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Abstract: Current solid-state thermoelectric converters have poor performance, which typically
renders them useless for practical applications. This problem is evidenced by the small figures of
merit of typical thermoelectric materials, which tend to be much smaller than 1. Increasing this
parameter is then key for the development of functional devices in technologically viable applications
that can work optimally. We propose here a feasible and effective design of new thermoelectric
systems based on physical gaps in nanoscale junctions. We show that, depending on the type of
features, i.e., the character of surface/edge states, on both sides of the gap, it is possible to achieve
high figures of merit. In particular, we show that, for configurations that have localized states at the
surfaces/edges, which translate into sharp resonances in the transmission, it is possible to achieve
large Seebeck coefficients and figures of merit by carefully tuning their energy and their coupling to
other states. We calculate the thermoelectric coefficients as a function of different parameters and
find non-obvious behaviors, such as the existence of a certain coupling between the localized and
bulk states for which these quantities have a maximum. The highest Seebeck coefficients and figures
of merit are achieved for symmetric junctions, which have the same coupling between the localized
state and the bulk states on both sides of the gap. The features and trends of the thermoelectric
properties and their changes with various parameters that we find here can be applied not only to
systems with nanogaps but also to many other nanoscale junctions, such as those that have surface
states or states localized near the contacts between the nanoscale object and the electrodes. The model
presented here can, therefore, be used to characterize and predict the thermoelectric properties of
many different nanoscale junctions and can also serve as a guide for studying other systems. These
results pave the way for the design and fabrication of stable next-generation thermoelectric devices
with robust features and improved performance.

Keywords: thermoelectricity; nanogaps; surfaces; 2D materials; tight-binding

1. Introduction

Solid state thermoelectric converters are key to designing systems that involve both the
conversion of electricity to heat in charge-driven cooling systems and of heat to electricity
in heat-driven current generators. These systems are essential for different industrial and
technological processes, which range from applications in the automotive industry to space
applications, biotechnological applications, and wastes of heat in industrial processes [1–8].
Improving current thermoelectric converters and designing new ones with enhanced
capabilities is expected to have a substantial impact in several scientific and technological
areas and to help to achieve different objectives related to energy saving and transformation,
green energies and zero-carbon emissions [4].

Current solid state thermoelectric converters can already be used in specialized appli-
cations, such as spacecraft [9]; however, many of them present a series of problems that
reduce their performance and make them impractical for certain technological applications.
Among these problems, the small efficiency and poor performance of many of such systems
integrated in different devices stand out.
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For instance, the largest figures of merit in present-day solid state converters are of the
order of 1 [10–14], with the highest ones achieved up to now of around 3 [15–17]. These val-
ues can be reached mainly for bulk materials with nanostructured lattices. However, such
values are clearly not sufficient to achieve efficient thermoelectric conversion nor fabricate
efficient and effective converters to be employed in applications for real-life systems.

The main issues that severely affect the thermoelectric performance and lead to very
poor performances come, on one hand, from the relatively small Seebeck coefficients,
and, on the other hand, from the relatively large phonon conductances of most solid-state
thermoelectric materials. The first factor is key to transform a temperature gradient into
a potential difference by means of the Seebeck effect (or the other way round, through
the Peltier effect), and the second factor, which is added to the electronic thermal con-
ductance [18], is key to ensure, when it is small enough, that the temperature gradient
is kept and does not vanish, so that the thermal induced voltage difference or electrical
current is maintained. However, the relatively small Seebeck coefficients and large phonon
conductances of most solid state converters render them useless or unable to work properly,
with poor performance compared to other devices used in the recent past.

In order to solve the problems that severely affect current devices and hamper their
efficiency, various approaches that tackle different physical aspects have been proposed
and implemented over the past years. These approaches include, for instance, the increase
of the scattering of phonons in materials that include different sublattices or the nanos-
tructuration of materials in different ways [19,20]. This last approach in particular, i.e.,
nanostructuring certain parts or a whole material by including nanometric defects, has
proven to be promising for designing new materials with high Seebeck coefficients (S) and
figures of merit (ZT).

Some examples include the use of nanoscale junctions, such as molecular electronic
systems with high ZT [21], or two dimensional materials, such as graphene (see, e.g., [22–24]
and the references therein). However, such systems are difficult to fabricate in practice, and
their relatively high figures of merit can only be reached within a very narrow and unstable
window of parameters. In addition, in most of the calculations used to model such materials
and predict their thermoelectric properties, the phonon thermal conductance, which is
an important limiting factor that can severely reduce the size of ZT, is not considered
and, therefore, it is not clear in many cases how efficiently these systems can work as
thermoelectric converters.

In this work, we propose the development of efficient nanoscale thermoelectric systems
based on physical gaps between surfaces of bulk materials or 2D layers. We stress that such
systems are real and some of them, such as those based on graphene layers, have already
been characterized experimentally to an extent and simulated with ab initio techniques [25].
The proposed model then describes a specific type of physical systems, and we study the
main parameters that affect the thermoelectric performance.

