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Abstract. The flexible job shop is a well-known scheduling problem that has historically attracted much research attention both
because of its computational complexity and its importance in manufacturing and engineering processes. Here we consider a
variant of the problem where uncertainty in operation processing times is modeled using triangular fuzzy numbers. Our objective
is to minimize the total energy consumption, which combines the energy required by resources when they are actively processing
an operation and the energy consumed by these resources simply for being switched on. To solve this NP-Hard problem, we
propose a memetic algorithm, a hybrid metaheuristic method that combines global search with local search. Our focus has been on
obtaining an efficient method, capable of obtaining similar solutions quality-wise to the state of the art using a reduced amount of
time. To assess the performance of our algorithm, we present an extensive experimental analysis that compares it with previous
proposals and evaluates the effect on the search of its different components.
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1. Introduction

Scheduling [1,2] is a classical manufacturing prob-
lem that consists in organizing the execution of a set of
tasks or operations to make the best use of the available
resources under some constraints in order to fulfill some
objectives. Solving scheduling problems is essential
not only in industrial applications [3,4], in particular in
Industry 4.0 and 5.0 [5], but also in healthcare [6,7],
computing infrastructures [8] or education [9]. Besides
its undeniable applicability, scheduling also poses a
computational challenge, since many of its problems
are NP-Hard [10].

Due to their complexity, most of these problems are
intractable, so exact algorithms cannot be applied ex-
cept for the smallest instances. In consequence, re-
searchers have been developing approximate search
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strategies that no longer guarantee optimality but pro-
vide instead good enough solutions within a reasonable
amount of time [11–13].

A main source of inspiration for developing new ap-
proximate optimization algorithms have been natural
phenomena [14–23]. These methods imitate nature to
explore the search space in smart ways that reduce their
computational cost and have proved successful in sev-
eral real-world applications [24–27]. More recently, the
design of solving methods for hard optimization prob-
lems has advanced considerably with the development
of hyper-heuristics, search or learning methods that ei-
ther select or generate heuristics [28,29], and with the
growth of hybrid metaheuristics that combine several
search strategies to take advantage of their strengths
while at the same time reducing their shortcomings [30].
In particular, memetic algorithms are a type of hybrid
algorithms which combine population-based algorithms
with trajectory-based search methods or other special-
ized search procedures [31–33]. They have become
popular methods to solve hard combinatorial problems
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because they provide a very good balance between ex-
ploration of the search space and exploitation of the
most promising areas [34].

A source of hard optimization problems in the field of
scheduling which have been successfully tackled with
approximate search algorithms is the family of job shop
scheduling problems [35]. The job shop constitutes a
thriving area of research, with many of its variants mod-
elling practical engineering and social applications [36].
In particular, the flexible job shop problem has become
a popular research topic because it corresponds to many
situations arising in industries such as automobile as-
sembly, textile manufacturing, chemical processing or
semiconductor manufacturing [37]. This variant of the
job shop not only deals with an operation-sequencing
problem, but it also incorporates a machine-assignment
subproblem. Due to its increased complexity, most of
the proposed solving methods fall within the category
of metaheuristics [37–41].

The objective of scheduling problems has continu-
ously evolved since the earliest days of industrializa-
tion. Historically, the most common objective was min-
imizing the time span between the start and the end
of the project, known as makespan. While still a rel-
evant objective, it has increasingly been replaced by
or combined with other production-related measures
such as minimizing tardiness, motivated by inventory
management considerations and the growing complex-
ity of supply-chain systems. More recently, energy effi-
ciency and other green objectives have been incorpo-
rated, driven by the need to comply with new laws and
regulations in industry that seek a reduction in envi-
ronmental footprint as well as by the surge in energy
costs caused not only by these regulations, but also by
highly-tensed geopolitical relations. As a result, there
has been a steady increase in research devoted to en-
ergy efficiency and sustainability within the field of
scheduling [3,8,33,42–47].

Despite being a relatively new topic, it is possible
to find in the literature several contributions concerned
with reducing energy consumption in job shop schedul-
ing problems [48]. They can be organized into three
different non-exclusive high-level approaches.

The first one consists in scheduling operations in
such a way that the energy consumed when resources
are actively processing operations and when they are
kept idle is as low as possible. Following this approach,
a multiobjective genetic algorithm based on NSGA-II
is proposed in [49] to solve the job shop minimizing the
total energy consumption and total weighted tardiness.
This work is improved in [50] introducing additional

components to help the search. In [47] the model is fur-
ther extended with the addition of crane transportation
between machines.

The second approach consists in allowing to turn on
and off the resources during project execution. Thus, if
a resource is going to be idle for a long time it can be
turned off and the extra energy used in the starting-up
process may be compensated with the savings during
the off period. This approach is taken in [46], where the
model and method from [49] are extended to allow for
switching on and off the resources. This is also the en-
ergy model in [51], where new job arrivals are consid-
ered and a backtracking search algorithm is proposed.

The third approach consists in slowing down re-
sources so that they consume less energy at the cost
of taking longer to process the operations. Within this
framework, a multi-objective genetic algorithm incor-
porated with two problem-specific local improvement
strategies is used in [52] to reduce total weighted tar-
diness together with energy consumption in a job shop
problem. In [53] the authors consider a job shop with
flexibility and they use a shuffled frog-leaping algorithm
to reduce total energy consumption and workload.

The choice of one framework over the others de-
pends on the problem under consideration. In [54] all
of them are combined in a flexible job shop and a non-
dominated sorted genetic algorithm is used to optimize
the makespan, the energy consumption and the number
of times resources are turned on/off simultaneously.

The majority of research devoted to scheduling in
general, and to energy-efficient scheduling in particu-
lar, assumes a deterministic setting. However, uncer-
tainty pervades real-life problems and its management
poses a challenge in industry 5.0 [5]. Hence the rele-
vance of the subfield of fuzzy shop scheduling [55,56],
where uncertainty is handled using fuzzy numbers. This
approach considers a whole range of possible dura-
tions during the solving process and thus yields more
robust solutions [57]. Triangular fuzzy numbers are
probably the most extended model for uncertain du-
rations in scheduling problems (see [55,58] and refer-
ences therein). As pointed out in [59], they provide a
good balance between expressiveness, computing cost
and ease of understanding. Indeed, in most cases there
is not enough available knowledge to model uncertain
processing times by a probability distribution, but it
may be possible to provide an interval that is supposed
to contain the eventually observed value of a processing
time. Simple intervals have a limited expressive power:
if they are too wide, they are not informative enough
to be of any use and, if they are too narrow, they may
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not contain the whole range of possible values for a
processing time. An intermediate model is the trian-
gular fuzzy number, which provides an estimate of the
processing time using an interval of possible values and
the most likely value in it [60].

