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Abstract: In the first part of this investigation, we considered the parameter differentiation of the
Whittaker function Mκ,µ(x). In this second part, first derivatives with respect to the parameters of
the Whittaker function Wκ,µ(x) are calculated. Using the confluent hypergeometric function, these
derivatives can be expressed as infinite sums of quotients of the digamma and gamma functions.
Furthermore, it is possible to obtain these parameter derivatives in terms of infinite integrals, with
integrands containing elementary functions (products of algebraic, exponential, and logarithmic
functions), from the integral representation of Wκ,µ(x). These infinite sums and integrals can be
expressed in closed form for particular values of the parameters. Finally, an integral representation of
the integral Whittaker function wiκ,µ(x) and its derivative with respect to κ, as well as some reduction
formulas for the integral Whittaker functions Wiκ,µ(x) and wiκ,µ(x), are calculated.

Keywords: derivatives with respect to parameters; Whittaker functions; integral Whittaker functions;
incomplete gamma functions; sums of infinite series of psi and gamma; infinite integrals involving
Bessel functions

MSC: 33B15; 33B20; 33C10; 33C15; 33C20; 33C50; 33E20

1. Introduction

Two functions, Mκ,µ(x) and Wκ,µ(x), were introduced to the mathematical literature
by Whittaker [1] in 1903, and they are linearly independent solutions of the following
second-order differential equation:

d2y
dx2 +

(
1
4 − µ

x2 +
κ

x
− 1

4

)
y = 0,

y(x) = C1 Mκ,µ(x) + C2 Wκ,µ(x),

2µ 6= −1,−2, . . .

where κ and µ are parameters. For particular values of these parameters, the Whittaker
functions Mκ,µ(x) and Wκ,µ(x) can be reduced to a variety of elementary and special func-
tions (such as modified Bessel functions, incomplete gamma functions, parabolic cylinder
functions, error functions, logarithmic and cosine integrals, as well as the generalized
Hermite and Laguerre polynomials). Recently, Mainardi et al. [2] investigated the special
case whereby the Wright function can be expressed in terms of Whittaker functions.

The Whittaker functions can be expressed as [3] (Eqn. 13.14.2):
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Mκ,µ(z) = zµ+1/2e−z/2
1F1

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣z) (1)

2µ 6= −1,−2, . . .

and [3] (Eqn. 13.14.33):

Wκ,µ(z) =
Γ(−2µ)

Γ
(

1
2 − µ− κ

)Mκ,µ(z) +
Γ(2µ)

Γ
(

1
2 + µ− κ

)Mκ,−µ(z), (2)

2µ /∈ Z,

where Γ(x) denotes the gamma function, and the Kummer function is defined as [4]
(Eqn. 47:3:1):

1F1

(
a
b

∣∣∣∣z) =
∞

∑
n=0

(a)n
(b)n

zn

n!
, (3)

where (α)n = Γ(α+n)
Γ(α) denotes the Pochhammer polynomial and

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x) =
∞

∑
n=0

(a1)n · · ·
(
ap
)

n
(b1)n · · ·

(
bq
)

n

xn

n!
, (4)

is the generalized hypergeometric function.
Also, the Whittaker function Wκ,µ(x) can be expressed as [3] (Eqn. 13.14.3):

Wκ,µ(z) = e−z/2zµ+1/2 U
(

1
2
+ µ− κ, 1 + 2µ, z

)
, (5)

where U(a, b, z) denotes the Tricomi function.
The analytical properties of the Whittaker functions (see [3–11]) are of great interest in

mathematical physics, because these functions are involved in many applications, such as
the solutions of the wave equation in paraboloidal coordinates, the behavior of charged
particles in fields with Coulomb potentials, stationary Green’s functions in atomic and
molecular calculations in quantum mechanics (i.e., the solution of the Schrödinger equation
for a harmonic oscillator), probability density functions, and in many other physical and
engineering problems [10,12–14].

Mostly, the Whittaker functions are regarded as a function of variable x with fixed
values of parameters κ and µ, although there are a few investigations where mathematical
operations associated with both parameters are considered, especially for the κ parame-
ter [13,15–17]. In this context, it is worthwhile mentioning Laurenzi’s paper [13], where
the calculation of the derivative of Wκ,1/2(x) with respect to κ, when this parameter is an
integer, is derived. In [17], Buschman showed that the derivative of Wκ,µ(x) with respect
to the parameters can be expressed in terms of finite sums of these Wκ,µ(x) functions.
Higher derivatives of the Whittaker functions with respect to parameter κ were discussed
by Abad and Sesma [15], and integrals with respect to parameter µ by Becker [16]. Since
the Whittaker functions are related to the confluent hypergeometric function, it is worth
mentioning the investigation of the derivatives of generalized hypergeometric functions
presented by Ancarini and Gasaneo [18] and Sofostasios and Brychkov [19].

The integral Whittaker functions were introduced by us [20] as follows:

Wiκ,µ(x) =
∫ x

0

Wκ,µ(t)
t

dt, (6)

wiκ,µ(x) =
∫ ∞

x

Wκ,µ(t)
t

dt. (7)

In the first part of this investigation, we calculated some reduction formulas for the first
derivatives, with respect to the parameters of the Whittaker function Mκ,µ(x). In the current
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paper, the main attention will be devoted to the calculation of reduction formulas for the
first parameter derivatives of the Whittaker function Wκ,µ(x). For this purpose, we analyze
the first derivative of this function with respect to the parameters from the corresponding
series and integral representations. Direct differentiation of the Whittaker functions, leads
to infinite sums of quotients of the digamma and gamma functions. It is possible to calculate
these sums in closed form in some cases, with the aid of the MATHEMATICA program.
When the integral representations of the Whittaker function Wκ,µ(x) are taken into account,
the results of differentiation can be expressed in terms of Laplace transforms of elementary
functions. Integrands of the these Laplace-type integrals include products of algebraic,
exponential, and logarithmic functions. New groups of infinite integrals, comparable to
those investigated by Kölbig [21], Geddes et al. [22], and Apelblat and Kravitzky [23], are
calculated in this paper.

Also, we will focus our attention on the integral Whittaker functions Wiκ,µ(x) and
wiκ,µ(x), in order to derive some new reduction formulas, as well as an integral representa-
tion of wiκ,µ(x) and its first derivative with respect to parameter κ.

2. Parameter Differentiation of Wκ,µ via Kummer Function 1F1

Notation 1. Unless indicated otherwise, it is assumed throughout the paper that x is a real variable
and z is a complex variable.

Definition 1. According to the notation introduced by Ancarini and Gasaneo [18,24], define

G(1)
(

a
b

∣∣∣∣x) =
∂

∂a

[
1F1

(
a
b

∣∣∣∣x)], (8)

and

H(1)
(

a
b

∣∣∣∣x) =
∂

∂b

[
1F1

(
a
b

∣∣∣∣x)]. (9)

2.1. Derivative with Respect to the First Parameter ∂Wκ,µ(x)/∂κ

Taking into account (1) and (8), direct differentiation of (2) yields:

∂Wκ,µ(x)
∂κ

(10)

=
Γ(−2µ)

Γ
(

1
2 − µ− κ

)[ψ

(
1
2
− µ− κ

)
Mκ,µ(x)− x1/2+µe−x/2 G(1)

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣x)]

+
Γ(2µ)

Γ
(

1
2 + µ− κ

)[ψ

(
1
2
+ µ− κ

)
Mκ,−µ(x)− x1/2−µe−x/2 G(1)

( 1
2 − µ− κ

1− 2µ

∣∣∣∣x)].

If we first apply Kummer’s transformation formula [3] (Eqn. 13.2.39):

1F1

(
a
b

∣∣∣∣x) = ex
1F1

(
b− a

b

∣∣∣∣− x
)

, (11)

we can rewrite (10) as

∂Wκ,µ(x)
∂κ

(12)

=
Γ(−2µ)

Γ
(

1
2 − µ− κ

)[ψ

(
1
2
− µ− κ

)
Mκ,µ(x) + x1/2+µex/2 G(1)

( 1
2 + µ + κ

1 + 2µ

∣∣∣∣− x
)]

+
Γ(2µ)

Γ
(

1
2 + µ− κ

)[ψ

(
1
2
+ µ− κ

)
Mκ,−µ(x)− x1/2−µe−x/2 G(1)

( 1
2 − µ− κ

1− 2µ

∣∣∣∣x)].
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Theorem 1. For 2µ /∈ Z, the following parameter derivative formula of Wκ,µ(x) holds true:

∂Wκ,±µ(x)
∂κ

∣∣∣∣
κ=µ+1/2

=
√

xe−x/2 (13){
xµ

[
ψ(−2µ)− x

2µ + 1 2F2

(
1, 1

2µ + 2, 2

∣∣∣∣x)]+ Γ(2µ + 1)x−µ(−x)2µγ(−2µ,−x)
}

,

where γ(ν, z) denotes the lower incomplete gamma function (117).

Proof. First, note that
∂Wκ,µ(x)

∂κ
=

∂Wκ,−µ(x)
∂κ

, (14)

since [3] (Eqn. 13.14.31):
Wκ,µ(x) = Wκ,−µ(x). (15)

Now, let us calculate ∂Wκ,µ(x)/∂κ
∣∣
κ=µ+1/2. For this purpose, take κ = µ + 1/2− ε in

(12), to obtain

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=µ+1/2−ε

(16)

=
Γ(−2µ)

Γ(−2µ + ε)

[
ψ(−2µ + ε)Mµ+1/2−ε,µ(x) + x1/2+µex/2 G(1)

(
1 + 2µ− ε

1 + 2µ

∣∣∣∣− x
)]

+
Γ(2µ)

Γ(ε)

[
ψ(ε)Mµ+1/2−ε,−µ(x)− x1/2−µe−x/2 G(1)

(
−2µ + ε
1− 2µ

∣∣∣∣x)].

