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Abstract Central tendency of interval-valued random elements has been
mainly described in terms of different notions of medians and location M-
estimators in the literature, whereas the approach consisting of medians and
trimmed means based on a depth function has been rarely considered. Re-
cently, depth-based trimmed means have been adapted to the more general
framework of fuzzy number-valued data in terms of the so-called 𝐷 𝜃 -depth.
The aim of this work is to study the empirical behaviour of the particular-
ization of such a location measure when data are interval-valued.

1 Introduction

Interval-valued data arise in numerous real-life experiments when imprecise
information is handled. For instance, we could refer to surveys that collect
opinions, judgements or perceptions; fluctuations or ranges of a characteristic
along certain period of time; imprecise observations of a real-valued random
variable due to measurement errors; interval-type censoring data; aggregated
information, etc. Different statistical techniques have already been adapted
to deal with interval-valued data, such as regression analysis, hypotheses
testing procedures, clustering... Concerning central tendency measures, the
Aumann mean is the most frequently used in these techniques, despite its
excessive sensitivity to outliers or data changes. Other alternatives from the
literature present a more robust behaviour, which makes them more suitable
for summarizing datasets that contain some contaminated data: the median
based on the generalized Hausdorff metric (Sinova et al., 2010), the 1-norm
median (Sinova and Van Aelst, 2013), the spatial-type interval-valued median
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(Sinova and Van Aelst, 2018) and interval-valued M-estimators of location
(Sinova, 2016). Apart from these measures, which were specifically proposed
for the interval-valued setting, medians and trimmed means based on the
halfspace and simplicial depths have also been considered in Sinova (2016)
by identifying each interval-valued datum with the point whose coordinates
are the mid-point and the spread of the interval.

Recently, Sinova (2022) studied trimmed means based on a depth func-
tion in the more general framework of fuzzy number-valued data. Since they
have shown very promising empirical results, this work is focused on their
particularization to the interval-valued setting (the 𝑑𝜃 -depth-based interval
trimmed mean) and the empirical comparison with the central tendency mea-
sures mentioned before. Sections 2 and 3 recall the preliminaries related to the
space of (compact) intervals and interval-valued central tendency measures,
respectively. Section 4 presents the 𝑑𝜃 -depth-based interval trimmed mean
and the comparative simulation study carried out to analyze its empirical
performance. Finally, Section 5 contains some concluding remarks.

2 The space K𝒄(R)

Let K𝑐 (R) denote the class of nonempty compact intervals of R. Any in-
terval 𝐾 ∈ K𝑐 (R) can be characterized in terms of either its extremes,
𝐾 = [inf 𝐾, sup𝐾], or its mid-point (centre) mid𝐾 = (inf 𝐾 + sup𝐾)/2 and
spread (radius) spr𝐾 = (sup𝐾 − inf 𝐾)/2, 𝐾 = [mid𝐾 − spr𝐾,mid𝐾 + spr𝐾].

For the statistical analysis of interval-valued data, the usual interval
arithmetic will be considered. Given two intervals 𝐾, 𝐾 ′ ∈ K𝑐 (R), their
Minkowski sum is defined as 𝐾 + 𝐾 ′ = [inf 𝐾 + inf 𝐾 ′, sup𝐾 + sup𝐾 ′] or,
in terms of the second characterization, mid (𝐾 + 𝐾 ′) = mid𝐾 + mid𝐾 ′ and
spr (𝐾+𝐾 ′) = spr𝐾+spr𝐾 ′. Analogously, the product of an interval 𝐾 ∈ K𝑐 (R)
by a scalar 𝛾 ∈ R can be introduced in terms of any of the two characteriza-
tions:

𝛾 · 𝐾 =

{
[𝛾 inf 𝐾, 𝛾 sup𝐾] if 𝛾 ≥ 0
[𝛾 sup𝐾, 𝛾 inf 𝐾] if 𝛾 < 0

= [𝛾mid𝐾 − |𝛾 |spr𝐾, 𝛾mid𝐾 + |𝛾 |spr𝐾] .

