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Abstract
A new concept of depth for central regions is introduced. The proposed depth notion
assesses how well an interval fits a given univariate distribution as its zonoid region
of level 1/2, and it is extended to the multivariate setting by means of a projec-
tion argument. Since central regions capture information about location, scatter, and
dependency among several variables, the new depth evaluated on an empirical zonoid
region quantifies the degree of similarity (in terms of the features captured by cen-
tral regions) of the corresponding sample with respect to some reference distribution.
Applications to statistical process control and the joint monitoring of multivariate and
interval-valued data in terms of location and scale are presented.

Keywords Data depth · Parameter depth · Random interval · Zonoid depth

1 Introduction

In multivariate statistics, the term depth, or more specifically data depth, refers to the
centrality of an observation with respect to a probability distribution or a data cloud
(see Liu 1990; Liu et al. 1999; Mosler 2002; Tukey 1975; Zuo and Serfling 2000). For
a given p-dimensional distribution F , a data depth function assigns a scalar value in
the unit interval to each point x in Rp. Such a value measures the centrality of x with
respect to F . The points that are more central with regard to the distribution assume
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high depth values, while peripheral points (again with respect to the distribution) have
low depths. The level sets of a data depth function, that is, the sets of points whose
depth at least matches some given number, are known as central or depth regions.
It is clear that a depth region conveys valuable information about a distribution: its
centremost point can be used as a location parameter, its volume (or surface area,
or mean-width...) as a scatter parameter, and it also provides information about the
dependency among components or the skewness of the distribution (Liu et al. 1999;
Mosler 2013).

On the other hand, a parameter depth quantifies howwell an element of a parameter
space fits a given distribution as its parameter of some given kind, see (Rousseeuw and
Hubert 1999) for the regression depth,Mizera andMüller (2004) for the location-scale
depth, or Chen et al. (2018) and Paindaveine and Van Bever (2018) for the (scatter)
matrix depth. Notice that notions of data depth arise when location parameters are
considered in this setting.

In the present manuscript, we consider a central region as parameter and evaluate
how well a set adjusts to a reference distribution as its central region. This way we
obtain a new notion of depth with respect to either univariate or multivariate distri-
butions whose argument is an interval or a set, respectively. The evaluation of such a
depth on the central region of a sample (or distribution) allows us to assess the degree
of similarity of this sample (or distribution) with respect to some other reference dis-
tribution. This proposal opens a new room to compare distributions in terms of those
features captured by their central regions. The closer the central regions of both dis-
tributions are, the higher the depth becomes, but notice that a maximal depth value
(depth equal to 1) does not guarantee that the distributions are identical.

In the case of interval-valued data, we consider its bivariate representation in terms
of endpoints and assess the fit of an observation by means of the zonoid data depth
(Koshevoy and Mosler 1997). Further, taking advantage of the new construction, we
evaluate how well a sample of intervals adjusts a (random interval) reference dis-
tribution by assessing the fit of a central region of the bivariate representation of the
sample of intervals with respect to the given reference distribution. Alternative notions
of depth for interval-valued data and more general set-valued data are described in
Cascos et al. (2021) and to fuzzy data in González-De la Fuente et al. (2022) and
Sinova (2022).

Data depth-based nonparametric multivariate analysis techniques have been found
to be attractive for building control charts. These latter are a graphical tool commonly
employed in statistical quality control to monitor the evolution of a process by means
of samples of a quality characteristic. The monitoring is based on the comparison
of some statistic that captures the most relevant features of the characteristic with
a prescribed control limit (see the monographs Montgomery 2013; Ryan 2011). We
illustrate the relevance of the newly introduced depth notion by using it as the charting
statistic of several control charts. Specifically, we present Phase I applications, whose
goal is to detect anomalies over a set of trial samples by declaring as out-of-control
all those samples whose associated depth is below the control limit. Once the out-
of-control trial samples are deleted, a polished historical dataset is formed out of the
remaining ones and, in Phase II, ongoing monitoring is performed by assessing the
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depth of newly taken samples with respect to the historical dataset and comparing it
with the control limit.

The rest of the manuscript is structured as follows. Section 2 is devoted to some
preliminary notions and results, in particular about the zonoid depth. In Sect. 3 we
introduce the (zonoid) interval depth together with its level sets and main properties.
Section 4 is devoted to a projection-based extension to the multivariate setting which
is presented together with an application in statistical quality control in the form of
a control chart, whose performance comparison is analyzed. In Sect. 5 we consider
interval-valued data and present a case study for which a control chart is also built.
Some concluding remarks are discussed in Sect. 6.

2 Preliminaries

Denote by F the set of cumulative distribution functions (cdfs) of all p-dimensional
random vectors. For any F ∈ F and d ∈ (0, 1], define the d-trimming of F as

F (d) = {G ∈ F : G( y) − G(x) ≤ d−1(F( y) − F(x)) for any x ≤ y ∈ R
p} ,

where the ‘≤’ relation in R
p is understood componentwisely. If F is restricted to

the class of distributions with density, then F (d) is formed by all cdfs whose density
functions are upper bounded by d−1 f , while it generally consists of all distributions
whose Radon-Nikodym derivative with respect to F is upper bounded by d−1, which
clearly becomes larger as d gets smaller.

If T stands for any statistical functional of a probability distribution, that is, T :
F �→ R

q , with a natural number q possibly different from p, Cascos and López-Díaz
(2012) define the parameter depth region of level d ∈ (0, 1] induced by T as

Dd
T (F) = {T (G) : G ∈ F (d)} . (1)

Reciprocally, the parameter depth of an element θ ∈ R
q is the greatest d such that θ

lies in the parameter depth region of level d,

DT (θ; F) = sup{d ∈ (0, 1] : θ ∈ Dd
T (F)} . (2)

In plainwords, θ is a candidate to be a parameter of F and the depthDT (θ; F)measures
the suitability of such a choice. If the fit is perfect, i.e., θ = T (F), the parameter depth
is 1.

