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Abstract
If G is a finite group, we have proposed three new conjectures on the interaction between
different primes and their corresponding Brauer principal blocks. In this paper,we give
strong support to the validity of Conjectures B and C.
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1 Introduction

Meaningful interaction between the representation theory of finite groups from the perspec-
tive of different primes is extremely rare. However, in [25], we proposed the following three
plausible conjectures, which extended work of several authors (see [3, 16, 19, 28]).

If p is a prime and G is a finite group, we denote by Bp(G) the principal p-block of G.
The main subject of our work is the set Irrp′(Bp(G)) of the irreducible complex characters
in the principal p-block of G whose degree is not divisible by p. This set seems to possess
remarkable properties.

Conjecture A Let G be a finite group and let p and q be different primes. If

Irrp′(Bp(G)) ∩ Irrq ′(Bq(G)) = {1G},
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then there are a Sylow p-subgroup P of G and a Sylow q-subgroup Q of G such that
xy = yx for all x ∈ P and y ∈ Q.

Conjecture B Let G be a finite group and let p and q be primes dividing the order of G. If
Irrp′(Bp(G)) = Irrq ′(Bq(G)), then p = q.

Conjecture C Let G be a finite group, and let p and q be different primes. Then q does not
divide χ(1) for all χ ∈ Irrp′(Bp(G)) and p does not divide χ(1) for all χ ∈ Irrq ′(Bq(G))

if and only if there are a Sylow p-subgroup P of G and a Sylow q-subgroup Q of G such
that xy = yx for all x ∈ P and y ∈ Q.

The main result of [25] was to reduce Conjecture A to a problem on almost simple groups
and to prove it in the case that one of the primes is 2. To prove Conjecture A for almost
simple groups in the case where p and q are both odd remains quite a challenge.

In the present paper, we focus on Conjectures B and C. Using the Classification of Finite
Simple Groups, in our first main theorem we prove the following.

Theorem D Conjecture C implies Conjecture B.

After proving Theorem D, therefore, we concentrate our efforts in the remainder of the
paper towards Conjecture C. Since the “if” direction of Conjecture C follows from “if”
direction of the main result [19], we shall only focus on the “only if” direction.

Theorem E Conjecture C holds for finite simple groups.

Besides Conjecture C being true for simple groups, in Theorem 3.3 below, we shall also
prove that Conjecture C is true for p-solvable groups, assuming the inductive Alperin–
McKay condition. This gives strong support to the validity of this conjecture.

Unfortunately, at the time of this writing, we still do not know how to reduce Conjec-
ture C to a question on almost simple groups.

2 TheoremD

In this Section we prove that Conjecture C implies Conjecture B. This will require the
following result on simple groups.

Theorem 2.1 Let p, q be different primes and let S be a non-abelian simple group with pq |
|S|. Assume that [P, Q] = 1 for some Sylow p-subgroup P of S and a Sylow q-subgroup
Q of S. Then one of the following holds:

(a) There exists α ∈ Irrp′(Bp(S))−Irr(Bq(S))which isAut(S)p-invariant, whereAut(S)p
is some Sylow p-subgroup of Aut(S).

(b) There exists α ∈ Irrq ′(Bq(S))−Irr(Bp(S)) which isAut(S)q -invariant, whereAut(S)q
is some Sylow q-subgroup of Aut(S).

Proof First, note that by [19, Lemma 3.1], the condition [P, Q] = 1 implies that [P̄ , Q̄] =
1 for some Sylow p- and q- subgroups P̄ , Q̄ of any covering group of S. If S is one of the
sporadic groups J1 or J4, then we may use GAP [8] and its Character Table Library to see



Principal Blocks for Different Primes, II

that the statement holds. Then [19, Propositions 3.2–3.4] further imply that we may assume
S to be a simple group of Lie type that is not isomorphic to a sporadic or alternating group
and is defined in characteristic r0 �∈ {p, q}. (We remark that this information was first found
in [2].)

So, let S be of the form S = G/Z(G) for G a group of Lie type of simply connected type
defined in characteristic r0 �= p, q. In this case, we may further assume that p and q are both
odd and that the Sylow p- and q-subgroups of G are abelian, using [19, Proposition 3.5]
(see also [2, Theorem 2.1]).

