is specifically designed to require, such as by intimate data communication or control

flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically

from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of appendices. Page 5 of 14

Basic Permissions

All rights granted under this License are granted for the term of copyright on the Program, and

are irrevocable provided the stated conditions are met. This License explicitly affirms your

unlimited permission to run the unmodified Program. The output from running a covered work

is covered by this License only if the output, given its content, constitutes a covered work. This

License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions

so long as your license otherwise remains in force. You may convey covered works to others

for the sole purpose of having them make modifications exclusively for you, or provide you

with facilities for running those works, provided that you comply with the terms of this License

in conveying all material for which you do not control copyright. Those thus making or running

the covered works for you must do so exclusively on your behalf, under your direction and

control, on terms that prohibit them from making any copies of your copyrighted material

outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated

below. Sublicensing is not allowed; section 10 makes it unnecessary.

Protecting Users' Legal Rights From Anti-

Circumvention Law

No covered work shall be deemed part of an effective technological measure under any

applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on

20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of

technological measures to the extent such circumvention is effected by exercising rights under

this License with respect to the covered work, and you disclaim any intention to limit

operation or modification of the work as a means of enforcing, against the work's users, your

or third parties' legal rights to forbid circumvention of technological measures.

Conveying Verbatim Copies

You may convey verbatim copies of the Program's source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an

appropriate copyright notice; keep intact all notices stating that this License and any non-

permissive terms added in accord with section 7 apply to the code; keep intact all notices of

the absence of any warranty; and give all recipients a copy of this License along with the

Program.

You may charge any price or no price for each copy that you convey, and you may offer

support or warranty protection for a fee.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 6 of 14 Section of appendices. Iván Álvarez López

Conveying Modified Source Versions

You may convey a work based on the Program, or the modifications to produce it from the

Program, in the form of source code under the terms of section 4, provided that you also meet

all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a

relevant date.

b. The work must carry prominent notices stating that it is released under this License

and any conditions added under section 7. This requirement modifies the requirement

in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes

into possession of a copy. This License will therefore apply, along with any applicable

section 7 additional terms, to the whole of the work, and all its parts, regardless of

how they are packaged. This License gives no permission to license the work in any

other way, but it does not invalidate such permission if you have separately received

it.

d. If the work has interactive user interfaces, each must display Appropriate Legal

Notices; however, if the Program has interactive interfaces that do not display

Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by

their nature extensions of the covered work, and which are not combined with it such as to

form a larger program, in or on a volume of a storage or distribution medium, is called an

“aggregate” if the compilation and its resulting copyright are not used to limit the access or

legal rights of the compilation's users beyond what the individual works permit. Inclusion of a

covered work in an aggregate does not cause this License to apply to the other parts of the

aggregate.

Conveying Non-Source Forms

You may convey a covered work in object code form under the terms of sections 4 and 5,

provided that you also convey the machine-readable Corresponding Source under the terms of

this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical

distribution medium), accompanied by the Corresponding Source fixed on a durable

physical medium customarily used for software interchange.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of appendices. Page 7 of 14

b. Convey the object code in, or embodied in, a physical product (including a physical

distribution medium), accompanied by a written offer, valid for at least three years

and valid for as long as you offer spare parts or customer support for that product

model, to give anyone who possesses the object code either (1) a copy of the

Corresponding Source for all the software in the product that is covered by this

License, on a durable physical medium customarily used for software interchange, for

a price no more than your reasonable cost of physically performing this conveying of

source, or (2) access to copy the Corresponding Source from a network server at no

charge.

c. Convey individual copies of the object code with a copy of the written offer to provide

the Corresponding Source. This alternative is allowed only occasionally and

noncommercially, and only if you received the object code with such an offer, in

accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a

charge), and offer equivalent access to the Corresponding Source in the same way

through the same place at no further charge. You need not require recipients to copy

the Corresponding Source along with the object code. If the place to copy the object

code is a network server, the Corresponding Source may be on a different server

(operated by you or a third party) that supports equivalent copying facilities, provided

you maintain clear directions next to the object code saying where to find the

Corresponding Source. Regardless of what server hosts the Corresponding Source, you

remain obligated to ensure that it is available for as long as needed to satisfy these

requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other

peers where the object code and Corresponding Source of the work are being offered

to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding

Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal

property which is normally used for personal, family, or household purposes, or (2) anything

designed or sold for incorporation into a dwelling. In determining whether a product is a

consumer product, doubtful cases shall be resolved in favor of coverage. For a particular

product received by a particular user, “normally used” refers to a typical or common use of

that class of product, regardless of the status of the particular user or of the way in which the

particular user actually uses, or expects or is expected to use, the product. A product is a

consumer product regardless of whether the product has substantial commercial, industrial or

non-consumer uses, unless such uses represent the only significant mode of use of the

product.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 8 of 14 Section of appendices. Iván Álvarez López

