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Abstract 

 

         The Taylor-Aris chromatographic technique was employed for the determination of 

diffusion coefficients of 2-fluoroanisole, 2-bromoanisole, allylbenzene and 1,3-

divinylbenzene at infinite dilution in supercritical carbon dioxide from 313.16 to 333.16 K 

and pressures between 15 and 35 MPa. As expected, the diffusivities rise when temperature 

increases and pressure decreases. Numerous predictive equations are compared with 

experimental data: Lai-Tan, Liu-Ruckenstein cluster formula, Woerlee, Hipler-Schubert-Troe, 

Catchpole-King, Eaton-Akgerman, He, He-Yu, Liu-Silva-Macedo, Funazukuri and 

coworkers, Dariva-Coelho-Oliveira, Zhu-Lu-Zhou-Wang-Shi and the Liu-Ruckenstein RHS 

formula. The equations of He, He-Yu and Catchpole-King are the best of all, but can not be 

used in the whole range of temperatures and solvent densities. 

 

Keywords: Carbon dioxide; Chromatography; Diffusion; Predictive equation; Supercritical 

fluid 

 

 

mailto:medina@uniovi.es


 2 

1. Introduction  

 

        Binary diffusion in dilute gases is easier to estimate than in liquids or compressed gases. 

When a Lennard-Jones (LJ) intermolecular potential is selected and only binary collisions 

between particles are considered, diffusivities (DAB) can be estimated by the well-known 

Chapman-Enskog formula [1]: 
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where T is the absolute temperature, k the Boltzmann constant, m the mixture numerical 

density, AB  the mean diameter of solute and solvent, calculated as 0.5(A +B) and mAB the 

molecular mass of the binary system, equal to 2mAmB /(mA + mB). The collision integral, (1,1) 

is a function of LJ

ABAB /* kTT = , where LJ

B

LJ

A

LJ

AB  = . LJ and LJ are the two characteristic 

Lennard-Jones parameters. 

 

        Nevertheless, low-density gases are of little interest in industry, where liquids or 

supercritical gases are employed. Among the latter, carbon dioxide plays a very important 

role [2], thus knowledge of binary diffusion coefficients in pure supercritical CO2 is necessary 

for the design of mass transfer operations involving this special fluid [3-9]. Through the 

Taylor-Aris chromatographic dispersion technique these diffusion coefficients (at infinite 

dilution of solute in the solvent) can be measured, but the experiments are always time-

consuming. Therefore, predictive equations like Eq.(1) should be available, but the models 

proposed for estimating diffusivities at infinite dilution are not so rigorous, and many of them 

have limited applicability. The equations considered in this work can be roughly classified 
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into two groups: Stokes-Einstein type (SE) and Rough-Hard-Sphere type (RHS). The first 

class includes Lai-Tan [10], Hipler-Schubert-Troe [11,12], Woerlee [13] and Liu-Ruckenstein 

cluster formula [14]. In the second class there are more equations, related to Dymond free-

volume and molecular simulations: Liu-Silva-Macedo [15], Dariva-Coelho-Oliveira [16,17], 

Liu-Ruckenstein RHS formula [18], Zhu-Lu-Zhou-Wang-Shi [19], Catchpole-King [20], 

Eaton-Akgerman [21], He of 1997 [22], He of 1998 [23], He-Yu of 1997 [24], He-Yu of 1998 

[25], Funazukuri-Hachisu-Wakao [26], Funazukuri-Ishiwata-Wakao [27], Funazukuri-Wakao 

[5] and Funazukuri-Kong-Kagei [5]. 

 

      2-Fluoroanisole, 2-bromoanisole, allylbenzene and 1,3-divinylbenzene are simple 

aromatic molecules and can be employed to evaluate the results of these equations: they do 

not form intra-molecular hydrogen bonds and can not interact with the carbon dioxide. In this 

work, the diffusivities of the four compounds were measured from 313.16 to 333.16 K at five 

pressures between 15 and 35 MPa by the Taylor-Aris technique. 