We describe and model the properties of these systems and show under which condi-
tions they display the highest performance. Such systems include, as commented before,
graphene gaps, which can be fabricated with electroburning techniques [26–29] or with
mechanically controllable break junctions [30] and are currently being profusely studied by
several groups worldwide as possible platforms to design new molecular electronics and
nanoscale components. Examples of these last devices comprise the coupling of molecular
wires, crossover molecules or other similar systems between graphene electrodes.

An interesting property of such nanoscale devices is that, even without any bridging
element, they are expected to be reliable and display, in certain cases, a good thermoelectric
response generated, on one hand by the sharp transmission produced by different features
on the edges of both sides of the gap [31], as we shall see, and, on the other hand, by the lack
of phonon transport across physically separated electrodes. The first factor, which is typical
for instances of systems, such as heavily doped semiconductors [32], is key to generating
large Seebeck coefficients, while the second one leads to the elimination of an important
limiting effect in most solid-state thermoelectric materials. We note, however, that, in some
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cases, phonons can still cross the gap and give sizeable thermal conductances [33]. This has
also been studied recently in different systems, and it has been found in many cases that
such conductances cannot be ignored [34–39]. We will, therefore, use an approximation to
calculate such contributions (see below).

We show then that, in stable designs and under certain conditions, it is possible to
achieve very high S and ZT, which should allow building nanoscale devices with high
efficiencies. Such designs could also be able to be achieved in the near future due to the
rapid advance of the fabrication and characterization techniques of nanogaps [26–29] in
two-dimensional materials and related systems. The delivery of edges with tailored shapes
and morphologies should also allow the implementation of several of the proposed systems
in parallel, which would then multiply the thermoelectric performance and help to scale
and integrate these systems into technologically relevant devices.

The article is structured as follows: In Section 2, we describe the tight-binding model
that we use to describe different configurations and calculate their thermoelectric properties.
In Section 3, we present the results for two different setups: a wedge/adatom or protu-
berance on one side and a straight edge/flat surface on the other and wedges/adatoms or
protuberances on both sides. We finish with our summary and conclusions.

2. Materials and Methods

We describe the system, which is comprised of either two facing surfaces of a bulk
material or two facing edges of a 2D material, both of them separated by a gap and
with or without wedges or protuberances, with a tight-binding model that considers
the coupling between the bulk states and those states belonging to wedges/adatoms or
protuberances as well as the coupling between those states across the gap [25,31]. An
schematic representation of the system and the theoretical model are shown in Figure 1.
The model is comprised of two one-dimensional semi-infinite chains that end in a surface
state and couple across a gap. We notice and stress that, even though this may seem to be
an oversimplified system, it perfectly captures the transport properties of these or similar
systems, and gives results that agree almost exactly with those calculated using more
involved ab initio simulations [25,31].

Figure 1. Schematic representation of the wedge–edge (a) and wedge–wedge (b) configurations. The
top panels (1) show a physical representation of electrons flowing through 2D layers due to a bias
voltage or a temperature gradient and the electrons on the edge states, which do not couple to the
former when their group velocity is perpendicular; the bottom panels (2) show the corresponding
levels of the tight-binding model.

The model works properly because it considers the essential parameters that affect
the electronic transport through the system. As such, it is able to accurately reproduce the
transport characteristics around the Fermi level at zero bias and also at relatively large bias
voltages, giving good agreements for all those regimes with the aforementioned ab initio
simulations and even with experiments [25]. We also note that the model is dynamically
stable since it does not evolve over time, i.e., the sites and all parameters are kept fixed
and do not change; this is relevant for systems with strong bonds whose coordinates do
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not change at room temperature. Therefore, it is not necessary to perform tight-binding
molecular dynamics [40].

The Hamiltonian includes two electrodes that couple through a vacuum gap:
Ĥ = Ĥl + Ĥr + V̂lr, where l and r stand for left and right electrodes, respectively. This
Hamiltonian includes only electronic terms—but not phonons—because, as commented
before, the transport of phonons should be negligible due to the vacuum gap between the
electrodes. The most important parameters in this model are the strength of the couplings
between the edge/surface states and the bulk states and the strength of the coupling be-
tween bulk or edge/surface states across the gap. The Hamiltonian of both sides (left and
right), Ĥl(r), is defined as follows:

Ĥl(r) = ∑
〈i,j〉;σ

tijσ ĉ†
l(r),iσ ĉl(r),jσ + ∑

σ

εσ d̂†
l(r),σ d̂l(r),σ+

+ ∑
σ

t1dσ(ĉ†
l(r),1σ d̂l(r),σ + h.c.)

(1)

where ĉl(r),iσ and d̂l(r),σ represent the annihilation operators on the bulk and edge/surface
states on the left (right) electrode for spin σ (σ =↑, ↓), respectively, tijσ are the spin-
dependent on-site energies (tiiσ = εσ) and coupling terms between different sites and
the sum 〈i, j〉 runs only to first nearest neighbors. Notice that we assume the electronic
repulsion at the surface state is sufficiently small to avoid including a large intra-atomic
repulsion U, which means the model might not apply to strongly correlated systems with
localized states and large U (i.e., d or f states), where it would be necessary to go beyond
a single particle description. This is generally true for surface states where electrons are
delocalized between various atoms.