When we consider distributions with finite first moment,
∫
Rp ‖x‖ dF(x) < ∞,

and T (F) = μ(F) = ∫
Rp x dF(x) stands for the mean, the zonoid depth regions

and the zonoid depth (denoted ZD) proposed by Koshevoy and Mosler (1997) and
thoroughly studied by Mosler (2002) are obtained. Alternatively, the zonoid region of
level d ∈ (0, 1] of a (possibly multivariate) distribution F is the compact and convex
set given as
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ZDd(F) =
{∫

Rp
xg(x)dF(x) : g : Rp → [

0, 1
d

]
measurable,

∫

Rp
g(x)dF(x) = 1

}

while the zonoid depth is defined as ZD(x; F) = sup{d ∈ (0, 1] : x ∈ ZDd(F)} ,
which meets the definition of the parameter depth in (2). The zonoid depth satisfies the
standard properties of a depth function (see Zuo and Serfling 2000): it is affine invariant
(i.e., independent of the coordinate system used), attains its maximal value at the mean
of a distribution (which is considered as the centre under its perspective), decreases on
rays from the deepest point, and vanishes at infinity. Besides, for absolutely continuous
distributions, the empirical zonoid depth is a uniformly consistent estimator of the
population zonoid depth, see (Cascos and López-Díaz 2016).

If we consider a univariate distribution F (that is, p = 1) with finite first moment
and denote its associated quantile function by F−1, the zonoid region of level d is the
closed interval

ZDd(F) =
[
1

d

∫ d

0
F−1(t) dt ,

1

d

∫ 1

1−d
F−1(t) dt

]

.

When d = 1/2, the left and right endpoints, respectively denoted by μ(F) and μ(F),
represent the gravity centres of the lower and upper halves of the distribution F , so

ZD1/2(F) =
[
μ(F), μ(F)

]
. Nevertheless, throughout the manuscript, we will use

the interval notation rather than the zonoid region notation for this set to emphasize
that it is univariate.

For a multivariate distribution F with finite first moment, the central region
ZD1/2(F) is a compact and convex set that is centrally symmetric about the point
μ(F). The zonoid central regions of any level d are affine equivariant and partially
capture the dependency structure of the components of F , see (Mosler 2013).

In order to work with a parameter depth notion whose argument is set-valued, the
usual set arithmetic will be considered. In particular, if K is a compact and convex
subset of Rp, A a nonsingular p × p matrix, and b ∈ R

p, the affine transformation
given by AK +b = {Ax+b : x ∈ K } is the compact and convex subset obtained after
multiplying each element of K times A and adding b. Therefore, if X is a p-variate
random vector with finite first moment, the affine equivariance of the zonoid central
regions can be expressed as ZDd(FAX+b) = A ZDd(FX ) + b. If p = 1, the matrix
is replaced by any scalar a �= 0, b ∈ R, and K = [xl , xu] is a nonempty compact
interval, while a[xl , xu] + b coincides with the interval whose endpoints are obtained
after multiplying the endpoints of [xl , xu] times a and adding b (if a < 0, the endpoints
are reversed).

Any nonempty compact and convex subset of Rp is characterized by its support
function evaluated on Sp−1 (the unit sphere inRp), see (Schneider 1993). The support
function of any nonempty compact and convex subset of Rp, K , evaluated on u ∈ R

p

is a homogeneous and subadditive function given by hK (u) = sup{〈x, u〉 : x ∈ K },
where 〈·, ·〉 denotes the standard inner product in Rp. The compact and convex set K
can be recovered from its support function as K = ⋂

u∈Sp−1{x ∈ R
p : −hK (−u) ≤

〈x, u〉 ≤ hK (u)} . Further, two simple properties will be relevant later on. The support
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function of the affine transformation of K given by a nonsingular p× p matrix A, and
b ∈ R

p is hAK+b(u) = hK (A�u)+〈b, u〉, where A� is the transpose of A; and given
two compact convex subsets K1, K2 of Rp, the inclusion relation K1 ⊆ K2 holds if
and only if hK1(u) ≤ hK2(u) for all u ∈ R

p.
Concerning the metrics involved in, for instance, the convergence for compact

convex sets, the Hausdorff distance will be used along this manuscript. TheHausdorff
distance between two compact convex sets K1, K2 ⊂ R

p is

dH (K1, K2) = sup
u∈Sp−1

|hK1(u) − hK2(u)| .

In the univariate case, if p = 1, dH ([xl , xu], [x ′
l , x

′
u]) = max{|xu − x ′

u |, |xl − x ′
l |}

and the convergence is satisfied whenever both sequences of endpoints converge to
the corresponding endpoint of the limit interval.

Taking advantage of the scalar product and the unit sphere in R
p that have been

just introduced, the weak projection property of the zonoid depth is presented as
ZD(x; FX ) = infu∈Sp−1 ZD(〈x, u〉; F〈X,u〉), see (Dyckerhoff 2004). Later on, a sim-
ilar projection argument will be used to extend the (univariate) interval depth to
the (multivariate) region depth. The zonoid depth also satisfies the strong projection
property, which is better characterized in terms of the central regions as

ZDd(F〈X,u〉) =
[
−hZDd (FX )(−u) , hZDd (FX )(u)

]
. (3)

Apart from the zonoid depth, the other classical data depth notion that appears in
this manuscript is the halfspace one. The halfspace depth of x with respect to FX
is given by HD(x; FX ) = infu∈Sp−1 Pr (〈X, u〉 ≥ 〈x, u〉), see (Tukey 1975), which
corresponds to the infimum of the probabilities of all closed halfspaces containing x
in their boundaries.

3 Zonoid interval depth

For any m1 ≤ m2 ∈ R, the (zonoid) interval depth assesses the fit of the interval
[m1,m2] to a univariate distribution as its zonoid region of level 1/2. This is done by
identifying [m1,m2] with the pair given by its endpoints (m1,m2) and applying (2)
to the bivariate functional T = (μ,μ) that determines ZD1/2.

Definition 1 Take m1 ≤ m2 ∈ R, the interval depth of [m1,m2] with respect to a
univariate distribution F is defined as

ID([m1,m2]; F) = sup{d ∈ (0, 1] : μ(G) = m1 and μ(G) = m2 for G ∈ F (d)} .

(4)
Equivalenty, the interval depth can be expressed in terms of the interval-valued func-
tional ZD1/2 as ID([m1,m2]; F) = sup{d ∈ (0, 1] : [m1,m2] = ZD1/2(G) for G ∈
F (d)} .
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The following result provides another alternative expression for the interval depth,
which will be of much practical use and explicitly shows its relationship with the
zonoid depth of the endpoints of the considered interval.

Lemma 1 The interval depth of [m1,m2] with respect to a distribution F with finite
first moment satisfies

ID([m1,m2]; F) = 2 sup
0<λ<1

min{λZD(m1; Fλ−), (1 − λ)ZD(m2; Fλ+)} , (5)

where Fλ− is the cdf defined as Fλ−(x) = F(x)/λ if F(x) ≤ λ and 1 otherwise, while
Fλ+(x) = (F(x) − λ)/(1 − λ) if F(x) ≥ λ and 0 otherwise.

