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Abstract: Drugs providing antihypertensive and protective cardiovascular actions are of clinical
interest in controlling cardiovascular events and slowing the progression of kidney disease. We
studied the effect of a hybrid compound, GGN1231 (derived from losartan in which a powerful
antioxidant was attached), on the prevention of cardiovascular damage, cardiac hypertrophy, and
fibrosis in a rat model of severe chronic renal failure (CRF). CRF by a 7/8 nephrectomy was carried
out in male Wistar rats fed with a diet rich in phosphorous (0.9%) and normal calcium (0.6%) for a
period of 12 weeks until sacrifice. In week 8, rats were randomized in five groups receiving different
drugs including dihydrocaffeic acid as antioxidant (Aox), losartan (Los), dihydrocaffeic acid+losartan
(Aox+Los) and GGN1231 as follows: Group 1 (CRF+vehicle group), Group 2 (CRF+Aox group),
Group 3 (CRF+Los group), Group 4 (CRF+Aox+Los group), and Group 5 (CRF+GGN1231 group).
Group 5, the CRF+GGN1231 group, displayed reduced proteinuria, aortic TNF-α, blood pressure, LV
wall thickness, diameter of the cardiomyocytes, ATR1, cardiac TNF-α and fibrosis, cardiac collagen
I, and TGF-β1 expression. A non-significant 20% reduction in the mortality was also observed.
This study showed the possible advantages of GGN1231, which could help in the management of
cardiovascular and inflammatory processes. Further research is needed to confirm and even expand
the positive aspects of this compound.

Keywords: cardiovascular; renal failure; antioxidant; losartan; inflammation

Nutrients 2023, 15, 1820. https://doi.org/10.3390/nu15081820 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15081820
https://doi.org/10.3390/nu15081820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-1248-2858
https://orcid.org/0000-0003-0181-1406
https://orcid.org/0000-0001-8144-6909
https://orcid.org/0000-0002-4227-4144
https://doi.org/10.3390/nu15081820
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15081820?type=check_update&version=1


Nutrients 2023, 15, 1820 2 of 12

1. Introduction

Angiotensin-converting enzyme inhibitors have been widely used in the treatment of
hypertension. Some beneficial effects of antihypertensive molecules have been attributed,
at least partially, to their antioxidant ability [1], due to the well-known mechanism of
oxidative stress in developing vascular damage [2]. In fact, previous data from our group
demonstrated that the use of several losartan-antioxidant hybrids was able to block the
angiotensin II effect with increased antioxidant ability. In hypertensive rats, these hy-
brids were able to control hypertension and prevent hypertension-induced cardiovascular
damage better or as much as losartan [3,4].

Hence, the search for drugs that can provide antihypertensive effect together with
other protective cardiovascular actions is of clinical interest, particularly in patients with
chronic kidney disease (CKD) [5,6] in which cardiac injury induces cardiac remodelling
characterized for the increase in the size of cardiomyocytes, while fibroblasts increase
collagen synthesis that leads to fibrosis. This process leads to apoptosis or necrosis of
cardiomyocytes which are replaced by fibroblasts and extracellular collagen with the
consequent progression of fibrosis [7,8]. Experimental induction of moderate and severe
chronic renal failure (CRF) leads not only to the development of cardiac hypertrophy and
fibrosis [9,10] but also to vascular damage that, in the last instance, might be conducive to
the appearance of vascular calcification [11].

Thus, the aim of this work was to study the effect of the hybrid compound GGN1231
on the prevention of cardiovascular damage, cardiac hypertrophy and myocardial fibrosis
using an experimental animal model of severe CRF. GGN1231 is derived from losartan, to
which a powerful antioxidant, dihydrocaffeic acid, was attached.

2. Materials and Methods
2.1. Experimental Studies

The design of the study is detailed in Figure 1. Male Wistar rats (350–400 g) were
housed in wire cages in a controlled environment with a 12-h light/dark cycle and water
and food ad libitum. The rats were fed with a standard diet rich in phosphorous (0.9%) and
normal calcium (0.6%) (Panlab, Barcelona, Spain) for a period of one week to be familiar
with the diet before the induction of CRF by 7/8 nephrectomy as previously detailed [12].
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CRF (chronic renal failure); Aox (antioxidant); Los (losartan); Aox+Los (antioxidant plus losartan);
GGN1231 (antioxidant plus losartan hybrid).