In the literature, it is possible to find different meta-
heuristic proposals to optimize production-related ob-
jectives in a fuzzy setting [12,55] and, in particular, in
the fuzzy flexible job shop (see [61,62] for recent and
thorough literature reviews). Research in solving prob-
lems that combine uncertainty and energy consump-
tion is still incipient, with the proposed solving meth-
ods always in the category of metaheuristics and with
a majority of memetic algorithms. In [63] the authors
propose an evolutionary algorithm to reduce the non-
processing energy and the total weighted tardiness in
a fuzzy job shop, while two memetic algorithms are
proposed in [64] and [41], the former to minimize the
non-processing energy and the makespan in a fuzzy
job shop and the latter to minimize total energy con-
sumption in a flexible job shop. A multiobjective fuzzy
flexible job shop problem is tackled in [65], with the
goal of minimising the fuzzy makespan together with
the fuzzy total energy consumption as well as maximis-
ing flexible due-date satisfaction. The proposed solv-
ing method is a bi-population evolutionary algorithm
with a feedback mechanism and enhanced local search,
thus falling in the category of memetic algorithms. Fi-
nally, in a slightly different uncertainty framework, a
learning-based memetic algorithm is proposed in [66]
to minimize makespan and energy consumption in a
bi-objective flexible job shop with type-two fuzzy pro-
cessing times.

In this work we will tackle a fuzzy flexible job shop
problem with the goal of minimizing energy consump-
tion. Specifically, we will consider uncertainty in the
processing time of operations modelled as triangular
fuzzy numbers and the objective will be to minimize the
total energy consumption, a fuzzy quantity defined as
the sum of the passive energy, consumed by resources
as soon as they are on, whether idle or working, and
the active energy, consumed by resources on top of the
passive energy when they are processing operations. As
solving method, we propose an enhanced memetic al-
gorithm, called EMA. Our proposal builds on the simple
memetic algorithm (SMA) proposed in [41] as a first
approach to solving the problem at hand. To improve
the performance of SMA we will introduce several new
components that enhance the method’s search ability.
These components pursue a better integration of the ex-
ploration provided by the evolutionary component and

the exploitation provided by the local search. We claim
that by altering the balance along the search between
these opposite behaviors the search can be more effec-
tive. These new components not only make a difference
with the work in [41] but also are novel with respect to
those used in other similar methods of the scheduling
literature as [38].

The contribution of this work is twofold. On the one
hand, we propose an enhanced memetic algorithm EMA
which improves the state of the art by incorporating new
strategies that considerably reduce the computational
cost of the search without deteriorating the quality of
the obtained solutions. In particular, we propose:

– a new methodology for evolving the population
with increased diversity along the search;

– a heuristic seeding mechanism that inserts some
expected good traits in the initial population to
help in the early stages of the search;

– a new adaptive strategy to control the local search
component which translates into an incremental
tabu search that strengthens intensification when
the search stagnates.

On the other hand, we provide an extensive and
thorough computational study to evaluate the proposed
method. The experimental results will allow for the
following:

– an analysis of the search results in relation to
the different features characterizing problem in-
stances;

– a study of the synergies between the two main
components of the memetic algorithm: the evolu-
tionary module and the tabu search;

– an analysis of the effects of a filtering mechanism
in the local search that discards uninteresting solu-
tions without completely evaluating them to gain
efficiency;

– an evaluation of the contribution of the different
neighborhood structures used in the local search.

The rest of the paper is organized as follows: Sec-
tion 2 formally defines the problem, Section 3 describes
the proposed algorithm and Section 4 reports and an-
alyzes the experimental results to evaluate the poten-
tial of our proposal. Finally, Section 5 presents some
conclusions.

2. Problem formulation

The job shop scheduling problem consists in schedul-
ing a set O of operations (also called tasks) in a setR
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of m resources (also called machines) subject to a set
of constraints. Operations are organized in a set J of
n jobs, so operations within a job must be sequentially
scheduled. Given an operation o ∈ O, the job to which
it belongs will be denoted by χo ∈ J and the position
in which it has to be executed relative to this job will be
denoted by ηo. The total number of operations in a job
j is nj . There exist capacity constraints, by which each
operation requires the uninterrupted and exclusive use
of one of the resources for its whole processing time.
An operation o ∈ O may be executed in any resource
from a given set Ro ⊆ R and its processing time por
depends on the resource r ∈ Ro where it is executed.

2.1. Fuzzy processing times

We model processing times as triangular fuzzy num-
bers (TFNs), a particular type of fuzzy numbers [67],
with an interval [a1, a3] of possible values and a modal
value a2. A TFN can be represented as a triplet a =
(a1, a2, a3) and its membership function is given by the
following expression:

µa(x) =


x−a1
a2−a1 a1 6 x 6 a2

x−a3
a2−a3 a2 6 x 6 a3

0 x < a1 ∨ a3 < x

(1)

For our problem, we need two arithmetic operations
between TFNs, the sum and the maximum, as well as
the scalar multiplication with a real number d. All these
operations can be obtained using the extension prin-
ciple but, unfortunately, the set of TFNs is not closed
under the maximum and for this reason we rely on an
approximation thereof. This way, the sum of two TFNs
a and b is given by:

a+ b = (a1 + b1, a2 + b2, a3 + b3), (2)

the scalar multiplication is given by:

da = (da1, da2, da3), (3)

and the maximum is approximated using interpolation
on its three defining points as:

max(a, b) ≈ (max(a1, b1),max(a2, b2),
(4)

max(a3, b3))

When the result of the actual maximum operation is
a TFN, then it coincides with the approximated value
from Eq. (4). When this is not the case, the approxi-
mation maintains the support and modal value of the
non-approximated maximum. Maintaining the support
is in fact a very important property in scheduling since
a good model of uncertainty should contemplate all

possible scenarios. If the support were not maintained
under the maximum, the resulting fuzzy schedule might
not cover starting or completion times for operations
which are actually attainable in a real scenario, resulting
in poor and incomplete solutions. The interested reader
is referred to [57] and references therein for further
arguments supporting the use of this approximation,
widely used in fuzzy scheduling.

Another important characteristic to be taken into ac-
count when working with TFNs (or fuzzy numbers in
general) is that the subtraction is not the inverse of the
addition. Indeed, following the Extension Principle, the
subtraction of two TFNs a and b is defined as:

a− b = (a1 − b3, a2 − b2, a3 − b1) (5)

Clearly (a+b)−b 6= a. This is so because the definition
assumes that a and b are non-interactive variables, that
is, they can be assigned values within their support
independently of each other [67]. However, when both
TFNs a and b are linked, applying the subtraction results
in an over-imprecise quantity.