  

2. Experimental section  

 

         The experimental apparatus and the procedure have been reported elsewhere [6, 28]. As 

in these previous studies, a Hewlett-Packard G1205A supercritical fluid chromatograph (HP 

SFC) was employed. The HP SFC system consists in a pumping module, a column oven, an 

injection valve, a mass flow sensor, a multiple-wavelength UV detector and the SFC 

ChemStation software. The Taylor-Aris dispersion technique is based on the changes 

undergone by a pulse of solute A injected in a solvent B flowing in laminar regime through a 

capillary tube or column. After a long residence time, the pulse of solute becomes a Gaussian 

curve, whose width can be considered a measure of the molecular diffusivity. 
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DAB is the diffusion coefficient at infinite dilution, v0 the average velocity of solvent, r0 the 

radius of the capillary tube and H a chromatographic parameter termed "height equivalent to a 

theoretical plate". For liquids and supercritical fluids, only the negative root of Eq.(2) is 

meaningful [29]. H is directly proportional to the square of Gaussian curve-width at half-

height, W1/2, in time dimensions. The calculation of H also needs the knowledge of tube 

length (L) and residence time (tR). Our equipment automatically measures W1/2 and tR.  

 

       Eqs. (2) and (3) may be applied to coiled pipes with the following restriction [30-34] 

De Sc1/2<10                                                           (4) 

where De and Sc are the Dean and Schmidt numbers, respectively, and are defined as 
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 and  are the viscosity and density of the supercritical carbon dioxide, Re is the Reynolds 

number and rcoil is the coil radius. Tube coiling has practical importance in chemical 

engineering, because the capillary pipes employed in the Taylor-Aris technique are very long 

and if coiling was not possible, the experimental apparatus would be enormous. The 
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chromatographic column is a coiled stainless steel pipe of dimensions 0.762 mm i.d. x 30.48 

m length. The diameter of the coil is 0.26 m. The injection valve is a Rheodyne model 7520 

injector of ultralow dispersion with a 0.2 µl loop. 

 

       The solutes injected in the supercritical chromatograph were purchased from Merck. All 

had a minimum purity of 98%. The carbon dioxide, supplied by Air Liquide had a minimum 

purity of 99.998%. The experiments were carried out at 313.16, 323.16 and 333.16 K and 

pressures of 15, 20, 25, 30 and 35 MPa (which entails densities between 936.1 and 607.1 kg 

m-3).  

 

 

3.  Results and discussion 

 

        Table 1 presents binary diffusion for the four compounds studied, together with density 

and viscosity of carbon dioxide. Each value is the mean of 7-10 measurements. Density was 

calculated with the equation of state of Pitzer and Schreiber [35] and viscosity was taken from 

Stephan and Lucas [36]. At constant temperature, the diffusivity falls when pressure rises, 

because the molecules are more densely packed and can not move easily. On the other hand, 

when pressure is constant and temperature rises, the diffusivities increase, because the thermal 

energy of the molecules increases. The experimental diffusivities ranged from 15.1110-9 to 

7.15 10-9 m2 s-1. 

     

         Table 2 shows the molar mass and van der Waals parameters of the four solutes [37]. As 

RvdW and QvdW are proportional to molecular volume and area, respectively, the ratio in the 
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sixth column of this table is a measure of molecular sphericity, molecules with low values of 

this ratio being less spherical than the others with high values. 

 

         Table 1 shows that 2-bromoanisole is the substance that diffuses more slowly. It is the 

heaviest molecule, but not the biggest, which is in contradiction to the SE approach. Neither it 

is the most spherical.  

 

        At pressures equal to or higher than 25 MPa, allylbenzene has the highest mobility. It is 

the lightest substance of the four, but at 15 MPa it is not the substance with the highest values 

of DAB, which implies that the mass is not the only variable that controls diffusion in the 

density range studied in this work.  