In this case, we take a mean field approach, and U is included as a shift of the on-site
energy level. The states at the surface or edges can have a magnetic configuration, i.e., a
spin-splitting |ε↑| 6= |ε↓|. In such a case, the bulk states closer to them can also be affected,
which may then translate into an on-site energy slightly different from that of the other
bulk states and even a small magnetic splitting (t11↑ 6= t11↓ 6= εσ). We use tijσ = t = −3 eV
and εσ = ε = 0 eV (the same values for both spins). To reflect the influence of the surface
on the states close to it, we apply a shift to t11 = ε1 of −0.05 eV. We use, for the surface
state, an on-site energy level ε = −0.5 eV, which defines the position of the resonance in
the transmission.

The other term that enters in the Hamiltonian couples on both sides of the gap and is
given by

V̂lr = ∑
σ

[γddσ d̂†
l,σ d̂r,σ +

2

∑
i,j=1

(γdiσ d̂†
l,σ ĉr,iσ + γidσ ĉ†

l,iσ d̂r,σ+

+ γijσ ĉ†
l,iσ ĉr,jσ) + h.c.].

(2)

This part considers the couplings between bulk and/or localized states at the edge/
surface across the gap. The first (second) index of the coupling elements γ (d or i) corre-
sponds to a localized or bulk state in the left (right) part and vice versa.

This last term of the Hamiltonian and the previous couplings between the bulk and
surface states give rise, when computed the transmission, to features that lead to remarkable
electronic and thermoelectric characteristics, as we will see later. Notice that the total
Hamiltonian has also been slightly simplified with respect to the one used in previous
studies, which was employed to calculate the electronic transport properties with more
configurations and combinations of parameters. In this case, however, we keep only the
most relevant terms that affect the thermoelectric performance.

Other parameters, such as second order couplings or other couplings to the surface
states that generate interference effects and that can appear in particular cases [31], are
not considered in this Hamiltonian, because they mainly influence the transmission and
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the current but have not much effect on certain thermoelectric properties (the Seebeck
coefficient and figure of merit). We keep the coupling between the closest states across the
gap, which can be, depending on the configuration, a surface and a bulk state or two bulk
states; we use the same value of the coupling in both cases, i.e., γd1 = γdd = −0.01 eV,
respectively.

The thermoelectric coefficients are obtained by first calculating the energy-dependent
transmission T(E) through the junction,

T(E) = Tr[ΓL GR†
M ΓR GR

M](E) (3)

where GR
M(E) =

[
E + iδ− H − ΣR

L(E)− ΣR
R(E)

]−1 is the retarded Green’s function of the
scattering region, which includes part of the electrodes, Γα = i

[
ΣR

α − ΣR†
α

]
and ΣR

α (E) =
VMα G0R

α VMα = t2
ijσ G0R

α is the corresponding self energy for electrode α, with G0R
α the bulk

retarded Green’s function of the electrodes. For this particular case, G0R = 2/(E− ε + ∆),
where ∆ = sign(E− ε)

√
(E− ε2)− 4 t2—the same for both electrodes. After calculating

the transmission, the next step involves the evaluation of the moments of the transmission
using well-known expressions that consider the transmission and the Fermi distribution
function [21], i.e., by extending the Landauer–Büttiker formalism to consider both charge
and heat currents [41].

The transport is ballistic, and therefore the expressions for the thermoelectric coef-
ficients do not depend on parameters such as the electron relaxation time. The temper-
ature dependence enters into the Fermi distribution function or, more explicitly, into its
derivative within the expressions of the moments of the transmission (Ln(T) =

∫ ∞
−∞(E−

EF)
nT(E)[∂ f (E, T)/∂E]dE, where EF is the Fermi energy and f is the Fermi distribution

function). The conductance, Seebeck coefficient, electronic thermal conductance and figure
of merit are given in terms of moments, such as

G =
2e2

h
L0 (4)

S = − 1
eT

L1

L0
(5)

κ =
2

hT

(
L2 −

L2
1

L0

)
(6)

ZT =
S2GT

κ
=

1
L0L2

L2
1
− 1

(7)

and are then evaluated at particular values of the Fermi energy and temperature. In the
figure of merit, we also consider the effect of the phonon conductance, which enters as an
additional factor in the denominator:

ZT =
S2GT

κ + κph
(8)

We approximate such a term by using a conductance per unit area of 107 W/(m2K),
which is a typical value that can be found for distances around 3 Å at room tempera-
ture [39], and an area of 0.25 nm2 (an square with a side of 0.5 nm, which is still relatively
large for systems that have a few atoms at the tip). This gives a thermal conductance
κph = 2.5 pW/K.

The model considers three possible scenarios that cover the most relevant configura-
tions of physical nanogaps between surfaces or edges of 2D materials. These configurations,
which generate a plethora of electronic effects even without any bridging component,
depend on the particular structure of the edges/surfaces on both sides of the junction
and produce completely different transport properties. The main difference between such
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configurations is due to the absence or presence of structural defects, such as protuberances
or wedges, on one or both sides. These structural differences translate in the Hamiltonian
in changes of the coupling between the bulk and the surface states (tl(r),1dσ); this coupling
is zero for straight edges/flat surfaces or has a particular finite value for wedges/adatoms
or protuberances.