In scheduling, it may be the case that we have two
TFNs a and b which are indeed linked in the sense that
a is the result of adding b to a third TFN c, that is, there
exists c such that a = b+c, and we may be interested in
recovering c from a and b. In this case, we can compute
the inverse of the sum as follows:

a	 b = (a1 − b1, a2 − b2, a3 − b3) (6)

so c = a	 b. One could say that we want to “remove”
b from a to obtain c, so we shall refer to the operation
	 as operation remove. The use of such an inverse of
the fuzzy addition in scheduling dates back to [68].

Finally, since there exists no natural relation of to-
tal order for TFNs, we need to resort to some rank-
ing method. Here, we will use a ranking based on the
expected value of TFNs, so

a 6E b iff E[a] 6 E[b] (7)

where E[a] = a1+2a2+a3

4 is the expression of the ex-
pected value of a fuzzy number in the particular case of
a TFN [69]. Besides its wide use in the fuzzy schedul-
ing literature, the choice of this ranking method is sup-
ported by some empirical analysis that suggests that
using it contributes to the robustness of the obtained
solutions [57].

2.2. Fuzzy schedules

A schedule is a solution to the problem, a pair (τ , s)
consisting of both a resource assignment τ and starting
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time assignment s for all operations. A solution is said
to be feasible if all constraints hold. For an operation
o ∈ O, let τo be the resource assigned to o in this
solution and let so and co = so+poτo be its starting and
completion times respectively. Then, for an arbitrary
pair of operations u, v ∈ O precedence constraints
within a job hold if and only if ∀i ciu 6 siv when χu =
χv, ηu < ηv and capacity constraints hold if and only if
∀i ciu 6 siv∨∀i civ 6 siu when τu = τv for i ∈ {1, 2, 3}.

Notice that the starting time assignment s induces
a global operation processing order σ and a resource
operation processing order δr for every r ∈ R. The
position of operation o in σ is denoted by σo and the
position in which operation o is executed in resource τo
is denoted by δo.

For a given a feasible solution (τ , s), the fuzzy
makespan is defined as:

Cmax = max
j∈J

Cj (8)

where Cj denotes the completion time of job j, that is,
Cj = co for the operation o such that χo = j, ηo = nj .

2.3. Total energy objective function

In the fuzzy flexible job shop problem we consider
two types of energy: active energy and passive energy.
Passive energy PEr is intrinsic to each resource r ∈ R
and is consumed whenever the resource is on. It is
the product of the passive power consumption of the
resource PPr and the time r is on. We consider that all
resources are turned on at the same time (at instant 0)
and turned off when all operations are completed, i.e.,
resources are on for the entire makespan. Thus,

PEr = PPrCmax (9)

Active energy consumption AEor occurs when an
operation o is processed in a resource r. It depends
on the power APor required to execute operation o in
resource r, so:

AEor = APorpor (10)

We adopt an additive model so the total energy con-
sumption Er of a resource r ∈ R is the result of adding
the passive and the active energy as follows:

Er = PEr +
∑

o∈O,τo=r
AEor (11)

Given these definitions, the total energy consumption
is obtained as the sum of the total energy consumption
of each resource:

E =
∑
r∈R

Er (12)

This energy model corresponds to the first high-level
approach to energy consumption as explained in Sec-
tion 1. However, it is formulated in a somewhat differ-
ent way to how it is done in the deterministic setting.
In deterministic scheduling, the possible states of the
resources are usually disjoint, so they can contribute
to either the processing energy cost (the energy con-
sumed when they are executing) or the non-processing
energy cost (the energy consumed when they are idle).
To compute the latter, it is necessary to calculate the
idle time periods for each resource, i.e., the time span
between the end of an operation and the start of the
following one in the same resource. When durations
are real numbers, this is easily done by subtracting the
completion time of the first operation from the start-
ing time of the second. However, a direct translation of
this approach to the fuzzy job shop means subtracting
non-interactive quantities, thus introducing some un-
desired and artificial uncertainty, as explained above in
Section 2.1. For this reason, inspired by energy mod-
els used to reduce energy consumption in data centers,
we propose instead to make use of overlapping states,
resulting in an additive model where the two involved
energies are aggregated. Notice that in the determinis-
tic case both approaches, the standard one using dis-
joint states and the one adopted here using overlapping
states are in fact equivalent. In the fuzzy setting, this
alternative model has the advantage of avoiding added
artificial uncertainty. This is so because it decomposes
the total energy calculation in a way that does not im-
ply subtracting interactive fuzzy numbers. The use of
overlapping resource states with the goal of avoiding
computing the length of idle periods under uncertainty
is also underlying the definition of fuzzy total energy
proposed in [65], although here the authors assume that
resources are turned off individually.

2.4. MILP model

In this section we present a MILP model based
on [70]. As mentioned in Section 2.2, a solution to the
problem is given by a pair (τ , s) consisting of both a
resource assignment τ and a starting time assignment s
for all operations. This suggests defining two types of
binary decision variables. For every operation o ∈ O
and every resource r ∈ Ro, let

Xor =

{
1 if o is scheduled in r,
0 otherwise;

(13)
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and for every pair of operations u, v ∈ O, let

Yuv =


1 if u is the immediate predecessor

of v in their resource,
0 otherwise.

(14)

It is trivial that the variables Xor give us enough in-
formation to build τ , and Yuv to build a global operation
order σ. However, for the solution to be complete we
need the actual starting times, represented by another
set of variables sio, i ∈ {1, 2, 3}, o ∈ O, corresponding
to the i-th component of the starting time of operation
so, a TFNs. The resulting MILP model is:

minE[E] (15)

subject to∑
r∈Ro

Xor = 1 ∀o ∈ O (16)

∑
v∈O

Yuv 6 1 ∀u ∈ O (17)

siu > siv +
∑

r∈R(v)

Xvrp
i
vr

(18)
∀u, v ∈ O, ηu = ηv + 1, i ∈ {1, 2, 3}

siu > siv +
∑

r∈Ru∩Ru

Xvrp
i
vr −W ((1− Yuv)

+ (1−Xur) + (1−Xvr)) (19)

∀u, v ∈ O, u 6= v, i ∈ {1, 2, 3}

siv > siu +
∑

r∈Ru∩Ru

Xurp
i
ur −W ((1− Yuv)

+ (1−Xur) +Xvr) (20)

∀u, v ∈ O, u 6= v, i ∈ {1, 2, 3}

0 6 s1o 6 s2o 6 s3o ∀o ∈ O (21)

Cimax > sio +
∑

r∈R(o)

Xorp
i
or

(22)
∀o ∈ O, i ∈ {1, 2, 3}

PEir = PPirC
i
max ∀r ∈ R, i ∈ {1, 2, 3} (23)

AEior = XorAPiorp
i
or

(24)
∀o ∈ O,∀r ∈ R, i ∈ {1, 2, 3}

Eir = PEir +
∑
o∈O

AEior

(25)
∀r ∈ R, i ∈ {1, 2, 3}

Ei =
∑
r∈R

Eir ∀r ∈ R, i ∈ {1, 2, 3} (26)

Fig. 1. Pseudocode of the memetic algorithm.