Since p and q are odd, note that we may therefore assume without loss that p ≥ 5.
Furthermore, using [18, Lemma 2.1 and Proposition 2.2], we have p is good for G and
p � |Z(G)|. This implies that p does not divide the order of any diagonal or graph outer
automorphism, so that Aut(S)p may be taken as a subgroup of S � 〈F 〉, where F is a
generating field automorphism.

Now, let t be a p-element in G∗ whose G∗-class is 〈F 〉P -invariant. Then the semisimple
character χt of G lies in Bp(G) by [12, Corollary 3.4] and has degree prime to p since
χt (1) = [G∗ : CG∗(t)]r ′

0
(see e.g. [5, Theorem 8.4.8]) and Sylow p-subgroups of G∗ are

abelian. But since χt lies in the Lusztig series E(G, t) and Bq(G) contains only characters
lying in Lusztig series E(G, s) with |s| a power of q (see [4, Theorem 9.12]), we see that
χt does not lie in Irr(Bq(S)). Furthermore, as p � |Z(G)|, we have t ∈ Op′

(G∗), and
hence χt is trivial on Z(G). Finally, since p � |Z(G)|, we also have CG∗(t) is connected,
whereG∗ is the ambient reductive group whose fixed points under an appropriate Frobenius
endomorphism yields G∗ (see [21, Exercise 20.16]). Then for ϕ ∈ 〈F 〉, we have χ

ϕ
t = χtϕ

∗ ,
where ϕ∗ is an appropriate field automorphism of G∗ (see [27, Corollary 2.5]). Hence χt is
Aut(G)P -invariant by our choice of t .

Lemma 2.2 Suppose thatN is a minimal normal subgroup ofG, which is a direct product of
the different G-conjugates of a non-abelian simple group S. Let P ∈ Sylp(G). Suppose that
α ∈ Irr(S) is Aut(S)p-invariant, where Aut(S)p is some Sylow p-subgroup of Aut(S). Then
there are gi ∈ G, hi ∈ P and σi ∈ Aut(Sgi ) such that (αg1)σ1h1 ×· · ·×(αgm)σmhm ∈ Irr(N)

is P -invariant.

Proof Suppose that N is the direct product of � = {Sg | g ∈ G}. Now, write
� = O(S1) ∪ · · · ∪ O(St ),

where O(Si) is the P -orbit of some Si = Sxi , for some xi ∈ G. Then N = N1 × · · · × Nt ,
where Ni is the product of the elements in O(Si). Let us fix an i until the end of the proof.
Of course, Ni is P -invariant. Let αi = αxi ∈ Irr(Si). Suppose that {Sy1

i , . . . , S
yr

i } are the
different P -conjugates of Si , where yj ∈ P . Hence Ni = S

y1
i × · · · × S

yr

i , and

P =
r⋃

j=1

NP (Si)yj

is a disjoint union.
By hypothesis, α is invariant under X ∈ Sylp(Aut(S)). Therefore αi is invariant under

Xi = Xxi ∈ Sylp(Aut(Si)). Let Mi = NG(Si) and Ci = CG(Si). We have that Mi/Ci

embeds into Aut(Si). Then NP (Si)Ci/Ci is a p-subgroup of Aut(Si), and therefore, there
is σi ∈ Aut(Si) such that (NP (Si)Ci/Ci) ⊆ X

σi

i . Since αi is Xi-invariant, it follows that
βi = (αi)

σi ∈ Irr(Si) is X
σi

i -invariant, and therefore NP (Si)-invariant. We claim that γi =
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β
y1
i × · · · × β

yr

i ∈ Irr(Ni) is P -invariant. Indeed, if x ∈ P , then ykx = wkyσ(k) for some
wk ∈ NP (Si), 1 ≤ k ≤ r , and σ a permutation of Sr . Now, if u ∈ Si , then

γ x−1

i (uyk ) = γi(u
ykx) = α(1)r−1β

yσ(k)

i (uwkyσ(k) ) = α(1)r−1βi(u
wk )

= α(1)r−1βi(u) = γi(u
yk ).

This proves that γi is P -invariant. Hence γ = γ1 × · · · × γt ∈ Irr(N) is P -invariant.

We will need the following well-known result of J. Alperin and E. C. Dade.

Theorem 2.3 Suppose that N is a normal subgroup of G, with G/N a p′-group. Let P ∈
Sylp(G) and assume that G = NCG(P ). Then restriction of characters defines a natural
bijection between the irreducible characters of the principals p-blocks of G and N .