After the nephrectomy, rats were maintained for a period of 12 weeks with a high
phosphorus diet to aggravate the progression and severity of CRF [13] (Figure 1). In
week 8, rats were randomized into five groups receiving different drugs during the fol-
lowing four weeks. Group 1 (CRF+vehicle or Control group) received 1 mL of ethanol
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dissolved in drinking water. Group 2 (CRF+antioxidant (Aox), CRF+Aox group) received
8.7 mg/kg/day of dihydrocaffeic acid (Sigma-Aldrich, San Luis, CA, USA). Group 3
(CRF+losartan (Los), CRF+Los group) received 22 mg/kg/day of losartan potassium
(AK Scientific, Union City, NJ, USA). Group 4 (CRF+antioxidant+losartan, CRF+Aox+Los
group) received 8.7 mg/kg/day of dihydrocaffeic acid and 22 mg/kg/day of losartan
potassium. Group 5 (CRF+GGN1231 group) received 28 mg/kg/day of GGN1231, using
8.7 mg/kg/day of dihydrocaffeic acid and 22 mg/kg/day of losartan potassium for man-
ufacturing the compound. The dose of GGN1231 used was, according to previous study,
those needed to reduce blood pressure [3]. All drugs were dissolved in 1 mL of ethanol
and added to the drinking water.

The GGN1231 was synthesized in the Organic and Inorganic Chemistry Department
of Alcala University, Spain (Figure 2). It is a hybrid compound obtained by adding an
antioxidant fragment, dihydrocaffeic acid, to the hydroxymethyl side chain of losartan [3,4].
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Systolic (SBP) and diastolic (DBP) blood pressure were measured before the first
administration of the drugs in weeks 8 and 12 before sacrifice, and the day before, the
rats were introduced into metabolic cages for 24-h urine collection. Rats were weighed
and euthanized by exsanguination using isofluorane anesthesia. Serum and urine samples
were drawn for analysis, and the hearts were removed, washed twice with saline solution,
blotted dry and weighed. The left ventricle (LV) was then divided into two pieces: one
section was frozen in liquid nitrogen and stored at −80 ◦C for RNA, and the other section
was fixed and embedded in paraffin for histological studies. Aortas were removed and
washed twice with saline solution. One fragment was used for RNA extraction and to
determine the calcium content.

The protocols were approved by the Research Ethics Committee of Oviedo University
(PROAE 15/2015).

2.2. Analytical and Technical Procedures
2.2.1. Biochemical Markers

Serum creatinine, calcium, phosphorus, and urinary creatinine, calcium, phosphorus,
and protein were measured using a multichannel auto-analyzer (Hitachi 717; Boehringer
Mannheim, Germany). Serum intact PTH (iPTH) was measured by IRMA (Rat PTH kit
Immutopics, San Juan Capistrano, CA, USA), following the manufacturer’s protocols.

2.2.2. Aortic Calcium Content

A frozen aortic fragment was homogenized in 0.6 N NaCl and stirred at 4 ◦C for 24 h.
Upon centrifugation, calcium content was determined colorimetrically in the supernatant
by the o-Cresolphtalein-Complexone method (Sigma-Aldrich, San Louis, CA, USA) [14].
The remaining aortic pellet was resuspended in lysis buffer (125 mM Tris, 2% SDS, pH 6.8)
for protein extraction and quantification. Calcium content, normalized for total protein,
was expressed as mg calcium/mg protein.
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2.2.3. Blood Pressure Measurement

Before the initiation of the administration of the drug (week 8) and before the sacrifice
(week 12), SBP and DBP were measured using an automated, non-invasive tail-cuff method
(LSI Letica, Barcelona, Spain). In order to minimize the procedure-induced stress, the
animals were accustomed to the instrument for four consecutive days prior to the definitive
measurements, which consisted of a set of a minimum of 10 repetitive measurements
per rat.