Note that, according to [3] (Eqn. 13.18.2)

Mµ+1/2,µ(x) = e−x/2x1/2+µ. (17)

Further, from (1) and (11), we have

Mµ+1/2,−µ(x) = ex/2x1/2−µ
1F1

(
1

1 + 2µ

∣∣∣∣− x
)

= ex/2x1/2−µ
∞

∑
n=0

(−x)n

(1− 2µ)n
. (18)

Taking into account [4] (Eqn. 45:6:2):

exγ(ν, x) =
xν

ν

∞

∑
n=0

xn

(1 + ν)n
,

rewrite (18) as

Mµ+1/2,−µ(x) = −2µ e−x/2x1/2−µ(−x)2µγ(−2µ,−x). (19)

Consider as well the reduction formula given in Equation (A1) in Appendix A:

G(1)
(

a
a

∣∣∣∣x) =
x ex

a 2F2

(
1, 1

a + 1, 2

∣∣∣∣− x
)

. (20)

Finally, according to the property [4] (Eqn. 44:5:3):

ψ(z + 1) =
1
z
+ ψ(z),
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see that

lim
ε→0

ψ(ε)

Γ(ε)
= lim

ε→0

1
Γ(ε)

[
ψ(ε + 1)− 1

ε

]
= −1. (21)

Now, take the limit ε→ 0 in (16), considering the results given in (14), (17), (19)–(21),
to obtain (13), as we wanted to prove.

Table 1 presents some explicit expressions for particular values of (13), obtained with
the help of the MATHEMATICA program.

Table 1. Derivative of Wκ,µ with respect to κ, by using (13).

κ µ
∂Wκ,µ(x)

∂κ

− 3
4 ± 5

4
1
3 x−3/4e−x/2

[
2x 2F2

(
1, 1;− 1

2 , 2; x
)
+ 3π erfi

(√
x
)
+ 2
√

π x ex(2x− 3)− 3γ + 8− 3 ln 4
]

− 1
4 ± 3

4 x−1/4e−x/2
[
2x 2F2

(
1, 1; 1

2 , 2; x
)
+ π erfi

(√
x
)
− 2
√

π x ex − γ + 2− ln 4
]

− 1
6 ± 2

3

1
6 x−5/6e−x/2

{
3x2/3[6x 2F2

(
1, 1; 2

3 , 2; x
)
− 2γ + 6− 3 ln 3

]
−6x2Γ

(
− 1

3

)
E−1/3(−x)−

√
3π
[

x2/3 + 4(−x)2/3
]}

1
6 ± 1

3

1
6 x−1/6e−x/2

{
−3x1/3

[
6x 2F2

(
1, 1; 4

3 , 2; x
)
+ 2γ + 3 ln 3

]
−6x Γ

(
1
3

)
E1/3(−x) +

√
3π
[

x1/3 − 4(−x)1/3
]}

1
4 ± 1

4 −x1/4e−x/2[2x 2F2
(
1, 1; 3

2 , 2; x
)
− π erfi

(√
x
)
+ γ + ln 4

]
3
4 ± 1

4
1
3 e−x/2

{
x3/4[−2x 2F2

(
1, 1; 5

2 , 2; x
)
+ 3
(
π erfi

(√
x
)
− γ + 2− ln 4

)]
− 3
√

π x1/4ex
}

5
6 ± 1

3

1
30 x1/6e−x/2

{
−18 x5/3

2F2
(
1, 1; 8

3 , 2; x
)
+ 15 x2/3(3− 2γ− 3 ln 3)

−30 Γ
( 5

3
)
E5/3(−x)− 5

√
3π
[

x2/3 + 4(−x)1/3
]}

5
4 ± 3

4
1

30 x−1/4e−x/2
{
−2x3/2[6x 2F2

(
1, 1; 7

2 , 2; x
)
− 5
(
π erfi

(√
x
)
− 3γ + 8− 3 ln 4

)]
− 15
√

π ex(2x + 1)
}

Next, we present another reduction formula of ∂Wκ,µ(x)/∂κ, from the result found
in [13].

Theorem 2. The following reduction formula holds true for n = 1, 2, . . .

∂Wκ,±1/2(x)
∂κ

∣∣∣∣
κ=n

(22)

= (−1)n(n− 1)! e−x/2

[
n−1

∑
`=0

n− `

n + `
L(−1)
` (x) + n L(−1)

` (x) ln x

]
,

where L(α)
n (x) denotes the Laguerre polynomial.

Proof. First, note that according to (14), we have

∂Wκ,1/2(x)
∂κ

=
∂Wκ,−1/2(x)

∂κ
. (23)
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Therefore, let us calculate ∂Wκ,1/2(x)/∂κ. For this purpose, consider the formula [13]:

∂Wκ,1/2(x)
∂κ

∣∣∣∣
κ=n

(24)

= (−1)n(n− 1)!
n−1

∑
`=0

(−1)`(n− `)

`!(n + `)
W`,1/2(x) + Wn,1/2(x) ln x

Furthermore, from [3] (Eqn. 13.18.17), we have for n = 0, 1, 2, . . .

Wκ+n,κ−1/2(x) = (−1)nn!e−x/2xκ L(2κ−1)
n (x), (25)

thus, applying (15) and taking κ = 0 in (25), we have

Wn,1/2(x) = Wn,−1/2(x) = (−1)nn! e−x/2L(−1)
n (x). (26)

Finally, insert (26) into (22) and consider (23), to obtain (22), as we wanted to prove.

In Table 2 we collect some particular cases of (22), obtained with the help of the
MATHEMATICA program.

Table 2. Derivative of Wκ,µ with respect to κ, by using (22).

κ µ
∂Wκ,µ(x)

∂κ

1 ± 1
2 e−x/2(x ln x− 1)

2 ± 1
2 e−x/2[x(x− 2) ln x− 3x + 1]

3 ± 1
2 e−x/2[x(x2 − 6x + 6

)
ln x− 5x2 + 14x− 2

]
Note that for n = 0, we obtain an indeterminate expression in (22). We calculate this

particular case with a result in the next section.

Theorem 3. The following reduction formula holds true:

∂Wκ,±1/2(x)
∂κ

∣∣∣∣
κ=0

= e−x/2 (27){
ln x +

1
4
√

π

[
G3,1

2,4

(
x2

4

∣∣∣∣ 1
2 , 1

0, 0, 1
2 ,− 1

2

)
− (ex − 1) G3,0

1,3

(
x2

4

∣∣∣∣ 1
− 1

2 , 0, 0

)]}
,

where Gm,n
p,q

(
z
∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
denotes the Meijer G-function.

Proof. According to [3] (Eqn. 13.18.2), we have

Wκ,κ−1/2(x) = e−x/2xκ , (28)

thus, performing the derivative with respect to κ,

∂Wκ,µ(x)
∂κ

∣∣∣∣
µ=κ−1/2

+
∂Wκ,µ(x)

∂µ

∣∣∣∣
µ=κ−1/2

= e−x/2xκ ln x.

Taking κ = 0 and considering (23), we have

∂Wκ,±1/2(x)
∂κ

∣∣∣∣
κ=0

= −
∂W0,µ(x)

∂µ

∣∣∣∣
µ=−1/2

+ e−x/2 ln x.
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Finally, apply (31) and (33), to arrive at (27), as we wanted to prove.

2.2. Derivative with Respect to the Second Parameter ∂Wκ,µ(x)/∂µ

Theorem 4. For 2µ /∈ Z, the following parameter derivative formula of Wκ,µ(x) holds true:

∂Wκ,±µ(x)
∂µ

∣∣∣∣
κ=µ+1/2

= ±
√

xe−x/2 (29){
xµ

[
x

2µ + 1 2F2

(
1, 1

2µ + 2, 2

∣∣∣∣x)− ψ(−2µ) + ln x
]
− Γ(2µ + 1)x−µ(−x)2µγ(−2µ,−x)

}
.

Proof. Differentiate the following reduction formula with respect to parameter µ [3]
(Eqn. 13.18.2):

Wµ+1/2,±µ(x) = e−x/2x1/2+µ,

to obtain
∂Wκ,±µ(x)

∂κ

∣∣∣∣
κ=µ+1/2

±
∂Wκ,±µ(x)

∂µ

∣∣∣∣
κ=µ+1/2

= e−x/2x1/2+µ ln x. (30)

Insert (13) into (30) to arrive at (29), as we wanted to prove.

Table 3 shows the derivative of Wκ,µ(x) with respect to µ for particular values of κ
and µ, using (29) and the help of the MATHEMATICA program.

Table 3. Derivative of Wκ,µ with respect to µ, by using (29).

