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Abstract 

This paper presents a new method to obtain an approximation of the field of movements of a 1-

DOF linkage with lower pairs. The method is based on a linkage representation by natural 

coordinates and the storage of the constraint equations by means of a sparse cubic matrix. To 

obtain a discrete approximation of the field of movements, a three-stage process is used. In the 

first stage, a special Evolution Strategy is applied to make the population converges towards the 

zones where the constraints error is minimal, obtaining, at the same time, a good distribution of 

individuals. In the second stage, the final individuals of the ES are used as initial points for a 

derivative algorithm to obtain a greater accuracy. Later, the third stage is a filtering process to 

eliminate individuals that represent non-desired solutions. This method has been tested on simple 

linkages with well-known fields of movements, generating comprehensive outcomes that justify 

the validity of the method. 
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1 Introduction 

The direct position problem of a linkage consists of calculating the position of all 

its elements when the value of the degrees of freedom (DOFs) is known [9]. Two 

approaches to pose this problem exist. The geometric approach, which is the most 

used, is based on considering every element of the linkage as an independent 

solid, obtaining its position in the space from the solution of the equations which 

are imposed by the geometric constraints [9]. The energy-approach is based on the 

finite elements and it applies finite elements techniques to solve the kinematic 

problems [3, 4]. This approach is not discussed in this paper. 

In the case of the geometric approach, the equations that define the linkage are 

nonlinear. As a result, the direct position problem usually has several possible 

solutions and even, in some cases, it has no solution. 

To solve the nonlinear system of equations which the geometric approach to the 

position problem generates, different methods can be used. Newton’s method is a 

direct method which has quadratic convergence in the neighbourhood of each root 

and is easy to implement. This method needs the Jacobian matrix of the system to 

be known. In this method, it is very important to have a good starting point since 

the success of the algorithm depends on this [13]. Other approaches are indirect 

since they turn the problem of obtaining the roots of the system into a 

minimization problem of an error function that measures the non-fulfilment of the 

system’s equations. Therefore, different optimization methods can be used. These 

methods can be classified according to the order of the derivatives that they use. 

Then, we can distinguish between the first order methods, which use the 

gradient’s information of the function error and the second order methods, which 

also use the information of the Hessian matrix. All these methods always need a 

starting point and they provide only one of the multiple solutions that are possible 

for the direct position problem. 

The possible solutions that the position of a linkage can have can come from two 

situations. The first situation is to place an element of the linkage in a different 

position without affecting the rest of the linkage. An example of this is the 

triangular element 2-3-5 in the four-bar linkage of the Fig. 1.a which can also be 

placed in position 2-3-5’. The other possible situation is the existence of more 

than one possibility of assembly of the linkage as is shown in Fig. 1.b. 
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Fig. 1 Multiplicity of solutions in direct position problem 

The multiplicity of solutions shown in Fig. 1.b generates different branches of 

operation in the linkage. These branches can cut each other causing singular 

configurations that complicate the linkage simulation. A classification of the types 

of singular configurations can be seen in [23] and [2]. In the singular 

configurations, some branches converge into one creating a multiple root of the 

system of equations. At these points, the Jacobian matrix of the equations’s 

system is ill-conditioned and a method like the Newton one would lose accuracy. 

Moreover, there is the possibility that a non desired branch of movement is 

selected to continue the finite displacements problem. 

For this reason, a method to obtain an approximation of the complete field of 

movements of a linkage without deforming its elements would be desirable. 

Furthermore, the method would be immune to the existence of singular 

configurations in this field. 

The paper is organized as follows: In section 2, the modelization by means of 

natural coordinates of lower-pair linkages and its representation by means cubic 

matrix are shown. In section 3, the method to obtain a discrete approximation of 

the field of movements of a linkage is shown. In section 4, some examples of the 

use of the method are shown. Finally, some conclusions about the new 

representation of linkages and the method proposed to obtain its field of 

movements are shown in section 5. 
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2 Modelization and representation of linkages 

The definition of a linkage can be made by a set of coordinates which will be the 

parameters that completely define the position of all its elements. Consequently, 

the variation of these parameters regarding the time describes the movement of 

the linkage [9]. 