“Installation Information” for a User Product means any methods, procedures, authorization

keys, or other information required to install and execute modified versions of a covered work

in that User Product from a modified version of its Corresponding Source. The information

must suffice to ensure that the continued functioning of the modified object code is in no case

prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a

User Product, and the conveying occurs as part of a transaction in which the right of

possession and use of the User Product is transferred to the recipient in perpetuity or for a

fixed term (regardless of how the transaction is characterized), the Corresponding Source

conveyed under this section must be accompanied by the Installation Information. But this

requirement does not apply if neither you nor any third party retains the ability to install

modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to

continue to provide support service, warranty, or updates for a work that has been modified or

installed by the recipient, or for the User Product in which it has been modified or installed.

Access to a network may be denied when the modification itself materially and adversely

affects the operation of the network or violates the rules and protocols for communication

across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this

section must be in a format that is publicly documented (and with an implementation available

to the public in source code form), and must require no special password or key for unpacking,

reading or copying.

Additional Terms

“Additional permissions” are terms that supplement the terms of this License by making

exceptions from one or more of its conditions. Additional permissions that are applicable to

the entire Program shall be treated as though they were included in this License, to the extent

that they are valid under applicable law. If additional permissions apply only to part of the

Program, that part may be used separately under those permissions, but the entire Program

remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional

permissions from that copy, or from any part of it. (Additional permissions may be written to

require their own removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work, for which you have or can

give appropriate copyright permission.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of appendices. Page 9 of 14

Notwithstanding any other provision of this License, for material you add to a covered work,

you may (if authorized by the copyright holders of that material) supplement the terms of this

License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and

16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in

that material or in the Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified

versions of such material be marked in reasonable ways as different from the original

version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;

or

e. Declining to grant rights under trademark law for use of some trade names,

trademarks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who

conveys the material (or modified versions of it) with contractual assumptions of

liability to the recipient, for any liability that these contractual assumptions directly

impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the

meaning of section 10. If the Program as you received it, or any part of it, contains a notice

stating that it is governed by this License along with a term that is a further restriction, you

may remove that term. If a license document contains a further restriction but permits

relicensing or conveying under this License, you may add to a covered work material governed

by the terms of that license document, provided that the further restriction does not survive

such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant

source files, a statement of the additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately

written license, or stated as exceptions; the above requirements apply either way.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 10 of 14 Section of appendices. Iván Álvarez López

Termination

You may not propagate or modify a covered work except as expressly provided under this

License. Any attempt otherwise to propagate or modify it is void, and will automatically

terminate your rights under this License (including any patent licenses granted under the third

paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright

holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally

terminates your license, and (b) permanently, if the copyright holder fails to notify you of the

violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the

copyright holder notifies you of the violation by some reasonable means, this is the first time

you have received notice of violation of this License (for any work) from that copyright holder,

and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who

have received copies or rights from you under this License. If your rights have been terminated

and not permanently reinstated, you do not qualify to receive new licenses for the same

material under section 10.

Acceptance Not Required for Having Copies

You are not required to accept this License in order to receive or run a copy of the Program.

Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-

peer transmission to receive a copy likewise does not require acceptance. However, nothing

other than this License grants you permission to propagate or modify any covered work. These

actions infringe copyright if you do not accept this License. Therefore, by modifying or

propagating a covered work, you indicate your acceptance of this License to do so.

Automatic Licensing of Downstream Recipients

Each time you convey a covered work, the recipient automatically receives a license from the

original licensors, to run, modify and propagate that work, subject to this License. You are not

responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially

all assets of one, or subdividing an organization, or merging organizations. If propagation of a

covered work results from an entity transaction, each party to that transaction who receives a

copy of the work also receives whatever licenses to the work the party's predecessor in

interest had or could give under the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if the predecessor has it or

can get it with reasonable efforts.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of appendices. Page 11 of 14

You may not impose any further restrictions on the exercise of the rights granted or affirmed

under this License. For example, you may not impose a license fee, royalty, or other charge for

exercise of rights granted under this License, and you may not initiate litigation (including a

cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,

using, selling, offering for sale, or importing the Program or any portion of it.