Proof The case where G/N is solvable was proved in [1] and the general case in [7].

Theorem 2.4 Assume that the “only if” direction of Conjecture C is true for all finite
groups. Let p and q be primes. Assume that G is a finite group of order divisible by p and
q. If Irrp′(Bp(G)) = Irrq ′(Bq(G)), then p = q.

Proof We argue by induction on |G|. Assume that p �= q. By Conjecture C, we know that
[P, Q] = 1 for some P ∈ Sylp(G) and Q ∈ Sylq(G).

Step 0. If 1 �= N � G, then p divides |N | or q divides |N |.
Otherwise by [23, Theorem 9.9(c)]

Irrp′(Bp(G/N)) = Irrp′(Bp(G)) = Irrq ′(Bq(G)) = Irrq ′(Bq(G/N))

and by induction we are done.
Step 1. Let L be a proper normal subgroup of G. Then G/L has order divisible by p or q.
Suppose that G/L has p′ and q ′-order. We claim that Irrp′(Bp(L)) = Irrq ′(Bq(L)).

Indeed, let θ ∈ Irrq ′(Bq(L)). Then there exists χ ∈ Irr(Bq(G)) over θ . Then χ has q ′-
degree by [15, Theorem 11.29] and therefore χ ∈ Irrp′(Bp(G)), by hypothesis. Therefore
θ ∈ Irrp′(Bp(L)). By symmetry, the claim is proved. Therefore, Step 1 follows by using the
inductive hypothesis.

Step 2. Let N be a minimal normal subgroup of G and suppose that N is an elementary
abelian p-group. Then G = CG(N)CG(Q).

Write M = CG(N) and L = MCG(Q). We have that Q ⊆ CG(P ) ⊆ CG(N) = M and
G/M is a q ′-group. Also by the Frattini argument G = MNG(Q) and L � G. Notice that
G/L is a q ′-group and a p′-group (because P ⊆ CG(Q) ⊆ L). Then we use Step 1.

Step 3. Let N be a minimal normal subgroup of G and suppose that N is abelian. Then
G = CG(N).

By Step 0, we may assume that N is a p-group or a q-group. By symmetry, assume that
N is a p-group. Write M = CG(N). We prove first that Bp(G) is the only p-block of G

covering Bp(M). Let B be a p-block of G covering Bp(M) and let D be a defect group
of B. Then N ⊆ D by [23, Theorem 4.8] and CG(D) ⊆ M = CG(N). Then B is regular
with respect to M ([23, Lemma 9.20]) and hence by [23, Theorem 9.19] we have that B =
Bp(M)G = Bp(G) by the third main theorem (see [23, Theorem 6.7]). Hence Bp(G) is the
only p-block of G covering Bp(M). In particular, we have that Irr(G/M) ⊆ Irr(Bp(G)).
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Next, we prove that G = M . Recall that G/M is a q ′-group, because [Q, N ] = 1.
By Step 2, we have G = MCG(Q). Hence by Theorem 2.3, we have that the restriction
map

res : Irr(Bq(G)) → Irr(Bq(M))

is a bijection. We claim that Irrp′(G/M) = {1G}. Indeed, if χ ∈ Irrp′(G/M), then χ ∈
Irrp′(Bp(G)) = Irrq ′(Bq(G)). Therefore, we have that χM is irreducible and since χ lies
over 1M we have χM = 1M . Hence χ = 1G by the injectivity of the restriction map. Thus
Irrp′(G/M) = {1G/M } and G = M by [25, Lemma 2.2].

Step 4. Let N be a minimal normal subgroup of G, then N is not abelian.
Suppose the contrary and assume without loss of generality that N is an elementary

abelian p-group, so by Step 3 we have G = CG(N) and N ⊆ Z(G). By [23, Theorem 9.10]
we have that Bp(G/N) is the unique p-block of G/N contained in Bp(G). We claim that
Irrp′(Bp(G/N)) = Irrq ′(Bq(G/N)). Indeed, we have that

Irrp′(Bp(G/N)) ⊆ Irrp′(Bp(G)) = Irrq ′(Bq(G)) = Irrq ′(Bq(G/N)),

where we have used [23, Theorem 9.9] in the last equality. On the other hand, let χ ∈
Irrq ′(Bq(G/N)), so χ ∈ Irrq ′(Bq(G)) = Irrp′(Bp(G)) and N ⊆ Ker(χ). Since Bp(G/N)

is the only p-block of G/N contained in Bp(G), we have that χ ∈ Irrp′(Bp(G/N)) and the
claim is proven. By using the inductive hypothesis, we have that p does not divide |G/N |.
Therefore, {1G} = Irr(Bp(G/N)) = Irrp′(Bp(G/N)) = Irrq ′(Bq(G/N)) and q � |G/N |
by [25, Lemma 2.1]). Hence q � |G| and this is a contradiction.