The choice of these coordinates has great importance since it sets the modelization 

rules, the number and the complexity of the equations and other factors. 

There exist different methods to modelize linkages. Some methods are based on 

finite elements [3, 4] and they show the advantage of a simple representation of 

the linkage by means of a geometric matrix. This matrix is derived from the 

stiffness matrix of the linkage if it were modelized as a truss and it condenses all 

the geometric information about the linkage. 

Moreover, there exist the modelizations mentioned in [9] where the independent 

and dependent coordinates are described.  The independent coordinates represent 

a classic approach for the linkages analysis while the dependent coordinates 

generate a system of nonlinear constraint equations that is better adapted to 

numerical computation. At the same time, the dependent coordinates can be 

classified as relative coordinates, reference point coordinates and natural 

coordinates. 

The natural coordinates or fully Cartesian are an evolution of the reference point 

coordinates [8] where the reference points are moved to the pairs to avoid the use 

of angular variables to define the elements’ orientation. They have been selected 

to this research because they have a simple and systematic definition of the 

constraint equations and a smaller number of coordinates and equations than the 

reference point coordinates. 

2.1 Basic points and constraint equations 

The modelization in natural coordinates has two basic steps. The first step is the 

definition of the linkage’s elements by means of basic points and the second step 

is the construction of the constraint equations. 

The basic points are situated in accordance with rules specified in [9] and their 

Cartesian coordinates will completely define the linkage position. To define a 

linkage in this particular application, the Cartesian coordinates of the basic points 
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will be exclusively used avoiding the use of angles. This eliminates the use of 

mixed coordinates because they generate trigonometric nonlinearities in the 

constraint equations and, as will be shown later, it is incompatible with the 

approach by means of cubic matrix representation. 

The construction of the constraint equations is made in accordance with rules 

specified in [9] and can be extended both to planar linkage and to spatial ones. In 

Fig. 2, three examples of constraints equations in a planar linkage are shown. 

 

Fig. 2 Examples of constraint equations in 2D 

The posed constraint equations exclusively describe the linkage’s geometry with 

lower pairs and they depend on a set of coordinates (stored in a vector x ) where 

the DOFs are included. Then, the system of constraint equations has more 

unknowns than equations and it is undetermined. In exchange, the solutions of this 

system are all the undeformed possible positions of the linkage, it means, the 

complete field of movements of the linkage. 

It is worth noting that all the constraint equations in Fig. 2 are nonlinear but they 

have a common structure. They are quadratic and are composed with second order 

terms in which a constant multiplies a product of two variables and there can also 

exist independent terms. If trigonometric terms were included, there would not be 

a common and simple structure. 

2.2 Cubic matrix representation 

The common structure of the posed constraint equations allows the left side of 

each equation to be represented in the way shown in Fig. 3. In this figure, a 

multidimensional matrix is posed with as many dimensions as the maximum order 

of the products among variables (2 in the example). In each dimension, the 
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number of generated cells is the number of variables in the equation plus one cell 

more for the lower order terms ( in the example in Fig. 3, these lower order terms 

are in the last row and column).  The variables have to be ordered in a similar way 

in all the dimensions. In the cell corresponding to the intersection of a pair of 

certain variables, the factor that multiplies this product in the equation is stored. 

The area below the main diagonal is empty to indicate that it must not be used to 

avoid the data being duplicated due to the commutative property of the product. 

 

Fig. 3 Representation of a constraint equation 

When it is necessary to represent a system of equations, a multidimensional 

matrix with one more dimension than the matrix used to represent an equation is 

used. In this case, as the equations are quadratic, they are represented by means of 

a two dimensional square matrix and the system is represented by means of a 

three dimensional matrix or cubic matrix. The divisions of the additional 

dimension are called pages and they allow the coefficients of every equation to be 

represented. An example of it can be seen in Fig. 4 where only the coefficients 

different to zero are shown. 