 

        Diffuvities of 1,3-divinylbenzene and 2-fluoroanisole are very similar, although at 15 

MPa, divinylbenzene is faster than fluoroanisole, and the difference increases at higher 

temperatures. This is strange because divinylbenzene is larger, heavier and less spherical than 

the halogenated anisole. 

 

3.1. Models based on Stokes-Einstein formula 

 

3.1.1. Lai-Tan [10]  

 

         It is clear in the literature that the SE equation, in which the group (DABBA/kT)-1 is a 

constant equal to 2 or 3 is not valid in supercritical fluids [32,34,38-42], but the power law of 

Hayduck and Cheng [43] has proven to work well for correlating experimental data. Lai and 
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Tan generalized this for diffusion in supercritical carbon dioxide only, and developing it with 

141 data points of eight solutes.  
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3.1.2. Hippler-Schubert-Troe [12,13] 

 

    These authors proposed an empirical interpolation between the kinetic theory of dilute 

gases and the SE formula.  
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   Mathematical expressions for the collision integrals (1,1) and (2,2) are available in the 

literature [44]. 

   

3.1.3. Woerlee [13] 

 

       The following expression for the viscosity-diffusivity relation was based on the kinetic 

theory: the molecular motion in liquids and dense gases is due to an Eyring-type mechanism, 

and the activation energies for diffusion and viscosity are assumed to be the same. 
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3.1.4. Liu-Ruckenstein cluster formula [14] 

 

       This is based on the work of Cussler [45] who studied the binary diffusion coefficients at 

finite concentration near the consolute points of mixtures. With some variations, Liu and 

Ruckenstein obtained 
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   Eq. (10) is only valid when the solvent is carbon dioxide in the ranges   0.9  PrB  4.8 and 

0.9  TrB  1.1.  

 

3.2. Models based in Rough-Hard-Sphere formula 

 

3.2.1. Liu-Silva-Macedo  15 

 

      By means of the RHS model, Liu, Silva and Macedo developed an equation for 

correlating self-diffusivities of non-associating liquids with two adjustable parameters, 
LJ

B  

and k/LJ

B  [46], and extended this to binary diffusion at infinite dilution. 
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3.2.2. Dariva-Coelho-Oliveira [16,17] 

 

     Dariva, Coelho and Oliveira also developed an equation for correlating self-diffusivities, 

but this only required one adjustable parameter: the molecular diameter, because the 

sensitivity of correlation to the energetic parameter is low.  The equation is extended to binary 

diffusion 

 

         (12) 

 

       This formula does not reproduce the Chapman-Enskog limit in dilute gases. It can be 

simplified in supercritical solvents replacing effective diameters with LJ diameters 47 

because repulsive forces are dominant in these fluids: the tedious calculation of solute density 

in working conditions is then avoided.  

 

 

3.2.3. Liu-Ruckenstein RHS formula [18] 

 

    This is based on the molecular simulation data of Alder et al. for binary diffusion in hard-

sphere mixtures [48,49]. 
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        3.2.4. Zhu-Lu-Zhou-Wang-Shi [19] 

 

       Zhu and coworkers adjusted the molecular simulation data of Rowley and Painter [50] for 

self-diffusion, and extended the expression empirically to binary diffusion.  
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3.2.5. Catchpole-King [20]  
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        This can be applied when 0.4  rB  2.5 and 0.9  TrB  1.25.  
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3.2.6. Eaton-Akgerman [21] 

 

       This semiempirical equation is based on the molecular simulation data of Easteal and 

Woolf. The equation is valid in the ranges 0.35  rB  3.10 and 0.8  TrB  1.1 
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3.2.7. He [22,23] 

 

      In 1997, He proposed for rB  0.21 and 0.92  TrB  1.78 [22] 
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     In 1998, He combined the SE expression with Eq. (17), obtaining [23]       
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      The restrictions are now  0.21  rB  2.62,   0.66  TrB  1.78  and  0.0581  MB  