κ µ
∂Wκ,µ(x)

∂µ

− 3
4 ± 5

4 ± 1
3 x−3/4e−x/2

[
2x 2F2

(
1, 1;− 1

2 , 2; x
)
+ 3π erfi

(√
x
)
+ 2
√

π x ex(2x− 3)− 3γ + 8− 3 ln(4x)
]

− 1
4 ± 3

4 ±x−1/4e−x/2
[
2x 2F2

(
1, 1; 1

2 , 2; x
)
+ π erfi

(√
x
)
− 2
√

π x ex − γ + 2− ln(4x)
]

− 1
6 ± 2

3

± 1
6 x−5/6e−x/2

{
3x2/3[6x 2F2

(
1, 1; 2

3 , 2; x
)
− 2γ + 6− 3 ln 3− 2 ln x

]
−6x2Γ

(
− 1

3

)
E−1/3(−x)−

√
3π
[

x2/3 + 4(−x)2/3
]}

1
6 ± 1

3

± 1
6 x−1/6e−x/2

{
−3x1/3

[
6x 2F2

(
1, 1; 4

3 , 2; x
)
+ 2γ + 3 ln 3 + 2 ln x

]
−6x Γ

(
1
3

)
E1/3(−x) +

√
3π
[

x1/3 − 4(−x)1/3
]}

1
4 ± 1

4 ±x1/4e−x/2[−2x 2F2
(
1, 1; 3

2 , 2; x
)
+ π erfi

(√
x
)
− γ− ln(4x)

]
3
4 ± 1

4 ± 1
3 x1/4e−x/2{√x

[
2x 2F2

(
1, 1; 5

2 , 2; x
)
− 3
(
π erfi

(√
x
)
− γ + 2− ln(4x)

)]
+ 3
√

π ex}
5
6 ± 1

3

± 1
30 x1/6e−x/2

{
18 x5/3

2F2
(
1, 1; 8

3 , 2; x
)
+ 15 x2/3(2γ + 3 ln 3 + 2 ln x− 3)

+30 Γ
( 5

3
)
E5/3(−x) + 5

√
3π
[

x2/3 + 4(−x)1/3
]}

5
4 ± 3

4 ± 1
30 x−1/4e−x/2

{
2x3/2[6x 2F2

(
1, 1; 7

2 , 2; x
)
− 5
(
π erfi

(√
x
)
− 3γ + 8− 3 ln(4x)

)]
+ 15
√

π ex(2x + 1)
}

Theorem 5. The following parameter derivative formula of Wκ,µ(x) holds true:

∂W0,µ(x)
∂µ

= sgn(µ)
√

x
π

∂Kµ(x/2)
∂µ

∣∣∣∣
|µ|

, (31)

where Kν(x) denotes the modified Bessel of the second kind (Macdonald function).
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Proof. Differentiate with respect to µ the expression [3] (Eqn. 13.18.9):

W0,µ(x) =
√

x
π

Kµ

( x
2

)
, (32)

to obtain
∂W0,±µ(x)

∂µ

∣∣∣∣
µ≥0

= ±
∂W0,µ(x)

∂µ

∣∣∣∣
µ≥0

= ±
√

x
π

∂Kµ(x/2)
∂µ

∣∣∣∣
µ≥0

,

as we wanted to prove.

The order derivative of Kµ(x) is given in terms of Meijer G-functions for Re x > 0,
and µ ≥ 0 [25]:

∂Kµ(x)
∂µ

(33)

=
µ

2

[
Kµ(x)√

π
G3,1

2,4

(
x2
∣∣∣∣ 1

2 , 1
0, 0, µ,−µ

)
−
√

π Iµ(x) G4,0
2,4

(
x2
∣∣∣∣ 1

2 , 1
0, 0, µ,−µ

)]
,

where Iν(x) is the modified Bessel function; or in terms of generalized hypergeometric func-
tions for Re x > 0, µ > 0, and 2µ /∈ Z [26]:

∂Kµ(x)
∂µ

(34)

=
π

2
csc(πµ)

{
π cot(πµ) Iµ(x)−

[
Iµ(x) + I−µ(x)

]
[

x2

4(1− µ2)
3F4

(
1, 1, 3

2
2, 2, 2− µ, 2 + µ

∣∣∣∣x2
)
+ ln

( x
2

)
− ψ(µ)− 1

2µ

]}
+

1
4

{
I−µ(x)Γ2(−µ)

( x
2

)2µ

2F3

(
µ, 1

2 + µ
1 + µ, 1 + µ, 1 + 2µ

∣∣∣∣x2
)

− Iµ(x)Γ2(µ)
( x

2

)−2µ

2F3

(
−µ, 1

2 − µ
1− µ, 1− µ, 1− 2µ

∣∣∣∣x2
)}

.

There are different expressions for the order derivatives of the Bessel functions [23,27].
This subject is summarized in [28], where general results are presented in terms of convolu-
tion integrals, and order derivatives of Bessel functions are found for particular values of
the order.

Using (31), (33) and (34), some derivatives of Wκ,µ(x) with respect to µ have been
calculated with the help of the MATHEMATICA program, and they are presented in Table 4.

Table 4. Derivative of Wκ,µ with respect to µ, by using (31).

κ µ
∂Wκ,µ(x)

∂µ

0 0 0

0 ± 1
4

± 1
8
√

π

4π
√

2 x

π I1/4
( x

2
)
−
[
I1/4

( x
2
)
+ I−1/4

( x
2
)] x2

15 3F4

 1, 1, 3
2

2, 2, 7
4 , 9

4

∣∣∣∣∣∣ x2

4

+ ln
( x

4
)
− ψ

(
1
4

)
− 2


−4 Γ2

(
1
4

)
I1/4

( x
2
)

2F3

 − 1
4 , 1

4
3
4 , 3

4 , 1
2

∣∣∣∣∣∣ x2

4

+ x Γ2
(
− 1

4

)
I−1/4

( x
2
)

2F3

 1
4 , 3

4
5
4 , 5

4 , 3
2

∣∣∣∣∣∣ x2

4
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Table 4. Cont.

κ µ
∂Wκ,µ(x)

∂µ

0 ± 1
3

± x−1/6

384
√

π

π x2/3

128π I1/3
( x

2
)
−
√

3
[
I1/4

( x
2
)
+ I−1/4

( x
2
)]9 x2

3F4

 1, 1, 3
2

2, 2, 5
3 , 7

3

∣∣∣∣∣∣ x2

4

+ 64
(

2 ln
( x

4
)
− 2ψ

(
1
3

)
− 3
)

−48 3
√

2

3x Γ
(
− 1

3

)
0F1

 −
2
3

∣∣∣∣∣∣ x2

16

 2F3

 1
3 , 5

6
4
3 , 4

3 , 5
3

∣∣∣∣∣∣ x2

4

+ Γ2
(

1
3

)
I1/3

( x
2
)

2F3

 − 1
3 , 1

6
1
3 , 2

3 , 2
3

∣∣∣∣∣∣ x2

4


0 ± 1

2 ± 1
4
√

π
e−x/2

G3,1
2,4

 x2

4

∣∣∣∣∣∣
1
2 , 1

0, 0, 1
2 ,− 1

2

− (ex − 1) G3,0
1,3

 x2

4

∣∣∣∣∣∣ 1

− 1
2 , 0, 0



0 ± 2
3

± 1√
π

√
x

− 1
3 π2 I2/3

( x
2
)
− π√

3

[
I−2/3

( x
2
)
+ I2/3

( x
2
)] 9

80 x2
3F4

 1, 1, 3
2

2, 2, 4
3 , 8

3

∣∣∣∣∣∣ x2

4

+ ln
( x

4
)
− ψ

( 2
3
)
− 3

4


+2−14/3x4/3 Γ2(− 2

3
)

I−2/3
( x

2
)

2F3

 2
3 , 7

6
5
3 , 5

3 , 7
3

∣∣∣∣∣∣ x2

4

− 22/3x−4/3 Γ2( 2
3
)

I2/3
( x

2
)

2F3

 − 2
3 ,− 1

6

− 1
3 , 1

3 , 1
3

∣∣∣∣∣∣ x2

4



0 ± 3
4

± 1
672
√

πx

x3/2

−8
√

2π
[
I−3/4

( x
2
)
+ I3/4

( x
2
)]6 x2

3F4

 1, 1, 3
2

2, 2, 5
4 , 11

4

∣∣∣∣∣∣ x2

4

+ 42[ln(2x) + γ]− 28


+ 21 x3/2 Γ2(− 3

4
)

I−3/4
( x

2
)

2F3

 3
4 , 5

4
7
4 , 7

4 , 5
2

∣∣∣∣∣∣ x2

4

+ 336π K3/4
( x

2
)− 1344 Γ2( 3

4
)

I3/4
( x

2
)

2F3

 − 3
4 ,− 1

4

− 1
2 , 1

4 , 1
4

∣∣∣∣∣∣ x2

4


0 ±1 ± 1

2π

√
x

K1
( x

2
)
G2,1

1,3

 x2

4

∣∣∣∣∣∣
1
2

0, 0,−1

− π I1
( x

2
)

G3,0
1,3

 x2

4

∣∣∣∣∣∣
1
2

−1, 0, 0


0 ± 3

2 ± 1
4
√

πx e−x/2

3(x + 2)G3,1
2,4

 x2

4

∣∣∣∣∣∣
1
2 , 1

0, 0, 3
2 ,− 3

2

− 3[ex(x− 2) + x + 2] G4,0
2,4

 x2

4

∣∣∣∣∣∣
1
2 , 1

− 3
2 , 0, 0, 3

2


0 ±2 ± 1

π

√
x

K2
( x

2
)
G3,1

2,4

 x2

4

∣∣∣∣∣∣
1
2 , 1

0, 0, 2,−2

− π I2
( x

2
)

G4,0
2,4

 x2

4

∣∣∣∣∣∣
1
2 , 1

−2, 0, 0, 2



3. Parameter Differentiation of Wκ,µ via Integral Representations
3.1. Derivative with Respect to the First Parameter ∂Wκ,µ(x)/∂κ

Integral representations of the Whittaker function Wκ,µ(z) are given in the form of a
Laplace transform for Re(µ− κ) > − 1

2 and |arg z| < π
2 [8] (Section 7.4.2):

Wκ,µ(z) (35)

=
zµ+1/2e−z/2

Γ
(

µ− κ + 1
2

) ∫ ∞

0
e−z ttµ−κ−1/2(1 + t)µ+κ−1/2dt,

and as the infinite integral:

Wκ,µ(z) (36)

=
zµ+1/2ez/2

Γ
(

µ− κ + 1
2

) ∫ ∞

1
e−z ttµ+κ−1/2(t− 1)µ−κ−1/2dt.