2.2.1 Storage 

As can be seen in the example of Fig. 4, most of the cells of the cubic matrix 

contain a zero value. Therefore, it is not necessary to store the values of these 

cells, in a similar way to the finite element method (FEM). The difference with 

regard to that method is that in FEM it is only necessary to store the upper semi-

band of a square stiffness matrix while in the cubic matrix representation the 
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elements different to zero can be in any position. For this reason, the sparse matrix 

storage technique is proposed. This technique lies in storing the position of the 

cell and its value in a two dimensional matrix of 4 columns (the three first 

columns for the position of the cell and the fourth for the value) and as many rows 

as cells whose content is not zero. 

2.2.2 Evaluation 

The evaluation of the constraint equations can be made in a direct way with the 

algorithm whose pseudocode is shown as follows: 

 

Input:  m  (Sparse cubic matrix with linkage data) 

  x  (Vector of coordinates) 

Output: f  (Vector with the evaluations of equations’ left side) 

 

Step 1:  Initialization: Set the number c  of rows of m . Initialize vector f  

to zero. Extend the vector of variables: [ ,1]=y x  

Step 2:  Main loop: For 1i =  to i c=  

1 1 2 3 4i i i i i= + ⋅ ⋅m m m mf f y y m  

 

Fig. 4 Modelization, representation and data storage 
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2.2.3 Jacobian matrix calculation 

The calculation of the Jacobian matrix is also direct, taking advantage of the 

proposed storage structure.  The pseudocode of the algorithm that makes this 

calculation is shown as follows: 

 

Input:  m  (Sparse cubic matrix with linkage data) 

  x  (Vector of coordinates) 

Output: jac  (Jacobian matrix evaluated onx ) 

 

Step 1:  Initialization: Set the number c  of equations and the number n  of 

variables. Initialize matrix jac  to zero. Extend the vector of 

variables: [ ,1]=y x  

Step 2:  Main loop: For 1i =  to i c=  

a) Extract the rows ceq  of m corresponding to the equation i  

b) Calculate the number of rows nc  of ceq  

c) For 1j =  to j n=  

  For 1k =  to k nc=  

   if 2k j=ceq  

    
34 kij ij k= + ⋅ ceqjac jac ceq y  

   end 

   if 3k j=ceq  

    
24 kij ij k= + ⋅ ceqjac jac ceq y  

   end 

The Jacobian matrix is calculated with regard to every coordinate. Later, the 

columns corresponding to the constant coordinates have to be eliminated. 

3 Method description 

The system of m  constraint equations that define the linkage can be expressed in 

the following way: 

( ) =Φ x 0  (1) 
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where x  is the vector of natural coordinates and each one of the m  components 

of (1) is the value of the left side of each constraint equation. 

The problem consists of finding the infinite solutions of the system (1) when the 

value of the DOFs in the formulation has not been introduced. This problem is 

especially interesting in 1-DOF linkages because these infinite solutions of the 

system represents the complete field of movements of the linkage, it means, every 

possible path of the linkage. In n-DOF linkages, like robots, these infinite 

solutions represent the workspace of the robot. 

There exist different methods to approximate this set of solutions such as the 

continuation methods [1, 16] and the bifurcation methods [11, 12]. On the other 

hand, the optimization methods based on a populational approach like the genetic 

algorithm with operators that favour the distribution of the population [10], show 

a special adaptation to this problem. Therefore, it is proposed to reformulate the 

problem of obtaining the set of roots of (1) as a minimization problem of an error 

function which measures the non-fulfilment of the constraint equations: 

( )2

1

m

j
i

error
=

=∑Φ x  (2) 

It can be observed that the error has a similar structure to that of the least squares 

adjustment. To solve this problem, the Gauss-Newton method can be used. This 

method uses the knowledge of the Jacobian matrix to decide the search direction. 

This method is characterized by its efficiency [17]. It is also possible to use the 

Levenberg-Marquardt method [5, 15] in which the search direction is a cross 

between the Gauss-Newton direction and the direction of the gradient-descent 

method [21], being less efficient but more robust than the Gauss-Newton method. 

Both methods need the evaluation of the constraint equations and the Jacobian 

matrix of the system whose values can be easily computed with the representation 

indicated in Section 2. 