0.8854. 
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3.2.8. He-Yu [24,25]  

 

     A modification of Eq. (17) was made by He and Yu in 1997 [24]. In 1998, they proposed a 

free-volume-based equation [25] for 0.4  rB  2.5 ,  0.66  TrB  1.78 and 0.0581  MB  

0.8854 
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3.2.9. Funazukuri and coworkers 

 

      Three of these equations are based on the Schmidt number, Sc. Funazukuri et al. [26] 

proposed in 1991 the following empirical equation for the prediction of binary diffusion 

coefficients in supercritical carbon dioxide 
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        Funazukuri et al. [27] elaborated in 1992, with more theoretical bases. 
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valid for VB/(VB)0 >2.24. In the case of self-diffusion, the ratio between collision integrals for 

viscosity and diffusivity is roughly 1.11 in a wide range of reduced temperatures, and the 

authors took this value for binary diffusion (but this supposition is not necessarily correct).  

        In 1995, Funazukuri and Wakao [5] developed an empirical RHS equation for diffusion 

in supercritical carbon dioxide. 
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      From 2000 to date, Funazukuri and coworkers have been widely using the Funazukuri-

Kong-Kagei formula [5,7-9]    
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3.3. Comparison of methods 

 

          For evaluating all the previous models, the molecular weights, critical properties and 

acentric factors are required, but these have only been found for divinylbenzene (in the 

HYSYS database) and carbon dioxide (in the Korea thermophysical properties Data Bank, 

KDB, at website http://infosys.korea.ac.kr/kdb/ ). So, the arithmetic means of two group 

contribution methods for estimating these critical properties have been used: Joback 37 and 

Wen-Qiang 51. The normal boiling temperatures (necessary for calculating critical 

http://infosys.korea.ac.kr/kdb/
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temperatures and acentric factors] were taken from Lide 52] and Merck catalog [53. The 

acentric factors were calculated with the formula of Lee-Kesler 37: 

                                                  

(24) 

        All the properties are compiled in Table 3. For the formulas of Woerlee, Hipler-

Schubert-Troe and Funazukuri, the molecular diameters and/or Lennard-Jones energies for 

solutes and solvent were calculated from Chung’s expressions [37]. On the other hand, in the 

model of Dariva-Coelho-Oliveira, the parameters obtained for correlating carbon dioxide self-

diffusion were employed (3.628310-10 m of diameter and /k=195.2 K). Exactly the same 

was carried out with Liu-Silva-Macedo (3.2619210-10 m and 500.71 K from ref. [46]) and 

Liu-Ruckenstein RHS formula (3.448210-10 m of diameter from ref. [54] and /k by Chung). 

In the Liu-Ruckenstein cluster formula, the recommended values for AB and AB were used, 

except in the case of divinylbenzene, where AB =0.066 and  AB=-0.04 were assigned, 

following the literature for fluid phase equilibria of alkylbenzenes+ carbon dioxide 55,56. 

The AAD of the studied models are presented in Table 4.  

 

        Fig. 1 shows the experimental data of 1,3-divinylbenzene at 323.15 K and the calculated 

values with the SE type equations. The Woerlee expression underestimates the diffusivities of 

the four substances, and Liu-Ruckenstein and Lai-Tan overestimate them. The best equation 

of this group is that of Hippler-Schubert-Troe, but this gives poor results as the pressure 

decreases, as can be seen in Fig. 1.   

 

        Fig. 2 illustrates the experimental diffusivities for 2-fluoroanisole at 323.15 K and the 

values calculated with the RHS type equations. The predictions of the equation of 



 15 

Funazukuri-Ishiwata-Wakao and Funazukuri-Wakao are not plotted because of the 

overestimation of experimental results. Nevertheless, if in Eq. (22) effective diameters are not 

taken for solute or solvent, the AAD decreases nearly to 10%, and if in Eq. (21) the collision 

integral for self-diffusion is employed instead of the corresponding integral for binary 

diffusion, the errors are of the same order.  