In order to calculate the first derivative of Wκ,µ(x) with respect to parameter κ, let us
introduce the following finite logarithmic integrals.
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Definition 2. For Re(µ− κ) > − 1
2 and x > 0, define:

I∗1 (κ, µ; x) =
∫ ∞

0
e−xttµ−κ−1/2(1 + t)µ+κ−1/2 ln

(
1 + t

t

)
dt, (37)

I∗2 (κ, µ; x) =
∫ ∞

1
e−xttµ+κ−1/2(t− 1)µ−κ−1/2 ln

(
t

t− 1

)
dt. (38)

For x > 0, differentiation of (35) and (36) with respect to parameter κ yields, respec-
tively,

∂Wκ,µ(x)
∂κ

= ψ

(
µ− κ +

1
2

)
Wκ,µ(x) +

xµ+1/2e−x/2

Γ
(

µ− κ + 1
2

) I∗1 (κ, µ; x) (39)

= ψ

(
µ− κ +

1
2

)
Wκ,µ(x) +

xµ+1/2ex/2

Γ
(

µ− κ + 1
2

) I∗2 (κ, µ; x). (40)

Note that, from (39) and (40) we have

I∗2 (κ, µ; x) = e−x I∗1 (κ, µ; x). (41)

Theorem 6. The following integral holds true for 1
2 + µ− κ > 0 and x > 0:

I∗1 (κ, µ; x) (42)

= B
(

1
2
+ µ− κ,−2µ

)
{[

ψ

(
1
2
− µ− κ

)
− ψ

(
1
2
+ µ− κ

)]
1F1

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣x)
−G(1)

( 1
2 + µ− κ

1 + 2µ

∣∣∣∣x)}− Γ(2µ) x−2µ G(1)
( 1

2 − µ− κ
1− 2µ

∣∣∣∣x),

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) denotes the beta function.

Proof. Compare (10) to (39) and take into account (1) to arrive at (42), as we wanted to
prove.

Now, we derive a Lemma that will be applied throughout this section and the next one.

Lemma 1. For ν ≥ 0 and x > 0, the following Laplace transform holds true:

I±(ν, x) (43)

=
∫ ∞

0
e−xttν ln

(
t±1(1 + t)

)
dt

=
Γ(ν + 1)

xν+1

{
x

ν + 1 2F2

(
1, 1

2, 2 + ν

∣∣∣∣− x
)

− e−iπν Γ(−ν, x) γ(ν + 1,−x) + (1± 1)[ψ(ν + 1)− ln x]
}

,

where Γ(ν, z) and γ(ν, z) denote, respectively, the upper and lower incomplete gamma functions,
(117) and (119).
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Proof. Split the integral into two terms as follows:

I±(ν, x) =
∫ ∞

0
e−xttν ln(1 + t)dt︸ ︷︷ ︸

Ia(ν,x)

±
∫ ∞

0
e−xttν ln t dt︸ ︷︷ ︸
Ib(ν,x)

,

and apply the Laplace transform for x > 0 [9] (Eqn. 2.5.2(4)) (it is worth noting that there is
an incorrect sign in the reference cited):∫ ∞

0
e−xttν ln(at + b)dt

= − π

(ν + 1) sin πν

(
b
a

)ν+1

1F1

(
ν + 1
ν + 2

∣∣∣∣ b x
a

)
+

Γ(ν + 1)
xν+1

[
ψ(ν + 1)− ln

( x
a

)
+

b x
a ν

2F2

(
1, 1

2, 1− ν

∣∣∣∣ b x
a

)]
,

to obtain

Ia(ν, x) (44)

= − π

(ν + 1) sin πν 1F1

(
ν + 1
ν + 2

∣∣∣∣x)
+

Γ(ν + 1)
xν+1

[
ψ(ν + 1)− ln x +

x
ν

2F2

(
1, 1

2, 1− ν

∣∣∣∣x)],

and

Ib(ν, x) =
Γ(ν + 1)

xν+1 [ψ(ν + 1)− ln x]. (45)

Note that, according to Kummer’s transformation (11), and to the reduction formula [9]
(Eqn. 7.11.1(14)):

1F1

(
1
b

∣∣∣∣z) = (b− 1)z1−bezγ(1− b, z),

we have for x > 0

1F1

(
a

a + 1

∣∣∣∣x) = ex
1F1

(
1

a + 1

∣∣∣∣− x
)

(46)

= a(−x)−aγ(a,−x)
= a e−iπax−aγ(a,−x),

thus (44) becomes

Ia(ν, x) (47)

=
1

xν+1

{ π

sin πν
e−iπνγ(ν + 1,−x)

+Γ(ν + 1)
[

ψ(ν + 1)− ln x +
x
ν

2F2

(
1, 1

2, 1− ν

∣∣∣∣x)]}.

Now, insert (45) and (47) in (78), to arrive at

I±(ν, x) =
1

xν+1 (48){
π

sin πν
e−iπνγ(ν + 1,−x) + x Γ(ν) 2F2

(
1, 1

2, 1− ν

∣∣∣∣x)}
+(1± 1)

Γ(ν + 1)
xν+1 [ψ(ν + 1)− ln x].
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Next, apply the transformation formula [9] (Eqn. 7.12.1(7)):

2F2

(
1, a

a + 1, b

∣∣∣∣z)+
b− 1

a− b + 1 2F2

(
1, a

a + 1, 2 + a− b

∣∣∣∣− z
)

=
a

a− b + 1 1F1

(
a− b + 1
a− b + 2

∣∣∣∣z) 1F1

(
b− 1

b

∣∣∣∣− z
)

,

taking a = 1 and b = 1− ν, and applying again (46), to arrive at

2F2

(
1, 1

2, 1− ν

∣∣∣∣x) (49)

= ν

{
1

ν + 1 2F2

(
1, 1

2, 2 + ν

∣∣∣∣− x
)
+

e−iπν

x
γ(−ν, x) γ(ν + 1,−x)

}
.

Insert (49) into (48) to get

I±(ν, x) (50)

=
1

xν+1

{
e−iπνγ(ν + 1,−x)

[ π

sin πν
+ Γ(ν + 1)γ(−ν, x)

]
+Γ(ν + 1)

[
x

ν + 1 2F2

(
1, 1

2, 1− ν

∣∣∣∣x)+ (1± 1)[ψ(ν + 1)− ln x]
]}

.

Applying the properties [4] (Eqn. 45:0:1)

Γ(ν) = γ(ν, z) + Γ(ν, z), (51)

and [29] (Eqn. 1.2.2)
Γ(z)Γ(1− z) = π csc πz,

rewrite (50) as (43), as we wanted to prove.

Theorem 7. The following integral holds true for µ > 0 and x > 0:

I∗1

(
1
2
− µ, µ; x

)
(52)

= I−(2µ− 1, x) (53)

=
Γ(2µ)

x2µ

{
x

2µ
2F2

(
1, 1

2, 1 + 2µ

∣∣∣∣− x
)
+ e−2πiµ Γ(1− 2µ, x) γ(2µ,−x)

}
.

Proof. From (37) and (43), we obtain the desired result.

Remark 1. If we insert (48) in (53), we obtain the following alternative form:

I∗1

(
1
2
− µ, µ; x

)
(54)

=
1

x2µ

{
π[cot(2πµ)− i] γ(2µ,−x) + x Γ(2µ− 1) 2F2

(
1, 1

2, 2− 2µ

∣∣∣∣x)}.

Theorem 8. The following reduction formula holds true for −2µ 6= 0, 1, . . . and x > 0:

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=−µ+1/2

= e−x/2x1/2−µ (55){
ψ(2µ) +

x
2µ

2F2

(
1, 1

2, 1 + 2µ

∣∣∣∣− x
)
+ e−2πiµ Γ(1− 2µ, x) γ(2µ,−x)

}
.
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Proof. Insert into (39) the reduction formula [3] (Eqn. 13.18.2), with κ = −µ + 1/2, i.e.,

W1/2−µ,µ(x) = e−x/2x1/2−µ, (56)

and the result given in (52), to arrive at (55).

Remark 2. If we consider (54), we obtain the following alternative form:

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=−µ+1/2

= e−x/2x1/2−µ (57){
ψ(2µ) +

π[cot(2πµ)− i]
Γ(2µ)

γ(2µ,−x) +
x

2µ− 1 2F2

(
1, 1

2, 2− 2µ

∣∣∣∣x)}.

Table 5 shows the first derivative of Wκ,µ(x) with respect to parameter κ for some
particular values of κ and µ, and x > 0, calculated with the aid of the MATHEMATICA
program from (57). Note that the erfi(x) function that appears in Table 5 denotes the
imaginary error function [29] (Eqn. (2.3.1)).

Table 5. Derivative of Wκ,µ with respect to κ, by using (57).

κ µ
∂Wκ,µ(x)

∂κ (x > 0)

− 1
4 ± 3

4 x−1/4e−x/2
[
2− γ− ln 4− 2 ex√π x + π erfi

(√
x
)
+ 2x 2F2

(
1, 1; 1

2 , 2; x
)]

1
4 ± 1

4 x1/4e−x/2[π erfi
(√

x
)
− 2x 2F2

(
1, 1; 3

2 , 2; x
)
− γ− ln 4

]
3
4 ± 1

4 e−x/2
{

x3/4[2− γ− ln 4 + π erfi
(√

x
)
− 2

3 x 2F2
(
1, 1; 5

2 , 2; x
)]
−
√

π x1/4 ex
}

5
4 ± 3

4
1

30 x−1/4e−x/2
{

2x3/2[40− 15γ− 30 ln 2 + 15π erfi
(√

x
)
− 12x 2F2

(
1, 1; 7

2 , 2; x
)]
− 15
√

πex(2x + 1)
}

Notice that for −2µ = 0, 1, . . ., we obtain an indeterminate expression in (55) and (57).
For these cases, we present the following result.

Theorem 9. The following reduction formula holds true for m = 0, 1, 2, . . .:

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=(1+m)/2,µ=±m/2

(58)

= e−x/2x(1+m)/2

{
ln x−

m

∑
k=1

x−k
[

ex Γ(k) +
(

m
k

)
γ(k,−x)

]}
.

Proof. Take ν = 2µ in (57) and perform the limit ν→ −m = 0,−1,−2, . . .