The fact that there exist infinite solutions to the problem makes it has a great 

similarity with the problem of getting the Pareto optimal front by means of 

multiobjective evolutive algorithms [14]. These algorithms try to approximate this 

front by means of finite population P  of solutions x  (called individuals). The 

difference is that, in this case, the decision space has only one dimension (the 

error of each solution trying to fulfil the constraint equations) and the 
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homogeneous distribution of solutions must be obtained in the search space. This 

means that the posed problem does not fit any of the existent types of 

multiobjective problems since in this case the final aim is the population in the 

search space and not in the decision space. 

Then, the proposed method tries to approximate all the existing branches of 

movement of a 1-DOF linkage in a simultaneous process by means of a 

population of individuals that are distributed the most homogeneously possible. 

Branch of movement refers to one the two possible situations indicated in Fig. 1.b. 

The method has three sequential stages: 

1. Approximation 

 Its aim is to get a population as well-distributed as possible and where the 

individuals have the smallest possible error using a special Evolution Strategy 

(ES). 

2. Refinement 

 Its aim is to reduce to the minimum the error of the population’s 

individuals obtained in the first stage by means of the Levenberg-Marquardt least 

squares method. 

3. Filtering 

 Its aim is to eliminate, by means of a filtering process, the individuals of 

the population which belong to branches of operation that produce non-desired 

configurations in some elements of the linkage or that represent linkages that are 

impossible to carry out in real applications.  

3.1 Stage 1: Approximation 

In this stage, an Evolution Strategy [20] of type ( ), ESμ μ − is used. This ES is 

based on the Discrete Directions Mutation Evolution Strategy (DDM-ES) [19] and 

on the Hybrid Evolution Strategy (H-ES) [18]. 

This ES exclusively uses the mutation operator which is applied to every 

individual of the population (called parent), generating an offspring to replace 

itself, according to the following expression: 

offspring parent v= + ⋅x x d   (3) 

where v  is the mutation step that is randomly generated according to a Gaussian 

distribution of mean 0 and standard deviation σ  (called mutation strength). 
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To decide the direction of the mutation of each individual (d ), an additional 

knowledge about the objective function is used since the gradient vector of the 

error function has the following expression: 

1 n

error errorerror
⎡ ⎤∂ ∂

∇ = ⎢ ⎥∂ ∂⎣ ⎦x x
L  (4) 

being 

( ) ( ) ( )2 2 i
i i

i ij j j

error ∂Φ∂ ∂
= = ⋅ ⋅

∂ ∂ ∂∑ ∑
x

Φ x Φ x
x x x

 (5) 

The construction of the gradient vector depends exclusively on values of the 

evaluations of the equations and on the derivatives contained in the Jacobian 

matrix. These values are easily calculated by means of the sparse cubic matrix 

representation of the constraint equations shown in Section 2. 

However, to get a distribution of individuals as homogeneous as possible, the 

direction of mutation in one individual (originally opposed to the gradient vector) 

is modified with the resultant of the repulsion forces that the rest of the 

individuals of the population exert on the individual that acts as parent. The 

resultant force has the following expression: 

i j
i

j i i j

k β
≠

−
= ⋅

−
∑

x x
R

x x
  (6) 

where the subscript i  is applied to the parent and the subscript j  is applied to the 

rest of individuals in the population. The constant k  is called repulsion multiplier 

and it allows the repulsion force to be scaled while the constant β  is called 

repulsion exponent and it controls the way in which the distance between 

individuals affects the repulsion force. 

The unit vector that indicates the corrected mutation direction is constructed as 

follows: 

i i
i

i i

error
error

−∇ +
=
−∇ +

Rd
R

  (7) 

An example of the process described above can be seen in Fig. 5. 
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Fig. 5 Graphical example of repulsion forces and direction of mutation in 2 dimensions 

Due to the fact that every variable in the search space cannot have the same range 

of variation, it is proposed to normalize all the ranges to the range [0,1] forming 

an auxiliary space called workspace where evolution process happens. When the 

individuals need to be evaluated, a scaling process has to be done to carry them to 

the search space. The expression for this process is the following: 

( )k k k k k′= + − ⋅x l u l x   (8) 

where x  is the vector that represents the individual in the search space, ′x  is the 

vector that represents the individual in the workspace, l  is the vector that contains 

the lower bound of the variables and u  is the vector with the upper bound of the 

variables. Moreover, as the unit vector d  refers to the search space, it must be 

also normalized to the workspace in order to use it in the mutation. 

