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Abstract Nowadays, new types of data are emerging from lots of distinct
real-life experiments and statistical researchers need to develop new tools to
deal with them. For instance, interval-valued responses arise as an alterna-
tive to Likert-type responses in questionnaires measuring people’s behavior
(their attitudes, opinions, perceptions, feelings, etc.). In order to facilitate
the comparison of different analysis involving several rating scales and with
the aim of studying the the effect size measure for difference between two
independent groups, in this paper we extend the concept of Cohen’s 𝑑 index
established for real numbers to the interval-valued data context. Finally, a
real-life example has been included to motivate and illustrate the problem.

1 Introduction

For many decades now, data analysts have been encouraging to enhance the
presentation of research findings in the behavioral sciences by including an
effect-size measure along with a statistical significance test (Cohen, 1965;
Hays, 1963). Besides, the American Psychological Association (APA) Publi-
cation Manual stated “It is almost always necessary to include some measure
of effect-size in the Result section” (APA, 2010, p. 34) and Wilkinson et
al. (1999) highlighted the importance of including the effect size for future
systematic reviews and meta-analysis.
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In Statistics, an effect-size is a quantitative measure that is independent
of sample size and complements statistical hypothesis testing. This measure
quantifies the magnitude of a phenomenon like the difference between pop-
ulations or the relationship between explanatory and response variables and
facilitates the statistical interpretation of the importance of a research result.
Consequently, it allows the comparison of different results of a set of empirical
studies carried out independently about a given research problem.

Nowadays, statistical data analysis methodology is constantly evolving
due to the appearance of new types of real-life data that cannot be strictly
classified as quantitative or qualitative ones.

In social and educational sciences and many other disciplines, Likert-type
Scales (Likert, 1932) are the most popular rating scales considered in the
literature to rate evaluations, perceptions, judgments, classifications, etc. in
questionnaires. This type of data cannot be numerically measured because
they concern intrinsically imprecise valued attributes and Likert scales allow
the respondent to choose among a small number of predetermined ‘linguistic
values’ (discrete scale).

To overcome the limitations of Likert-type scales, since the individual
differences are almost systematically overlooked, in the last years Interval-
Valued Scales (IVSs) are gaining strength as an alternative to Likert-type
scales by allowing respondents to select a range or interval of real data and
not being constrained to choose among a few pre-specified responses (see, for
instance, Ellerby et al., 2021; Wagner et al., 2015; Themistocleous et al.,
2019).

In this paper, we will extend the definition of one of the most known
standardized mean difference effect-size measures to fuzzy approach. We will
analyze the results with a real life example where interval-valued data have
been gathered.

2 Preliminary concepts

Interval-valued scales make use of random intervals. In this section, we will
recall the main concepts and the methodology used to analyze this type of
data.

Let K𝑐 (R) denote the class of nonempty compact intervals from R. Each
interval 𝐾 in the space K𝑐 (R) can be characterized in terms of either its
infimum and supremum or its mid-point and spread or radius as follows:

𝐾 = [inf 𝐾, sup𝐾] = [mid𝐾 − spr𝐾,mid𝐾 + spr𝐾] .

When dealing with interval-valued data we use an arithmetic based on
the sum and the product by a scalar operations defined as the corresponding
image sets of the involved interval values (see Minkowski, 1903) which are
settled for 𝐾, 𝐾 ′ ∈ K𝑐 (R) and any 𝜆 ∈ R as follows
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𝐾 + 𝐾 ′ = [inf 𝐾 + inf 𝐾 ′, sup𝐾 + sup𝐾 ′],

𝜆 · 𝐾 =

{
[𝜆 · inf 𝐾, 𝜆 · sup𝐾] if 𝜆 ≥ 0
[𝜆 · sup𝐾, 𝜆 · inf 𝐾] if 𝜆 < 0.

.

In contrast to the real-valued case, the space K𝑐 (R) is not linear with these
two operations, but only semilinear with a conical structure, because of the
lack of an opposite element for the Minkowski addition. For this reason, it is
not possible to treat intervals directly as two-dimensional vectors. Therefore,
distances play a crucial role in statistical developments.

To measure the distance between two interval-valued data, we will make
use of a metric on K𝑐 (R) extending the Euclidean one and being easy-to-use
and interpret. More precisely, we will consider the 𝑑𝜃 -metric proposed by Gil
et al. (2002) which is defined for two intervals 𝐾, 𝐾 ′ ∈ K𝑐 (R) as follows,

𝑑𝜃 (𝐾, 𝐾 ′) =
√︃
(mid𝐾 −mid𝐾 ′)2 + 𝜃 · (spr𝐾 − spr𝐾 ′)2,

where 𝜃 ∈ (0,∞) weighs the relative importance assessed to deviations in
imprecision in contrast to deviations in trends. It is often imposed that 𝜃 ∈
(0, 1], in order to weigh the deviation in location no less than the deviation
in imprecision, as well as to make 𝑑𝜃 coincide with the metric introduced by
Bertoluzza et al. (1995). Actually, the 𝑑1 metric coincides with the 2-norm
metric between intervals which has been proposed by Vitale (1985).