Proof Consider m1 ≤ m2 with strictly positive zonoid depths with respect to F since
otherwise both expressions in (5) are equal to 0. For the same reason, considerm1 �= m2
unless F has an atom at m1 = m2.

In order to show the ‘≥’ inequality, consider any 0 < λ < 1 and, for values
d1 = ZD(m1; Fλ−) and d2 = ZD(m2; Fλ+), take distributions G1 ∈ F (d1)

λ− with

m1 = μ(G1) and G2 ∈ F (d2)
λ+ with m2 = μ(G2). Their mixture G = 0.5(G1 + G2)

satisfies (μ,μ)(G) = (m1,m2) and G ∈ F (d), where d = 2min{λd1, (1 − λ)d2} ,
and thus it holds that ID([m1,m2]; F) ≥ d .

With regard to the ‘≤’ inequality, take any 0 < d ≤ ID([m1,m2]; F) with some
G ∈ F (d) such that (μ,μ)(G) = (m1,m2). Denote the smallest median of G by
x0, that is, G(x0) ≥ 1/2 and G(x) < 1/2 for any x < x0 and let λ0 be such
that d/2 + F(x0−) − dG(x0−) ≤ λ0 ≤ d/2 + F(x0) − dG(x0), where F(x0−)

and G(x0−) are the left limits of F and G at x0. Finally, G1/2− ∈ F (d/(2λ0))
λ0− with

μ(G1/2−) = m1, so ZD(m1; Fλ0−) ≥ d/(2λ0), and G1/2+ ∈ F (d/(2(1−λ0)))
λ0+ with

μ(G1/2+) = m2, so ZD(m2; Fλ0+) ≥ d/(2(1 − λ0)), and the inequality must hold
for all such values d and thus for their supremum. ��

If F is continuous, we can replace λ by F(x) in (5). At the same time, we restrict
to values of x inside the interval [m1,m2] since some of the considered zonoid depths
vanish out of it. It finally renders

ID([m1,m2]; F)

= 2 sup
m1≤x≤m2

min{F(x)ZD(m1; FF(x)−), (1 − F(x))ZD(m2; FF(x)+)} .

Example 1 In the special case that H is the cdf of the uniform distribution on the unit
interval,

ID([m1,m2]; H) =
{
4min{m1, 1 − m2, (m2 − m1)/2} if 0 ≤ m1 ≤ m2 ≤ 1
0 otherwise

,

which can be easily deduced from the zonoid depth with respect to H , and this results
to be ZD(x; H) = 2min{x, 1 − x} if 0 ≤ x ≤ 1 and ZD(x; H) = 0 otherwise.
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The interval depth with respect to the empirical probability associated with a uni-
variate sample with ordered version x(1) ≤ . . . ≤ x(n), denoted by IDn , is computed
by replacing the cdf F in (5) by an empirical distribution in order to obtain

IDn([m1,m2]) = 2

n
sup

0<λ<1
min{(r+λ)ZD1:r ,λ(m1), (n−r−λ)ZD1−λ,r :n(m2)} , (6)

where r = �λn�+1, with �λn� the greatest integer less than or equal to λn, ZD1:r ,λ(x)
is the zonoid depth with respect to the discrete distribution on the points x(1) ≤ . . . ≤
x(r) such that the probability of x(r) is (λn − �λn�)/(λn) and the remaining r − 1
points have the same probability 1/(λn), and ZD1−λ,r :n(x) is the zonoid depth with
respect to the discrete distribution on x(r) ≤ . . . ≤ x(n) such that the probability of
x(r) is (�λn� + 1 − λn)/((1 − λ)n) and the remaining n − r points have the same
probability 1/((1 − λ)n).

A natural use of the interval depth is to evaluate how well a sample (or distribution)
fits some reference distribution (which can be given in terms of a dataset) with respect
to the features captured by central regions. In the rest of the paper, the assessment
of the fit of that specific sample (or distribution) with respect to another reference
distribution will always refer to those features. In such a case, the first sample is
summarized in terms of its zonoid interval of level 1/2 and the interval depth of such a
zonoid regionwith respect to the reference distribution is computed. The R source code
to compute the interval depth as in (6) is available on the GitHub repository https://
github.com/icascos/intervaldepth. Two functions can be found there, m1m2depth
for the computation of the interval depth of an interval with respect to some reference
sample, and sm1m2depth for the computation of the interval depth of the zonoid
interval of level 1/2 of a sample with respect to another reference sample. Algorithms
for the approximate computation of the multivariate extension introduced in Sect. 4,
named region depth, are also available on the repository.

Example 2 We have drawn a sample of 100 observations from a standard normal
distribution and 4 more samples of size 10 from further normal distributions. The
zonoid interval of level d = 1/2 of each of the samples was computed, and its depth
with respect to the standard normal sample of size 100 is presented in Fig. 1.

As mentioned in the introduction, depth regions provide interesting information
about the distribution. The following lemma specifies how the level sets of the interval
depth are built.

Lemma 2 The level set at d ∈ (0, 1] of the interval depth of a distribution F with finite
first moment renders

IDd (F) =

⎧
⎪⎨

⎪⎩
[m1,m2] :

∫ d
2
0 F−1(t) dt ≤ d

2m1 ≤ ∫ s
s− d

2
F−1(t) dt

∫ s+ d
2

s F−1(t) dt ≤ d
2m2 ≤ ∫ 1

1− d
2
F−1(t) dt

,
d

2
≤ s ≤ 1 − d

2

⎫
⎪⎬

⎪⎭
.
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Fig. 1 Interval depth of the zonoid region of level 1/2 of 4 samples of size 10 of normal distributions (in
black triangles) with respect to a sample of size 100 of a standard normal (in grey circles). This last sample,
together with its zonoid interval of level 1/2, is represented at the bottom row (in black circles)

Proof These inequalities derive from considering the relationship between the quantile
functions of G ∈ F (d) and F , and applying convenient changes of variables. Specifi-
cally, the right-to-left inclusion follows from the fact that, for every d/2 ≤ s ≤ 1−d/2,
the integrals correspond to the endpoints of the zonoid regions of distributions with
median x0 which are formed by restricting F to some part of its support whose proba-
bility is d, and thus they are bounded above by d−1F . In order to show the left-to-right
inclusion, for any G ∈ F (d), whose smallest median is x0, we must take s = F(x0)
so that d