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=(m+1)/2,µ=−m/2

= e−x/2x(1+m)/2 (59){
lim

ν→−m

[
ψ(ν) +

π[cot(πν)− i]
Γ(ν)

γ(ν,−x)
]
− x

m + 1 2F2

(
1, 1

2, 2 + m

∣∣∣∣x)}.
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On the one hand, let us prove the following asymptotic formulas for ν → −m =
0,−1,−2, . . .

ψ(ν) ≈ −γ + Hm −
1

ν + m
, (60)

π cot(πν) ≈ 1
ν + m

, (61)

Γ(ν) ≈ (−1)m

m!
1

ν + m
. (62)

In order to prove (60), consider [4] (Eqn. 44:5:4)

ψ(ν + m + 1) = ψ(ν) +
m

∑
j=0

1
ν + j

= ψ(ν) +
m

∑
j=1

1
ν + j− 1

+
1

ν + m
,

thus, knowing that [29] (Eqn. 1.3.6)

ψ(1) = −γ, (63)

and performing the substitution k = j−m− 1, we have

lim
ν→−m

ψ(ν) = lim
ν→−m

[
−γ− 1

ν + m
−

m

∑
j=1

1
j−m− 1

]

= lim
ν→−m

[
−γ− 1

ν + m
+ Hm

]
,

where Hn = ∑n
k=1

1
k denotes the n-th harmonic number. In order to prove (61), note that

cot x = cot(x + π) and for x ∈ (−π, π) we have the expansion [4] (Eqn. 44:6:2)

cot x =
1
x
− x

3
− x3

45
− · · ·

Finally, notice that (62) follows directly from [29] (Eqn. 1.1.5). Therefore, taking into
account (60)–(62), and taking into account (51), we conclude

lim
ν→−m

[
ψ(ν) +

π[cot(πν)− i]
Γ(ν)

γ(ν,−x)
]

(64)

= Hm − γ− iπ + (−1)m+1m! Γ(−m,−x).

Insert (64) into (59) to arrive at

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=(m+1)/2,µ=−m/2

= e−x/2x(1+m)/2 (65){
Hm − γ− iπ + (−1)m+1m! Γ(−m,−x)− x

m + 1 2F2

(
1, 1

2, 2 + m

∣∣∣∣x)}.

On the other hand, consider the reduction Formula (A6), derived in the Appendix B,

2F2

(
1, 1

2, 2 + m

∣∣∣∣x) =
m + 1

x

{
Hm − Ein(−x) +

m

∑
k=1

(
m
k

)
x−kγ(k,−x)

}
, (66)
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and the formula [3] (Eqn. 8.4.15)

Γ(−m, z) =
(−1)m

m!

[
E1(z)− e−z

m−1

∑
k=0

(−1)kk!
zk+1

]
, (67)

where E1(z) denotes the exponential integral [3] (Eqn. 6.2.1), which is defined as

E1(z) =
∫ ∞

z

e−t

t
dt, z 6= 0,

where the path does not cross the negative real axis or pass through the origin. Furthermore,
consider the property [3] (Eqn. 6.2.4)

E1(z) = Ein(z)− ln z− γ. (68)

Therefore, substituting (66) and (67) into (65), and taking into account (68), we arrive
at (58), as we wanted to prove.

Remark 3. It is worth noting that from [17],

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=(N+1)/2,µ=M/2

= W N+1
2 , N

2
(x) ln x (69)

+
(N+M)/2

∑
k=1

(−1)k
(

N+M
2

)
!

k
(

N+M
2 − k

)
!

W N+1
2 −k, M

2
(x) +

(N−M)/2

∑
k=1

(−1)k
(

N−M
2

)
!

k
(

N−M
2 − k

)
!

W N+1
2 −k, M

2
(x),

where −N ≤ M ≤ N and M, N are integers of like parity, we can derive an equivalent reduction
formula to (58). Indeed, taking N = M = m, (69) is reduced to

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=(m+1)/2,µ=m2

= W m+1
2 , m

2
(x) ln x +

m

∑
k=1

(−1)k m!
k(m− k)!

W m
2 −k, m

2
(x). (70)

Note that from (28), we have

W m+1
2 , m

2
(x) = e−x/2x(1+m)/2. (71)

Further, from (5) and the reduction formula for n = 0, 1, ... given in [3] (Eqn. 13.2.8)

U(a, a + n + 1, z) = z−a
n

∑
s=0

(
n
s

)
(a)sz−s,

we obtain

W m
2 −k, m

2
(x) =

e−x/2x(1+m)/2x−k

Γ(k)

m−k

∑
s=0

(
m− k

s

)
Γ(k + s)x−s. (72)

Therefore, substituting (71) and (72) into (70), and simplifying, we arrive at

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=(m+1)/2,µ=m/2

= e−x/2x(1+m)/2

[
ln x + m!

m

∑
k=1

(−1)k

k!
x−k

m−k

∑
s=0

(k + s− 1)!
s!(m− k− s)!

x−s

]
. (73)
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Perform the index substitution s→ s + k and exchange the sum order in (73), to arrive at

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=(m+1)/2,µ=m/2

= e−x/2x(1+m)/2

[
ln x + m!

m

∑
s=1

x−s

s(m− s)!

s

∑
k=1

(
s
k

)
(−1)k

]
. (74)

By virtue of the binomial theorem, the inner sum in (74) is just −1, thus we finally obtain:

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=(1+m)/2,µ=±m/2

= e−x/2x(1+m)/2

[
ln x−m!

m

∑
k=1

x−k

k(m− k)!

]
. (75)

Theorem 10. For n = 0, 1, 2, . . ., and x > 0, the following integral holds true:

I∗1

(
n
2

,
n + 1

2
; x
)
=

ex Ein(x)
xn+1 Γ(n + 1, x) + n!

n

∑
k=0

x−k−1

(n− k)!
(76){

(−1)k+1Γ(−k, x) γ(k + 1,−x)− Hk −
k

∑
`=1

(
k
`

)
(−x)−`γ(`, x)

}
.

Proof. From (37), we have

I∗1

(
µ− 1

2
, µ; x

)
=

∫ ∞

0
e−xt(1 + t)2µ−1 ln

(
1 + t

t

)
dt,

thus, taking µ = n+1
2 with n = 0, 1, 2, . . . and applying the binomial theorem, we get

I∗1

(
n
2

,
n + 1

2
; x
)

=
n

∑
k=0

(
n
k

) ∫ ∞

0
e−xttk ln

(
1 + t

t

)
dt

=
n

∑
k=0

(
n
k

)
I−(k, x). (77)

Insert the result obtained in (43) for ν = k into (77) to arrive at

I∗1

(
n
2

,
n + 1

2
; x
)
= n!

n

∑
k=0

x−k−1

(n− k)!{
(−1)k+1Γ(−k, x) γ(k + 1,−x) +

x
k + 1 2F2

(
1, 1

2, 2 + k

∣∣∣∣− x
)}

.

Now, take into account (66), to get

I∗1

(
n
2

,
n + 1

2
; x
)
= n!

n

∑
k=0

x−k−1

(n− k)!
(78){

(−1)k+1Γ(−k, x) γ(k + 1,−x)− Hk + Ein(x)−
k

∑
`=1

(
k
`

)
(−x)−`γ(`, x)

}
.

Finally, note that using the exponential polynomial, defined as

en(x) =
n

∑
k=0

xk

k!
,
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and the property for n = 0, 1, 2, . . . [4] (Eqn. 45:4:2):

Γ(1 + n, x) = n! en(x) e−x,

we calculate the following finite sum as:

n

∑
k=0

x−k

(n− k)!
= x−n

n

∑
s=0

xs

s!
=

x−nex

n!
Γ(1 + n, x). (79)

Apply (79) to (78) in order to obtain (76), as we wanted to prove.

Theorem 11. For n = 0, 1, 2, . . ., the following reduction formula holds true:

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=n/2,µ=±(n+1)/2

(80)

= x−n/2 ex/2 Γ(1 + n, x)[E1(x) + ln x] + n! xn/2e−x/2

n

∑
k=0

x−k

(n− k)!

[
(−1)k+1 Γ(−k, x) γ(k + 1,−x)− Hk −

k

∑
`=1

(
k
`

)
(−x)−`γ(`, x)

]
.

Proof. Applying (5) and [3] (Eqn. 13.6.6)

U(1, 2− a, z) = za−1ez Γ(1− a, z),

see that for n = 0, 1, 2, . . .

Wn/2,(n+1)/2(z) = z−n/2ez/2Γ(1 + n, z). (81)

Taking into account (63) and (68), insert (76) and (81) into (39) for κ = n
2 and µ = n+1

2 ,
to arrive at (80), as we wanted to prove.

Theorem 12. For n = 0, 1, 2, . . ., and x > 0, the following integral holds true:

I∗1

(
0, n +

1
2

; x
)
=

n!ex/2
√

πxn+1/2 Kn+1/2

( x
2

)
Ein(x) +

n

∑
k=0

(
n
k

)
(n + k)!
xn+k+1 (82){

(−1)n+k+1Γ(−n− k, x) γ(n + k + 1,−x)− Hn+k −
n+k

∑
`=1

(
n + k
`

)
(−x)−`γ(`, x)

}
.

Proof. Applying the binomial theorem to (37) for κ = 0 and µ = n + 1
2 , we have

I∗1

(
0, n +

1
2

; x
)

=
n

∑
k=0

(
n
k

) ∫ ∞

0
e−xttn+k ln

(
1 + t

t

)
dt

=
n

∑
k=0

(
n
k

)
I−(n + k, x) (83)

Insert the result obtained in (43) for ν = n + k into (83), to get

I∗1

(
0, n +

1
2

; x
)
=

n

∑
k=0

(
n
k

)
(n + k)!
xn+k+1{

(−1)n+k+1Γ(−n− k, x) γ(n + k + 1,−x) +
x

n + k + 1 2F2

(
1, 1

2, 2 + n + k

∣∣∣∣− x
)}

.
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Now, take into account (66), to obtain

I∗1

(
0, n +

1
2

; x
)
=

n

∑
k=0

(
n
k

)
(n + k)!
xn+k+1{

(−1)n+k+1Γ(−n− k, x) γ(n + k + 1,−x) + Ein(x)− Hn+k −
n+k

∑
`=1

(
n + k
`

)
(−x)−`γ(`, x)

}
.