 

        The equations of He-Yu of 1997 and 1998 yield very similar numerical results and only 

one of them is represented. It can be observed that the formula of He of 1997 is very similar 

to these but the expression proposed by this author in 1998 gives higher AAD’s for all 

substances except for 2-bromoanisole. The equations of Catchpole-King and Eaton-Akgerman 

are also good, with AAD´s lower than 10%. 

 

 If the parameter values involved in some correlations are adjusted from experimental 

data, the accuracies become highly improved, as can be seen in Table 5, and the errors are of 

the same order of magnitude as the previously mentioned formulae. 

 

 

4. Conclusions  

 

        Binary diffusivities of 2-fluoroanisole, 2-bromoanisole, allylbenzene and 1,3-

divinylbenzene in supercritical CO2 were determined at 313.15, 323.15 and 333.15 K and 

pressures of 15, 20, 25, 30 and 35 MPa by the chromatographic dispersion technique. The 2-

bromoanisole, the heaviest of the studied substances, has the lowest values of DAB in all the 

experimental conditions, but the diffusion coefficients of the other two compounds do not 

follow this simple mass dependence.  
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      Concerning predictions, the free-volume based equation of Catchpole-King gives the best 

results: its maximum deviation is 7.03% for allylbenzene. The two equations of He and He-

Yu, and the expression of Eaton-Akgerman are also good. 

 

 

Listo f symbols 

  

AAD average absolute deviation 

bi molar excluded volume of the i component  (m3 mol-1) 

c numerical constant 

DAB  binary diffusivity (m2 s-1)  

De Dean number 

e parameter of the Eaton-Akgerman equation 

FAB mathematical function related with binary diffusion at infinite 

dilution  

F  corrective factor in the Liu-Ruckenstein cluster formula  

g() radial distribution function  

H height equivalent to a theoretical plate (m) 

ID coupling parameter 

k Boltzmann constant =1,380658.10-23 J K-1molecule-1 

L length of the Taylor-Aris tube, m 

LJ Lennard-Jones 

M molar mass (kg mol-1) 

m molecular mass (kg molecule-1) 
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Nav Avogadro number  

P pressure (Pa) 

QvdW van der Waals surface parameter 

rcoil coil radius 

r0 radius of the Taylor-Aris tube 

R gas constant =8.314 J mol-1 K-1 

RvdW van der Waals volume parameter 

Re Reynolds number 

Sc Schmidt number 

tR retention time (s)  

T absolute temperature 

v0 average velocity of a fluid in the Taylor-Aris pipe (m s-1)  

V molar volume (mol m-3) 

(VB)0 close-packed volume of the solvent (m3 mol-1) 

W1/2 curve-width at half-height (s) 

x molar fraction  

X parameter of the Catchpole-King equation 

y packing factor 3)6/( =  

Y parameter of the Catchpole-King equation 

 

 

Greek letters 

 

 parameters of the He and He-Yu equations 

 molecular energy (J molecule-1) 

 parameters of the He and He-Yu equations 
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 Peng-Robinson fugacity 

  viscosity (kg m-1 s-1) 

 interaction parameter in the Peng-Robinson equation 

 number density (molecules m-3)  

 molecular diameter (m) 

 acentric factor 

 interaction parameter in the Peng-Robinson equation 

(n,n) collision integral. When n=1, this refers to diffusion, and when n=2, 

this refers to viscosity.  