2μ(G) and d
2μ(G) are bounded by the integrals presented in the expression

on the right. ��
Example 3 Figure 2 left shows the contours of some level sets of the inter-
val depth of a standard normal distribution. The centremost point corresponds to
(E[X |X < 0],E[X |X > 0]) = (−√

2/π,
√
2/π

)
, where E denotes the mathemat-

ical expectation and X is a standard normal random variable. On the right, the
contours of the level sets of the interval depth of a mixture of two normal distri-
butions are shown. Observe that due to the affine equivariance of the zonoid central
regions, the region of level 1/2 of a general univariate normal distribution is the
interval ZD1/2(Fσ X+μ) = [

μ − σ
√
2/π,μ + σ

√
2/π

]
, whence for a multivariate

normal distribution with mean vector μ and covariance matrix �, it is the convex set
{x ∈ R

p : (x − μ)��−1(x − μ) ≤ 2/π}, see (Koshevoy and Mosler 1997, Section
6).
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Fig. 2 Contours of level sets (d = 1/10, 2/10, . . . , 10/10) of the interval depth of N(0, 1) (left) and the
mixture 0.5N(−2, 1) + 0.5N(2, 1) (right)
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m1

m
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4
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0.2N(−3,0.2)+0.5N(0,0.4)+0.3N(4,0.3)

m1

m
2

Fig. 3 Contours of level sets (d = 1/10, 2/10, . . . , 10/10) of the interval depth of the mixture
0.25N(−3, 0.5) + 0.5N(0, 0.5) + 0.25N(3, 0.5) (left) and the mixture 0.2N(−3, 0.2) + 0.5N(0, 0.4) +
0.3N(4, 0.3) (right)

Figure 3 shows the contours of some level sets of the interval depth of two different
mixtures of three normal distributions whose weights and normal parameters are given
in the caption.

In the empirical setting, Lemma 2 for k ∈ {1, 2, . . . , �n/2�} yields

ID2k/n
n =

{

[m1,m2] :
∑k

i=1 x(i) ≤ km1 ≤ ∑ j
i= j−k+1 x(i)

∑ j+k
i= j+1 x(i) ≤ km2 ≤ ∑n

i=n−k+1 x(i)
for k ≤ j ≤ n − k

}

.

Some basic properties of the interval depth function are presented below, the
penultimate one showing a lower bound with conditions on [m1,m2] for a nonzero
depth.
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Proposition 3 For any univariate distribution F associated with a random variable
X with finite first moment, F = FX , and any m1 ≤ m2 ∈ R, the following properties
hold:

ID0. Upper semicontinuity, ID([m1,m2]; F) ≥ lim supn ID([xn, yn]; F) if
limn xn = m1 and limn yn = m2 .

ID1. Affine invariance, ID(a[m1,m2] + b; FaX+b) = ID([m1,m2]; FX ) for any
a �= 0, b ∈ R .

ID2. Centre, ID
([

μ(F), μ(F)
]
; F

)
= 1 .

ID3. Decreases as the centremost interval widens or shrinks, if [m1,m2] ⊇
[m′

1,m
′
2] ⊇

[
μ(F), μ(F)

]
or [m1,m2] ⊆ [m′

1,m
′
2] ⊆

[
μ(F), μ(F)

]
, then

ID([m1,m2]; F) ≤ ID([m′
1,m

′
2]; F) .

ID3’. Decreases as the centremost interval is shifted in location, if b ∈ R and 0 ≤
δ ≤ 1, ID

([
μ(F), μ(F)

]
+ b; F

)
≤ ID

([
μ(F), μ(F)

]
+ δb; F

)
.

ID4. Vanishes when the interval grows arbitrarily wide or its midpoint tends to ∞
or −∞ since ID([m1,m2]; F) ≤ 2min{ZD(m1; F),ZD(m2; F)} .

ID4’. Matches the probability of a specific value if the interval collapses to a singleton,
ID([m,m]; F) = Pr(X = m) .

ID5. Lower bound, if F is a continuous distribution,

ID([m1,m2]; F) ≥ 2min{F(m1), (F(m2) − F(m1))/2, 1 − F(m2)} .

ID5’. Upper bound, ID([m1,m2]; F) ≤ ZD ((m1 + m2)/2; F) .

Proof ID0 follows from the level sets being closed, which holds due to the continuity
of μ and μ for the weak convergence on the d-trimming of a distribution with finite
first moment (see Cascos and López-Díaz 2012, Corollary 4.2).

ID1 follows from the affine equivariance of μ and μ (see Cascos and López-Díaz
2012, Proposition 4.6).

ID2 is immediate from Definition 1.
ID3 and ID3’ can be argued from the level sets presented in Lemma 2.
ID4 follows from Lemma 1 and the zonoid depth definition.
ID4’ holds true since μ and μ only match at degenerate distributions.
ID5’ follows from μ(F) = (μ(F) + μ(F))/2.
In order to show ID5, consider m1 < m2 and let m1 < x < m2 be such that

F(x) = (F(m1) + F(m2))/2. After Lemma 1, it holds that ID([m1,m2]; F) ≥
2min{F(x)ZD(m1; FF(x)−), (1 − F(x))ZD(m2; FF(x)+)} .

Observe now that for any y ∈ R, the zonoid depth of y with respect to F is
never less than the minimum of F(y) and 1 − F(y). Then ZD(m1; FF(x)−) ≥
min{FF(x)−(m1), 1 − FF(x)−(m1)} = min{F(m1)/F(x), 1 − F(m1)/F(x)}, while
ZD(m2; FF(x)+) ≥ min{(F(m2) − F(x))/(1 − F(x)), (1 − F(m2))/(1 − F(x))}.
Finally we conclude that ID([m1,m2]; F) ≥ 2min{F(m1), (F(m2)− F(m1))/2, 1−
F(m2)} . ��
Remark 1 The zero-depth problem arises when elements in the parameter space with
a depth different from 0 are scarce. Despite it is a common issue in some settings, the
lower bound presented in ID5 evidences that we do not face it here.
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With regard to the properties presented in Proposition 3, ID0 is a basic continuity
requirement. Properties ID1, ID2, ID3, ID3’, ID4, and ID4’mimic the standard prop-
erties of a data depth function (affine invariance, maximality at the centre, decreasing
from deepest point, and vanishing as the norm of a point tends to infinity) first investi-
gated for the simplicial depth by Liu (1990) and later popularized by Zuo and Serfling
(2000). Finally, the lower bound presented in ID5 shows that the interval depth is not
affected by the zero-depth problem, while the upper bound given in ID5’ relates the
interval depth with the zonoid depth.