When such a coupling is not zero, it can give rise to sharp transmission resonances
that signal the presence of localized states at the edges. The slope of such resonances
can dramatically modify the Seebeck coefficient and, consequently, the figure of merit,
following, thus, the strategy proposed by Mahan and Sofo to achieve the best thermoelectric
performance [42]. We will focus then on cases that give rise to such resonances, i.e., those
with wedges/adatoms on one one or both sides of the gap.

3. Results and Discussion

We calculated results for all possible configurations that stem from different combi-
nations of features on both sides of the gap. As commented before, these features can be
wedges that protrude from the edges of two-dimensional materials or adatoms/protuberances
that protrude from the surfaces of three-dimensional materials. The possible combination
of these features with straight edges or surfaces gives three possible cases [25,31]. However,
the simplest case, which has straight edges or clean surfaces on both sides of the gap and
leads to smooth and featureless transmissions, produces rather small magnitudes of the
thermoelectric coefficients and poor efficiencies as demonstrated by the small figure of
merit, and thus we will not consider it.

We will focus then on the other two cases, which have sharp features that can po-
tentially lead to much higher thermoelectric coefficients: the wedge–edge (we use this
notation, which refers two-dimensional materials; however, the model also applies, as
commented previously, to surfaces of three-dimensional materials with or without protru-
sions or adatoms [31]) and wedge–wedge configurations. Notice also that the wedge–edge
configuration has the largest probability of occurring in the current experimental setups
and has even been measured in recent experiments [25]. We model, as commented before,
non-magnetic configurations, which give a single peak in the transmission; we use, in this
case, a surface on-site energy level ε = −0.5 eV and an additional shift of the states close to
this of −0.05 eV (see above).

Finally, in addition to the purely theoretical results, and in order to compare with these,
we have also included in Appendix A ab initio results of the thermoelectric properties
of nanogaps between graphene layers. Notice that in this case the electronic states are
spin-split because the graphene edges have magnetic configurations.

3.1. Wedge–Edge Configuration

The zero-bias transport properties in this case are characterized by the presence of one
or two Breit–Wigner resonances in the transmission, depending on whether the system
has spin polarization. Such resonances can be located at a given energy relative to the
Fermi level and have a certain width, depending on a series of parameters that enter in
the model. The position is determined by the on-site energies of the surface/edge states,
and the width is governed by the coupling to the bulk states. The location and sharpness
of these states are key to the generation of large Seebeck coefficients and figures of merit,
since these quantities increase with the slope of the transmission at the Fermi level.

As a function of the Fermi energy, which we assume can be smoothly changed with
a gate potential, the conductance roughly follows the transmission, i.e., it has a structure
with a single peak—as with a Breit–Wigner resonance. Regarding the Fermi level, however,
in this case and in the following, the shifts of the Fermi level are somewhat exaggerated to
clearly show the shape of the coefficients. In reality, it is not possible to produce such large
shifts (larger than ∼2 eV) even with graphene electrodes that can be relatively close to a
gate. The Seebeck coefficient changes non-monotonically and has a minimum below the
on-site level (−0.5 eV) and a maximum above it, both of the same size.
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This particular structure comes from the derivative of the Transmission, i.e., from its
slope. The thermal conductance has a structure that is similar to the electrical conductance;
however, this can change with the couplings, as we will see later. These electrical conduc-
tances, Seebeck coefficients and thermal conductances translate into a figure of merit ZT,
which has two equal peaks as a function of the Fermi energy. Such peaks come mainly from
the Seebeck coefficient S, which is squared in the numerator of ZT and is the main driving
factor behind the thermoelectric performance as we will see.

3.1.1. Evolution with the Coupling Parameter

The most important parameter that determines the sharpness of the resonances (which
is one of the two main ingredients that, along with the position relative to the Fermi level,
enhances the thermoelectric performance) is the coupling between the surface state and
the bulk states. This parameter, tl(r),1dσ, which couples the localized state to the bulk states
on each side, depends on the type of material and the structural configuration (size and
shape of the wedge/protusion; for instance, smaller or wider wedges in graphene give rise
to smaller couplings between the edge states and the bulk states) [31].

Although, in reality, it cannot be changed continuously, the study of its evolution can
help to determine the type of material and features that would be needed to generate the
highest thermoelectric performances. This coupling parameter increases, in general, as the
feature on the surface/edge (wedge/protrusion) becomes sharper, since it enhances the
coupling between the edge state and the bulk states. The increase of the coupling, however,
translates into an increase of the resonance width and, therefore, into a decrease of the
thermoelectric performance. However, the picture is not that simple, and some details have
to be considered as we shall see.