Equation (16) ensures that operations are assigned
to exactly one resource and Eq. (17) ensures that oper-
ations have at most one immediate predecessor in the
resource. These two equations conform the two basic
constraints of the problem. In order to define the start-
ing time of operations, Eq. (18) ensures that the starting
time of an operation is greater or equal than the addition
of the starting and processing times of its predecessor
in the job, so precedence constraints within jobs hold.
Analogously, Eqs (19) and (20) prevents overlapping of
operations in the same resource. Finally, Eqs (22)–(26)
model the objective function, that is, the total energy
consumption.

3. An enhanced memetic algorithm

As solving method we propose a memetic algorithm
(see Fig. 1), a hybrid metaheuristic combining an evo-
lutionary algorithm with local search, taking advantage
of the synergies between both methods.

3.1. Evolutionary algorithm

The evolutionary algorithm maintains a population
of solutions so, at each generation, the individuals in
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the population are combined to obtain a new population
that will replace the old one. A solution (τ , s) is rep-
resented by the tuple (τ ,σ), i.e., the resource assign-
ments and the global processing order induced by s.
To decode an individual, each operation is assigned the
earliest starting time such that the order defined by σ is
not altered. Individuals in the population are randomly
matched, giving everyone an equal chance to reproduce,
and each pair is combined by means of a crossover op-
erator that generates two offspring. Here we use the
extension of the Generalized Order Crossover (GOX)
proposed in [71]. After crossover, the generated off-
spring are improved using tabu search. Then, a tour-
nament among the parents and their two offspring is
used to select the two individuals that will pass on to
the next population. Because tournament is used as the
replacement operator, the crossover operator is applied
unconditionally. The evolution process finishes after
ev_st_it generations without improvement. So far, this
search procedure essentially corresponds to the simple
memetic algorithm SMA from [41]. We now propose to
enhance this framework with two new additional com-
ponents that improve its overall performance: a heuris-
tic seeding mechanism and an immigration operator.

3.1.1. Heuristic seeding
The first novel component of the memetic algorithm

is a heuristic seeding mechanism that inserts some ex-
pected good traits in the initial population to help in the
early stages of the search. The underlying idea is to add
some knowledge about the problem to otherwise ran-
dom solutions so they can be easily improved without
great diversity loss. Here we propose two complemen-
tary strategies that either focus on reducing operation
processing time or active energy.

The first heuristic strategy consists in generating τ
by allocating each operation o to the resource with the
smallest processing time, that is:

τo = arg min
r∈Ro

por (27)

then, the order σ in which operations are executed
within the resources is generated at random.

The second heuristic strategy consists in assigning
an operation o to the most efficient resource for that
operation in the sense that it incurs in the smallest active
energy consumption, that is:

τo = arg min
r∈Ro

AEor (28)

Then, as in the first heuristic, the order σ is obtained at
random.

In general, heuristic rules are designed to generate so-
lutions with interesting or promising features, but there
is no guarantee that these features are indeed shared by
optimal solutions. Therefore, generating the whole ini-
tial population using the proposed heuristic rules may
have the undesired effect of leading the evolutionary
algorithm away from good areas of the search space.
For this reason, we propose to generate 25% of the
population using Eq. (27), other 25% of the population
using Eq. (28) and the remaining 50% of the popula-
tion completely at random. This way, although we are
slightly reducing diversity with respect to having a fully
random initial population, the obtained population is
still quite heterogeneous. At the same time, thanks to
the heuristic seeding the algorithm is focusing from the
start on certain areas of the search space which are ex-
pected to contain interesting solutions and which may
be left unexplored should we consider only random
initial solutions.

3.1.2. Immigration Operator
We also propose a new methodology for evolving the

population with increased diversity along the search.
Diversity is usually achieved by means of a mutation
operator, however, in our case, having an intensification
operator based on local search causes subtle mutations
to have little or no effect. At the same time, stronger mu-
tations seem undesirable, since they annul the crossover
operator by removing from the individual promising
traits inherited from its parents. For this reason, we use
a new immigration operator to introduce diversity.

Immigration operators [72] might be thought of as
a means of continually ensuring high diversity in the
population by somehow introducing completely new
individuals (the “immigrants” bringing progress to the
population). Immigration operators usually involve a
strategy to remove some individuals from the popula-
tion to make room for the new ones [73,74], in order
to keep a constant population size. We have opted in-
stead to keep all the existing individuals and allow the
population size to grow along the search with the new
immigrants. The goal is to keep all the acquired knowl-
edge, without losing any interesting traits. This should
increase the diversity in the population and the area of
the search space it covers, although it also incurs in a
higher computational cost for the search. Therefore, we
introduce new individuals only when the search seems
to be stagnating and new features might be needed to
explore new areas of the search space, which is when
ev_im_it generations have passed without improvement.
When this happens, ev_im_ind immigrants are gener-
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ated using the same procedure employed to generate
the heuristic initial population (Section 3.1.1) and are
added to the existing population. The rationale behind
this operator is that, while the population is evolving at
a good rate, it should not be disrupted, but when it is
starting to stagnate it should be reactivated introducing
new individuals with probably new traits.

The two new modifications could be seen as contra-
dictory, since the heuristic seeding reduces diversity in
the population while the immigration operator tries to
increase it. However, what we are really doing is shift-
ing the stress on diversity to later stages of the search.
Without the immigration operator diversity would be
only introduced at the start of the search, which does
not give the chance to find new interesting traits later.

3.2. Tabu search algorithm

Tabu search is a local search algorithm that keeps
a memory structure, called tabu list, where it stores a
trace of the recently visited search space. In particular,
to avoid undoing recently made moves, we store in the
tabu list the inverse of the moves performed to obtain
the neighbors. Our tabu list has a dynamic size, similar
to the one introduced in [75], so the size of the list can
vary between a lower bound tb_lst_ubr and an upper
bound tb_lst_lbr. When the selected neighbor is worse
(resp. better) than the current solution and the upper
(resp. lower) bound has not been reached, the list’s size
increases (resp. decreases) in one unit. If the selected
neighbor is the best solution found so far, the list is
cleared; this is similar to restarting the search from this
solution. We also incorporate an aspiration criterion,
so a tabu move can be executed if it improves the best
solution found up to this moment. In the rare situation
that all neighbors are tabu, we choose the best one, clear
the tabu list and slightly change its bounds by picking a
random number within a given range.