Step 5. Let N be a minimal normal subgroup of G, then pq divides |N |.
Suppose that N is a p′-group. We claim first that NQ does not have a normal q-

complement. Indeed, suppose the contrary and let X � NQ be a normal q-complement.
Then N ∩X is a normal q-complement of N and by the minimality of N we have that either
N ∩ X = 1 or N ∩ X = N . If N ∩ X = N , N is q ′ and p′, contradiction with Step 0. If
N ∩ X = 1 then N ∼= XN/X is a q-group, which is a contradiction with Step 4. Therefore
NQ does not have a normal q-complement. By [13, Corollary 3] there is τ ∈ Irr(Bq(QN))

non-linear of q ′-degree. Therefore 1 �= τN ∈ Irrq ′(Bq(N)). By [22, Lemma 4.3] we have
that there is some γ ∈ Irrq ′(Bq(G)) lying over τN . By hypothesis, we have that γ is in
the principal p-block of G, and therefore τN is in the principal p-block of N , which is a
contradiction since N is a p′-group and τN �= 1.

Final Step. If N is a minimal normal subgroup of G, then N is semisimple by Step 4.
Suppose that N is a direct product of all the different G-conjugates of a simple group S of
order divisible by pq. Suppose that (a) of Theorem 2.1 holds and let α be the character in
Irrp′(Bp(S)) (not in Irr(Bq(S))) which is Aut(S)p-invariant. Notice that any G-conjugate
or Aut(G)-conjugate of α is in the principal p-block and not in the principal q-block of S.
By Lemma 2.2, there exists τ ∈ Irrp′(Bp(N)) which is P -invariant, and such that each of
its factors does not belong to the principal q-block. In particular, τ does not belong to the
principal q-block of N . Now τ extends to PN by [14, Corollary 8.16]. By [22, Lemma 4.3]
there is χ ∈ Irrp′(Bp(G)) lying over τ . Then χ ∈ Irrq ′(Bq(G)) and thus τ ∈ Irrq ′(Bq(N)),
which is a contradiction. Assuming (b) in Theorem 2.1 and reasoning analogously we get
again a contradiction.
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3 Conjecture C and p-Solvable Groups

As of the writing of this article, we can only prove Conjecture C for p-solvable groups by
assuming the so called Inductive Alperin–McKay condition (for the prime q). We shall need
the following.

Theorem 3.1 Suppose that N is normal in G, and let P ∈ Sylp(N). Assume that all the
non-abelian simple groups involved in N satisfy the inductive Alperin–McKay condition.
Then there is a bijection

∗ : Irrp′(Bp(N)) → Irrp′(Bp(NN(P )))

such that for each θ∈Irrp′(Bp(N)), there is a bijection fθ : Irr(Bp(G)|θ) →
Irr(Bp(NG(P ))|θ∗) such that χ(1)/θ(1) = fθ (χ)/θ∗(1) for all χ ∈ Irr(Bp(G)|θ).

Proof This is Theorem B and Theorem 7.1 of [26].

Let us remark that we shall only need Theorem 3.1 in the case where G/N is a p′-group.
In our proof, we shall also need a McKay divisibility theorem, which was made possible

after M. Geck proved a remarkable conjecture on Glauberman correspondents [9].
In the following, we follow the proof of [29, Theorem A], and then use Geck’s result.

Theorem 3.2 Let G be a p-solvable group and let P ∈ Sylp(G). Then there is a bijection
∗ : Irrp′(G) → Irrp′(NG(P ))

such that χ∗(1) divides χ(1) and χ(1)/χ∗(1) divides |G : NG(P )|.

Proof We argue by induction on |G|. As in the proof of [29, Theorem A] we may assume
that Op(G) = 1, and hence K = Op′(G) > 1.