From the curves of Figures 2 and 3, which are calculated at room temperature (300 K),
it is clear that increasing the absolute value of the coupling parameter sharply increases the
maximum of the conductance at the beginning but then steadily reduces it, with a slope that
decreases for larger values. This means that such a maximum does not saturate nor remain
constant but decreases as the coupling increases after an absolute value of around 0.1 eV.
This behavior of the maximum of the zero-bias conductance with the coupling parameter
can be reproduced by using an analytical model for the transmission of a system with one
or two resonances on each side of the gap [43]:

T(E) =
4ΓLΓRγ2

(Eε1 Eε2 − ΓLΓR − γ2)2 + (Eε1 ΓR + Eε2 ΓL)2 , (9)

where Eε1(2) = E− ε1(2), ε1(2) is the on-site energy of the level that couples to the left (right)
electrodes, γ is the coupling of the levels across the gap and ΓL(R) = t2

L(R)ρL(R), with tL(R)
as the coupling between the levels and the corresponding lead and ρL(R) as the density of
states in each lead (we assume here a wide band gap approximation; therefore, this term
is constant). In this case, the coupling to the right lead (tR) is chosen to be smaller than
that to the left lead, since, for this configuration, the right level is weakly coupled to the
bulk states.
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Figure 2. Electrical conductance (a), Seebeck coefficient (b), electronic thermal conductance (c) and
figure of merit (d) as a function of the Fermi energy and the coupling parameter for the wedge–edge
configuration. The temperature is 300 K.

Figure 3. Electrical conductance (a), Seebeck coefficient (b), electronic thermal conductance (c) and
figure of merit (d) as a function of the coupling parameter for the wedge–edge configuration (side
view of Figure 2). The temperature is 300 K.

Notice as well that the conductance here is taken as the transmission at the Fermi
level; in particular, when the Fermi energy coincides with the on-site energy level, i.e., by
evaluating Equation (9) at the maximum (E = ε1) and also considering that, in these cases,
ε1 = ε2 gives T(ε1) = 4ΓLΓRγ2/(−ΓLΓR − γ2)2 and produces a curve that, as a function
of the coupling parameter γ, correctly fits that shown in panel (a) of Figure 3 (and the
corresponding one for the wedge-wedge case, see below). The maximum of such curve as
a function of γ is located at γ = −

√
ΓLΓR and can therefore be changed by modifying the

relative size of the couplings to the electrodes.
Note that the main difference between this and the next case (wedge–wedge) is the

size of the coupling to the right electrode (tR), which, as commented before, is smaller
for this configuration. According to this model, the more asymmetric the couplings to
the electrodes, the steeper the increase of the conductance curve at small γ, in agreement
with what is shown in Figure 3 (compare this with the corresponding evolution for the
wedge-wedge case, shown below). Such changes in the coupling give rise not only to
different conductances but also to different thermoelectric properties (both quantitatively
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and qualitatively) and can therefore be considered key factors that substantially affect
the thermoelectric performance. Note as well that these results are general can apply to
many other nanoscale junctions that have similar resonances in the zero-bias transmission,
such as those with surface states or with frontier orbitals near the contacts between the
nanoscale element and the electrodes (for instance, molecular electronics systems or other
nanoelectronic systems with different elements bridging the electrodes).

The increase of the coupling (in absolute terms) also enhances the magnitude of
the Seebeck coefficient at the beginning as can be seen in Figure 3. However, for larger
couplings, this quantity decreases due to the reduction of the slope of the transmission
at the Fermi level (i.e., the resonance becomes wider and smoother when the coupling
increases). This behavior can also be captured to a great extent by using, as a starting
point, formula (9) and calculating the expression for the Seebeck coefficient in terms of the
transmission, which involves taking its derivative and dividing by the transmission [21].
This can also be easily verified in the zero-temperature limit by evaluating the expression
at the Fermi energy, which gives a dependence on the derivative of the transmission (slope)
divided by the transmission at that level.

At finite temperatures, however, the variation of the Seebeck coefficient with the
coupling deviates slightly from this behavior, because the integration in energy that gives
the momenta of the transmission decreases the value of the Seebeck coefficient for very
small couplings, i.e., for very sharp resonances, and masks large Seebeck coefficients in
such a limit. All evolutions with temperature are similar up to very large values, and the
qualitative trend is maintained. In general, the smaller the temperature, the sharper the
features (peaks and valleys) that develop in the thermoelectric coefficients—however, the
smaller the values of the maxima and minima that such coefficients reach, as we will see in
the next subsection.

The thermal conductance has two equally and clearly separated maxima for small
(in absolute terms) couplings, which tend to merge as the magnitude of the coupling
increases as can be seen in Figure 2. This behavior is not observed for the electrical
conductance, whose shape usually follows that of the thermal conductance in many cases.
The reason behind this tendency is the presence of the first moment of the transmission in
the expression of the thermal conductance, which is a term that has, for small couplings, two
peaks and therefore gives rise to a thermal conductance evolution with a similar pattern.

The figure of merit, which can also be seen in Figure 3, sharply increases first as a
function of the absolute value of the coupling but then decreases steadily for larger values.
The drop is a consequence of the increase of the thermal conductance first (from 0 to
−0.5 eV), and the decrease of the electrical conductance and the Seebeck coefficient for
values smaller than approximately −0.05 eV. This evolution gives rise to a maximum of
ZT close to 0 eV. The values at or near the maximum are high (around 40), which lead to a
huge thermoelectric performance. Such performance is then reached for a particular value
of the coupling, which, in this case, is small (in absolute terms).

3.1.2. Evolution with Temperature

Another important factor that influences the thermoelectric performance and can
improve or worsen the response, is the temperature. The effect of this parameter, which
enters into the Fermi distribution function, is known and has also been considered in
past studies (see, e.g., [44]); however, its influence on the thermoelectric coefficients in the
configurations considered in this study and the differences between them are not obvious
and show interesting trends. We then also considered the evolution with temperature of all
thermoelectric quantities.