Compact random intervals (see Matheron, 1975) determine a well-stated
and supported model for the random mechanisms generating interval-valued
data within the probabilistic setting. They integrate both randomness and
imprecision, so that the first one affects the generation of experimental data,
whereas the second affects the nature of the experimental data which, for
formal purposes, are assumed to be intrinsically interval-valued.

Following the general random set approach, given a probability space
(Ω,A, 𝑃), a mapping 𝑋 : Ω → K𝑐 (R) is said to be a interval-valued ran-
dom set (IVRS for short) associated with it if 𝑋 is measurable with respect
to A and the Borel 𝜎-algebra generated by the topology induced by the 𝑑𝜃
metric on K𝑐 (R). Equivalently, 𝑋 is a interval-valued random set if, and only
if, both functions inf 𝑋 and sup 𝑋 (or alternatively, mid 𝑋 and spr 𝑋) are
real-valued random variables.

As a consequence from the Borel measurability, crucial concepts in proba-
bilistic and inferential developments, such as the (induced) distribution of a
interval-valued random set or the stochastic independence of interval-valued
random sets, are well-defined.

In performing inferential analysis about the distribution of interval-valued
random sets, the best known involved parameters are the Aumann-type mean
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value (Aumann, 1965) and the Fréchet-type variance (Korner, 1997; Lubiano
et al., 2000).

We are going to recall their sample version. Given a random sample
(𝑋1, . . . , 𝑋𝑛) of size 𝑛 from an IVRS 𝑋 and a realization x = (𝑥1, . . . , 𝑥𝑛),

The sample Aumann mean of x is given by the compact interval

x =
1

𝑛
· (𝑥1 + · · · + 𝑥𝑛) .

The sample (𝑑𝜃 Fréchet-type) variance of x is given by the real number

𝑠2x =
1

𝑛 − 1
·

𝑛∑︁
𝑖=1

[𝑑𝜃 (𝑥𝑖 , x)]2 .

The above considered (sample) mean and variance preserve all the main
properties from the numerical case. All of these properties allow us to consider
the mean and the variance as suitable estimates of central tendency and
dispersion, respectively.

In the next section, we are going to state an effect-size measure for interval-
valued data considering the extension of the most common effect-size measure
for real-valued data which is defined to compare the means of two groups.

3 Standardized mean difference for interval-valued data

In research studies that involve the comparison of two groups, the standard-
ized mean difference is one of the most frequently used effect-size measures.

Let (Ω,A, 𝑃) be the probability space modeling a random experiment.
Then, if 𝑋 and 𝑌 are two independent IVRSs associated with (Ω,A, 𝑃), we
will consider the following effect size

𝛿 =
𝑑𝜃 [𝐸 (𝑋), 𝐸 (𝑌 )]

𝑆𝐷
,

where 𝑆𝐷 is the standard deviation of the population.
In the practical setting, population values are not typically known and

must be estimated from sample statistics. Distinct versions of effect-sizes
based on means proposed so far differ with respect to which statistics are
used. The most known effect-size measure is the Cohen’s 𝑑 index suggested
by Cohen (1969, 1988), see also Hedges (1981).

Definition 1 Let 𝑋 and 𝑌 be two independent IVRSs associated with
(Ω,A, 𝑃) and consider a sample of independent observations from 𝑋, x =

(𝑥1, . . . , 𝑥𝑛1 ), and a sample of independent observations from 𝑌 , y = (𝑦1, . . . ,
𝑦𝑛2 ). The extended Cohen’s 𝑑 index of effect size is defined as the real
number

𝑑 =
𝑑𝜃 (x, y)
𝑆𝐷 𝑝

with 𝑆𝐷 𝑝 =

√︄
(𝑛1 − 1)𝑠2x + (𝑛2 − 1)𝑠2y

𝑛1 + 𝑛2 − 2
,
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where 𝑆𝐷 𝑝 is the pooled standard deviation for the two groups which is
recommended if the standard deviations and sizes of the two groups differ
(Cohen, 1988, p. 67).

In the next section, we are going to apply the preceding measure on a
dataset obtained from a real-life situation.

4 Real-life data example

The COVID-19 pandemic has promoted a big change in the Higher Education
due to the adjustment to a new scenario characterized by the need to quickly
adapt from the face-to-face to the online distance modality.

An educational innovation project was carried out for the planning and
improvement of teaching-learning processes of a subject of the Degree in
Labor Relations and Human Resources at the University of Oviedo (Spain)
for the 2020/2021 academic year. In the study a hybrid system was considered
for the teaching modality (face-to-face vs. online learning).