Finally, consider [3] (Eqns. 10.47.9,12)√
z
π

Kn+1/2

( z
2

)
=

z
π

kn

( z
2

)
= e−z/2

n

∑
k=0

(n + k)! z−k

k!(n− k)!
, (84)

where kn(z) is the modified spherical Bessel function of the second kind, to arrive at the desired
result.

Theorem 13. For n = 0, 1, 2, . . ., the following reduction formula holds true:

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=0,µ=±(n+1/2)

(85)

=

√
x
π

Kn+1/2

( x
2

)
[Hn + E1(x) + ln x] + e−x/2

n

∑
k=0

(n + k)! x−k

k!(n− k)![
(−1)n+k+1 Γ(−n− k, x) γ(n + k + 1,−x)− Hn+k −

n+k

∑
`=1

(
n + k
`

)
(−x)−`γ(`, x)

]
.

Proof. Take κ = 0 and µ = n + 1
2 in (39), to obtain

∂Wκ,µ(x)
∂κ

∣∣∣∣
κ=0,µ=n+1/2

= ψ(n + 1)W0,n+1/2(x) +
xn+1e−x/2

n!
I∗1

(
0, n +

1
2

; x
)

. (86)

Consider [29] (Eqn. 1.3.7)

ψ(n + 1) = −γ + Hn, (87)

and [3] (Eqn. 13.18.9)

W0,n+1/2(z) =
√

z
π

Kn+1/2

( z
2

)
. (88)

Substitute (82), (87) and (88) into (86), and take into account (14) and (68), to arrive at
(85), as we wanted to prove.

Table 6 shows the first derivative of Wκ,µ(x) with respect to parameter κ for some
particular values of κ and µ, calculated with the aid of the MATHEMATICA program, from
(58), (80), and (85). Note that, in Table 6 the Shi(x) and the Chi(x) functions appear, which
denote the sine and cosine integrals [3] (Eqns. 6.2.15–16).
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Table 6. First derivative of Wκ,µ(x) with respect to parameter κ for particular values of κ and µ.

κ µ
∂Wκ,µ(x)

∂κ

0 ± 1
2 e−x/2[ln x + ex Γ(0, x)]

0 ± 3
2 x−1e−x/2{(x− 2)ex[Chi(x)− Shi(x)] + (x + 2) ln x + 2}

0 ± 5
2 x−2e−x/2{(x2 + 6x + 12

)
ln x + 18−

(
x2 − 6x + 12

)
ex[Chi(x)− Shi(x)]

}
1
2 0

√
xe−x/2 ln x

1
2 ±1 x−1/2e−x/2[(x + 1) ln x + ex Γ(0, x)]

1 ± 1
2 e−x/2(x ln x− 1)

1 ± 3
2 x−1e−x/2{(x2 + 2x + 2

)
ln x− 2 ex[Chi(x)− Shi(x)]− x

}
3
2 ±1 x−1/2e−x/2(x2 ln x− 2x− 1

)
3
2 ±2 x−3/2e−x/2{(x3 + 3x2 + 6x + 6

)
ln x− 2x2 − 4− 6 ex[Chi(x)− Shi(x)]

}
2 ± 3

2 e−x/2(x2 ln x− 3x− 3− 2
x
)

3.2. Application to the Calculation of Infinite Integrals

Additional integral representations of the Whittaker function Wκ,µ(x) in terms of
Bessel functions [8] (Section 7.4.2) are known:

Wκ,µ(x)

=
2
√

xe−x/2

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

) ∫ ∞

0
e−tt−κ−1/2K2µ

(
2
√

xt
)

dt (89)

Re
(

1
2
± µ− κ

)
> 0.

Let us introduce the following infinite logarithmic integral.

Definition 3.
H(κ, µ; x) =

∫ ∞

0
e−tt−κ−1/2K2µ

(
2
√

xt
)

ln t dt. (90)

Theorem 14. For κ, µ ∈ R with |µ| < 1
2 − κ, the following integral holds true:

H(κ, µ; x) =
1
2

Γ
(

1
2
− µ− κ

)
(91)Γ

(
1
2 + µ− κ

)
ψ
(

1
2 − µ− κ

)
√

x e−x/2 Wκ,µ(x) + xµ I∗1 (κ, µ; x)

,

where I∗1 (κ, µ; x) is given by (42).

Proof. Differentiation of (89) with respect to parameter κ yields:

∂Wκ,µ(x)
∂κ

=

[
ψ

(
1
2
− µ− κ

)
+ ψ

(
1
2
+ µ− κ

)]
Wκ,µ(x) (92)

− 2
√

xe−x/2

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

)H(κ, µ; x)

Equate (39) to (92) to arrive at (91), as we wanted to prove.
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3.3. Derivative with Respect to the Second Parameter ∂Wκ,µ(x)/∂µ

First, note that
∂Wκ,±µ(x)

∂µ
= ±

∂Wκ,µ(x)
∂µ

, (93)

since (15) is satisfied. Next, let us introduce the following definitions in order to calculate
the first derivative of Wκ,µ(x) with respect to parameter µ.

Definition 4. Following the notation introduced in (8) and (9), define

G̃(1)(a, b, z) =
∂

∂a
[U(a, b, z)], (94)

and
H̃(1)(a, b, z) =

∂

∂b
[U(a, b, z)]. (95)

Direct differentiation of (5) yields:

∂Wκ,µ(x)
∂µ

(96)

= ln x Wκ,µ(x) + xµ+1/2e−x/2[
G̃(1)

(
1
2
− κ + µ, 1 + 2µ, x

)
+ 2 H̃(1)

(
1
2
− κ + µ, 1 + 2µ, x

)]
Definition 5. For Re(µ− κ) > − 1

2 and x > 0, define:

I∗3 (κ, µ; x) =
∫ ∞

0
e−xttµ−κ−1/2(1 + t)µ+κ−1/2 ln[t(1 + t)]dt, (97)

I∗4 (κ, µ; x) =
∫ ∞

1
e−xttµ+κ−1/2(t− 1)µ−κ−1/2 ln[t(t− 1)]dt. (98)

These integrals are interrelated by

I∗4 (κ, µ; x) = e−x I∗3 (κ, µ; x).

Differentiation of (35) with respect to parameter µ gives

∂Wκ,µ(x)
∂µ

(99)

=

[
ln x− ψ

(
µ− κ +

1
2

)]
Wκ,µ(x) +

xµ+1/2e−x/2

Γ
(

µ− κ + 1
2

) I∗3 (κ, µ; x).

Theorem 15. According to the notation introduced in (94) and (95), the following integral holds
true for x > 0:

I∗3 (κ, µ; x) (100)

= Γ
(

1
2
− κ + µ

){
U
(

1
2
− κ + µ, 1 + 2µ, x

)
ψ

(
1
2
− κ + µ

)
+ G̃(1)

(
1
2
− κ + µ, 1 + 2µ, x

)
+ 2 H̃(1)

(
1
2
− κ + µ, 1 + 2µ, x

)}
.

Proof. Comparing (96) to (99), taking into account (5), we arrive at (100), as we wanted to
prove.
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Theorem 16. For −2µ 6= 0, 1, 2, . . . and x > 0, the following reduction formula holds true:

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=1/2−µ

= x1/2−µe−x/2 (101){
x

2µ
2F2

(
1, 1

2, 1 + 2µ

∣∣∣∣− x
)
+ e−2πiµ Γ(1− 2µ, x) γ(2µ,−x) + ψ(2µ)− ln x

}
.

Proof. According to (43) and (97), note that

I∗3

(
1
2
− µ, µ; x

)
= I+(2µ− 1, x) (102)

=
Γ(2µ)

x2µ

{
x

2µ
2F2

(
1, 1

2, 1 + 2µ

∣∣∣∣− x
)

+ e−2πiµ Γ(1− 2µ, x) γ(2µ,−x) + 2[ψ(2µ)− ln x]
}

.

Taking κ = 1/2− µ in (99), substitute (102) and (56) to arrive at the desired result,
given in (101).

Remark 4. If we take into account (48) in (102), we obtain the alternative form:

I∗3

(
1
2
− µ, µ; x

)
=

1
x2µ

{
π[cot(2πµ)− i]γ(2µ,−x) + x Γ(2µ− 1) 2F2

(
1, 1

2, 2− 2µ

∣∣∣∣x)
+ 2 Γ(2µ)[ψ(2µ)− ln x]

}
,

thus for −2µ 6= 0, 1, 2, . . . and x > 0, we have

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=1/2−µ

= x1/2−µe−x/2 (103){
π[cot(2πµ)− i]

Γ(2µ)
γ(2µ,−x) +

x
2µ− 1 2F2

(
1, 1

2, 2− 2µ

∣∣∣∣x)+ ψ(2µ)− ln x
}

.

Table 7 shows the first derivative of Wκ,µ(x) with respect to parameter µ for some
particular values of κ and µ, with x > 0, calculated from (103) with the aid of the MATHE-
MATICA program.

Table 7. Derivative of Wκ,µ with respect to µ, by using (103).