In particular, we calculated and show in Figures 4 and 5 the change of the thermoelec-
tric coefficients, grouping those that look similar (electronic and thermal conductances in
Figure 4) and those that show more different trends (the Seebeck coefficient and the figure
of merit in Figure 5) in a range of temperatures that can be accessed experimentally or can
be meaningful for technological applications. Notice that these quantities are expected to
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clearly depend on temperature, since the transmission features around the Fermi level cer-
tainly feel the effect of the Fermi distribution function when the thermoelectric coefficients
are calculated.
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Figure 4. Temperature dependence of the electronic (a) and thermal (b) conductances for the wedge–
edge (1) and wedge–wedge (2) configurations. The coupling parameter in this case is −0.2 eV. Notice
that the vertical axis intervals in panels (1) and (2) are different.

We found that the peaks of both the electrical and thermal conductances as a function
of the Fermi energy widen and decrease as a function of temperature, although such trends
are somewhat more pronounced in case of the electrical conductance. These evolutions
can be easily understood, at least in case of the electrical conductance, by considering the
widening of the resonance given by the derivative of the Fermi distribution function that
enters in the calculation for such quantities. The evolution can be seen in Figure 4. The peak
of the thermal conductance for sufficiently high temperatures widens substantially and can
even split into two peaks for small couplings (smaller or equal than−0.05 eV). This quantity
can also reverse the previous trend and starts to grow slowly for larger temperatures (again,
for smaller couplings, now shown in Figure 4).

The Seebeck coefficient and the figure of merit follow similar but not quite the same
trends as the previous two quantities. Their evolution is shown in Figure 5, where it can be
seen that, as a function of temperature, the maxima and minima of the Seebeck coefficient
widen, separate and slightly grow (for smaller couplings, such as −0.05 eV, the height is
even kept roughly constant). The maxima of ZT also widen and separate; however, their
height clearly increases as a function of temperature. The primary feature responsible for
such evolution is the Seebeck coefficient, whose magnitude is enhanced by the square in the
expression of ZT, while G and κ follow similar trends and due to the Wiedemann–Franz
law give a contribution that is roughly proportional to 1/T (which cancels the T in the
numerator or ZT).
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Figure 5. Temperature dependence of the Seebeck coefficient (a) and figure of merit (b) for the
wedge–edge (1) and wedge–wedge (2) configurations. The coupling parameter in this case is −0.2 eV.
Notice that the vertical axis intervals in panels (1) and (2) are different.

3.2. Wedge–Wedge Configuration

This configuration consists of two protuberances or wedges facing each other across
the gap. Such a setup gives rise to a transmission that might look similar to that of the
previous case, i.e., it has again a series of resonances (one or two in case of spin splitting)
generated by localized states. However, these resonances are not the same as those from the
previous case and lead to different trends in the thermoelectric coefficients, as we shall see.
Note again that we consider here only non-magnetic configurations, which should allow to
more clearly distinguish both types of structural configurations and univocally assign to
each of them a type of evolution of the thermoelectric coefficients. We will only consider, for
this configuration, as with the previous one, a single resonance in the transmission whose
shape or position does not depend on any magnetic configuration of the electrodes [31].

The main differences with the previous configuration are due to the height and sharp-
ness of the peak of the transmission, i.e., the resonance is higher and more pronounced
(thinner) in this case. This is due to the symmetric nature of this configuration, because here
there are localized states at the same energy on both sides of the gap, and the probability
of transmission is higher than in that situation where there is only one state on one of the
sides. This configuration is then symmetric, although it does not give rise to Breit–Wigner
resonances of height equal to one because both states are coupled asymmetrically to each
side of the gap.

As a function of the Fermi energy, the thermoelectric coefficients are similar but not
quite the same to the previous case, i.e., they have a similar shape (the conductance has
a single peak; the Seebeck coefficient has a maximum and a minimum above and below
the on-site energy, respectively; the thermal conductance has a single peak; and the figure
of merit has two peaks around the on-site energy) but different heights and widths. The
thermoelectric coefficients also show a different evolution with the coupling parameter and
the temperature, as we will see, which will allow distinguishing this configuration from
the previous one.
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3.2.1. Evolution with the Coupling Parameter

The main parameter that influences the thermoelectric properties is again the coupling
between the surface states and the bulk states, tl(r),1dσ (which, in this case, appears on both
sides in this configuration). We assume that the junction is symmetric, i.e., the type of
material and structural configuration (size and shape of the wedge or protuberance) are
the same on both sides, and therefore the coupling parameters are equal. We then evolve
equally the coupling parameters on both sides to study the behavior of the thermoelectric
coefficients. The evolution of most of the thermoelectric quantities and, in particular, the
Seebeck coefficient and the figure of merit, with this parameter is again not evident, as can
be seen in Figures 6 and 7, respectively, where we plot such quantities as a function of this
parameter and energy.

Figure 6. Electrical conductance (a), Seebeck coefficient (b), electronic thermal conductance (c) and
figure of merit (d) as a function of the Fermi energy and the coupling parameter for the wedge–wedge
configuration. The temperature is 300 K.