 

Superscripts 

eff Effective 

LJ Lennard-Jones 

vdW van der Waals 

0 low-density conditions 

* molecular-reduced property 

 

Subscripts 

 

A Solute 

b normal boiling point 

B Solvent 

c critical conditions 

m Mixture 

r reduced property with respect to critical conditions 
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FIGURES 

 

Fig. 1.  Binary diffusivities of 1,3-divinylbenzene in carbon dioxide at 323.15 K as a function 

of pressure. Symbols represent experimental data and lines are the calculated values with the 

models based on the SE formula:(···············) Lai-Tan, (                      ) Woerlee, (---------) 

Liu-Ruckenstein cluster, (                 ) Hippler-Schubert-Troe. 
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Fig. 2.  Binary diffusivities of 2-fluoroanisole in carbon dioxide at 323.15 K as a function of 

pressure. Symbols represent experimental data and lines are the calculated values with the 

models based on the RHS model: (                ) Catchpole-King,   (−•−•−) Eaton-Akgerman, 

(−−−) He-Yu of 1997,  (⎯  ⎯  ⎯  ⎯) Funazukuri-Hachisu-Wakao, (   ) 

Funazukuri-Kong-Kagei, (••••••) Liu-Ruckenstein RHS, (⎯⎯   ⎯⎯) Liu-Silva-Macedo, 

(−,+,−,+,−) Zhu-Lu-Zhou-Wang-Shi, (                   ) He  of 1998,   (  ) Dariva-

Coelho-Oliveira.  
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TABLES 

Table 1 

Experimental DAB values (10-9 m2s-1) and wavelengths at which the data were measured 

 

P    

 (MPa) 

T   

 (K) 

 

(kg m-3) 

 

(10-3 kg m-1 s-1) 

2-fluoroanisole 

(236 nm) 

2-bromoanisole 

(250 nm) 

allylbenzene 

(260 nm) 

1,3-divinylbenzene 

(309 nm) 

15.0 313.16 781 0.0672 10.20 ± 0.12 9.46 ± 0.13 10.29 ± 0.10 10.26 ± 0.27 

15.0 323.16 700.8 0.0571 12.47 ± 0.29 11.52 ± 0.32 12.25 ± 0.30 12.79 ± 0.72 

15.0 333.16 607.1 0.0476 14.30 ± 0.17 12.76 ± 0.42 14.11 ± 0.36 15.11 ± 0.94 

20.0 313.16 840.8 0.0772 9.27 ± 0.14 8.66 ± 0.24 9.11 ± 0.12 9.44 ± 0.34 

20.0 323.16 784.9 0.0688 10.47 ± 0.28 10.15 ± 0.25 11.15 ± 0.32 10.56 ± 0.45 

20.0 333.16 724.6 0.0598 12.26 ± 0.26 11.90 ± 0.29 12.22 ± 0.17 12.07 ± 0.42 

25.0 313.16 880.7 0.085 8.69 ± 0.09 7.92 ± 0.18 8.93 ± 0.14 8.69 ± 0.27 

25.0 323.16 835 0.077 9.89 ± 0.11 9.08 ± 0.19 10.02 ± 0.17 9.71 ± 0.39 

25.0 333.16 781.2 0.0687 10.97 ± 0.12 10.64 ± 0.15 11.46 ± 0.22 11.11 ± 0.36 

30.0 313.16 911.2 0.0931 8.01 ± 0.10 7.48 ± 0.07 8.29 ± 0.14 8.07 ± 0.19 

30.0 323.16 871.4 0.0851 9.14 ± 0.06 8.52 ± 0.23 9.35 ± 0.16 8.94 ± 0.09 

30.0 333.16 830.5 0.0738 10.33 ± 0.08 9.45 ± 0.18 10.51 ± 0.45 9.95 ± 0.27 

35.0 313.16 936.1 0.1023 7.68 ± 0.08 7.15 ± 0.05 7.67 ± 0.16 7.69 ± 0.16 

35.0 323.16 900 0.0915 8.65 ± 0.15 7.98 ± 0.16 9.01 ± 0.14 8.54 ± 0.12 

35.0 333.16 864 0.0839 9.67 ± 0.14 8.98 ± 0.20 9.87 ± 0.10 9.47 ± 0.25 
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Table 2 