κ µ
∂Wκ,µ(x)

∂µ (x > 0)

− 1
4 ± 3

4 ±x−1/4e−x/2
[
2− γ− ln(4x)− 2 ex√π x + π erfi

(√
x
)
+ 2x 2F2

(
1, 1; 1

2 , 2; x
)]

1
4 ± 1

4 ±x1/4e−x/2[π erfi
(√

x
)
− 2x 2F2

(
1, 1; 3

2 , 2; x
)
− γ− ln(4x)

]
3
4 ± 1

4 ±e−x/2
{

x3/4[ 2
3 x 2F2

(
1, 1; 5

2 , 2; x
)
− 2 + γ + ln(4x)− π erfi

(√
x
)]

+
√

π x1/4 ex
}

5
4 ± 3

4

± 1
30 x−1/4e−x/2

{
15
√

πex(2x + 1)− 2 x3/2[
40− 15γ− 30 ln(2x) + 15π erfi

(√
x
)
− 12x 2F2

(
1, 1; 7

2 , 2; x
)]}

Notice that for −2µ = 0, 1, . . ., we obtain an indeterminate expression in (101) or (103).
For these cases, we present the following result.
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Theorem 17. The following reduction formula holds true for m = 0, 1, 2, . . .:

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=(1+m)/2,µ=±m/2

(104)

= ±e−x/2x(1+m)/2
m

∑
k=1

x−k
[

ex Γ(k) +
(

m
k

)
γ(k,−x)

]
.

Proof. Take ν = 2µ in (103) and perform the limit ν→ −m = 0,−1,−2, . . .

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=(m+1)/2,µ=−m/2

= e−x/2x(1+m)/2

{
lim

ν→−m

[
ψ(ν) +

π[cot(πν)− i]
Γ(ν)

γ(ν,−x)
]
− x

m + 1 2F2

(
1, 1

2, 2 + m

∣∣∣∣x)− ln x
}

.

Applying the result given in (64), we get

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=(m+1)/2,µ=−m/2

= e−x/2x(1+m)/2 (105){
Hm − γ− i π + (−1)m+1m! Γ(−m,−x)− x

m + 1 2F2

(
1, 1

2, 2 + m

∣∣∣∣x)− ln x
}

.

Now, compare (58) to (65) to see that

Hm − γ− i π + (−1)m+1m! Γ(−m,−x)− x
m + 1 2F2

(
1, 1

2, 2 + m

∣∣∣∣x)
= ln x−

m

∑
k=1

x−k
[

ex Γ(k) +
(

m
k

)
γ(k,−x)

]
(106)

Therefore, inserting (106) into (105), and taking into account (93), we arrive at (104),
as we wanted to prove.

Remark 5. It is worth noting that from [17],

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=(N+1)/2,µ=M/2

(107)

=
(N+M)/2

∑
k=1

(−1)k
(

N+M
2

)
!

k
(

N+M
2 − k

)
!

W N+1
2 −k, M

2
(x) +

(N−M)/2

∑
k=1

(−1)k
(

N−M
2

)
!

k
(

N−M
2 − k

)
!

W N+1
2 −k, M

2
(x),

where −N ≤ M ≤ N and M, N are integers of like parity, we can derive an equivalent reduction
formula to (104). Indeed, following similar steps as in Remark 3, we arrive at:

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=(1+m)/2,µ=±m/2

= ±m! e−x/2x(1+m)/2
m

∑
k=1

x−k

k(m− k)!
. (108)

Theorem 18. For n = 0, 1, 2, . . ., the following reduction formula holds true:

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=n/2,µ=±(n+1)/2

(109)

= ±x−n/2 ex/2 E1(x) Γ(1 + n, x)± n! xn/2e−x/2

n

∑
k=0

x−k

(n− k)!

{
Hk + (−1)k+1 Γ(−k, x) γ(k + 1,−x)−

k

∑
`=1

(
k
`

)
(−x)−`γ(`, x)

}
.
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Proof. According to (97) and (43), using the binomial theorem and taking into account (87),
we have

I∗3

(
n
2

,
n + 1

2
; x
)
=
∫ ∞

0
e−xt(1 + t)n ln[t(1 + t)]dt (110)

=
n

∑
k=0

(
n
k

)
I+(k, x) = n!

n

∑
k=0

x−k−1

(n− k)!{
x

k + 1 2F2

(
1, 1

2, 2 + k

∣∣∣∣− x
)
+ (−1)k+1 Γ(−k, x) γ(k + 1,−x) + 2[Hk − γ− ln x]

}
.

Consider (66), (68) and (79) in order to rewrite (110) as

I∗3

(
n
2

,
n + 1

2
; x
)
=

E1(x)− ln x− γ

xn+1 ex Γ(n + 1, x) (111)

+n!
n

∑
k=0

x−k−1

(n− k)!

{
Hk + (−1)k+1 Γ(−k, x) γ(k + 1,−x)−

k

∑
`=1

(
k
`

)
(−x)−`γ(`, x)

}
.

Therefore, substituting (81), (63), and (111) into (99), we obtain (109), as we wanted to
prove.

Theorem 19. For n = 0, 1, 2, . . ., the following reduction formula holds true:

∂Wκ,µ(x)
∂µ

∣∣∣∣
κ=0,µ=±(n+1/2)

(112)

= ±
√

x
π

Kn+1/2

( x
2

)
[E1(x)− Hn]± e−x/2

n

∑
k=0

(n + k)! x−k

k!(n− k)!{
Hn+k + (−1)n+k+1 Γ(−n− k, x) γ(n + k + 1,−x)−

k

∑
`=1

(
k
`

)
(−x)−`γ(`, x)

}
.

Proof. Applying the binomial theorem to (97) for κ = 0 and µ = n + 1
2 , and taking into

account (43), (66), (68), and (84) for x > 0, we arrive at

I∗3

(
0, n +

1
2

; x
)
=
∫ ∞

0
e−xt[t(1 + t)]n ln[t(1 + t)]dt (113)

=
n

∑
k=0

(
n
k

) ∫ ∞

0
e−xttn+k ln[t(1 + t)]dt =

n

∑
k=0

(
n
k

)
I+(n + k, x)

=
n!ex/2Kn+1/2

( x
2
)

√
π xn+1/2 [E1(x)− γ− ln x] +

n!
xn+1

n

∑
k=0

(n + k)! x−k

k!(n− k)!{
Hn+k + (−1)n+k+1 Γ(−n− k, x) γ(n + k + 1,−x)−

k

∑
`=1

(
k
`

)
(−x)−`γ(`, x)

}
.

Take κ = 0 and µ = n + 1
2 in (99), and substitute (113) and (88) in order to arrive at

(112), as we wanted to prove.

Table 8 shows Wκ,µ(x) with respect to parameter µ for some particular values of κ and
µ, which has been calculated from (104), (109), and (112) with the aid of the MATHEMAT-
ICA program.
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Table 8. Derivative of Wκ,µ with respect to µ, by using (109) and (112).

κ µ
∂Wκ,µ(x)

∂µ

0 ± 1
2 ±ex/2[Shi(x)−Chi(x)]

0 ± 3
2 ±x−1e−x/2{ex(x− 2)[Shi(x)−Chi(x)] + 4}

0 ± 5
2 ±x−2e−x/2{4(x + 8)− ex(x2 − 6x + 12

)
[Shi(x)−Chi(x)]

}
1
2 ±1 ±x−1/2e−x/2{ex[Shi(x)−Chi(x)] + 2}
1
2 0 0

1 ± 1
2 ±e−x/2

1 ± 3
2 ±x−1e−x/2{2 ex[Shi(x)−Chi(x)] + 3(x + 2)}

3
2 ±1 ±x−1/2e−x/2(2x + 1)
3
2 ±2 ±x−3/2e−x/2{2

(
2x2 + 7x + 11

)
− 6 ex[Shi(x)−Chi(x)]

}
2 ± 3

2 ±e−x/2(3x + 3 + 2
x
)

2 ± 5
2 ±x−2e−x/2{5

(
x3 + 5x2 + 14x + 20

)
− 24 ex[Shi(x)−Chi(x)]

}
4. Integral Whittaker Functions Wiκ,µ and wiκ,µ

In [20], we found some reduction formulas for the integral Whittaker function Wiκ,µ(x).
Next, we derive some new reduction formulas for Wiκ,µ(x) and wiκ,µ(x) from reduction
formulas of the Whittaker function Wκ,µ(x).

Theorem 20. The following reduction formula holds true for n = 0, 1, 2, . . . and κ > 0:

Wiκ+n,κ−1/2(x) = (−1)n(2κ)n 2κ
n

∑
m=0

(
n
m

)
(−2)m

(2κ)m
γ(κ + m, x/2). (114)

Proof. According to [3] (Eqn. 13.18.17)

Wκ+n,κ−1/2(x) = (−1)nn! e−x/2xκ L(2κ−1)
n (x), (115)

where [29] (Eqn. 4.17.2)

L(α)
n (x) =

n

∑
m=0

Γ(n + α + 1)
Γ(m + α + 1)

(−x)m

m!(n−m)!
, (116)

denotes the Laguerre polynomials. Insert (116) into (115) and integrate term by term
according to the definition of the integral Whittaker function (6), to get

Wiκ+n,κ−1/2(x)

= (−1)n(2κ)n

n

∑
m=0

(
n
m

)
(−1)m

(2κ)m

∫ x

0
e−t/2tκ+m−1dt.

Finally, take into account the definition of the lower incomplete gamma function [3]
(Eqn. 8.2.1):

γ(ν, z) =
∫ z

0
tν−1e−tdt, Re ν > 0, (117)

and simplify the result, to arrive at (114), as we wanted to prove.

Remark 6. Taking n = 0 in (114), we recover the formula given in [20].
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Theorem 21. The following reduction formula holds true for x > 0, n = 0, 1, 2, . . . and κ ∈ R:

wiκ+n,κ−1/2(x) = (−1)n(2κ)n 2κ
n

∑
m=0

(
n
m

)
(−2)m

(2κ)m
Γ(κ + m, x/2), (118)

where Γ(ν, z) denotes the upper incomplete gamma function (119).