4 Multivariate extension

The extension of the zonoid interval depth to the multivariate setting will be tackled
now. The region depth assesses the fit of a p-dimensional compact convex set to a
p-dimensional distribution by means of a projection argument applied to the interval
depth.

Definition 2 Consider a p-dimensional random vector X with finite first moment and
a compact convex set K ⊂ R

p. The region depth of K is the infimum of the interval
depths of all the univariate projections of K with respect to the cdf of the projected
X , that is,

RD(K ; FX ) = inf
u∈Sp−1

ID
(
[−hK (−u), hK (u)] ; F〈X,u〉

)
.

The natural way to assess the fit of a sample (or distribution) with respect to another
reference distribution is by means of the region depth of the zonoid region of level
1/2 of the sample with respect to the reference distribution.

Remark 2 The straightforward multivariate extension of the interval depth would be
to merge Eqs. (1) and (2) in order to define the depth of a p-dimensional convex
body K with respect to a p-dimensional distribution F as the supremum of the levels
d such that K matches the zonoid region of level 1/2 of some distribution in F (d).
Unfortunately such a construction suffers from the zero-depth problem.Zonoid regions
of level 1/2 are centrally symmetric about the mean of the reference distribution, so
only centrally symmetric sets would attain a depth strictly greater than zero. Further,
the zonoid regions of an empirical distribution are always polytopes, so any set with
a smooth boundary would always have depth zero if the reference distribution is an
empirical one. For these reasons, we have introduced the region depth as presented in
Definition 2. It is lower bounded by the construction described in this remark, and also
by the expression presented in Proposition 4, RD5, given in terms of the probability
content of the set whose depth is evaluated and the halfspace depth of its boundary
points.

The result below mimics the properties of the interval depth presented in Propo-
sition 3 in the multivariate setting. It collects those properties that we expect for a
functional that assesses the fit of a compact convex set to a multivariate distribution in
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a depth function fashion and describes further upper and lower bounds for our specific
proposal.

Proposition 4 For any multivariate distribution F associated with a p-dimensional
random vector with finite first moment, F = FX , and any compact convex sets
K1, . . . , Kn, K ⊂ R

p, the following properties hold:

RD0. Upper semicontinuity, RD(K ; F) ≥ lim supn RD(Kn; F) if limn Kn = K,
where the convergence of compact convex sets is in the Hausdorff sense.

RD1. Affine invariance, RD(AK + b; FAX+b) = RD(K ; FX ) for any nonsingular
matrix A ∈ R

p×p and b ∈ R
p .

RD2. Centre, RD(ZD1/2(F); F) = 1 .
RD3. Decreases as the centremost set widens or shrinks, if K ⊇ K ′ ⊇ ZD1/2(F) or

K ⊆ K ′ ⊆ ZD1/2(F), then RD(K ; F) ≤ RD(K ′; F) .
RD3’. Decreases as the centremost set is shifted in location, for any b ∈ R

p and
0 ≤ δ ≤ 1, RD

(
ZD1/2(F) + b; F) ≤ RD

(
ZD1/2(F) + δb; F)

.
RD4. Vanishes when the set grows arbitrarily wide or the norm of any of its points

tends to ∞ since RD(K ; F) ≤ 2 inf
u∈Sp−1

{ZD(hK (u); F〈X,u〉)} .
RD4’. Matches the probability of a specific value when the set collapses to a singleton,

RD({m}; F) = Pr(X = m) .
RD5. Lower bound, if X is a continuous random vector,

RD(K ; FX ) ≥ min{Pr(X ∈ K ), 2 inf
x∈∂K

HD(x; FX )} ,

where ∂K is the boundary of K and we recall that HD(x; FX ) is the halfspace
depth of x with respect to FX .

RD5’. Upper bound, if K is centrally symmetric about m ∈ R
p, then RD(K ; F) ≤

ZD(m; F) .

Proof Each of the properties of the region depth is a consequence of the corresponding
property of the interval depth in Proposition 3.

RD0 holds since the region depth is the infimum of a collection of upper
semicontinuous functions.

RD1. Consider a nonsingular matrix A ∈ R
p×p, b ∈ R

p, and u ∈ S
p−1. In

order to obtain the identities below, we successively use the expression of the support
function of the affine transformation of a compact and convex subset of Rp, ID1, the
homogeneity of the support function, and ID1

ID
([−hAK+b(−u), hAK+b(u)]; F〈AX+b,u〉

)

= ID
(
[−hK (−A�u), hK (A�u)] + 〈b, u〉; F〈X,A�u〉+〈b,u〉

)

= ID
(
[−hK (−A�u), hK (A�u)]; F〈X,A�u〉

)

= ID
(
‖A�u‖[−hK (−A�u/‖A�u‖), hK (A�u/‖A�u‖)]; F〈X,A�u〉

)

= ID
(
[−hK (−A�u/‖A�u‖), hK (A�u/‖A�u‖)]; F〈X,A�u/‖A�u‖〉

)
.
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Finally, the nonsingularity of matrix A guarantees that any element in S
p−1 can be

expressed as A�u/‖A�u‖ for some u ∈ S
p−1, so taking the infimum of the expresion

above on such u ∈ S
p−1, the identity would start with RD(AK + b; FAX+b) and end

with RD(K ; FX ).
RD2. By the strong projection property of the zonoid depth, see (3), for any u ∈

S
p−1, the projection of the zonoid region of level 1/2 of X in the direction of u is the

zonoid region of level 1/2 of 〈X, u〉, whose interval depth with respect to F〈X,u〉 is 1
by ID2.

RD3. Take K , K ′ compact and convex subsets of R
p such that K ⊇ K ′ ⊇

ZD1/2(F). This inclusion guarantees that for any u ∈ S
p−1,

[−hK (−u), hK (u)] ⊇ [−hK ′(−u), hK ′(u)] ⊇ [−hZD1/2(F)(−u), hZD1/2(F)(u)].