Metrics play a relevant role in the development of statistical techniques
for this kind of data due to the lack of linearity of the space (K𝑐 (R), +, ·).
The location measures in Sect. 3 will be based on the following metrics:

� Given 𝜃 ∈ (0,∞), the generalized Hausdorff metric (Sinova et al., 2010)
between two intervals 𝐾, 𝐾 ′ ∈ K𝑐 (R) is defined as

𝑑𝐻,𝜃 (𝐾, 𝐾 ′) = |mid𝐾 −mid𝐾 ′ | + 𝜃 |spr𝐾 − spr𝐾 ′ |.
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� The 1-norm metric (Vitale, 1985) between any two intervals 𝐾, 𝐾 ′ ∈ K𝑐 (R)
is given by

𝜌1 (𝐾, 𝐾 ′) = 1

2
| inf 𝐾 − inf 𝐾 ′ | + 1

2
| sup𝐾 − sup𝐾 ′ |.

� Given 𝜃 ∈ (0,∞), the 𝑑𝜃 metric (Gil et al., 2002) between any two intervals
𝐾, 𝐾 ′ ∈ K𝑐 (R) is defined as

𝑑𝜃 (𝐾, 𝐾 ′) =
√
(mid𝐾 −mid𝐾 ′)2 + 𝜃 (spr𝐾 − spr𝐾 ′)2.

The value of the parameter is usually 𝜃 ∈ (0, 1] not to weigh the deviation
in location less than the deviation in shape/imprecision. All the metrics 𝑑𝐻,𝜃 ,
𝜌1 and 𝑑𝜃 are strongly equivalent.

Interval-valued data are assumed to come from a (compact) random inter-
val, that is, a Borel measurable mapping 𝑋 : Ω → K𝑐 (R), where (Ω,A, 𝑃) is
a probability space and the Borel 𝜎-field on K𝑐 (R) is generated by the topol-
ogy induced by any of the previous metrics. Therefore, this notion models the
random mechanism that repeatedly produces interval-valued observations. It
holds that 𝑋 is a random interval if, and only if, inf 𝑋 and sup 𝑋 are real-
valued random variables such that inf 𝑋 ≤ sup 𝑋 (or, alternatively, mid 𝑋 and
spr 𝑋 ≥ 0 are real-valued random variables).

3 Central tendency measures for random intervals

One of the best known central tendency measures for random intervals is the
Aumann mean (Aumann, 1965), which generalizes the mean of a real-valued
random variable as follows.

Definition 1 The Aumann mean of a random interval 𝑋 is the interval
𝐸 [𝑋] = [𝐸 (inf 𝑋), 𝐸 (sup 𝑋)] (whenever these expectations exist) or, equiva-
lently, 𝐸 [𝑋] = [𝐸 (mid 𝑋) − 𝐸 (spr 𝑋), 𝐸 (mid 𝑋) + 𝐸 (spr 𝑋)].

The Aumann mean is the Fréchet expectation with respect to the 𝑑𝜃 met-
ric, that is, 𝐸 [𝑋] is the unique solution of min

𝐾∈K𝑐 (R)
𝐸 [(𝑑𝜃 (𝑋, 𝐾))2].

It also fulfills very convenient statistical and probabilistic properties, but,
unfortunately, it is highly sensitive to outliers and data changes. The following
concepts from the literature (see Sinova et al., 2010; Sinova and Van Aelst,
2013; Sinova, 2016; Sinova and Van Aelst, 2018, for more details) provide us
with more robust central tendency measures for random intervals.

Definition 2 The Hausdorff-type median of a random interval 𝑋 is the inter-
val(s) Med[𝑋] ∈ K𝑐 (R) such that minimizes 𝐸 [𝑑𝐻,𝜃 (𝑋, 𝐾)] over 𝐾 ∈ K𝑐 (R)
(whenever this expectation exists).
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In particular, any interval [Me(mid 𝑋)−Me(spr 𝑋),Me(mid 𝑋)+Me(spr 𝑋)]
is a Hausdorff-type median (and it does not depend on the value 𝜃). In case
the medians of real-valued random variables Me(mid 𝑋) and/or Me(spr 𝑋)
are not unique, a convention such as choosing the mid-point of the interval
of possible medians makes the Hausdorff-type median become unique.