2.2.4. Cardiac Morphological and Histological Changes

Morphological and histological changes in the heart, left ventricular (LV) wall, septum
thickness and cardiomyocyte diameter were measured in deparaffined 3 µm sections.
They were stained with hematoxylin-eosin (Sigma-Aldrich, San Louis, CA, USA) and
visualized using an optical microscope (model DMRXA2, Leica Microsystems, Wetzlar,
Germany) coupled to a digital video camera (model Dc-100, Leica Microsystems, Wetzlar,
Germany). Captured images were evaluated using an image analysis system (Image J). The
mean cardiomyocyte diameter was determined by measurement of transnuclear widths of
random, longitudinally oriented in 20 myocytes with magnification 40×. The LV wall and
septum thickness were measured using pre-design software, which pooled and analyzed a
set of at least 50 blinded radius measurements from the center of the LV to its outer edge.

The myocardial total collagen area was determined by using Masson’s trichrome,
using a semiautomatic image analysis software (Leica QWIN standard version 2.3, Leica
Microsystems, Wetzlar, Germany). The measurements were blinded, and the results were
expressed as percentages of the total myocardial area. The collagen fiber/muscular tissue
ratio was calculated.

2.2.5. Immunohistochemistry

Transforming growth factor 1 (TGF-β1) localization was assessed by immunohisto-
chemistry in 3 µm sections. Samples were deparaffinized, rehydrated and incubated at
98 ◦C, pH 6 (Dako EnVision Flex Retrieval Solution Low pH, Dako, Glostrup, Denmark) for
30 min and blocked with 3% of bovine serum albumin (BSA) in PBS for 1 h. After overnight
incubation at 4 ◦C with primary antibody of transforming growth factor beta 1 (TGF-β1)
(1:100, AB92486, Abcam, Cambridge, UK) in 3% BSA (Sigma-Aldrich, San Luis, CA, USA)
in PBS, slices were washed and incubated with a biotinylated secondary antibody following
the manufacturer’s instructions (Dako REAL EnVision, Glostrup, Denmark).

A negative control without a primary antibody was used to set the level of the lowest
detectable staining intensity. Along with Masson’s trichrome staining, semiautomatic
image analysis software (Leica QWIN standard version 2.3, Leica Microsystems, Wetzlar,
Germany) was used. Briefly, the image of each heart was converted to grayscale; then, using
the optical density function of the software, pixels that fell within a designed threshold
were counted, obtaining a mean value of grey color density. TGF-β1 staining was expressed
as the average optical density.

2.2.6. RNA Extraction, cDNA Synthesis, and Quantitative RT-PCR

Aorta and LV fragments were homogenized in an Ultraturrax (OmniHT). Total RNA
was extracted by the TRIzol method (Sigma, Saint Louis, CA, USA). Total RNA concentra-
tion and purity were quantified by UV-Vis spectrophotometry (NanoDrop Technologies,
Wilmington, NC, USA), measuring its absorbance at 260 and 280 nm. Reverse transcription
was performed with a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA) following the manufacturer’s instructions.

Gene expression was measured in the aorta and heart by qRT PCR using an ABI Prism
7000 Sequence Detection System (Applied Biosystems, Waltham, MA, USA). TaqMan Real-
time PCR amplification was performed with gene-specific primer (Gene Expression Assays
from Applied Biosystems, Waltham, MA, USA) for α-actin, RUNX Family Transcription
Factor 2 (Runx2) and tumor necrosis factor-alpha (TNF-α) in the aorta. TaqMan Real-time
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PCR amplification was performed for angiotensin receptors 1 and 2 (ATR1 and ATR2), Mas
receptor, collagen I, TGF-β1, and TNF-α in the heart. Rat glyceraldehyde-3-phosphate-
dehydrogenase (GAPDH) was used in both tissues as a housekeeping gene. The relative
quantitative evaluation of the target gene was performed by comparing threshold cycles
using the ∆∆Ct method [15].

2.3. Statistical Analysis

Results were expressed as a median and interquartile range in the tables and mean
in the graphics. For all variables, the Mann–Whitney U test was applied to validate the
existence of significant differences from group to group. Significant differences were
considered when p < 0.05. The statistical program used was R 4.2.0.

3. Results
3.1. Effect of Dihydrocaffeic Acid, Losartan, and Dihydrocaffeic Acid plus Losartan and GGN1231
on Weight, Biochemical, and Urinary Markers, and Vascular and Inflammation Parameters

Table 1 shows there were no differences in weight, serum calcium, phosphorus, iPTH,
creatinine, creatinine clearance (Cr Cl), urinary calcium, and phosphate among groups. In
the CRF+Los and the CRF+GGN1231 groups, proteinuria was significantly lower than in
the CRF+vehicle group (control group) and CRF+Aox group (Table 1). No changes at this
level were observed in the CRF+Aox+Los group.