Further, by the strong projection property of the zonoid depth, see (3), μ(F〈X,u〉) =
−hZD1/2(F)(−u) and μ(F〈X,u〉) = hZD1/2(F)(u). Finally, we can use ID3 to con-
clude ID([−hK (−u), hK (u)]; F〈X,u〉) ≤ ID([−hK ′(−u), hK ′(u)]; F〈X,u〉), and the
inequality must be also satisfied for the infimum over all u ∈ S

p−1 which constitutes
the region depth. If all the inclusions are reversed the property is kept, also by ID3.

RD3’. Take b ∈ R
p, 0 ≤ δ ≤ 1, and u ∈ S

p−1. We write the support function
over the zonoid region of level 1/2 in terms of the endpoints of the zonoid interval of
〈X, u〉, and after ID3’ obtain that

ID([μ(F〈X,u〉), μ(F〈X,u〉)] + 〈b, u〉; F〈X,u〉)
≤ ID([μ(F〈X,u〉), μ(F〈X,u〉)] + δ〈b, u〉; F〈X,u〉) .

Since the inequlity holds for all u ∈ S
p−1, we confirm the desired result for the region

depth.
RD4. Observe that in the presented upper bound, it is enough to evaluate the

zonoid depth in one of the endpoints of the interval [−hK (−u), hK (u)]. The rea-
son is that, after the affine equivariance of the zonoid depth, for any u ∈ S

p−1 it holds
that ZD(−hK (−u); F〈X,u〉) = ZD(hK (−u); F〈X,−u〉), which is attained when −u is
considered.

RD4’. Take any m ∈ R
p,

RD({m}; FX ) = inf
u∈Sp−1

ID
([〈m, u〉, 〈m, u〉]; F〈X,u〉

)

= inf
u∈Sp−1

Pr (〈X, u〉 = 〈m, u〉) = Pr (X = m) ,

where the first equality is the definition of the region depth and the second follows
from ID4’.

RD5. For any u ∈ S
p−1, use the lower bound for ID([−hK (−u), hK (u)]; F〈X,u〉)

given in ID5. Since Pr (〈X, u〉 ≤ −hK (−u)) is the probability that the random vector
X lies in a halfspace whose boundary is a supporting hyperplane of K (with normal
u), we have Pr (〈X, u〉 ≤ −hK (−u)) ≥ inf x∈∂K HD(x; FX ), while the same bound is
attained for Pr (〈X, u〉 ≥ hK (u)). Further, Pr (−hK (−u) ≤ 〈X, u〉 ≤ hK (u)) is the

123



I. Cascos et al.

probability that X lies between the two supporting hyperplanes of K with a fixed
normal u, which is lower bounded by the probability that X lies in K .

RD5’. If K is centrally symmetric about m ∈ R
p, then for any u ∈ S

p−1, 〈m, u〉
is the midpoint of the interval [−hK (−u), hK (u)]. Together with the weak projection
property of the zonoid depth, this proves the result. ��

4.1 Monitoringmultivariate processes

In the following, we consider Phase I control charts for multivariate processes. Specifi-
cally, we introduce a nonparametric control chart for global monitoring of subgrouped
data whose charting statistic is the region depth in the manner suggested in Cascos
and López-Díaz (2018). This chart is compared with two other charts that monitor
the location, the Hotelling T 2 (see Montgomery 2013, Section 11.3.1) and the zonoid
depth chart.

The goal in Phase I applications is to detect samples with anomalous observations
among a set of available (trial) ones. In the charts built for depth notions, there is
a unique lower control limit and any sample whose associated depth is below it is
declared as out-of-control, while converserly, the Hotelling T 2 chart has a unique
upper control limit and any sample whose t2 statistic exceeds it is declared as out-
of-control. These control limits depend on the sample size, the distribution of the
reference dataset, the nominal false alarm (type I error) probability (probability that
the statistic of a sample that follows the reference distribution lies in the out-of-control
region), and on the number of trial samples.

Consider a reference dataset formed by k trial samples of a given size n each. In
the Hotelling T 2 chart, the sample mean of each trial sample is taken and the charting
statistic is its distance to the grand mean (average of sample means) measured as a
quadratic form that involves the pooled covariance matrix built out of the covariance
matrices of all trial samples. In the charts based on a notion of depth, a statistic is
taken for each trial sample (sample mean for the zonoid depth chart and zonoid region
of level 1/2 for the interval depth chart), and the charting statistic is the (zonoid or
interval) depth of such statistic with respect to the pooled or reference dataset formed
by merging all trial samples.

An alternative approach for statistical process control with data depth involves
assessing the depth of each individual observation, converting such depths into ranks
and finally averaging all the ranks of the observations in the same sample in order
to combine the provided information and achieve a prompt detection of the anomaly,
as suggested in Liu (1995). In this case, the monitoring is always done in terms of
location, which is the feature captured by data depths.

4.1.1 Location monitoring with the Hotelling T2 and the zonoid depth charts

The dataset given in Ryan (2011, Table 9.2) contains k = 20 bivariate trial samples
of size n = 4 each. It was originally presented to illustrate the Hotelling T 2 chart
for subgrouped data, whose aim is to detect shifts in location at specific samples for
normal processes. If we set the nominal false alarm probability to 0.025, the control
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Fig. 4 Scatterplot of the 80 = 4 × 20 observations in Ryan’s dataset, identification number of each of the
20 samples located at their sample means, ellipse with solid contour containing all in-control sample means
in the Hotelling T 2 chart and zonoid region with dashed contour containing all in-control sample means in
terms of the zonoid depth

5 10 15 20

0
2

4
6

8

sample

t2
 s

ta
tis

tic

UCL

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample

zo
no

id
 d

ep
th

LCL

Fig. 5 Evolution of the square root of the Hotelling t2 statistic of the samples with respect to the pooled
dataset (left) and evolution of the zonoid depth of each sample mean with respect to the pooled dataset
(right)

ellipse plotted with a solid contour in Fig. 4 contains all sample means (located at
the black bullets with the respective sample number on top for identification) except
those of samples #6, #10, and #20. In Fig. 5(left) we have represented the evolution
of the square root of the t2 statistic, and only the values for the three previous samples
lie above the upper control limit, which is plotted as a solid line. The dashed line
represents the median of the statistic in the in-control state.