3.2.1. Neighborhood function
The neighborhood function lies at the core of any

local search. To define the function used in this work,
we start by introducing some preliminary notation.

Given a solution φ = (τ ,σ) and an operation o, let
JPo (resp. JSo) denote the predecessor (resp. successor)
of o in its job, RPo(φ) (resp. RSo(φ)) its predecessor
(resp. successor) in its resource and po(φ) its processing
time in the resource it is assigned to. Then, the head
ho(φ) of operation o is its earliest starting time:

ho(φ) = max{hJPo
(φ) + pJPo

(φ),
(29)

hRPo(φ)(φ) + pRPo(φ)(φ), (0, 0, 0)}
and its tail qo(φ) is the time left once o has been pro-
cessed until all other operations are completed:

qo(φ) = max{qJSo(φ) + pJSo(φ),
(30)

qRSo(φ)(φ) + pRSo(φ)(φ), (0, 0, 0)}
An operation o is said to be makespan-critical in a

solution φ if there exists a component i of the fuzzy
makespan such that Cimax = (ho(φ) + po(φ) + qo(φ))i.
A makespan-critical block for a component i is a maxi-
mal sequence of operations all requiring the same re-
source, such that no pair of consecutive operations be-
long to the same job and where Cimax = (ho(φ) +
po(φ) + qo(φ))i holds for every operation in the block.
The set of all makespan-critical operations is denoted
TCmax and the set of all makespan-critical blocks is
BCmax .

Since our energy function in Eq. (12) is obtained
by adding the passive and the active energy of each
resource, we distinguish two types of neighbors.

First, to reduce the passive energy consumption we
have to reduce the time the resources are active and this
can only happen if we reduce the makespan. Clearly,
a neighbor can only improve in terms of makespan
(and hence, in passive energy consumption) if there is
some change in makespan-critical operations. Also, if
a neighbor is obtained by exchanging the position of
two consecutive operations, it can be proved that it can
only improve in terms of makespan if the operations
lie at the extreme of a makespan-critical block. This
motivates the definition of a neighborhood function for
passive energy that is the union of two smaller ones, one
that acts on the resource assignment (NMCORR) based
on [76] and one that acts on the order of the operations
(NMCET) based on [77].

Neighbors in NMCORR are obtained by allocating a
critical operation in a different resource.

Definition 1. Makespan-critical operation resource re-
assignment neighborhood (NMCORR). For a feasible so-
lution φ = (τ ,σ), let τ(o,r) denote the assignment
that results from reassigning operation o to resource r.
Then:

NMCORR(φ) = {(τ(o,r),σ) : o ∈ TCmax ,
(31)

r ∈ Ro, r 6= τo}
Neighbors in NMCET are obtained by swapping two

operations at the extreme of a critical block.

Definition 2. Makespan-critical end transpose neigh-
borhood (NMCET). For a feasible solution φ = (τ ,σ),
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let σ(u,v) denote the operation processing order that
results from inverting the positions of operations u and
v in the same resource. Then:

NMCET(φ) = {(τ ,σ(u,v)) : u, v are at the
(32)

extreme of any b ∈ BCmax}

Second, active energy consumption can only be re-
duced by moving operations to a more efficient re-
source. This motivates the definition of neighborhood
NOPERR.

Definition 3. Operation power-efficient resource reas-
signment neighborhood (NOPERR). For a feasible so-
lution φ = (τ ,σ), let τ(o,r) denote the assignment
that results from reassigning operation o to resource r.
Then:

NOPERR(φ) = {(τ(o,r),σ) : r ∈ Ro, r 6= τo,
(33)

AEor < AEoτo}

The complete neighborhood is obtained as the union
of the two neighborhoods aiming at reducing passive
energy and the neighborhood aimed at reducing active
energy:

N = NMCET ∪NMCORR ∪NOPERR. (34)

It is worth mentioning that, although we have de-
signed NMCORR and NOPERR to reduce one component
of the energy, they can also alter the other one because
they move operations between resources. Moreover,
there can exist some overlapping between them, i.e.,
there may be repeated neighbors. On the other hand,
NMCET can only alter passive energy. In Section 4 we
shall present an empirical analysis of how each pertur-
bation affects the search.

3.2.2. Neighbor filtering mechanism
As neighbor evaluation is the most time-consuming

part of the local search, we make use of a filtering
mechanism to discard uninteresting solutions and make
this process faster. This mechanism assumes that for a
neighbor it is possible to compute a lower bound of the
objective function value. Then, the filtering consists in
evaluating the neighbors following the order defined by
the lower bound, stopping as soon as the lower bound
of a neighbor is greater than the exact value of any of
the already evaluated solutions.

In the case of active energy, the new exact value of
a neighbor can be easily calculated as follows. For the
active energy to change, the neighbor must have been
obtained by moving an operation from one resource to

another. Then, we only need to remove the operation’s
energy consumption in the old resource from the current
active energy value and then add the operation’s energy
consumption in the new resource. Notice that here we
are making use of the inverse of the sum 	 because we
are interested in obtaining the inverse of an addition. In
the case of passive energy, calculating the exact value in
the neighbor is not trivial, so we rely on the lower bound
for the makespan proposed in [38]. In this way, we can
obtain a lower bound for the total energy consumption.

This mechanism allows to discard many non-improv-
ing neighbors without getting to evaluate them while
keeping the same neighbor selection that we would
obtain using the expensive exact value calculation for
all neighbors. This is because a neighbor is discarded
only if its real energy value is worse than that of the
selected individual, since the energy’s lower bound is
also worse. Notice that, since the neighbor selection is
the same as using the exact evaluation, the results of
every run of the tabu search will be the same as using
the exact evaluation, so the filtering mechanism does
not alter in any way the course of the algorithm even if
it substantially reduces its execution time.