Table 1. Weight and biomarkers of kidney disfunction.

CRF+Vehicle
Group 1 (n = 8)

CRF+Aox
Group 2 (n = 8)

CRF+Los
Group 3 (n = 8)

CRF+Aox+Los
Group 4 (n = 8)

CRF+GGN1231
Group 5 (n = 8)

Weight (g) 388 [375–407] 387 [371–401] 373 [352–375] 388 [382–396] 374 [365–398]
Creatinine
(mg/dL) 2.1 [1.7–2.9] 1.9 [1.6–2.7] 1.7 [1.3–3.7] 2.2 [1.6–4.0] 2.1 [1.4–2.6]

Calcium (mg/dL) 10.1 [9.3–10.4] 9.3 [8.4–9.3] 9.5 [9.2–10.2] 9.6 [8.1–9.7] 8.8 [8.1–9.1]
Phosphorus

(mg/dL) 12.2 [9.6–14.4] 12.3 [11.1–14.1] 10.1 [6.9–19.7] 13.5 [9.7–22.2] 14.0 [11.7–15.5]

PTH (pg/mL) 6745 [4975–7168] 6706 [6538–7331] 6169 [4395–6480] 6389 [5057–7072] 6608 [6403–6961]
Creatinine
clearance
(mL/min)

0.5 [0.4–0.8] 0.5 [0.4–0.6] 0.7 [0.5–0.9] 0.5 [0.2–0.6] 0.4 [0.3–0.6]

Creatinine
clearance

(mL/min/kg)
1.4 [0.9–1.7] 1.2 [0.8–1.8] 1.8 [0.6–2.3] 1.4 [0.9–1.7] 1.1 [0.9–1.8]

Proteinuria
(mg/24 h) 74 [41–823] 92 [67–101] 19 [12–30] a,b,c 66 [37–92] 22 [19–29] a,b,c

Urinary calcium
(mg/dL) 5.3 [3.5–5.9] 4.9 [3.2–7.3] 5.3 [3.2–5.9] 4.1 [2.9–6.6] 4.1 [3.4–6.2]

Urinary
phosphorus

(mg/dL)
109 [104–198] 109 [106–180] 174 [117–192] 157 [140–198] 138 [85–176]

CRF (chronic renal failure); Aox (antioxidant); Los (losartan); Aox+Los (antioxidant plus losartan); GGN1231
(antioxidant plus losartan hybrid); PTH (parathyroid hormone). Data represent median and interquartile range.
a p < 0.05 versus CRF+vehicle; b p < 0.05 versus CRF+Aox; c p < 0.05 versus CRF+Aox+Los.

No significant differences in aortic calcium content were found among the groups,
though a non-significant reduction in aortic calcium content (4-fold) compared to the
CRF+vehicle group was observed in the CRF+GGN1231 group (Table 2). The aortic gene
expression of Runx2 and α-actin showed no significant differences, but a significant dif-
ference in mRNA TNF-α was observed between the GGN1231 group and the other four
groups (Table 2).
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Table 2. Vascular and inflammation parameters.

CRF+Vehicle
Group 1 (n = 8)

CRF+Aox
Group 2 (n = 8)

CRF+Los
Group 3 (n = 8)

CRF+Aox+Los
Group 4 (n = 8)

CRF+GGN1231
Group 5 (n = 8)

Calcium (µg de
Ca/mg protein) 25.2 [6.1–73] 8.73 [6.7–8.9] 11.1 [6.2–44] 11.2 [7.7–15.3] 6.8 [4.0–8.7]

mRNA
RUNX2/GAPDH

(R.U.)
2.8 [1.6–7.0] 6.5 [3.0–9.2] 2.7 [0.7–9.3] 3.0 [2.2–5.2] 3.2 [1.2–4.4]

mRNA α-
ACTIN/GAPDH

(R.U.)
0.2 [0.1–0.3] 0.5 [0.3–1.5] 0.1 [0.1–0.2] b,c 0.3 [0.2–0.5] 0.1 [0.1–0.6]

mRNA
TNF-α/GAPDH

(R.U.)
6.5 [1.6–8.8] 4.6 [4.6–8.0] 3.3 [1.66.45] 5.9 [2.5–7.3] 0.6 [0.5–2.1] a,b,c,d

CRF (chronic renal failure); Aox (antioxidant); Los (losartan); Aox+Los (antioxidant plus losartan); GGN1231 (an-
tioxidant plus losartan hybrid). Data represent the median and interquartile range. a p < 0.05 versus CRF+vehicle;
b p < 0.05 versus CRF+Aox; c p < 0.05 versus CRF+Aox+Los; d p < 0.05 versus CRF+Los.