Definition 3 The 1-norm median of a random interval 𝑋 is the interval(s)
Me[𝑋] ∈ K𝑐 (R) such that minimizes 𝐸 [𝜌1 (𝑋, 𝐾)] over 𝐾 ∈ K𝑐 (R) (whenever
this expectation exists).

In particular, the interval [Me(inf 𝑋),Me(sup 𝑋)] is a 1-norm median. In
this case, the convention of choosing the mid-point of the corresponding in-
terval of medians is adopted to guarantee that the 1-norm median is not
empty even when Me(inf 𝑋) or Me(inf 𝑋) may not be unique.

Definition 4 The 𝑑𝜃 -median of a random interval 𝑋 is the interval(s)
M𝜃 [𝑋] ∈ K𝑐 (R) such that minimizes 𝐸 [𝑑𝜃 (𝑋, 𝐾)] over 𝐾 ∈ K𝑐 (R) (when-
ever this expectation exists).

In contrast to what happens with the Hausdorff-type median, the 𝑑𝜃 -
median depends on the value 𝜃.

Finally, M-estimators could be understood as “intermediaries” between
the Aumann mean and interval-valued medians because they weigh distances
by means of a loss function that is generally less rapidly increasing than the
square function.

Definition 5 Given a continuous and non-decreasing loss function 𝜌 : R+ →
R that vanishes at 0, the M-location measure of a random interval 𝑋 is the
interval(s) K𝑀

𝜌 [𝑋] ∈ K𝑐 (R) which minimizes 𝐸 [𝜌(𝑑𝜃 (𝑋, 𝐾))] over 𝐾 ∈ K𝑐 (R)
(whenever this expectation exists).

A simple random sample (𝑋1, . . . , 𝑋𝑛) from a random interval 𝑋 consists of
𝑛 independent random intervals 𝑋𝑖, 𝑖 = 1, ..., 𝑛, that are identically distributed
as 𝑋. In this context,

� the sample Hausdorff-type median is given by�Med[𝑋]𝑛 = [ �Me(mid 𝑋)𝑛 − �Me(spr 𝑋)𝑛, �Me(mid 𝑋)𝑛 + �Me(spr 𝑋)𝑛];
� the sample 1-norm median is �Me[𝑋]𝑛 = [ �Me(inf 𝑋)𝑛, �Me(sup 𝑋)𝑛];
� the sample 𝑑𝜃 -median is the random interval �M𝜃 [𝑋]𝑛 that takes, for each

realization x𝑛 = (𝑥1, . . . 𝑥𝑛), the value �M𝜃 [x𝑛] that minimizes 1
𝑛

∑𝑛
𝑖=1 𝑑𝜃 (𝑥𝑖 , 𝐾)

over 𝐾 ∈ K𝑐 (R);
� the M-estimator of location is the random interval �K𝑀

𝜌 [𝑋]
𝑛
that takes, for

each realization x𝑛, the value �K𝑀
𝜌 [x𝑛] that minimizes 1

𝑛

∑𝑛
𝑖=1 𝜌(𝑑𝜃 (𝑥𝑖 , 𝐾))

over 𝐾 ∈ K𝑐 (R).
The sample 𝑑𝜃 -median always exists and is unique whenever the points

{(mid 𝑋𝑖 , spr 𝑋𝑖)}𝑛𝑖=1 are not all collinear. On the other hand, the Representer
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Theorem (see Sinova, 2016) provides necessary and sufficient conditions to
express M-estimators of location as a weighted mean of the interval-valued
observations, which hold for some well-known loss functions, such as the
function by Hampel (1974) under some additional conditions. Unfortunately,
neither of these two measures admits an explicit expression. For details about
their practical computation, see Sinova (2016); Sinova and Van Aelst (2018).