Specifically, we are going to examine the behavior of this effect-size mea-
sure in the example with respect to the influence of respondents’ sex (men
vs. women) for both teaching modalities.

A total of 50 participants have been requested to answer a questionnaire
(available by means a custom web tool, see Fig. 1) by selecting the interval
that best represents their level of agreement to the statements proposed in a
interval-valued scale bounded between 1 and 7.

Fig. 1 Example of interval-valued based-responses to the online questionnaire

The online questionnaire was comprised of biographical information (i.e.,
age, gender, etc.) as well as 142 items that measured perception of lack of
information and isolation (adapted from Weinert et al., 2015), perception of
justice, the opportunity to carry out dishonest academic behavior, technical
and contextual obstacles in monitoring of distance classes and satisfaction
with the educational innovation project. We focus our attention on the seven
items corresponding to the perception of lack of information and isolation
displayed in Table 1.

In Table 2 we show the results of the calculation of the Cohen’s 𝑑 for the
seven items with this teaching method when we consider the interval-valued



6 M.A. Lubiano et al.

Table 1 Constructs and Measurement Items

Information undersupply

𝐼.1 I receive too little information from my classmates

𝐼.2 It is difficult to receive relevant information from my classmates

𝐼.3 It is difficult to receive relevant information from the teacher

𝐼.4 The amount of information I receive from my classmates is very low

𝐼.5 The amount of information I receive from the teacher is very low

Isolation

𝐼.6 I feel less integrated in my team at class

𝐼.7 I feel poorly informed about the relevant issues from my team at class

scale. Between parentheses, we show the approximate 𝑝-values obtained ap-
plying the bootstrapped two-sample test about means with fuzzy rating scale-
based data for independent samples (see, for instance, Lubiano et al., 2016),
since interval-valued data is a particular case of trapezoidal fuzzy data.

Table 2 Analyzing the influence of respondent’s sex to the perception of Information
undersupply (Items 1-5) and Isolation (Items 6-7)

Cohen’s 𝑑 (𝑝-value) face-to-face online

𝐼.1 .629 (.027 ) .225 (.502 )

𝐼.2 .812 (.003 ) .508 (.082 )

𝐼.3 .355 (.196 ) .174 (.594 )

𝐼.4 .853 (.002 ) .718 (.012 )

𝐼.5 .397 (.134 ) .359 (.192 )

𝐼.6 .392 (.160 ) .837 (.002 )

𝐼.7 .635 (.021 ) .562 (.030 )

Figure 2 show the sample means for 18 men (black) and 32 women (gray).

According to Cohen (1988), values between .2 to .49, .50 to .79, and .80
and higher are considered small, medium and large, respectively.

We can observe that respondent’s sex is a non-significant factor with a
small-medium effect size both face-to-face and online modality for items 𝐼 .3
and 𝐼 .5 related to the information undersupply received by the teacher (values
of 𝑑 between .174 to .397).

On the other hand, the respondent’s sex is a significant factor with a
medium-large effect size with both teaching modality (values of 𝑑 over than
.562) for items 𝐼 .4 and 𝐼 .7.

When we analyze the influence of sex for question 𝐼 .1, if responses have
been obtained with the face-to-face teaching modality, it could be concluded
that this factor is significant with a medium-effect size of 𝑑 = .629, while
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Fig. 2 Graphical sample means for men vs. women with face-to-face (left) and online
(right) methodoly

it is not significant for online modality with a small-effect size of 𝑑 = .225.
Nevertheless, for question 𝐼 .6, sex is significant when teaching modality is
online and the effect size is large (𝑑 = .837) but it is not significant with the
face-to-face modality with a small-effect size (𝑑 = .392).

5 Conclusions and Future Research

In this paper we have stated an extended version of Cohen’s 𝑑 index when
the random experiment involve interval-valued data.

Besides, it would be desirable to study the properties of these sample mea-
sures estimating the corresponding population measure (like unbiasedness,
consistency, and so on).

In a similar way, it is possible to calculate this index with fuzzy data
obtained from the responses of fuzzy rating scales-based questions (Castaño
et al., 2020). By extending the concept of effect size to more complex type of
data, it will be possible to compare research results concerning both fuzzy or
interval-valued data and real-valued data.

On the other hand, we are now studying other effect-size measures of
difference on means and the extension of these concepts to other situations.
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fitting of an affine function and strength of association for interval-valued data.
Metrika 56, 97-111

Hays, W.L. (1963). Statistics for psychologists. Holt, Rinehart and Winston, New
York

Hedges, L.V. (1981). Distribution theory for Glass’s estimator of effect size and related
estimators. J. Educ. Stat. 6(2), 106–128

Körner, R. (1997). On the variance of fuzzy random variables. Fuzzy Sets Syst. 92(1),
83–93

Likert, R. (1932). A technique for the measurement of attitudes. Arch. Psychol. 22,
140–155
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