Let S/K = Op(G/K), and notice that P0 = P ∩ S is a Sylow p-subgroup of S. By the
Frattini argument we have that G = KNG(P0) and NG(P0) < G since Op(G) = 1. Let
θ1, . . . , θs be a complete set of representatives of the orbits of the action of NG(P ) on the
P -invariant irreducible characters of K . By [24, Lemma 9.3], we have that

Irrp′(G) = Irrp′(G | θ1) ∪ · · · ∪ Irrp′(G | θs)

is a disjoint union. Fix θi∈Irr(K) and observe that θi is also P0-invariant. Let θ∗
i ∈

Irr(CK(P0)) be the Glauberman correspondent of θi (see [24, Theorem 2.9], for instance)
and let Ti be the stabilizer of θi in G. Since the Glauberman correspondence and the action
of NG(P0) commute (see [24, Lemma 2.10]), it follows that NTi

(P0) = Ti ∩ NG(P0) is the
stabilizer of θ∗

i in NG(P0).
Again as in the proof of [29, Theorem A] we obtain a bijection

∗ : Irrp′(Ti | θi) → Irrp′(NTi
(P0) | θ∗

i )

satisfying ψ(1)/ψ∗(1) = θi(1)/θ∗
i (1). Hence we have that ψ∗(1) divides ψ(1) by the main

result of [9]. Moreover, since G = NG(P0)K we have that |K : CK(P0)| = |Ti : NTi
(P0)|

and since θi(1)/θ∗
i (1) divides |K : CK(P0)| we conclude that ψ(1)/ψ∗(1) divides |Ti :

NTi
(P0)|.
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The remaining part of the proof proceeds exactly as in the proof of [29, Theorem A].

Theorem 3.3 LetG be a finite p-solvable group. Assume that the inductive Alperin–McKay
condition (for q) holds for every non-abelian simple group involved inG. Then Conjecture C
is true for G. In particular, Conjecture C holds for {p, q}-solvable groups.

Proof By [19], we only need to prove that if all Irrp′(Bp(G)) have q ′-degree and all
Irrq ′(Bq(G)) have p′-degree, then [P, Q] = 1 for some P ∈ Sylp(G) and Q ∈ Sylq(G).
Let N be a normal subgroup of G. Since the hypothesis is satisfied by G/N , by induction,
we know that [P, Q] ⊆ N for some P ∈ Sylp(G) and Q ∈ Sylq(G).

Suppose that Op′(G) = 1. Then we know that Irr(Bp(G)) = Irr(G), by Theorem 10.20
of [23]. Hence, all the irreducible characters in Irrp′(G) have q ′-degree. Let L = Op(G)

and let P ∈ Sylp(G) and Q ∈ Sylq(G) such that [P,Q] ⊆ L. Therefore Q normalizes
P and |G : NG(P )| is not divisible by q. By Theorem 3.2, we have that all characters in
Irr(NG(P )/P ′) have q ′-degree. By the Itô–Michler theorem we have that QP ′ is normal in
NG(P ), and hence [QP ′, P ] ⊆ P ′. Then Q acts trivially on P/P ′, and therefore Q acts
trivially on P by coprime action (see [15, Corollary 3.29]). Thus [Q, P ] = 1 and we are
done in this case.

Suppose thatL = Op′(G) > 1 and let P ∈ Sylp(G) andQ ∈ Sylq(G)with [Q, P ] ⊆ L.
By Hall–Higman 1.2.3 Lemma (see [15, Theorem 3.21]) we have that CG/L(Op(G/L)) ⊆
Op(G/L). Since QL/L ⊆ CG/L(PL/L) we conclude that QL/L ⊆ Op(G/L) and hence
Q ⊆ L. Thus G/L is q ′ and G = LNG(Q), in particular |G : NG(Q)| is not divisible by
p. We claim that all the irreducible characters in Irrq ′(Bq(NG(Q))) have p′-degree. Indeed,
let χ∗ ∈ Irrq ′(Bq(NG(Q))) and let θ∗ ∈ Irrq ′(Bq(NL(Q))) under χ∗. Let θ ∈ Irrq ′(Bq(L))

be the pre-image of θ∗ given by the bijection in Theorem 3.1. Again using Theorem 3.1, let
χ ∈ Irr(Bq(G)|θ) be such that fθ (χ) = χ∗, so we know that

χ(1)

θ(1)
= χ∗(1)

θ∗(1)
.