The evolution of the zonoid depth of the sample means of the trial samples with
respect to the pooled dataset is presented in Fig. 5 (right). The lower control limit
(solid horizontal line) was obtained after Monte Carlo simulations for a bivariate
normal distribution, so that the probability that the zonoid depth of the mean of one
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Fig. 6 Zonoid regions of level 1/2 of Ryan’s pooled dataset, in grey, and samples #1, #6, #10, #15, #17, and
#20 together with dashed contour of the zonoid region of the pooled dataset that identifies location outliers
(left) and evolution of the region depth of the samples with respect to the pooled dataset (right)

given sample of n = 4 observations out of the k = 20 simulated ones lies below the
control limit is 0.025. The dashed horizontal line points out the median depth of the
Monte Carlo samples. Anomalies are here detected in samples #9, #10, and #15. The
dashed curve in Fig. 4 is the zonoid region of the pooled dataset whose level is the
lower control limit. Please observe that the three previously mentioned sample means
lie out of it.

4.1.2 Monitoring with the region depth

The region depth chart has been built for Ryan’s dataset with nominal false alarm
probability 0.05. Since the region depth captures not only the location of a sample,
but also other features such as the scatter and correlation, the Bonferroni correction
suggests to use as nominal false alarm probability the addition of the false alarm
probability 0.025 used to monitor the location (see the Hotelling T 2 and the zonoid
charts) and whatever other false alarm probability (take also 0.025) is used to monitor
the remaining features. This particular dataset can be adjusted by a bivariate normal
model, which has five parameters. By fixing the same false alarm probability (0.025)
to the two means and to the other three parameters (two standard deviations and the
correlation), we give slightly more importance to shifts in the location parameters than
in the other ones.

Figure 6(left) shows a scatterplot of the pooled Ryan’s dataset comprising all 80
observations and their grey-coloured zonoid region of level 1/2 together with other
six zonoid regions of level 1/2 whose respective sample numbers (#1, #6, #10, #15,
#17, and #20) are displayed close to each one of them. The dashed line is the contour
of the zonoid region of the pooled dataset with level half of the lower control limit
of the nearby control chart. After RD4 in Proposition 4, any sample whose zonoid
region of level 1/2 does not lie inside that dashed contour should be declared as out-
of-control. Nevertheless, it is also possible to detect anomalies in the samples whose
ZD1/2 statistic lies inside the dashed contour by means of the region depth. Figure 6
(right) shows a control chart for the evolution of the region depth with respect to the
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Fig. 7 OC curves of the region depth (solid), the zonoid depth (dashed), and the Hotelling T 2 chart (dotted)
for nominal false alarm probability 0.05. Axis X represents shifts in location on both coordinates

pooled dataset through the 20 samples. Only sample #10 is flagged as anomalous, but
also samples #17 and #20 have very low depths. Sample #20 lies far for the centre
of the pooled dataset and is less scattered than the reference distribution, while the
observations of sample #17 are almost aligned, having thus a univariate projection
with a very small variability.

4.1.3 Performance comparison

In order to compare the performance of the region depth in the detection of shifts
in mean, scale, and correlation with the Hotelling T 2 chart and the zonoid depth,
we obtained 5000 Monte Carlo simulations of 20 samples of n = 4 observations
of a bivariate normal distribution; 19 of them with the parameters being rounded
estimations of those of Ryan’s dataset (means μ1 = 60, μ2 = 18, standard deviations
σ1 = 17, σ2 = 8, and correlation ρ = 0.85), while one sample suffered the shift
in mean (Fig. 7), scale (Fig. 8), and correlation (Fig. 9) described on each operating
characteristic (OC) curve. In black, we represent the probability that the special sample
is not detected in the control chart and is declared as in-control. Under the same
circumstances, in grey, we represent the probability that one given sample out of the
19 simulated with the correct parameters is also declared as in-control.

In Figure 7 (black curves), we observe that the Hotelling T 2 chart and the zonoid
depth chart have the same power to detect shifts in location, while the performance of
the region depth is poorer in this respect. The false alarm probability in the presence
of one sample with a shift in location (in grey) is similar for the zonoid and region
depth charts and below 0.05. Nevertheless, when there is a large shift in location in
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one sample, the grand mean is affected and the Hotelling T 2 chart wrongly identifies
an in-control sample as out-of-control with a probability greater than 0.05.

In Fig. 8 (black curves), we observe that the region depth detects increments in
scale much faster than the zonoid depth, whose behaviour in that respect is slightly
better than the one of the Hotelling T 2 chart. None of the three charts is able to detect
slight decrements in scale, but for large decrements, the region depth detects them,
while the zonoid depth and Hotelling T 2 chart are unable. This makes perfect sense,
since both charts are specifically designed to detect shifts in location, and only detect
a shift in scale when it, by chance, also affects the location. Instead, the region depth
monitors all features captured by the zonoid region of level 1/2, in particular the scale.
The false alarm probability in the presence of one sample with a shift in scale (in grey)
is similar for the three charts.

In Fig. 9 (black curves), we observe that the region depth detects shifts in correlation
much faster than the zonoid depth, whose behaviour in that respect is slightly better
than the one of the Hotelling T 2 chart. The false alarm probability in the presence of
one sample with a shift in correlation (in grey) is similar for the three charts.

5 Depth for interval-valued data

In Sect. 3, we studied a notion of depth for intervals with respect to a univariate
distribution. Now we will analyze the situation where not only the argument, but
also the available data are interval-valued. In this setting, consider a random interval
X = [Xl , Xu], whose endpoints are the real-valued random variables Xl and Xu ,
which represent the infimum and the supremum of the interval values that X takes,
respectively. The distribution of a random interval can be characterized by that of
the bivariate random vector (Xl , Xu) when its components fulfill the order restriction
Xl ≤ Xu .

Location depth The standard notion of expectation for random intervals is the selec-
tion or Aumann mean, see e.g., Molchanov (2017), for which the expectation of
X = [Xl , Xu] with both Xl and Xu having finite first moments is the compact inter-
val with endpoints EXl and EXu . We can assess the fit of a deterministic interval
[xl , xu] with respect to the random interval X as the largest trimming level d such
that [xl , xu] is the expectation of a random interval whose endpoints’ distribution
lies in F (d)

Xl ,Xu
, or equivalently as the zonoid depth ZD((xl , xu); FXl ,Xu ). Notice that

F (d)
Xl ,Xu

only involves cdfs of bivariate random vectors that fulfill the order relation-
ship between their components, Xl ≤ Xu , because the distributions that belong to
F (d)
Xl ,Xu

are absolutely continuous with respect to the distribution of the random vector

(Xl , Xu). Consequently, their support lies in the halfspace {(x, y) ∈ R
2 : x ≤ y}, and

all these distributions are possible options for the distribution of a random interval.
In particular, if [xl , xu] corresponds to the expectation of another random interval

Y = [Yl ,Yu], we can compute ZD((EYl ,EYu); FXl ,Xu ) to evaluate the similarity of
the location of both random intervals in terms of their expectations.
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Remark 3 Random intervals are frequently characterized in terms of their midpoint (or
centre) and spread (or radius), instead of the infimum and the supremum, when apply-
ing statistical techniques for interval-valued data since the nonnegativity restriction
associated with the spread is more easy-to-handle than the order restriction men-
tioned above. However, any of these two characterizations provide the same results
concerning the zonoid depth due to its affine invariance.