3.2.3. Adaptive stopping criterion
The intensification phase is by far the most computa-

tionally demanding one in the hybrid method. For this
reason, we propose to introduce a new mechanism to
make a better use of the running time given to the tabu
search. We propose a new adaptive strategy to control
the number of iterations and, in consequence, the run-
ning time used by the local search component which
translates into an incremental tabu search that strength-
ens intensification when the search stagnates. The point
here is that tabu search in the job shop problem is quite
dependent on the starting point, as we shall see in Sec-
tion 4. For this reason, it seems reasonable not to spend
too long on local search in the earlier iterations of the
memetic algorithm, when the quality of individuals in
the population, that is, the starting points of the tabu
search, is not that high. In the earlier stages of the evo-
lution, short runs of the local search will produce con-
siderable improvements. But as the search progresses
and our population improves, we will increase the depth
of the intensification. We do this by allowing the tabu
search to run for more iterations. Specifically, the tabu
search will have a dynamic stopping criterion, so it stops
after a given number of iterations without improving.
When the search starts, this maximum number of iter-
ations will take a value ls_st_it, but after ls_st_incr_it
non-improving generations of the memetic algorithm,
this value will be incremented in ls_st_incr units. In
this way, the intensification power slowly increases.
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Table 1
Instance parameters

Instance n m nj cpor ∆(cpor) RP
07a 15 8 [15,25] [10,100] 0 0.1
08a 15 8 [15,25] [10,100] 0 0.3
09a 15 8 [15,25] [10,100] 0 0.5
10a 15 8 [15,25] [10,100] 5 0.1
11a 15 8 [15,25] [10,100] 5 0.3
12a 15 8 [15,25] [10,100] 5 0.5
13a 20 10 [20,25] [10,100] 0 0.1
14a 20 10 [20,25] [10,100] 0 0.3
15a 20 10 [20,25] [10,100] 0 0.5
16a 20 10 [20,25] [10,100] 5 0.1
17a 20 10 [20,25] [10,100] 5 0.3
18a 20 10 [20,25] [10,100] 5 0.5

4. Experimental results

The purpose of this experimental study is twofold.
On the one hand, we intend to assess the performance
of our proposal. Therefore, in the first set of experi-
ments we shall evaluate if the algorithm described in
Section 3.1, referred to as EMA hereafter, is comparable
to the state of the art in terms of solution quality while
significantly reducing its runtime. Also, we analyze the
results in relation to the different features characteriz-
ing problem instances. On the other hand, we want to
assess the inner workings of the algorithm. With this
objective, we present a second set of experiments to
study the synergies between the two search paradigms
(evolutionary and local search) hybridized in EMA, an-
alyze the effect of the filtering mechanism that discards
uninteresting solutions in the local search and evaluate
the contribution of the different neighborhoods to the
search.

Throughout these experiments we will use the 12
instances from [41]. These instances are based on the
ones introduced in [38] for a fuzzy flexible job shop,
which in turn are fuzzyfied versions of the ones in [78].
In order to understand how the algorithm performs on
these instances, we will concisely explain how they have
been generated. The parameters for instance generation
are shown in Table 1; when an interval is given, this
means that the actual values were randomly generated
using a uniform distribution. The first three columns
correspond to the name of the instance, the number
of jobs n and the number of resources m. The fourth
column nj corresponds to the range of the number of
operations in each job, the fifth column cpor is the range
of the deterministic processing time of an operation o
in a resource r, the sixth column ∆(cpor) contains the
deviation for cpor for every resource r ∈ Ro and the
last column RP represents the probability that an oper-
ation can be executed in a resource, i.e., its flexibility or

the size of Ro with respect to R. Using the determin-
istic value cpor, fuzzy values for the processing time
por = (p1or, p

2
or, p

3
or) where randomly obtained in such

a way that p2or = cpor, p1or ∈ (0.85cpor, cpor] and p3or ∈
[2cpor−p1or, 1.2cpor]. In the case that no integer number
exists in those ranges, then p1or = max{1, cpor − 1}
and p3or = max{cpor + 1, cpor + 2}. The passive power
consumption was taken as a random value in [80, 120]
and the active power consumption was [1.5, 2.5) times
the passive power.

The values of these parameters allow us to organize
instances in different groups, as depicted in Fig. 2. De-
pending on their size, we have a group of instances with
15 jobs and 8 resources:

{07a, 08a, 09a, 10a, 11a, 12a}

and a group of instances with 20 jobs and 15 resources:

{13a, 14a, 15a, 16a, 17a, 18a}

There is another difference between those instances
and it is the ratio n/m. In non-flexible job shop in-
stances, this ratio has been found to be a better indicator
of their hardness than the mere size [79,80]. This ratio
is represented in the x-axis in Fig. 2.

Also, we have instances where the processing time
of an operation is the same across resources:

{07a, 08a, 09a, 13a, 14a, 15a}

and instances where it is resource-dependent:

{10a, 11a, 12a, 16a, 17a, 18a}

The y-axis of Fig. 2 corresponds to (in)dependence
of the processing times on the resource. It is impor-
tant to note that even if the operation processing time
is resource-independent, the power required by each
resource to process the energy may be different, so even
in this case the active energy consumption is dependent
on the resource. In other words, we may have instances
where different resources take the same time to process
an operation but with different efficiency.

Instances can be further classified depending on their
flexibility into three groups:

{07a, 10a, 13a, 16a}

{08a, 11a, 14a, 17a}

{09a, 12a, 15a, 18a}

To represent this third dimension in Fig. 2, instance
names are included in circles with a radius proportional
to their flexibility.
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Table 2
Parameters of the memetic algorithm

ev_pop_sz ev_st_it ev_im_ind ev_im_it tb_lst_ubr tb_lst_lbr ls_st_it ls_st_incr ls_st_incr_it
48 20 4 5 [20,30] [50,60] 50 1 1

Table 3
Comparison with state of the art (SMA [41])

Mean(E) Best(E) CPU time(s)
Instance Value RE(%) Value RE(%) Value RE(%) Real time (s)
07a 5370576.83 −1.15 5320420.50 -0.71 691.84 14.79 42.26
08a 4443247.07 0.09 4407688.00 0.33 584.21 51.06 37.24
09a 4716263.95 0.87 4677323.50 0.83 1451.29 46.03 83.43
10a 5169338.85 −1.08 5101404.25 −0.30 746.35 −11.26 44.50
11a 4804433.73 0.20 4754363.75 0.55 783.77 36.14 47.49
12a 4357380.39 0.87 4329576.25 0.69 968.65 56.17 57.96
13a 7015100.06 −0.48 6966566.75 −0.22 1759.01 −32.82 268.55
14a 6668717.56 0.71 6612014.75 0.87 2117.42 19.81 279.26
15a 5933030.70 1.67 5887458.75 1.53 3387.64 36.71 338.82
16a 6603274.18 −0.43 6561246.25 −0.12 2017.21 −47.93 302.09
17a 5971996.66 0.55 5911686.50 0.89 2160.72 12.70 284.75
18a 5967547.58 1.65 5924213.75 1.48 3096.41 33.04 325.58
Mean 0.29 0.48 17.87

Fig. 2. Results and instance parameters.