Patents

A “contributor” is a copyright holder who authorizes use under this License of the Program or a

work on which the Program is based. The work thus licensed is called the contributor's

“contributor version”.

A contributor's “essential patent claims” are all patent claims owned or controlled by the

contributor, whether already acquired or hereafter acquired, that would be infringed by some

manner, permitted by this License, of making, using, or selling its contributor version, but do

not include claims that would be infringed only as a consequence of further modification of the

contributor version. For purposes of this definition, “control” includes the right to grant patent

sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the

contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise

run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or

commitment, however denominated, not to enforce a patent (such as an express permission

to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent

license to a party means to make such an agreement or commitment not to enforce a patent

against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding

Source of the work is not available for anyone to copy, free of charge and under the terms of

this License, through a publicly available network server or other readily accessible means,

then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to

deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a

manner consistent with the requirements of this License, to extend the patent license to

downstream recipients. “Knowingly relying” means you have actual knowledge that, but for

the patent license, your conveying the covered work in a country, or your recipient's use of the

covered work in a country, would infringe one or more identifiable patents in that country that

you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or

propagate by procuring conveyance of, a covered work, and grant a patent license to some of

the parties receiving the covered work authorizing them to use, propagate, modify or convey a

specific copy of the covered work, then the patent license you grant is automatically extended

to all recipients of the covered work and works based on it.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 12 of 14 Section of appendices. Iván Álvarez López

A patent license is “discriminatory” if it does not include within the scope of its coverage,

prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights

that are specifically granted under this License. You may not convey a covered work if you are

a party to an arrangement with a third party that is in the business of distributing software,

under which you make payment to the third party based on the extent of your activity of

conveying the work, and under which the third party grants, to any of the parties who would

receive the covered work from you, a discriminatory patent license (a) in connection with

copies of the covered work conveyed by you (or copies made from those copies), or (b)

primarily for and in connection with specific products or compilations that contain the covered

work, unless you entered into that arrangement, or that patent license was granted, prior to

28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other

defenses to infringement that may otherwise be available to you under applicable patent law.

No Surrender of Others' Freedom

If conditions are imposed on you (whether by court order, agreement or otherwise) that

contradict the conditions of this License, they do not excuse you from the conditions of this

License. If you cannot convey a covered work so as to satisfy simultaneously your obligations

under this License and any other pertinent obligations, then as a consequence you may not

convey it at all. For example, if you agree to terms that obligate you to collect a royalty for

further conveying from those to whom you convey the Program, the only way you could satisfy

both those terms and this License would be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License

Notwithstanding any other provision of this License, you have permission to link or combine

any covered work with a work licensed under version 3 of the GNU Affero General Public

License into a single combined work, and to convey the resulting work. The terms of this

License will continue to apply to the part which is the covered work, but the special

requirements of the GNU Affero General Public License, section 13, concerning interaction

through a network will apply to the combination as such.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Iván Álvarez López Section of appendices. Page 13 of 14

Revised Versions of this License

The Free Software Foundation may publish revised and/or new versions of the GNU General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain

numbered version of the GNU General Public License “or any later version” applies to it, you

have the option of following the terms and conditions either of that numbered version or of

any later version published by the Free Software Foundation. If the Program does not specify a

version number of the GNU General Public License, you may choose any version ever

published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General

Public License can be used, that proxy's public statement of acceptance of a version

permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional

obligations are imposed on any author or copyright holder as a result of your choosing to

follow a later version.

Disclaimer of Warranty

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE

LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE

QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE

DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY

COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM

AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE

THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED

INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Degree Project. Bachelor of Software Engineering. University of Oviedo.
Collaborative Cloud-based Shape Expressions Editor.