Then χ(1)/θ(1) is not divisible by q and thus χ ∈ Irrq ′(Bq(G)). By hypothesis, χ(1) is
not divisible by p. Hence χ∗(1)/θ∗(1) is not divisible by p, and therefore, since θ∗ is of
p′-degree we have that χ∗(1) is not divisible by p, and the claim follows.

Let X = Oq ′(NG(Q)). Then all the elements in Irr(NG(Q)/Q′X) = Irrq ′(Bq(NG(Q)))

have degree not divisible by p. By the Itô–Michler theorem, we have that this group has a
normal Sylow p-subgroup (which is a Sylow p-subgroup of G, since |G : NG(Q)| is p′),
and therefore P centralizes Q/Q′. By coprime action, [P,Q] = 1.

We thank the referee for pointing out the “in particular” in Theorem 3.3 above. In fact,
this observation by the referee gives a different proof of Theorem E in [25], something
which we have not noticed before.

4 Conjecture C and Simple Groups

As we have mentioned in the Introduction, we note that the “if” direction of Conjecture C
follows from the work of Malle–Navarro in [19], namely [19, Theorem 4.1].
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Hence we focus on the “only if” direction. First, we consider the cases easily dealt with
in GAP:

Proposition 4.1 Conjecture C holds for sporadic simple groups, alternating and symmetric
groups An and Sn with n ≤ 8, the Tits group 2F4(2)′, G2(2)′, and groups of Lie type with
exceptional Schur multipliers.

Proof This can be seen using [8] and its Character Table Library.

4.1 Conjecture C for Alternating and Symmetric Groups

Here we prove Conjecture C in the case of alternating groups An and symmetric groupsSn.
Note that it follows from [19, Proposition 3.3] that [P, Q] �= 1 for every Sylow p-subgroup
P and Sylow q-subgroup Q of Sn or An.

Proposition 4.2 Let G be an alternating or symmetric group An or Sn with n ≥ 9 and let
p, q be primes dividing |G|. Then either there exists χ ∈ Irrp′(Bp(S)) with degree divisible
by q or there exists χ ∈ Irrq ′(Bq(S)) with degree divisible by p.

The Strategy We first recall some facts and give the basic idea of the proof. The set Irr(Sn)

is indexed by partitions of n, and two characters χλ, χμ corresponding to partitions λ, μ lie
in the same p-block if λ, μ have the same p-core (and similar for q). In particular, writing
n = pm + b with 0 ≤ b < p, the set Irr(Bp(Sn)) consists of the characters χλ such that
λ has p-core (b). Furthermore, recall that the degree of the character χλ is given by the
hooklength formula χλ(1) = n!∏

hλ
, where the denominator is the product of all hooklengths

in the tableau corresponding to the partition λ. Furthermore, if λ is not self-conjugate, then
the corresponding character restricts irreducibly to An.

So, our strategy will be (up to switching p and q) to illustrate a non-self-conjugate parti-
tion λ of n with p-core (b) such that the numerator in the hooklength formula has the same
p-part as the denominator and larger q-part than the denominator. Our proof will require
several technical cases and analysis of the degrees given by the hooklength formula.

Setting Notation Throughout our proof, we will assume without loss that q < p. We will
write mp = wq + r with 0 ≤ r < q, and let n = mp + b with 0 ≤ b < p. Note that
we may assume that m > 1, since otherwise a Sylow p-subgroup is abelian, and the result
follows from [10, Theorem 3.5], together with the principal block version of Brauer’s height
zero conjecture [20]. In studying the degrees of the characters that we construct, several
expressions will appear repeatedly. Hence we define once and for all:

Y := (mp + b) · · · (mp + 1)

b! , Y ′ := (mp + b − 1) · · · (mp + 1)

(b − 1)! ,

Z := (mp + r) · · · (mp + 1)

r! , and Z′ := (mp − 1) · · · (mp − r)

r!
which we see are each relatively prime to p.

It will also be useful to set the p-adic and q-adic expansions of mp: Let

mp = a1q
t1 + · · · + akq

tk = b1p
s1 + · · · + bk′psk′
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with ti < ti+1, sj < sj+1, 0 < ai < q, and 0 < bj < p for each appropriate value of i, j .
With these established, we further define

X :=
∏a1q

t1

i=1 (mp − i)
∏a1q

t1

i=1 i
and X′ :=

∏b1p
s1

i=1 (mp − i)
∏b1p

s1

i=1 i
.