This instance taxonomy is important because, as we
shall see in the following, we can appreciate certain
patterns in the results depending on these features.

The parameters used for EMA in this experimen-
tal study can be seen in Table 2. It includes the pop-
ulation size (ev_pop_sz); the number of generations
without improvement used for the evolutionary algo-
rithm stopping criterion (ev_st_it); the immigration op-
erator rate, that is, the number of individuals inserted
(ev_im_ind) after a number of iterations without im-
proving (ev_im_it); the tabu list size lower and upper
bound ranges (tb_lst_ubr and tb_lst_lbr) and the pa-
rameters for the adaptive stopping criterion, i.e., the ini-
tial value for the number of iterations without improve-
ment (ls_st_it) and the number of iterations to be added

when updating this value (ls_st_incr) after a number of
iterations without improvement (ls_st_incr_it).

All results have been obtained in a Linux machine
with two Intel Xeon Gold 6132 processors without
Hyper-Threading (14 cores/14 threads) and 128GB
RAM using a parallelized implementation of the al-
gorithm in Rust. The source code together with de-
tailed results and benchmark instances can be found at
https://pablogarciagomez.com/research.

4.1. Comparison with state of the art

In Table 3 we can see the results obtained with 30
runs of our metaheuristic EMA including a comparison
with the state-of-the-art method which, to the best of
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our knowledge, is SMA. Each row except the last one
corresponds to an instance. The instance name consti-
tutes the first column. The next columns report for each
instance the best and mean expected value of the total
energy consumption together with the average runtime
obtained with EMA. Next to each energy and runtime
value we find its relative difference with respect to the
same value for SMA. The last row contains the average
relative differences across all instances.

We can see that, overall, the mean and best en-
ergy values obtained by EMA improve 0.29% and
0.48% respectively with a reduction in CPU time of
17.87%. We can conclude, supported by running a
Wilcoxon signed rank test (after rejecting normality
with a ShapiroâĂŞWilk test), that our proposal EMA is
significantly faster than SMA while obtaining compara-
ble results quality-wise.

A more detailed look at the results shows that for
those instances with the lowest flexibility EMA performs
worse both in quality and in time. This can be explained
because instances with low flexibility are closer to the
traditional job shop, i.e., there exists little variation for
executing operations in different resources, and thus
their search space is smaller. Compared to the parame-
ter setting for SMA presented at [41] we have decreased
the initial size of the population ev_pop_size, since the
immigration operator in EMA introduces new individu-
als during the search to increase diversity. Less flexible
instances do not seem to need the extra diversity we
are seeking to obtain with the immigration operator and
instead benefit from a larger initial population that is
intensified from the start of the search. However, for
instances with higher flexibility, SMA improves both in
quality and in time. Besides, for larger instances that
also have a higher ratio n/m, SMA obtains a bigger im-
provement in quality than for instances with a lower ra-
tio. For example, instances 18a and 15a improve 1.65%
and 1.67% in quality respectively whereas 12a and 09a
only improve 0.87%. However, the improvement in time
is the opposite, 12a and 09a improve 56.2% and 46%
while 18a and 15a only improve 33% and 36.7%. This
suggests that the ratio is an important difficulty indi-
cator, as is in the traditional job shop. This behaviour
is represented in Fig. 2, where above the name of each
instance we indicate the relative improvement in quality
and below, the relative improvement in time.

In [41] it is shown that it is precisely in those in-
stances with large size and high flexibility where ex-
act methods (in particular, a constraint programming
solver) struggle to find a solution and metaheuristics be-
come more relevant. In consequence, the improvements

obtained with EMA are very significant. Moreover, we
have compared instances in terms of relative error, but
it is important to keep in mind that a little relative wors-
ening in a small quantity is not as significant as a big
improvement in a large quantity.

4.2. Synergies study

To check the synergies between the evolutionary and
local search components of EMA, we run individually
each component for the same CPU time as the hy-
bridized version. Finding a fair way of doing this exper-
iment is not easy because each algorithm has different
requirements and we have to find a set of parameters
that make good use of the total CPU time.

Although we could have stopped the execution of
each component after the average running time of EMA,
by doing this the search could be stopped in an im-
provement phase or be unnecessarily extended when it
is trapped in an unpromising one. For this reason, each
algorithm has been individually configured in such a
way that the average execution time is similar to that of
EMA but giving each run independence to last longer
or shorter, as necessary. To do this, in the evolutionary
component we have increased the initial population size
to 30000, we add 50 individuals every 5 iterations with-
out improving and we stop the search after 50 iterations
without an improvement. In the case of the tabu search,
we make 15000 restarts and stop each one after 500 it-
erations without an improvement. All other parameters
are kept as in the main experiment.

Table 4 reports the relative difference between the re-
sults obtained with each component of EMA separately
and the results obtained with the complete algorithm, al-
ready shown in Table 3. These relative difference values
are also depicted as a bar chart in Fig. 3. Only relative
differences are shown because neither the evolutionary
algorithm nor the tabu search on their own can match
the results obtained by EMA and relative differences
provide a better insight into how much the results have
been altered by using only one of the search strategies.

In the case of the tabu search, it gives worse results
because local search is very dependent on the starting
point, so it is crucial to provide it with a good initial
solution. Choosing these initial solutions at random,
even with thousands of runs, there is a very low prob-
ability of finding a good one. In EMA the evolution-
ary component is not so much responsible for finding
good solutions, but for finding good starting points for
the tabu search. This is something evolutionary algo-
rithms excel at because they explore different areas of
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Table 4
Results of the synergy study

Tabu search Evolutionary algorithm
Instance Mean RE(%) Best RE(%) Mean RE(%) Best RE(%)
07a −4.68 −0.89 −4.60 −4.00
08a −2.56 −1.44 −7.49 −5.07
09a −3.70 −2.40 −11.01 −6.76
10a −4.44 −1.37 −4.52 −3.93
11a −2.72 −1.90 −7.62 −4.94
12a −3.50 −2.11 −8.44 −6.07
13a −3.90 −1.10 −6.90 −5.19
14a −2.87 −1.95 −9.16 −6.06
15a −3.49 −2.36 −14.42 −11.25
16a −3.80 −0.84 −6.50 −4.88
17a −2.86 −2.03 −9.65 −5.88
18a −3.39 −2.50 −13.20 −10.58

Mean −3.49 −1.74 −8.62 −6.22

Fig. 3. Synergy study.

the search space. On the other hand, the evolutionary
algorithm lacks a proper intensification mechanism, so
even if it is able to explore different areas, it fails at
performing a deeper search in the most promising ones.
This can be clearly seen as in smaller instances with
little flexibility 07a and 10a the pure evolutionary algo-
rithm can compete with the tabu search, but as instances
get harder differences become bigger. In smaller search
spaces a shallow exploration yields acceptable results
but as the search space increases, the need of a proper
intensification becomes evident. We can also conclude
that the tabu search clearly dominates the evolutionary
module and its relative difference with respect to the
memetic EMA is pretty constant across instances.