Page 14 of 14 Section of appendices. Iván Álvarez López

Interpretation of Sections 15 and 16

If the disclaimer of warranty and limitation of liability provided above cannot be given local

legal effect according to their terms, reviewing courts shall apply local law that most closely

approximates an absolute waiver of all civil liability in connection with the Program, unless a

warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

	Declaration of Honesty in Academic Work
	Copyright disclaimer
	Acknowledgements
	Abstract
	Keywords
	Table of contents
	Table of figures
	1 Summary
	1.1 Introduction
	1.2 Purpose
	1.3 Objective
	1.4 Scope
	1.4.1 Web-based editor
	1.4.2 Real-time collaboration

	2 Project planning
	2.1 Initial planning
	2.1.1 Gantt chart
	2.1.2 List of project tasks

	2.2 Initial budget

	3 Software requirements engineering
	3.1 Software requirements elicitation
	3.1.1 Identified stakeholders and other sources of information
	3.1.2 Elicitation technique: interviews

	3.2 Software requirements analysis
	3.2.1 System actors
	3.2.1.1 Authorised user versus non-authorised user
	3.2.1.2 Owner user versus non-owner user

	3.3 System requirements specification
	3.4 Use cases and scenarios
	3.4.1 Use case 1. Register
	3.4.2 Use case 2. Login
	3.4.3 Use case 3. Logout
	3.4.4 Use case 4. Unregister
	3.4.5 Use case 5. Create a ShEx document
	3.4.6 Use case 6. See the owned ShEx document
	3.4.7 Use case 7. Edit an owned ShEx document
	3.4.8 Use case 8. Add an owner to a ShEx document
	3.4.9 Use case 9.1. Leave the ownership of a ShEx document that the user created
	3.4.10 Use case 9.2. Leave the ownership of a ShEx document invited by another user

	4 Software design and architecture
	4.1 Overview
	4.2 Overall architecture
	4.3 WebSocket server component
	4.4 5 layers architecture
	4.4.1 Routes layer
	4.4.2 Application layer
	4.4.3 Business layer
	4.4.4 Presentation layer
	4.4.5 Persistence layer

	4.5 Structure in deployment
	4.5.1 Deployment of ShareYASHE server
	4.5.2 Deployment of ShareYASHE client

	4.6 Design of the DBMS
	4.6.1 Document-oriented DBMS
	4.6.2 Data model

	4.7 User interface design
	4.7.1 Main intention
	4.7.2 Styles of the application
	4.7.2.1 General style
	4.7.2.2 General layout
	4.7.2.3 Specific layout for the editor actions
	4.7.2.4 External stylesheets

	4.7.3 Possible views
	4.7.3.1 Authenticated versus non authenticated
	4.7.3.2 Concrete views
	4.7.3.2.1 Main view
	4.7.3.2.2 ShEx document editing view
	4.7.3.2.3 Create ShEx document view
	4.7.3.2.4 Unregister view
	4.7.3.2.5 Log-in view
	4.7.3.2.6 Register view

	4.8 Test planning
	4.8.1 Specification-based testing
	4.8.1.1 Equivalence classes
	4.8.1.2 Combination strategy
	4.8.1.3 Test situations
	4.8.1.3.1 Scenario 1. Registration
	4.8.1.3.2 Scenario 2. Login
	4.8.1.3.3 Scenario 3. Create ShEx document
	4.8.1.3.4 Scenario 4. Leave ownership
	4.8.1.3.5 Scenario 5. Add owner

	4.8.1.4 Test cases
	4.8.1.4.1 Scenario 1. Registration
	4.8.1.4.2 Scenario 2. Login
	4.8.1.4.3 Scenario 3. Create ShEx document
	4.8.1.4.4 Scenario 4. Leave ownership
	4.8.1.4.5 Scenario 5. Add owner

	4.8.2 Usability testing
	4.8.3 Accessibility testing

	5 System development
	5.1 Technologies
	5.1.1 ECMAScript ES6 (JavaScript)
	5.1.2 Node.js
	5.1.3 Express
	5.1.4 Yjs framework
	5.1.5 WebSocket (y-websocket)
	5.1.6 Codemirror (y-codemirror)
	5.1.7 YASHE
	5.1.8 MongoDB (y-mongodb-provider)
	5.1.9 dotenv
	5.1.10 body-parser
	5.1.11 Pug.js

	5.2 Tools and programs
	5.2.1 Git
	5.2.2 GitHub
	5.2.3 PowerShell 7
	5.2.4 PlantUML
	5.2.5 IntelliJ IDEA
	5.2.6 Visual Studio Code
	5.2.7 GanttProject