The normalization of the individuals to the workspace is also used to set a single 

common mutation strength σ . This mutation strength has a dynamic control 

which decreases the value of σ  with the number of generations according to the 

next expression:  

( )1 inis c sσ σ= ⋅ + −  (9) 

being 

1
end inis
g

σ σ−
=

−
  (10) 
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where 1c  is the number of the current generation, g  is the number of total 

generations to make, iniσ  is the mutation strength to apply in the initial generation 

and endσ  is the mutation strength to apply in the final generation. The mutation 

strength diminishes in a linear way with the generations. 

The selection operator has no sense in this ES because it is desired that the whole 

population converges towards the solution, covering it with a homogeneous 

distribution. It does that this ES really works as μ  evolution strategies of type 

( )1,1 ES−  together. 

There also exists an auxiliary operator which generates independent individuals to 

complete the population if the offspring is situated out of the workspace (repair 

operator). These independent individuals are randomly generated by the repair 

operator according to a uniform distribution in the workspace. 

The flowchart of this Stage can be seen in Fig. 6 and the following explanations 

must be given: 

• The initial population is randomly generated according to a uniform 

distribution in the workspace. The population size μ  is defined by the 

user. 

• The evaluation of the population entails the previous scaling process of the 

individuals to the search space and it includes the calculation of the error 

made on the fulfilment of the constraint equations and the calculation of its 

gradient. 

• 1c  counts the number of generations executed by the algorithm. The total 

number of generations g  is previously defined by the user. 

• The final mutation strength endσ , the repulsion multiplier k  and the 

repulsion exponent β  are defined by the user. 

• 2c  counts the number of individuals of the population on which the 

offspring, which replaces its parent, has already been generated. 

• The repair operator acts when the offspring generated by mutation does 

not belong to the workspace and it replaces the parent with an independent 

individual. 
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Fig. 6 Flowchart of Stage 1 algorithm 

3.2 Stage 2: Refinement 

In this stage, the individuals of the final population of Stage 1 are scaled to the 

search space and used as initial points to a least squares adjustment algorithm. 

This algorithm carries out a minimization process on the sum of least squares of 

the evaluation of constraint equations shown in Eq. (2), applying the Levenberg-

Marquardt method with line search by means of mixed quad-cubic interpolation 

[15]. 

This algorithm demands the knowledge of the Jacobian matrix of the system of 

constraint equations which is easily computed by means of the sparse cubic matrix 

representation shown in Section 2. 

The algorithm used converges towards the point of the set of solutions closest to 

the initial point and as the initial approximations are well-distributed, a quite 

homogeneous covering of the set of possible positions of the linkage is obtained. 

3.3 Stage 3: Filtering 

The refined population approximates the whole set of mathematical solutions 

which minimizes the error. If the elements of the linkage do not suffer 

deformations, the associated error to this configuration is 0. However, it is 

possible that with certain dimensional parameters, the linkage has no undeformed 
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solution and then the method converges to the solution with smallest error in the 

constraint equations (that is not the least deformed solution as is shown in [4]). In 

this case, it is necessary to introduce a filtering process to identify or eliminate 

these types of solutions. 

Moreover, it can also be desirable to eliminate the configurations of the linkage 

where some elements (defined by three points) have a specific orientation or that 

the mobile point in a slot keeps itself between the two edges that define the slot. 

All these filtering criteria can be used to adjust the output of the method to the 

user’s wishes and to facilitate its utilization.  

3.4 Parameter setting 

The population size μ  is chosen by taking into account the complexity expected 

in the field of movements of the linkage. The greater the expected number of 

branches of movement, the bigger must be the population size. When a better 

definition of the movement’s branches is desired, the population size must also be 

increased. However, great population sizes slow down the speed and even stop the 

convergence. The reason for this behaviour is that in the initial stage, the 

repulsion forces come from every direction and their effect are almost cancelled. 