4.3. Filtering mechanism

In our next experiment we evaluate empirically how
many neighbors are filtered using the mechanism de-
scribed in Section 3.2.2. First of all, it is important to

Table 5
Effects of the filtering mechanism

Instance Generated Evaluated Discarted (%)
07a 45.22 2.01 95.56
08a 209.46 4.17 98.01
09a 437.91 7.35 98.32
10a 47.07 2.08 95.59
11a 213.00 4.40 97.94
12a 439.49 8.40 98.09
13a 73.12 2.81 96.15
14a 335.66 6.27 98.13
15a 743.24 18.07 97.57
16a 73.01 2.60 96.44
17a 337.39 6.35 98.12
18a 702.05 12.47 98.22

Mean 97.34

Fig. 4. Effect of the filter.

note that the used lower bound is interesting because it
is very fast to calculate, as we do not need to propagate
the changes made by the neighbors. It is also impor-
tant to remember that this mechanism leads to the same
selection as using the exact value, so there is not any
difference as far as the search process is concerned,
only in the time taken by the method. In other words,
neither the diversification nor the intensification in the
algorithm are altered, even if neighbor selection be-
comes more efficient. In Table 5 we can see for each
instance the total number of generated neighbors (col-
umn 2) together with the number of neighbors exactly
evaluated by EMA to obtain their real energy value (col-
umn 3) and the percentage of discarded neighbors with
respect to the total (column 3). The last row provides
the average across all instances of this percentage of
neighbors discarded by the filtering mechanism, which
is also illustrated in Fig. 4.

The results clearly show that the filtering mechanism
has a strong effect, since it enables EMA to discard over
95% of the neighbors. This plays a crucial role in the
speed of the algorithm. It is also interesting to notice
that the effect is greater as flexibility increases. Larger
flexibility means a larger search space and therefore
EMA generates more neighbors, corresponding to alter-
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Fig. 5. Comparison between neighborhood functions.

native resource assignments. However, many of these
reassignments are likely to be bad because they cor-
respond either with slow resources with high execu-
tion time or inefficient resources with high energy con-
sumption or even both. In any case, these alternatives
must be checked and discarded and this is what the fil-
tering mechanism achieves with undoubted speed and
effectiveness.

In the light of these results, one may wonder if some
of the neighborhoods are considering numerous bad-
quality movements, thus increasing the number of gen-
erated neighbors without a real effect on the search, and
if similar results could be achieved without using them.
This leads to our last experiment.

4.4. Neighborhoods comparison

The goal of this last experiment is to assess the per-
formance of the different neighborhoods defined in Sec-
tion 3.2.1. To this end, we compare the results of run-
ning EMA with the tabu search using any possible com-
bination of NMCET, NMCORR and NOPERR as neighbor-
hood function. As it was the case in the synergies study,

comparing different neighborhoods can be difficult be-
cause they may have different characteristics. In this
work, we have opted for changing only the neighbor-
hoods while keeping all other parameters of the search
unaltered. Given that EMA uses an adaptive stopping
criterion in the tabu search, if one of the neighborhoods
takes longer to converge, it will be given longer running
time.

To evaluate the results obtained with the different
neighborhood combinations, we take as reference a
lower bound of the optimal energy for each instance
obtained with a constraint programming solver in [41].
Figure 5 depicts the relative difference between this
lower bound and the average and best energy value
obtained by EMA with the different combinations of
neighborhoods. If we pay attention to the average re-
sults, NMCET is the best standalone neighborhood. No-
tice however that this advantage is mainly due to those
instances with low flexibility. Excluding these instances
from the comparison,NMCORR yields better results. This
behavior can be explained because NMCET only opti-
mizes passive energy as it does not change resource
assignment. Therefore, on instances with low flexibility
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and few possible resource assignments, NMCET can ob-
tain pretty good results starting from the assignments
introduced in the initial population using heuristic seed-
ing. On the other hand, although NMCORR is designed
to reduce passive energy consumption, it has a side ef-
fect of reducing active energy. This is because it moves
operations from one resource to another and the tabu
search takes the best non-forbidden neighbor. In the
case of NOPERR, it can also reduce the passive energy
of a solution, but when used on its own it has a very
limited effect, due to the fact that it only considers the
most efficient resource for a given operation. In fact,
it is clear from the results that for instances with low
flexibility including this neighborhood has a negative
effect. Again, this can be explained because with low
flexibility the algorithm does not need to focus on mov-
ing operations to other resources, so those movements
are essentially introducing noise in the search. We can
also conclude that the union of NMCET ∪NMCORR yields
competitive results, near those obtained with the com-
plete neighborhood N, with the addition of NOPERR be-
coming more relevant as flexibility increases.

5. Conclusions

We have tackled the problem of minimizing energy
consumption in a flexible job shop scheduling problem
with uncertain processing times modeled as triangular
fuzzy numbers. This is a relevant problem in manufac-
turing engineering and incorporating uncertainty helps
to improve its applicability. Based on a state-of-the-art
solving method from the literature, we have proposed
an enhanced memetic algorithm (EMA), with a balance
between intensification and diversification in the search.

We have carried out an experimental analysis com-
paring our proposal with the state of the art, showing
EMA to be competitive in terms of solution quality while
it achieves a significant reduction in computation cost.
The experimental results have also served to assess the
performance of some of the components integrated in
EMA. In particular, we have confirmed the existence of
a synergy effect between the evolutionary algorithm and
the tabu search, which cooperate to find better solutions.
We have also ascertained how the filtering mechanism
used by the tabu search is able to discard numerous
unpromising neighbors without fully evaluating them,
thus contributing to the algorithm’s efficiency. Finally,
having defined the neighborhood function as a union of
three different neighborhoods, we have analysed the in-
fluence of these components of the neighborhood in the

search. We have ascertained that, despite some neigh-
borhoods being undoubtedly more powerful than oth-
ers, our algorithm can reach better solutions when the
three of them are jointly used.

To conclude, we would like to highlight that research
into energy efficiency, already relevant due to climate
change, has unfortunately gained a sudden and unex-
pected importance due to the energetic crisis caused
by the Ukraine war. It is now fundamental for indus-
try to cut down their energy consumption and make an
efficient use of their resources.
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