Figure 7. Electrical conductance (a), Seebeck coefficient (b), electronic thermal conductance (c) and
figure of merit (d) as a function of the coupling parameter for the wedge–wedge configuration (side
view of Figure 6). The temperature is 300 K.

Both of these quantities have high values (in absolute terms), which are clearly higher
than those in the previous case. Furthermore, the evolution, although similar in certain
ranges, is not exactly the same as that of the previous configuration and can be used to
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distinguish both configurations. We describe in detail the characteristics of such evolution
and the differences with the previous configuration in the following.

We focus first again on the electrical conductance, whose evolution can also be cap-
tured by taking as reference Equation (9) and deriving the thermoelectric coefficients from
it. On the one hand, the calculated conductance in this configuration steadily increases
from zero, such as in the wedge–edge case but keeps growing slightly until moderate
magnitudes of the coupling (∼−0.1 eV) as can be seen in Figure 7. This means that the
maximum moves to larger absolute values of the coupling. The behavior for large magni-
tudes of the couplings is also different from that of the wedge–edge configuration, where
the conductance decreases slowly with it.

In this case, the decrease is more pronounced. On the other hand, the values of this
quantity are much higher than those in the previous case, almost two orders of magnitude
larger. This shows that, when using a simple transport property, such as the electrical
conductance, its evolution with certain parameters and its magnitude, it is possible to
distinguish and characterize different nanogap configurations.

The absolute value of the Seebeck coefficient also has two maxima (i.e., it has a
maximum and a minimum above and below the on-site energy, respectively), such as in
the wedge–edge configuration. This parameter steadily grows as the coupling increases
from zero but then slowly decreases as can be seen in Figure 7. The maxima also move
to larger absolute values of the coupling, and the values are two-times larger than in the
previous configuration. This coefficient provides another example of quantity that can be
used to distinguish both types of nanogap configurations and shows again that, although
the transmissions are similar (one or various peaks), the quantities derived from it behave
differently as a function of certain parameters. This proves as well that those quantities can
be sensitive to very small changes derived from different structures or compositions on
both sides of the gap.

The thermal conductance has a single peak for most of the range of the coupling
parameter (see Figure 6), as opposed to the previous case, which had two peaks for a
certain range (small couplings) and a wider structure. The growth and decline of this
quantity is more pronounced than in the wedge–edge case but somehow similar as can
be seen in Figure 7. The maximum, however, is slightly more pronounced and moves
slightly to smaller absolute values of the coupling. This evolution is due again to the
different magnitude and shape of the resonance, which produces larger absolute values of
this quantity (roughly one order of magnitude larger than in the previous case).

The figure of merit, on the other hand, has a clear maximum as a function of the
coupling parameter and initially increases more smoothly than in the wedge–edge con-
figuration as can be seen in Figure 7. This behavior is again due to the dependence of the
figure of merit on other variables, such as the electronic and thermal conductances and
the Seebeck coefficient. The first two quantities increase first with the coupling; however,
the increase is more pronounced for the thermal conductance; this, along with the small
decrease of the Seebeck coefficient, gives rise to the maximum of the figure of merit as a
function of the coupling parameter, after which, this quantity decreases again sharply (but
not as much as in the previous case).

The maximum moves as well to larger absolute values of the coupling, such as in
the electrical conductance and the Seebeck coefficient. Note also that, in this case, the
magnitude of the figure of merit is much higher than in the wedge–edge configuration,
with values larger than 200. This implies that higher thermoelectric efficiencies can be
achieved with symmetric configurations that lead to higher resonances in the transmission.

3.2.2. Evolution with Temperature

The evolution with temperature of the thermoelectric coefficients is also shown in
Figures 4 and 5. This evolution is similar to that of the wedge–edge configuration; however,
the exact dependencies of certain coefficients are different. In the case of the electrical
conductance, its evolution is similar and almost indistinguishable to that of the previous
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configuration. However, the total magnitude of this quantity is much higher (almost two
orders of magnitude). The thermal conductance, however, decreases more steadily and has
a maximum that does not widen too much as the temperature increases, keeping, in this
case, an evolution that looks similar to that of the electrical conductance. This shows that
the more symmetric the coupling is, the more similar the evolution of both quantities.

In the case of the Seebeck coefficient, the increase of the height and the separation of
the maxima/minima are more pronounced than they are in the previous configuration,
and the absolute values are larger as well. This is a consequence of the less asymmetric
configuration, produced by the presence of two localized states with the same energies
that couple across the gap. This symmetry increases the magnitude of the peak and,
therefore, the range where the derivative is high. The same behavior can also be seen
for the figure of merit, whose peaks clearly have a more pronounced increase than in the
previous configuration and reach higher values. This shows that the more symmetric the
configuration is in these systems, the higher the thermoelectric performance.

4. Conclusions

We thoroughly characterized the thermoelectric properties of nanoscale junctions
based on physical gaps between the surfaces or edges of two-dimensional materials. We
found that, depending on the type of feature present on one or both sides of the gap,
the thermoelectric coefficients can be different and have distinct evolutions with certain
parameters. In particular, we found that all coefficients showed a non-trivial behavior as a
function of the coupling parameter between the localized states and the bulk states of the
electrodes. The electrical and thermal conductances, the figure of merit and the absolute
value of the Seebeck coefficient increased first and then decreased as a function of the
absolute value of the coupling parameter.