Locationand scale depth If our goal is to assess thefit of a random intervalY = [Yl ,Yu]
(maybe through its empirical distribution based on a small sample) with respect to the
distribution of some other random interval X = [Xl , Xu] in terms of both location
and scale, we can evaluate the region depth of the zonoid region of level 1/2 of the
bivariate random vector (Yl ,Yu) with respect to the distribution of (Xl , Xu), that is,
RD(ZD1/2(FYl ,Yu ); FXl ,Xu ).

Concerning the properties this proposal presents, Proposition 4 admits a natu-
ral adaptation when the first argument of the region depth is a zonoid region of
level 1/2. Furthermore, thanks to the fact that ZD1/2(FYl ,Yu ) is centrally symmet-
ric about (EYl ,EYu), the application of RD5’ allows us to consider the upper bound
RD(ZD1/2(FYl ,Yu ); FXl ,Xu ) ≤ ZD((EYl ,EYu); FXl ,Xu ) .

5.1 Monitoring processes with interval-valued observations

Hsu et al. (2013) present some interval-valued data on the luminous intensity of LEDs
(in cd) taken during their fabrication process. Specifically, their dataset consists of
24 samples of 4 intervals each. In order to perform a Phase I analysis that allows us
to detect samples with anomalous observations among the available (trial) ones, we
first monitor the sample location with the zonoid depth of each sample average with
respect to the pooled dataset and then we use the region depth for the joint monitoring
of sample location and scale by evaluating the region depth of each sample zonoid
region of level 1/2 with respect to the pooled dataset.

Despite we do not build a specific peformance comparison for the zonoid depth and
the region depth for interval-valued data,we refer to that formultivariate data presented
in Sect. 4.1.3. Nevertheless, notice that the Hotelling T 2 chart is not appropriate in
this setting since the inequality restriction on the endpoints of an interval prevents
the bivariate normal distibution from being a suitable model for them. Based on the
previous performance comparison, the zonoid depth would allow a faster detection of
shifts in location, while the region depth would detect shifts in endpoints correlation
and scale faster. The reason is that the information about the scale and correlation of
each individual trial sample is lost when they are summarized in the average value
used by the zonoid chart, while it is kept when the sample is summarized in terms of
the zonoid central region used by the region depth chart.

5.1.1 Monitoring the location

For each of the 24 trial samples, we have obtained the average interval, presented in
Fig. 10 (left) as a thick line segment, and computed the zonoid depth of its endpoints
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Fig. 10 Interval-valued observations (thin line segments) together with the average interval for each of the
24 samples (thick line segments) followed by the one of the pooled dataset on the 25th position (left) and
evolution of the zonoid depth with respect to the reference distribution (right)

with respect to the 24 × 4 = 96 pairs of endpoints of all the observed intervals
(presented as thin line segments), which is considered as the reference distribution.

In order to identify anomalous samples, 104 bootstrap samples of 4 intervals each
were taken from the sample containing all intervals and its 0.05-quantile was estab-
lished as control limit (solid horizontal line) in the zonoid depth chart, see Fig. 10
(right). The dashed horizontal line points out the median depth of the bootstrap sam-
ples. Samples #24 (smallest lower and upper average endpoints), #22 (greatest lower
average endpoint and second greatest upper average endpoint), and #2 (greatest upper
average endpoint) are flagged as anomalous.

5.1.2 Joint monitoring of location and scale

For each of the 24 trial samples, we have obtained the empirical zonoid region of
level 1/2 of its 4 pairs of endpoints and computed its region depth with respect to
the 24 × 4 = 96 pairs of endpoints of all the observed intervals, which is considered
as the reference distribution. Notice that each zonoid region of level 1/2 contains the
pairs of endpoints of all intervals that can be formed by averaging any subset of half
of the intervals from the original dataset. Some of those zonoid regions are presented
in Fig. 11 (left) with the respective sample number close to each one for identification.
The dashed line is the contour of the zonoid region of the pooled dataset with level
half of the lower control limit of the nearby control chart.

In order to identify anomalous samples, 104 bootstrap samples of 4 intervals each
were taken from the sample containing all intervals and its 0.05-quantile was estab-
lished as control limit in the region depth chart, see Fig. 11 (right). Only sample #24,
which has the smallest upper and lower average endpoints plus the largest in-sample
variability of both endpoints, is flagged as anomalous.

Based on their extensions of Shewhart’s X and R charts with degrees of uncertainty
for interval-valued data, Hsu et al. (2013) flag sample #22 as out-of-control, while they
declare samples #21 and #24 to be rather out-of-control. Unfortunately, they do not
provide a false alarm probability, so we cannot compare our results with theirs.
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Fig. 11 Scatterplot of all 24 × 4 = 96 pairs of endpoints of the interval observations together with the
zonoid regions of level 1/2 of some of the 24 samples plus the one of the pooled dataset in grey and the
dashed contour of the zonoid region of the pooled dataset that identifies location outliers (left) and evolution
of the region depth with respect to the reference distribution (right)

6 Conclusions

A new notion of parameter depth, called (zonoid) interval depth, has been introduced
and extended to the multivariate setting. Some theoretical properties in the fashion of
the classical properties of depth functions, but adapted to the situation when the argu-
ment is a set have been derived. The new proposal assesses the fit in terms of all those
distributional features captured by a central region. Finally, real-life data applications
have been presented to illustrate how to use the proposed depth in statistical process
control with multivariate observations and interval-valued data. The simulation study
conducted for one of these applications shows that the new procedure detects shifts in
scale and correlation faster than other classical ones.

In order to build amultivariate extension of the interval depth, a projection argument
has been used since, as argued in Remark 2, a straigtforward extension is not feasible.
An alternative approach that we aim to pursue in the future is to approximate the set
whose depth is to be computed from inside and outside separately, and then define
its depth in terms of the trimming levels that allow the most accurate inner and outer
approximations.
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