3.2. Effect of Dihydrocaffeic Acid, Losartan, Dihydrocaffeic Acid plus Losartan and GGN1231 on
Blood Pressure, Left Ventricular Hypertrophy, Cardiac Inflammation, Cardiac Fibrosis,
and Survival

The SBP and DBP were significantly lower in the CRF+Los and CRF+GGN1231 groups
compared with the control group (Figure 3). Figure 4 shows representative images of
hematoxylin-eosin staining for the hearts used to analyze the parameters of cardiac hyper-
trophy described in Table 3. A trend to decrease the heart weight/body weight ratio was
observed in the CRF+Los and CRF+GGN1231 groups. In the latter, a significant reduction
of the LV wall, but not of the septum thickness, was observed (Table 3).
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losartan hybrid). Data represent mean values per group in horizontal lines in the bee swarm graphic.
a p < 0.05 versus CRF+vehicle.
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Table 3. Parameters of cardiac hypertrophy.

CRF+Vehicle
Group 1 (n = 8)

CRF+Aox
Group 2 (n = 8)

CRF+Los
Group 3 (n = 8)

CRF+Aox+Los
Group 4 (n = 8)

CRF+GGN1231
Group 5 (n = 8)

Heart/body
weight (mg/g) 4.8 [3.8–5.2] 4.9 [4.2–7.0] 3.4 [2.7–4.8] 4.2 [3.7–4.7] 3.6 [3.3–4.0]

LV Wall (µm) 2539 [2443–2786] 2364 [2199–2406] 2477 [2285–2665] 2396 [2330–2455] 2107 [2027–2215] a

Septum (µm) 2125 [2041–2207] 2025 [1987–2601] 1861 [1767–2179] 1995 [1906–2141] 2012 [1892–2183]
Cardiomyocytes
diameter (µm) 11.9 [11.0–12.4] 9.3 [8.9–10.6] a 10.1 [8.7–10.5] a 8.9 [8.7–9.6] a 9.0 [8.6–9.4] a

Heart/body
weight (mg/g) 4.8 [3.8–5.2] 4.9 [4.2–7.0] 3.4 [2.7–4.8] 4.2 [3.7–4.7] 3.6 [3.3–4.0]

LV Wall (left ventricular wall); CRF (chronic renal failure); Aox (antioxidant); Los (losartan); Aox+Los (antioxidant
plus losartan); GGN1231 (antioxidant plus losartan hybrid). Data represent the median and interquartile range.
a p < 0.05 versus CRF+vehicle.

The cardiomyocyte diameter was significantly lower in the four groups receiving the
different compounds compared to the control group (CRF+vehicle, p = 0.017, p = 0.0029,
p < 0.001, and p = 0.002, respectively) (Table 3).

In the four groups treated with the different compounds, the ATR1 increase was
prevented (p = 0.008, p = 0.024, p = 0.006, and p = 0.002, respectively). No effect was
observed neither in the ATR2 nor in the MAS receptor (Table 4). The four compounds used
were able to decrease cardiac TNF-α (p < 0.005) (Table 4).

Table 4. Molecular markers of the renin-angiotensin system by quantitative PCR.

CRF+Vehicle
Group 1 (n = 8)

CRF+Aox
Group 2 (n = 8)

CRF+Los
Group 3 (n = 8)

CRF+Aox+Los
Group 4 (n = 8)