Note that mp �= a1q
t1 , since p � a1. In the situation that the expressionX′ becomes relevant,

we will see that also mp �= b1p
s1 . Finally, for an integer x, we will write (x)p (or just xp if

it is clear) for the p-part of x.

Proof of Proposition 4.2 Keep the notation above.
(I) First, suppose that r > 0. If b = 0, so that n = mp, then consider λ = (1mp−r−1, 1+

r). Then χλ ∈ Irr(Bp(Sn)) and χλ(1) = Z′, which is p′ but divisible by q since mp −
r = wq and r < q. If b �= 0 and 0 < r < b, consider λ = (1mp−r−1, 1 + r, b). If
0 < b < r , consider λ = (1mp−r−1, 1 + b, r). In these cases, χλ ∈ Irr(Bp(Sn)) and
χλ(1) = Y · Z′ · |b−r|

mp−r+b
. Note that the q-part of the numerator of Y must be at least as

large as the q-part of the denominator. (Each remainder modulo b appears once as a factor
in the numerator.) Hence, this character still has degree that is p′ and divisible by q, with the
possible exception of if q | b and b!(wq + b) has larger q-part than (mp + 1) · · · (mp + b).
In the latter case, (1mp, b), giving degree Y ′, works instead.

If b = r > 0, note that r + 1 < wq, as otherwise we would have r = q − 1 and w =
1 = m, contradicting our assumption that m > 1. Then let λ = (1r , r + 1, wq − 1), so that
χλ(1) = Z ·Z′ ·(wq −r −1)/(2r +1), which is p′ and divisible by q unless 2r +1 = p and
p | (m−1) or if 2r +1 = q and q � w. In the latter cases, the partition (1wq−2, 1+ r, 1+ r)

works, unless we were in the case 2r +1 = p with p | (m−1) and r +1 = q with q � w. In
this case, if q �= 2 (and hence r �= 1), take λ = (1mp, r), which corresponds to a character
χλ that lies in Bp(Sn) and has degree Y ′ = (mp + 1) · · · (mp + r − 1)/(q − 2)!. This is
relatively prime to p, and is divisible by q since there must be a number between mp and
mp + q − 1 = mp + r divisible by q, but neither mp = (w + 1)q − 1 nor n = mp + r =
wq +2q −2 can be divisible by q. If q = 2, we have r = 1, q = 2, p = 3, and the character
corresponding to (1n−2, 2) lies in B2(Sn) and has degree n − 1 = 3m = 2w + 1, which is
odd and divisible by 3.

From now on, we may therefore assume that r = 0, so that mp = wq.
(II) First, assume that a1q

t1 < b1p
s1 . If b = 0, so n = mp = wq, consider λ =

(1mp−a1q
t1−1, 1 + a1q

t1). Then the corresponding degree is X, which we see is equal to

X =
∏a1q

t1−1
i=0 (i + a2q

t2 + · · · + akq
tk )

∏a1q
t1

i=1 i
=

∏a1q
t1

i=1 (b1p
s1 − i + b2p

s2 + · · · + bk′psk′ )
∏a1q

t1

i=1 i
.

Note that the q-part of this is qt2/qt1 , which is divisible by q. Furthermore, the p-part is 1,
since a1q

t1 < b1p
s1 implies that the p-part of −i +b1p

s1 +· · ·+bk′psk′ is the same as that
of i for 1 ≤ i ≤ a1q

t1 .
Now suppose that b > 0, so n = mp + b = wq + b. If a1q

t1 �= b, consider either
(1mp−a1q

t1−1, 1+a1q
t1 , b) or (1mp−a1q

t1−1, 1+b, a1q
t1), depending on whether b is larger

or smaller than a1q
t1 . Then the corresponding character lies in Bp(Sn) and has degree

X·Y · |b−a1q
t1 |

n−a1q
t1
. Note that since a1q

t1 < b1p
s1 , the p-part of |b−a1q

t1 |p ≤ ps1 , and from this

we see |b−a1q
t1 | and n−a1q

t1 = mp+b−a1q
t1 have the same p-part. Hence this character

is a member of Irrp′(Bp(Sn)). Furthermore, its degree is still divisible by q, except possibly
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if |b − a1q
t1 |q < (n − a1q

t1)q . This can only happen if (b)q ≥ qt2 . In the latter case,
consider again the partition (1mp, b). The degree is Y ′ and hence we have removed mp+b

b

from the expression Y , which is p′ and, from before, has q-part of the numerator at least as
large as that of the denominator. Since in our situation (mp + b)q = qt1 < qt2 ≤ (b)q , this
degree Y ′ is also divisible by q.