4 The 𝒅𝜽-depth-based interval trimmed mean

Sinova (2022) has followed a different approach for summarizing the central
tendency by studying trimmed means based on a depth function in the fuzzy
number-valued setting (one-dimensional fuzzy sets). The main novelty of the
work by Sinova (2022) consists in introducing a depth function for fuzzy-
number valued data for the first time and applying it to adapt depth-based
trimmed means to the fuzzy framework. Indeed, such depth-based trimmed
means have shown very promising empirical results and, for this reason, it
would be interesting to analyze whether their advantages remain when data
are interval-valued.

The particularization of the depth-based trimmed means by Sinova (2022)
to the interval-valued setting would be as follows.

Definition 6 Given a random interval 𝑋 and a fixed value 𝜃 ∈ (0,∞), the
𝑑𝜃 -depth of 𝐾 ∈ K𝑐 (R) with respect to the distribution of 𝑋 is given by

𝐷𝐷 𝜃 (𝐾; 𝑋) =
1

1 + 𝐸 [𝑑𝜃 (𝑋, 𝐾)]
.

Given a simple random sample from 𝑋, (𝑋1, . . . , 𝑋𝑛), the empirical 𝑑𝜃 -depth
of 𝐾 is given by

𝐷𝐷 𝜃,𝑛 (𝐾; (𝑋1, . . . , 𝑋𝑛)) =
1

1 + 1
𝑛

∑𝑛
𝑖=1 𝑑𝜃 (𝑋𝑖 , 𝐾)

.

Notice that the centremost element with respect to the 𝑑𝜃 -depth is the
𝑑𝜃 -median.

Definition 7 Given a simple random sample (𝑋1, . . . , 𝑋𝑛) from a random
interval 𝑋 and a trimming proportion 𝛽 ∈ (0, 1), the 𝑑𝜃 -depth-based interval
trimmed mean estimator is defined as

𝐷𝐷 𝜃 -𝑋𝑛,𝛽 =

∑𝑛
𝑖=1 𝐼[𝛾,∞) (𝐷𝐷 𝜃,𝑛 (𝑋𝑖)) · 𝑋𝑖∑𝑛
𝑖=1 𝐼[𝛾,∞) (𝐷𝐷 𝜃,𝑛 (𝑋𝑖))

,

with 1
𝑛

∑𝑛
𝑖=1 𝐼[𝛾,∞) (𝐷𝐷 𝜃,𝑛 (𝑋𝑖)) ≃ 1 − 𝛽.
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As mentioned in Sinova (2022), the 𝑑𝜃 -depth is not affine invariant, but
it is enough to replace the distances 𝑑𝜃 (𝑋, 𝐾) by the standardized distances

𝑑𝜃 (𝑋, 𝐾)/𝜎𝑋 (where 𝜎𝑋 =
√
𝐸 ((𝑑𝜃 (𝑋, 𝐸 [𝑋]))2) denotes the standard devia-

tion of the random interval 𝑋) to get an affine invariant version.

4.1 Comparative simulation study

The empirical behaviour of the 𝑑𝜃 -depth-based trimmed mean has been com-
pared to that of the central tendency measures recalled in Sect. 3. The com-
mon choice 𝜃 = 1/3 has been considered for the computation of the location
measures (whenever the 𝑑𝜃 distance is involved), and the estimates of their

bias, variance and mean square error (MSE): Bias = 𝑑1/3 (1/𝑁
∑𝑁
𝑖=1 𝑇𝑖 , 𝑇),

Var = 1/𝑁 ∑𝑁
𝑖=1 (𝑑21/3 (𝑇𝑖 ,

∑𝑁
𝑖=1 𝑇𝑖/𝑁)) and MSE = 1/𝑁 ∑𝑁

𝑖=1 (𝑑21/3 (𝑇𝑖 , 𝑇)), with
𝑇 the population value of a location measure, 𝑁 the number of samples and
𝑇𝑖 the estimate of 𝑇 for the 𝑖th generated sample.