When the population has a certain clustering, the repulsion forces are very strong 

and they stop the convergence. The experimental tests carried out showed that μ  

values between 300 and 2000 produce good results. 

The number of total generations g  is chosen to make the individuals of the final 

population have a small enough error and, therefore, the refinement process will 

be as fast as possible. Obviously, the greater the number of total generations, the 

smaller the error of the individuals. However, an unjustified increase in g  makes 

Stage 1 be too long, without obtaining practical improvements. In experimental 

tests, 100 generations have been used obtaining good results. 

The mutation strength for the initial generation iniσ is calculated with the 

following expression: 

1

1
2

n

ini
nσ

μ
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠

 (11) 
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where n  is the number of variables. This expression is similar to the one used in 

DDM-ES [19]. The choice of the mutation strength for the final generation 

endσ depends on the accuracy desired. The value of endσ  must be smaller than 

iniσ . However, a very small value of endσ  can slow down the convergence of the 

ES in the first Stage.  In the tests carried out, and with 100 generations, a value of 

endσ  approximately 100 times smaller than iniσ  generates good results. 

The value of the repulsion multiplier k  depends on the population size. If there is 

a big population size, a small value of k must be chosen to avoid the repulsion 

hindering the algorithm convergence and vice versa. In the tests carried out, 

values between 1 and 0.01 were used depending on the problem. For the repulsion 

exponent β , the value 1 is usually chosen although in some cases it is observed 

that with a value of 2, better results are obtained but it depends on the number of 

variables and on their ranges in the search space since both values define the 

magnitude of the distance between individuals. 

4 Examples 

4.1 Four bar linkage 

One of the most studied planar linkages is the four bar linkage. In spite of being a 

very easy linkage, depending on the dimensions of its elements, it can produce 

some singular configurations that hinder its simulation. In this example it is 

proposed to study all the possible paths of the point 5 in the coupler shown in Fig. 

7. 
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Fig. 7 Four bar linkage and discrete approximation of its field of movements 

In the first example, the dimensional parameters shown in Fig. 7 are used and the 

space of movement for the linkage has the following limits: 

[ ]x -10,10∈  

[ ]y -10,10∈  

This space of movement determines the lower and upper limits of each variable to 

be optimized in the Stage 1 of the proposed method. 

The population size is 300 and it evolves during 100 generations with a endσ  of 

0.005. The value of the repulsion multiplier k  is 1 and the repulsion exponent β  

is 2. 

In Fig. 7, the set of 300 refined solutions can be seen projected on the hyperplane 

corresponding to the coordinates of point 5. It is also possible to see the 

configurations corresponding to two different solutions. The set of undeformed 

possible solutions is symmetric with regard to the X axis and the four different 

possible paths of point 5 do not cut each other avoiding the appearance of singular 

configurations. A path can cut itself and this situation does not produce a singular 

configuration. 

To check the behaviour of this method in the presence of singular configurations, 

the dimensional parameters of the linkage are modified to construct a 

parallelogram. The new parameters can be seen in the corresponding table in Fig. 

8.a. The parameters of the method for the Stage 1 will be the same as in the last 

example. 

 

Fig. 8 Discrete approximation of the field of movements of 4-bar linkage with different 

dimensions 
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In Fig. 8.a, it can be noticed that the two possible paths of point 5 (one path is a 

circumference and the other path is a loop) cut each other at four points (ignoring 

the fact that there are two symmetric paths with regard to the X axis because they 

correspond to two different orientations of the element 2-3-5). However, only two 

of these points (diametrically opposed) concern singular configurations. 

To safely distinguish what cutting points correspond to singular configurations, an 

order one analysis [2, 6, 22] or an order two analysis [7] can be done. 

But this problem can be more complicated if the coupler has an equilateral 

triangle shape with side length equal to all the bars on the parallelogram. This is 

the case shown in Fig. 8.b. The parameters for Stage 1 of the method are the same 

as in the two last examples. 

The refined population of this last case shows that there are four possible paths of 

point 5 and they have a circular shape, cutting each other at eight points. 