Proof. Follow similar steps as in the previous theorem, but consider the definition of the
upper incomplete gamma function [3] (Eqn. 8.2.2):

Γ(ν, z) =
∫ ∞

z
tν−1e−tdt. (119)

Theorem 22. The following reduction formula holds true for x > 0, and n = 0, 1, 2, . . .:

wi0,n+1/2(x) =
n

∑
m=0

(n + k)!2−k

k!(n− k)!
Γ(−k, x/2). (120)

Proof. From (84) and (88), we have

W0,n+1/2(z) = e−z/2
n

∑
k=0

(n + k)! z−k

k!(n− k)!
,

thus, integrating term by term, we obtain

wi0,n+1/2(x) =
n

∑
k=0

(n + k)!
k!(n− k)!

∫ ∞

x
e−t/2 t−k−1dt.

Finally, taking into account (119), we arrive at (120), as we wanted to prove.

Theorem 23. For x > 0 and Re
(

1
2 + µ− κ

)
> 0, the following integral representation holds

true:

wiκ,µ(x) =
1

Γ
(

1
2 + µ− κ

) ∫ ∞

0

tµ−κ−1/2(1 + t)µ+κ−1/2(
1
2 + t

)µ+1/2 Γ
(

1
2
+ µ, x

(
t +

1
2

))
dt. (121)

Proof. According to (7) and (35), we have

wiκ,µ(x)

=
1

Γ
(

µ− κ + 1
2

) ∫ ∞

x
dt tµ−1/2e−t/2

∫ ∞

0
e−x ξ ξµ−κ−1/2(1 + ξ)µ+κ−1/2dξ.

Exchange the integration order and calculate the inner integral using (119), to arrive at
(121), as we wanted to prove.

Remark 7. It is worth noting that we cannot follow the above steps to derive the integral represen-
tation of Wiκ,µ(x), because the corresponding integral does not converge, except for some special
cases such as the ones given in (114).
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Theorem 24. For x > 0 and Re
(

1
2 + µ− κ

)
> 0, the following integral representation holds

true:

∂wiκ,µ(x)
∂κ

=
1

Γ
(

1
2 + µ− κ

) (122)

∫ ∞

0

[
ψ

(
1
2
+ µ− κ

)
+ ln

(
1 + t

t

)]
tµ−κ−1/2(1 + t)µ+κ−1/2(

1
2 + t

)µ+1/2 Γ
(

1
2
+ µ, x

(
t +

1
2

))
dt.

Proof. Direct differentiation of (121) with respect to κ yields (122), as we wanted to
prove.

5. Conclusions

The Whittaker function Wκ,µ(x) is defined in terms of the Tricomi function, hence
its derivative with respect to the parameters κ and µ can be expressed as infinite sums of
quotients of the digamma and gamma functions. In addition, the parameter differentia-
tion of some integral representations of Wκ,µ(x) leads to infinite integrals of elementary
functions. These sums and integrals have been calculated for some particular cases of the
parameters κ and µ, in closed form. As an application of these results, we have calculated
an infinite integral containing the Macdonald function. It is worth noting, that all the results
presented in this paper have been both numerically and symbolically checked with the
MATHEMATICA program.

In Appendix A, we calculate a reduction formula for the first derivative of the Kummer
function, i.e., G(1)(a; a; z), which is necessary for the derivation of Theorem 1.

In Appendix B, we calculate a reduction formula of the hypergeometric function
2F2(1, 1; 2, 2 + m; x) for a non-negative integer m, since it is not found in most common
literature, such as [9]. This reduction formula is used throughout Section 3 in order to
simplify the results obtained.

Finally, we collect some reduction formulas for the Whittaker function Wκ,µ(x) in
Appendix C.
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Appendix A. Calculation of G(1)(a; a; z)

Theorem A1. The following reduction formula holds true:

G(1)
(

a
a

∣∣∣∣x) =
x ex

a 2F2

(
1, 1

a + 1, 2

∣∣∣∣− x
)

. (A1)

Proof. According to the definition of the Kummer function (3), we have

1F1

(
b
a

∣∣∣∣x) = 1 +
∞

∑
n=0

(b)n+1
(a)n+1

xn+1

(n + 1)!
. (A2)
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Taking into account [4] (Eqn. 18:5:7)

(α)n+1 = α(α + 1)n,

and the definition of the generalized hypergeometric function (4), we may recast (A2) as

1F1

(
b
a

∣∣∣∣x) = 1 +
b
a

x 2F2

(
1, b + 1
2, a + 1

∣∣∣∣x),

thus, for b 6= 0, we obtain (it is worth noting that there is an error in (Eqn. 7.12.1(5)) in [9])

2F2

(
1, b + 1
2, a + 1

∣∣∣∣x) =
a

b x

[
1F1

(
b
a

∣∣∣∣x)− 1
]

. (A3)

Applying L’Hôpital’s rule, calculate the limit b→ 0 in (A3), considering the notation
given in (8),

2F2

(
1, 1

2, a + 1

∣∣∣∣x) =
a
x

G(1)
(

0
a

∣∣∣∣x). (A4)

Finally, differentiate Kummer’s transformation formula (11) with respect to the first
parameter, to obtain:

G(1)
(

b
a

∣∣∣∣x) = −ex G(1)
(

b− a
b

∣∣∣∣− x
)

. (A5)

Apply (A5) in order to rewrite (A4) as (A1), as we wanted to prove.

Appendix B. Calculation of 2F2(1, 1; 2, 2 + m; x)

Theorem A2. For m = 0, 1, 2, . . ., the following reduction formula holds true:

2F2

(
1, 1

2, 2 + m

∣∣∣∣x) =
m + 1

x

{
Hm − Ein(−x) +

m

∑
k=1

(
m
k

)
x−kγ(k,−x)

}
, (A6)

where Ein(z) denotes the complementary exponential integral.

Proof. Consider the function

Rm(x) =
1

m! 2F2

(
1, 1

2, 1 + m

∣∣∣∣x) =
∞

∑
k=0

xk

(m + k)!(k + 1)
,

thus
d

dx
[xmRm(x)] = xm−1Rm−1(x),

and by induction

dm

dxm [xmRm(x)] = R0(x) =
1
x

∞

∑
k=0

xk+1

(k + 1)!
=

ex − 1
x

.

Now, apply the repeated integral formula [3] (Eqn. 1.4.31)

f (−n)(x) =
1

(n− 1)!

∫ x

0
(x− t)n−1 f (t)dt,

to obtain
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Rm+1(x) =
1

(m + 1)! 2F2

(
1, 1

2, 2 + m

∣∣∣∣x)
=

x−m−1

m!

∫ x

0
(x− t)m

(
et − 1

t

)
dt. (A7)

Use the binomial theorem to expand (A7) as

2F2

(
1, 1

2, 2 + m

∣∣∣∣x) (A8)

=
m + 1

x

{∫ x

0

et − 1
t

dt +
m

∑
k=1

(
m
k

)
x−k(−1)k

∫ x

0
tk−1(et − 1

)
dt

}
.

According to [3] (Eqn. 6.2.3), we have

∫ x

0

et − 1
t

dt = −Ein(−x). (A9)

Further, taking into account the definition of the lower incomplete gamma function [4]
(Eqn. 45:3:1), we calculate for k = 1, 2, . . .

∫ x

0
tk−1(et − 1

)
dt = (−1)kγ(k,−x)− xk

k
. (A10)

Therefore, substituting (A9) and (A10) into (A8), we have

2F2

(
1, 1

2, 2 + m

∣∣∣∣x) =
m + 1

x

{
−Ein(−x) +

m

∑
k=1

(
m
k

)[
x−kγ(k,−x) +

(−1)k+1

k

]}
.

Finally, consider the formula [7] (Eqn. 0.155.4)

m

∑
k=1

(
m
k

)
(−1)k+1

k
= Hm,

to arrive at (A6), as we wanted to prove

Appendix C. Reduction Formulas for the Whittaker Function Wκ,µ(x)

For the convenience of the reader, reduction formulas for the Whittaker function
Wκ,µ(x) are presented in their explicit form in Table A1.

Table A1. Whittaker function Wκ,µ(x) for particular values of κ and µ.

κ µ Wκ,µ(x)

− 1
4 ± 1

4
√

πex/2x1/4erfc
(√

x
)

− 1
2 ± 1

2
x√
π

[
K1
( x

2
)
− K0

( x
2
)]

− 1
2 ± 1

6 3 x√
π

[
K2/3

( x
2
)
− K1/3

( x
2
)]

− 1
2 ±1 x−1/2e−x/2

0 0
√

x
π K0

( x
2
)

0 ± 1
2 e−x/2

0 ±1
√

x
π K1

( x
2
)
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Table A1. Cont.

κ µ Wκ,µ(x)

0 ± 3
2 x−1e−x/2(x + 2)

0 ± 5
2 x−2e−x/2(x2 + 6 x + 12

)
1
4 ± 1

4 x1/4e−x/2

1
2 ± 1

6
x

2
√

π

[
K1/3

( x
2
)
+ K2/3

( x
2
)]

1
2 ± 1

4
x

2
√

π

[
K1/4

( x
2
)
+ K3/4

( x
2
)]

1
2 ± 1

2
x

2
√

π

[
K0
( x

2
)
+ K1

( x
2
)]

1
2 ±1 x−1/2e−x/2 (x + 1)
1
2 ±2 x−3/2e−x/2 (x2 + 4 x + 6

)
1 ± 3

2 x−1e−x/2(x2 + 2 x + 2
)

1 ±1 1
2

√
x
π

[
x K0

( x
2
)
+ (x + 1)K1

( x
2
)]

1 ±2 1
2
√

π x

[
x(x + 3)K0

( x
2
)
+
(
x2 + 4 x + 12

)
K1
( x

2
)]

2 ±2 1
4
√

π x

[
x
(
2 x2 + 2x + 3

)
K0
( x

2
)
+ 2
(
x3 + 2 x2 + 4 x + 6

)
K1
( x

2
)]
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