These increases and decreases depended on the type of configuration: for the wedge–
edge configuration, the increases of the electrical conductance, the Seebeck coefficient and
the figure of merit were sharper for small couplings, while, for the thermal conductance,
this was smoother; the decreases of all these quantities except for the figure of merit were
smoother in this case. The position of the maxima also depended on the configuration,
i.e., for the wedge–edge case, all these quantities except for the thermal conductance had
maxima located at smaller values of the coupling. Regarding the total magnitude of the
coefficients, this was much higher in the wedge–wedge case for all of them. Such evolutions
can be qualitatively explained and characterized by using a simple model of an asymmetric
Breit–Wigner resonance.

We also considered the evolution with temperature of the thermoelectric coefficients.
This parameter, which enters into the Fermi distribution function, had a sizeable influence
on the absolute magnitude of these quantities. In particular, we found a dissimilar evolution
with temperature: increasing the temperature substantially decreased the magnitude of the
electrical and thermal conductances but increased the magnitude of the Seebeck coefficient
and the figure of merit. We conclude then that the higher the temperature, the better the
thermoelectric performance. Regarding the differences between configurations, the increase
or decrease of all coefficients with temperature was larger and more pronounced in the
wedge–wedge case.

The results also show that it is possible to distinguish structural configurations (wedge–
edge or wedge–wedge) of a given gap with the thermoelectric coefficients. Although the
evolutions in both cases were qualitatively similar, there were clear quantitative differences
in the magnitude and in other values, such as the the maxima of such evolutions. We then
conclude that symmetric configurations with localized states on both sides (wedge–wedge)
gave much higher thermoelectric performances as shown by the larger values (one order of
magnitude) of the figure of merit in such cases.

Finally, we note that the results presented here not only apply to surfaces or edges
separated by a gap but also to many other systems, such as those that have nanoscale objects
connected between electrodes and that, in principle, can be considered as qualitatively
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different from those studied here. In those cases, there might appear similar features in the
transmission (small and sharp resonances) that come, for instance, from surface states or
states localized near the contacts. Such features also give rise to similar transport properties
(see, e.g., [45]) and lead to qualitatively similar thermoelectric results.
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Appendix A. Nanogaps in Graphene Layers: Ab-Initio Results

In order to compare with the results of the model, we also simulated the thermoelectric
properties of graphene layers separated by a gap. We used density functional theory [46],
as implemented in the Siesta code [47], which employs norm-conserving pseudopotentials
and linear combinations of atomic orbitals. We used a double-zeta (DZ) basis set, the local
density approximation (LDA) [48] and a real space grid defined with an energy cut-off of
300 Ry. We relaxed the coordinates of the carbon and hydrogen atoms at the edges until the
forces were smaller than 0.05 eV/Å.

The number of atoms, shown in Figure A1, were 226 and 254 for the wedge–edge
and wedge–wedge configurations, respectively. The size of the gap at the thinnest point,
defined as the distance between the terminating hydrogen atoms at the edges or at the tip
of the wedge, was 2 Å. Once the Siesta calculation finished, the Hamiltonian and overlap
matrices were used to calculate the thermoelectric properties with the Gollum [45] code
with a temperature of 300 K.

Figure A1. Atomic coordinates used to run the ab initio simulation in the wedge–edge (a) and wedge–
wedge (b) configurations. Black and white spheres represent carbon and hydrogen atoms, respectively.

The phonon thermal conductance was approximated by taking a value of the thermal
conductance per unit area of about 108 W/(Km2) [39] and an area of 0.02 nm2 that encom-
passes the hydrogen atom at the tip of the wedge, which gave κph = 2 pW/K. Notice also
that, in this case, since the graphene edges were magnetic, the resonances were split in two.
This implies that both spin components, which can have different transmissions T↑(E) and
T↓(E), have to be used in the thermoelectric expressions:

G =
e2

h
Lt

0 (A1)
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0Lt

2
Lt2

1
− 1

(A4)

where Lt
i = L↑i + L↓i . The use of both spin components in such expressions gives thermo-

electric coefficients that are roughly the sum of the contribution of each resonance if they
are away from each other as can be seen in Figures A2 and A3. In certain cases, the resulting
coefficients mix the contribution of both resonances and lead to dependencies that are not
clearly split such as the thermal conductance in Figure A3. In any case, the results for each
resonance qualitatively agree with those predicted by the model. Notice as well that, even
though these particular systems based on graphene layers were not particularly tailored to
produce large thermoelectric coefficients, the resulting thermoelectric performances were
still good, particularly those of the wedge–wedge case, which again shows the potential of
these systems as future elements in thermoelectric devices.
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Figure A2. Electrical conductance (a), Seebeck coefficient (b), thermal conductance (c) and figure of
merit (d) for a graphene wedge facing a straight edge. The inset shows the figure of merit calculated
with a phonon thermal conductance of 2 pW/K.
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Figure A3. Electrical conductance (a), Seebeck coefficient (b), thermal conductance (c) and figure of
merit (d) for a graphene wedge facing another wedge. The inset shows the figure of merit calculated
with a phonon thermal conductance of 2 pW/K.
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