However, only six points concern singular configurations of this linkage. 

Furthermore, though only the variables of point 5 are shown, each individual x  

contains the positions of every basic point that defines the linkage and, therefore, 

the configuration associated to this individual is completely defined. 

4.2 Stephenson I linkage 

Other well-known linkages are the Stephenson linkages (I, II y III). In this 

example, it is proposed to study all the possible paths of the point 7 of Stephenson 

I linkage shown in Fig. 9. 
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Fig. 9 Stephenson I linkage and discrete approximation of its field of movements 

The space of movement for the linkage in Stage 1 has the following limits: 
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[ ]5 7x - ,∈  

[ ]5 5y - ,∈  

The population size is 2000 and it evolves during 100 generations with a endσ  of 

0.007. The value of the repulsion multiplier k  is 1 and the repulsion exponent β  

is 2. 

In Fig. 9, the set of 2000 refined solutions has been projected on the hyperplane 

corresponding to the coordinates of point 7. In this case, the set of undeformed 

possible solutions is also symmetric with regard to the X axis and it includes all 

the possible configurations of the linkage. To make the distinction between the 

paths corresponding to different configurations easier, a subsequent filtering 

process, taking into account the user’s additional criterion, may be done. 

It is interesting to realize that the four bar linkage 1-2-3-4 does not meet the 

Grashof condition for the bar 1-2 to do complete rotations. For this reason, all the 

possible paths of point 7 have an abrupt ending that can be observed on the right 

of Fig. 9. 

Conclusions 

At first, the modelization and representation of the geometry of the lower-pair 

linkages (both planar and spatial) based on natural coordinates is posed. This 

method uses Cartesian coordinates exclusively and it does not use angles. This 

feature allows the constraint equations to have a common structure of a quadratic 

type and it allows their storage in a sparse cubic matrix. The advantages of this 

representation are that it allows direct evaluation of equations and their Jacobian 

matrix by means of very efficient algorithms. 

Based on this linkage modelization, a method to approximate the field of 

movements of a 1-DOF linkage is posed. This method has three sequential stages, 

the first two (approximation and refinement) being the most important, while the 

third stage (filtering) allows a part of the field of movement to be selected to study 

it. 

This method tries to approximate the infinite positions that the linkage has when 

its DOF is free by means of finite population of solutions. These infinite positions 

represent the workspace of the 1-DOF linkage if it were considered as a robot. 
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In the field of possible movements of a linkage, singular configurations can exist 

where the linkage has several possible branches to continue its movement. This 

kind of singular configurations is identified as the cross among two or more 

branches of operation. 

It is also possible that there are configurations where there exist an instantaneous 

increase of DOFs in the linkage. This type of configuration generates new 

branches of operation for a part of the linkage. 

Finally, there are singular configurations in which the linkage is blocked. This 

type of configurations is identified as the end of a branch of operation of the 

linkage. 

These types of singular configurations are usually studied in the case of the 

workspace of robots and manipulators but they do not arouse much attention in 

the case of 1-DOF linkages. 

The method proposed is immune to the existence of these singular configurations 

and it facilitates the location of some of them by means of the visualization of the 

complete field of movements of the linkage. 

Another possible utility of the complete field of movements of a 1-DOF linkage is 

in dimensional synthesis of path generation. If you have a linkage with certain 

dimensions, it is possible to obtain, in one go, all possible paths for the point 

studied and, then, search for the one that best approximates to the path desired. 

Furthermore, the type of configuration can be discriminated by means of a 

filtering process. For instance, it is possible to define the orientation which every 

part of the linkage must have. 

Another advantage of the method proposed is that it allows the position problem 

to be completely disconnected from the velocity and acceleration problems since 

the field of movements of a linkage does not depend on the time or on the initial 

conditions of the simulation as occurs in the outcomes derived from the kinematic 

simulation approaches. 

This method has been tested on two different well-known linkages, the four bar 

linkage and the Stephenson I linkage, confirming that the method is immune to 

the existence of the different types of singular configurations cited before and 

representing a new valid tool to detect the complete workspace of a 1-DOF 

linkage. 
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