CRF+GGN1231
Group 5 (n = 8)

mRNA
ATR1/GAPDH

(R.U.)
2.5 [2.1–2.7] 0.7 [0.4–0.8] a 0.5 [0.4–0.8] a 0.5 [0.4–0.6] a 0.3 [0.3–0.5] a

mRNA
ATR2/GAPDH

(R.U.)
5.6 [2.6–15.2] 12.7 [6.0–20.8] 4.7 [4.1–39.6] 14.8 [5.5–19.9] 8.7 [4.9–24.7]

mRNA
MAS/GAPDH

(R.U.)
0.9 [0.7–1.2] 1.2 [1.0–1.4] 1.1 [0.5–1.6] 1.2 [0.7–2.2] 1.1 [0.9–2.1]

mRNA
TNF-α/GAPDH

(R.U.)
14.5 [14.2–18.0] 1.2 [1.0–1.7] a 1.4 [1.1–2.4] a 1.3 [1.1–1.4] a 1.4 [1.3–1.7] a

CRF (chronic renal failure); Aox (antioxidant); Los (losartan); Aox+Los (antioxidant plus losartan); GGN1231 (an-
tioxidant plus losartan hybrid). Data represent the median and interquartile range. a p < 0.05 versus CRF+vehicle.

The CRF+GGN1231 group showed a significant reduction in cardiac fibrosis
(Figure 5A,B), and gene expression of collagen I and TGF-β1 (Figure 5C,D), with the latter
also reduced in the CRF+Aox+Los group. In the CRF+vehicle group, the protein expression
of TGF-β1 by immunohistochemistry was 22-fold higher than in the CRF+GGN1231 group
(Figure 6A,B).

The survival of the four groups receiving compounds was slightly but not signifi-
cantly higher than the control group (CRF+vehicle); 10% in the CRF+Aox, CRF+Los and
CRF+Aox+Los groups and a 20% in the CRF+GGN1231 group.
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Figure 5. Cardiac fibrosis: Masson’s trichromic staining and Collagen I and TGF-β1 gene expression
evaluated by qPCR. (A) Representative photos of Masson’s trichrome staining (10×). The arrows
point to areas with fibrosis. (B) Masson’s trichrome staining quantification in all rats. (C) Collagen
I (Col I) mRNA. (D) TGF-β1 mRNA. CRF (chronic renal failure); Aox (antioxidant); Los (losartan);
Aox+Los (antioxidant plus losartan); GGN1231 (antioxidant plus losartan hybrid). Data represent
mean values per group in horizontal lines in the bee swarm graphic. a p < 0.05 versus CRF+vehicle;
b p < 0.05 versus CRF+Aox.
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Figure 6. Protein expression of TGF-β1 by immunohistochemistry. (A) Representative photo of
TGF-β1 immunohistochemistry (20×). (B) Arrows point to TGF-β1 protein expression Quantification
of TGF-β1 immunohistochemistry in all groups. CRF (chronic renal failure); Aox (antioxidant); Los
(losartan); Aox+Los (antioxidant plus losartan); GGN1231 (antioxidant plus losartan hybrid). Data
represent mean values per group in horizontal lines in the bee swarm graphic. a p < 0.05 versus
CRF+vehicle; b p < 0.05 versus CRF+Aox+Los.
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4. Discussion

This pilot study showed that the new compound, GGN1231, was able to reduce
proteinuria, blood pressure, LV wall thickness, the diameter of the cardiomyocytes, ATR1,
cardiac TNF-α, and cardiac fibrosis showing a decrease in collagen I gene expression and
TGF-β1 gene and protein expression. None of the drugs was able to reduce heart weight,
septal thickness, ATR2 and MAS receptor. At the vascular level, no differences were found
either in aortic calcium content or in the molecular transition from vascular smooth muscle
cells to bone cells. A reduction in the vascular inflammatory markers was only observed in
the CRF+GGN1231 group. The four groups receiving compounds showed a non-significant
decrease in mortality ranging from 10% (CRF+Aox, CRF+Los, and CRF+Aox+Los groups)
to 20% (CRF+GGN1231 group).

A well-known action of losartan is its ability to reduce proteinuria [16,17], and this
effect was also observed in the present study when losartan was given separately or
combined with an antioxidant as a single compound (GGN1231). The antiproteinuric effect
observed could be partly explained due to the control of hypertension. In fact, previous
studies in hypertensive Wistar rats showed a reduction in blood pressure with the GGN1231
compound, like the response to losartan [4]. Nevertheless, the antiproteinuric effect of
losartan could also be independent of hypertension and may be related to the changes in
glomerular hemodynamics [18] associated with the reduction of the glomerular protein
leakage [19], and the size of unselective pores in the glomerular basement membrane [20].