Regarding the M-estimator of location, the Hampel loss function with tun-
ing parameters the median, the 75th and the 85th percentiles of the distri-
bution of sample distances (see Sinova, 2016, for details) has been considered
due to its flexibility and good empirical performance in previous studies. Sim-
ulations have been designed as follows, inspired by the simulation strategy
proposed in De la Rosa de Sáa et al. (2015).

1. A random sample of 100 interval-valued observations is generated from a
random interval 𝑋 = [𝑋1 − 𝑋2, 𝑋1 + 𝑋2], where

𝑋1 ⇝ 𝛽(6, 1), 𝑋2 ⇝


exp (100 + 4𝑋1) if 𝑋1 < .25,
exp (200) if .25 ≤ 𝑋1 ≤ .75,
exp (500 − 4𝑋1) if 𝑋1 > .75.

2. A proportion 𝑐𝑝 = 0, .1, .2, .3 or .4 of the observations is then contaminated
in both location and spread with

𝑋1 ⇝ 𝛽(1, 6), 𝑋2 ⇝


exp (100 + 4𝑋1) /(𝐶2

𝐷 + 1) if 𝑋1 < .25,
exp (200) /(𝐶2

𝐷 + 1) if .25 ≤ 𝑋1 ≤ .75,
exp (500 − 4𝑋1) /(𝐶2

𝐷 + 1) if 𝑋1 > .75,

where 𝐶𝐷 = 0, 1, 5, 10 or 100 measures the relative distance between the
distributions of the regular and contaminated observations.

3. The population parameters 𝑇 are approximated by Monte Carlo simulation
using 𝑁 = 10000 replications of Step 1.

4. For each (𝑐𝑝 , 𝐶𝐷), Steps 1-2 are repeated 𝑁 = 10000 times and, for each

of these contaminated samples, the location estimates 𝑇𝑖 are calculated.

Table 1 shows the outputs and the smallest value of bias, variance and MSE
for each choice of 𝑐𝑝 and 𝐶𝐷 has been highlighted in bold. Bias, variance
and MSE have also been computed in terms of the Hausdorff and 1-norm
distances, but conclusions do not differ.
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Table 1 Bias, variance and MSE (all multiplied by a factor 1000) of the Aumann
mean, the 1-norm, Hausdorff-type and 𝑑1/3- medians, the Hampel M-estimator of
location and the 𝑑1/3-depth-based trimmed means (DTM) with 𝛽 = .2 and 𝛽 = .45.

𝑐𝑝 𝐶𝐷 𝐸 [𝑋] Me[𝑋] Med[𝑋] M1/3 [𝑋] K𝑀
𝐻𝑎𝑚𝑝𝑒𝑙 DTM𝛽=.2 DTM𝛽=.45

.0 0 Bias .0 .0 .1 .1 .0 .1 .2
Var .2 .2 .2 .2 .1 .2 .2
MSE .2 .2 .2 .2 .1 .2 .2

.1 0 Bias 71.4 17.3 17.3 17.3 2.5 14.3 14.2
Var .2 .3 .3 .3 .2 .2 .3
MSE 5.3 .6 .6 .6 .2 .4 .5

.1 1 Bias 71.3 17.3 17.3 17.3 2.5 14.2 14.2
Var .2 .3 .3 .3 .2 .2 .3
MSE 5.2 .6 .6 .6 .2 .4 .5

.1 5 Bias 71.3 17.3 17.3 17.3 2.7 14.3 14.2
Var .2 .3 .3 .3 .2 .2 .3
MSE 5.2 .6 .6 .6 .2 .4 .5

.1 10 Bias 71.6 17.5 17.6 17.6 2.9 14.6 14.3
Var .2 .3 .3 .3 .2 .2 .3
MSE 5.3 .6 .6 .6 .2 .4 .5