	6 Test development
	6.1 Reporting of the specification-based testing
	6.1.1 Scenario 1. Registration
	6.1.2 Scenario 2. Login
	6.1.3 Scenario 3. Create ShEx document
	6.1.4 Scenario 4. Leave ownership
	6.1.5 Scenario 5. Add owner

	6.2 Usability testing
	6.2.1 Results of task 1
	6.2.2 Results of task 2

	6.3 Accessibility testing
	6.3.1 Summary
	6.3.2 Results
	6.3.2.1 HTML Markup Validation
	6.3.2.1.1 Main view
	6.3.2.1.2 ShEx document editing view
	6.3.2.1.3 Log-in view
	6.3.2.1.4 Register view

	6.3.2.2 CSS Validation
	6.3.2.2.1 Main view
	6.3.2.2.2 ShEx document editing view
	6.3.2.2.3 Log-in view
	6.3.2.2.4 Register view

	6.3.2.3 Mobile Optimization Check
	6.3.2.3.1 Main view
	6.3.2.3.2 ShEx document editing view
	6.3.2.3.3 Log-in view
	6.3.2.3.4 Register view

	6.3.2.4 WAVE test
	6.3.2.4.1 Main view
	6.3.2.4.2 ShEx document editing view
	6.3.2.4.3 Log-in view
	6.3.2.4.4 Register view

	6.3.2.5 aChecker test
	6.3.2.5.1 Main view
	6.3.2.5.2 ShEx document editing view
	6.3.2.5.3 Log-in view
	6.3.2.5.4 Register view

	6.3.2.6 TAW test
	6.3.2.6.1 Main view
	6.3.2.6.2 ShEx document editing view
	6.3.2.6.3 Log-in view
	6.3.2.6.4 Register view

	6.3.2.7 WebAIM Contrast Check
	6.3.2.7.1 Main style
	6.3.2.7.2 Unused links
	6.3.2.7.3 Unused links when hover
	6.3.2.7.4 Used links
	6.3.2.7.5 Used links when hover

	7 System documentation
	7.1 Manual of deployment on premises with Windows
	7.1.1 Install Node.js and NPM
	7.1.2 Install MongoDB and run it
	7.1.3 Obtain the ShareYASHE source code, customise its environment parameters, and run it
	7.1.4 Access from the external network
	7.1.5 Ensure external projection capability
	7.1.6 Open ports
	7.1.7 Get your external address
	7.1.8 Set up a DNS

	7.2 Manual of deployment on the cloud with Linux
	7.2.1 Set up an account in a cloud Website
	7.2.2 Create a cloud machine
	7.2.3 Open ports
	7.2.4 Access the cloud machine
	7.2.5 Install Node.js and NPM
	7.2.6 Install MongoDB and run it
	7.2.7 Obtain the ShareYASHE source code, customise its environment parameters, and run it

	7.3 Developer’s guide
	7.3.1 Define a new route
	7.3.2 Define a new application command
	7.3.3 Define new business methods
	7.3.4 Instantiate new presentation service objects
	7.3.5 Define a new entity

	7.4 User’s manual
	7.4.1 Create an account
	7.4.2 Login into your account
	7.4.3 Create a collaborative ShEx document
	7.4.4 Access your ShEx document
	7.4.5 Share your ShEx document
	7.4.6 Leave the ownership of a ShEx document
	7.4.7 Add an owner to a ShEx document
	7.4.8 Delete your account

	8 Concluding remarks
	8.1 Conclusions
	8.2 Contemplated upgrades

	9 Bibliography
	9.1 Books and articles
	9.2 References on the Internet

	Appendix I. Contents attached to this submission
	Appendix II. GNU Affero General Public License v3.0
	Preamble
	Terms and conditions
	Definitions
	Source Code
	Basic Permissions
	Protecting Users' Legal Rights From Anti-Circumvention Law
	Conveying Verbatim Copies
	Conveying Modified Source Versions
	Conveying Non-Source Forms
	Additional Terms
	Termination
	Acceptance Not Required for Having Copies
	Automatic Licensing of Downstream Recipients
	Patents
	No Surrender of Others' Freedom
	Use with the GNU Affero General Public License
	Revised Versions of this License
	Disclaimer of Warranty
	Limitation of Liability
	Interpretation of Sections 15 and 16