Losartan is a selective antagonist of ATR1 used in the treatment of hypertension, which
could also act on angiotensin II (Ang II) through a competitive mechanism [21] upregulating
the expression of the converting enzyme (ACE) or inhibiting Ang II production in situ [22].
Losartan also upregulates myocardial expression of ACE2, catalyzing Ang II to form
angiotensin 1–7 [23], which then binds Mas receptors carrying a protective function [8,24].
As expected, in our study, the CRF+Los and CRF+GGN1231 groups showed a reduced SBP,
DBP, and ATR1 gene expression, which was more marked in the CRF+GGN1231 group. The
administration of dihydrocaffeic acid (CRF+Aox group), a powerful and natural antioxidant
derived from caffeic acid, also showed a significant reduction in the ATR1 gene expression.
In fact, previous studies have shown that caffeic acid modulates the renin-angiotensin-
aldosterone endocrine axis [25] and lowers SBP and plasma ACE activity in hypertensive
rats [26], though this effect has not been observed in rats with CRF [27]. In contrast, no
effect was observed on ATR2 and Mas receptor gene expression with any of the other
four compounds.

Several clinical and experimental studies have shown that losartan reduces LVH and fi-
brosis [28,29]. The maintained increase in Ang II increases TGF-β1 levels in cardiomyocytes
and fibroblasts [30,31], having autocrine and paracrine effects by stimulating TGF-β1 recep-
tors. The latter leads, among other effects, to increasing inflammatory signals, hypertrophy
of cardiomyocytes, and proliferation and synthesis of extracellular matrix components,
such as collagen and fibronectin [32,33]. Caffeic acid has also shown anti-inflammatory [34]
and cardioprotective properties decreasing cardiomyocyte damage and apoptosis [35]. In
our study, losartan, dihydrocaffeic acid and GGN1231 reduced the cardiomyocytes’ size,
but only the latter decreased wall thickness. The combination of losartan and dihydrocaffeic
acid in one hybrid compound, GGN1231, showed a lower degree of cardiac fibrosis (5A,
5B3) than losartan or dihydrocaffeic acid administered separately or even when both were
given together and at the same time (CRF+Aox+Los group). In fact, in the latter group,
the protective effect of losartan to control blood pressure and proteinuria was lost. Several
drugs are known to be inhibitors of the cytochrome P450 hepatic enzymes, which may
influence the response to drug combinations or drug dosages. There are no reports about
the possible interaction between losartan and dihydrocaffeic acid or any caffeic acid [36],
though some studies have shown interactions of some herbs with losartan [37,38]. Thus,
it can be speculated that antioxidants may modulate the activity of cytochrome P450 and,
thus, decrease some of the properties of the losartan.
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The main reason to produce and test the hybrid compound of losartan and dihydrocaf-
feic acid, GGN1231, was to consider the possibility of driving losartan and the antioxidant
(molecularly bound to losartan) to the specific receptors of losartan to evaluate if it would
be possible to have, at the tissue level, the protective effects of the antioxidant and losartan.
The results obtained with this compound showed some beneficial effects beyond those
offered by the administration of each of the same compounds administered separately or
even when they are administered at the same time. The benefits of GGN1231 were mainly
observed in vascular inflammation, cardiac fibrosis and hypertrophy. In addition, the four
compounds showed a non-significant reduction in the mortality rate, which was more
manifest with GGN1231 (20% decrease vs. 10% decrease in the other groups). In agreement
with these results, previous studies described that losartan reduced 10% of the mortality in
different models [39,40].

The study has limitations. The small number of animals studied may have prevented
finding differences in clinically relevant outcomes such as vascular calcification and the
possibility of obtaining stronger results. In addition, four weeks of study could have
been insufficient to obtain significant changes among groups. Despite the mentioned
limitations, the study showed interesting possible advantages of the new hybrid compound
GGN1231, which could help in the management of cardiovascular and inflammatory
processes. Further research is needed to confirm and even expand the positive aspects of
the new compound observed in this pilot study.

5. Conclusions

Although all compounds improved some cardiovascular parameters, only the CRF+GG
N1231 group was able to reduce aortic TNF-α, LV wall thickness and cardiac fibrosis leading
to a non-significant 20% reduction in mortality. This study showed the possible advantages
of GGN1231, which could help in the management of cardiovascular and inflammatory
processes. Further research is needed to confirm and even expand the positive aspects of
this compound.
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