.1 100 Bias 71.6 17.4 17.4 17.4 2.8 14.4 14.2
Var .2 .3 .3 .3 .2 .2 .3
MSE 5.3 .6 .6 .6 .2 .4 .5

.2 0 Bias 142.9 41.7 41.7 41.6 20.6 44.3 32.1
Var .2 .4 .4 .4 .2 .2 .4
MSE 20.6 2.1 2.2 2.1 .7 2.2 1.4

.2 1 Bias 142.6 41.4 41.4 41.4 21.0 44.1 31.5
Var .2 .4 .4 .4 .2 .2 .4
MSE 20.5 2.1 2.1 2.1 .7 2.1 1.4

.2 5 Bias 142.8 41.5 41.5 41.5 21.7 44.2 31.4
Var .2 .4 .4 .4 .2 .2 .4
MSE 20.5 2.1 2.1 2.1 .7 2.1 1.4

.2 10 Bias 142.8 41.8 41.9 41.9 21.9 44.4 32.0
Var .2 .4 .4 .4 .2 .2 .4
MSE 20.5 2.2 2.2 2.2 .7 2.2 1.4

.2 100 Bias 142.9 41.8 41.9 41.9 21.8 44.4 32.0
Var .2 .4 .4 .4 .2 .2 .4
MSE 20.6 2.2 2.2 2.2 .7 2.2 1.4

.3 0 Bias 214.3 79.2 79.2 78.9 127.3 116.9 52.0
Var .2 .6 .6 .6 1.5 .2 .5
MSE 46.1 6.9 6.9 6.9 17.7 13.9 3.2

.3 1 Bias 214.0 78.6 78.7 78.5 133.7 116.6 51.6
Var .1 .6 .6 .6 1.4 .2 .5
MSE 45.9 6.8 6.8 6.8 19.2 13.8 3.1

.3 5 Bias 214.3 79.5 79.5 79.3 138.3 117.0 52.2
Var .2 .6 .6 .6 1.3 .2 .5
MSE 46.1 7.0 7.0 6.9 20.4 13.9 3.2

.3 10 Bias 214.4 79.5 79.6 79.3 138.4 117.0 51.9
Var .2 .6 .6 .6 1.3 .2 .5
MSE 46.1 7.0 7.0 6.9 20.5 13.9 3.2

.3 100 Bias 214.3 79.5 79.5 79.3 138.1 117.0 52.2
Var .2 .6 .6 .6 1.3 .2 .5
MSE 46.1 7.0 7.0 6.9 20.4 13.9 3.2

.4 0 Bias 285.6 147.9 148.0 147.1 241.6 200.5 96.3
Var .2 1.2 1.2 1.2 2.0 .2 1.5
MSE 81.7 23.1 23.1 22.9 60.4 40.4 10.8

.4 1 Bias 285.5 148.0 148.1 147.3 246.5 200.5 96.1
Var .2 1.2 1.2 1.2 1.6 .2 1.5
MSE 81.7 23.1 23.1 22.9 62.3 40.4 10.7

.4 5 Bias 285.6 148.4 148.5 147.5 250.3 200.6 96.8
Var .2 1.2 1.2 1.2 1.2 .2 1.5
MSE 81.7 23.2 23.3 23.0 63.9 40.5 10.9

.4 10 Bias 285.8 148.5 148.6 147.8 249.7 200.8 96.9
Var .2 1.2 1.2 1.2 1.3 .2 1.5
MSE 81.8 23.3 23.3 23.1 63.6 40.5 10.9

.4 100 Bias 285.8 148.4 148.5 147.6 250.3 200.8 96.6
Var .2 1.2 1.2 1.2 1.2 .2 1.4
MSE 81.8 23.2 23.2 23.0 63.9 40.5 10.8
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5 Concluding remarks

Table 1 shows that there is no uniformly most appropriate location estimate.
However, the performance of the 𝑑𝜃 -depth-based trimmed mean (with an
appropriate choice of the trimming parameter) is among the best: it can
outperform the behaviour of the other measures or, at least, become the
second best option in terms of bias and MSE.
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