Mass and van der Waals parameters of the studied substances 

 

Substance Formula 
M 

(10-3 kg mol-1) 
RvdW QvdW 3/1vdW

vdWvdW

)(

)/(

R

QR

 

2-fluroanisole C7H7FO 126.13 4.3302 3.332 0.7973218 

2-bromoanisole C7H7BrO 187.04 4.9498 3.760 0.7724504 

allylbenzene C9H10 118.18 5.0415 3.836 0.7664690 

1,3-divinylbenzene C10H10 130.19 5.5464 4.192 0.7474569 

 

 

 

 

Table 3 

Properties of the studied substances 

 

Substance 
Tc 

(K) 

Tb 

(K) 

Pc  

(MPa) 

Vc 

 (10-6 m3 mol-1) 
 

2-fluroanisolea 644.81 427.66 3.811 328.87 0.3199 

2-bromoanisolea 737.58 489.16 4.004 378.05 0.3371 

allylbenzenea 639.86 429.16 3.350 419.80 0.3188 

1,3-divinylbenzene b 692.06 472.66 3.120 440.00 0.3734 

carbon dioxidec 304.14 216.55 7.375 94.00 0.2390 

       
a  Average of values estimated from group contribution methods. 
b  HYSYS data base. 
c  KDB. 

 

 

 

 

 

 

 

 

 

 



 29 

Table 4 

AAD (%) in pure carbon dioxide 

 

Equation 2-fluoroanisole 2-bromoanisole allylbenzene 1,3-divinylbenzene 

Lai-Tan 26.66 30.69 16.33 16.58 

Liu-Ruckenstein cluster 17.53 19.33 7.74 10.43 

Woerlee 9.94 13.19 24.13 26.04 

Hippler-Schubert-Troe a 17.60 19.54 7.56 6.69 

Catchpole-King 5.18 4.30 7.03 6.10 

Eaton-Akgerman 2.71 4.32 9.13 9.00 

He of 1997 3.41 10.91 4.64 1.83 

He of 1998 6.50 8.20 8.37 5.00 

He-Yu of 1997 4.04 11.91 4.67 3.09 

He-Yu of 1998 3.63 11.93 4.25 2.81 

Funazukuri-Hachisu-Wakao 7.49 17.33 9.81 5.33 

Funazukuri-Ishiwata-Wakao b 20.23 39.05 22.30 20.05 

Funazukuri-Wakao c 60.69 60.87 54.92 52.61 

Funazukuri-Kong-Kagei 11.86 9.23 5.61 2.87 

Liu-Ruckenstein RHS 25.32 26.65 11.67 9.08 

Liu-Silva-Macedo 7.54 10.69 11.60 17.20 

Zhu-Lu-Zhou-Wang-Shi 18.73 15.73 10.57 8.73 

Dariva-Coelho-Oliveira 5.33 7.31 12.57 13.16 

 

a  LJ

A

SE

ABB

3


=










D

kT
. If the value of 2 is used instead of 3, the AAD rises avobe 60%. 

 

b   If 
)1,1(

B is used instead of 
)1,1(

AB  the AAD is roughly reduced to the half.  

 

c   If  
eff

AB is replaced by
vdW

AB , AAD is six times lower. 
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Table 5 

Fitted parameters of some equations and AAD (%) of the new formulae 

 

Equation Change 2-fluoroanisole 2-bromoanisole allylbenzene 1,3-divinylbenzene 

Lai-Tan 2.2710-14 instead of 2.7710-14 3.91 7.22 4.63 4.35 
Liu-Ruckenstein cluster f = constant= 2.28 3.96 3.24 6.58 6.31 
Liu-Ruckenstein RHS ID= constant= 0.821 6.32 7.66 5.39 6.87 
Funazukuri-Hächisu-Wakao -1.399 and 1.593 instead of -1.4 and 1.48 3.80 7.11 3.88 4.44 

 