Now assume b = a1q
t1 . If b+1 �= p or p � (m−1), we take λ = (1mp−b−2, b+1, b+1),

with χλ(1) = Y · (mp−2)···(mp−b−1)
(b+1)! . Then χλ ∈ Irr(Bp(Sn)) and p � χλ(1) due to the

assumption b + 1 �= p or m − 1 is not divisible by p. Furthermore, χλ(1) is divisible
by q since the q-part of the numerators of each of the two fractions is at least that of the
denominators, as before, and in this case, the factor (mp−b) is divisible by qt2 , but no factor
in the denominator is. Now, if p = b+1 = 1+a1q

t1 and p | (m−1), this forces also b1p
s1 =

p, asmp−p = ∑
bip

si −p must be divisible by p2. Here consider the partition (1mp−p, b+
p), which gives a character with degree (mp + b − 1) · · · (mp − p + 1)/(p + b − 1)! in
Bp(Sn). Note that the only factor in the numerator divisible by p is mp, which is divisible
by p exactly once. Then since the denominator is divisible by p, we see this character
lies in Irrp′(Bp(Sn)). Furthermore, since mp − p + 1 = ∑

i≥2 aiq
ti in this case, we see

(mp −p +1+ j)q ≥ (j)q for 1 ≤ j ≤ p +b−2, and that mp−p+1
p+b−1 =

∑
i≥2 aiq

ti

2a1qt1
is divisible

by q except possibly if q = 2 and t2 = t1 +1. In the latter case, the character corresponding

to (1mp−1, b + 1), which has degree
mp·∏2t1−1

i=1 (mp+i)

2t1 ! lies in Irr2′(B2(Sn)) and has degree
divisible by p.

(III) Finally, suppose that a1qt1 > b1p
s1 . Note here that mp �= b1p

s1 , as mp ≥ a1q
t1 . If

b = 0, then reversing the roles of p and q in the corresponding case in (II) above yields a
character in Bq(Sn) with degree X′, which is relatively prime to q but divisible by p.

Hence we assume b > 0, so n = mp + b = wq + b. Note here that b = w′q + b′
for some integers w′, b′ with 0 ≤ b′ < q, and Bq(Sn) consists of those characters whose
corresponding partitions have q-core (b′).

Now, the partition (1mp−b1p
s1−1, b + 1, b1ps1) gives a character in Bq(Sn) with degree

Y · X′ · b1p
s1−b

n−b1p
s1 . Note that the third factor is not divisible by p nor q, since p � b and

b1p
s1 − b < a1q

t1 so b1p
s1 − b and n − b1p

s1 = mp − (b1p
s1 − b) have the same q-part.

Furthermore, p � Y , and also q � Y as long as b < (q − a1)q
t1 . So if b < (q − a1)q

t1 , this
character lies in Irrq ′(Bq(Sn)) with degree divisible by p.

So, we now assume that q | Y , so b ≥ (q − a1)q
t1 . Then the partition (b + 1,mp − 1)

corresponds to a character in Bp(Sn) with degree Y · mp−(b+1)
b+1 , which is divisible by q

and is relatively prime to p if b + 1 �= p or p � (m − 1). Hence we may now assume that
further p = b + 1 and p | (m − 1). Then setting λ = (1mp, b) yields χλ ∈ Irr(Bp(Sn))

and χλ(1) = Y ′, which is prime to p. Since q | Y , we have q | Y ′ unless q | b and
(mp + b)q > (b)q , which forces b = (q − a1)q

t1 .
So we are reduced to the case q � Y ′, b = (q − a1)q

t1 = p − 1, and p | (m − 1). Then
the partition (1mp−1, 1 + b) gives a character in Bq(Sn) with degree Y ′ · mp/b, which is
divisible by p but is not divisible by q since the q-part of both b and mp are qt1 .

Finally, note that in all cases, the λ described is not self-conjugate, and hence the
characters restrict irreducibly to An, completing the proof.

4.2 Conjecture C for Simple Groups of Lie Type

Let r0 be a prime and r := ra
0 be some power of r0. For p another prime, we denote by dp(r)

the order of r modulo p, respectively modulo 4, if p is odd, respectively p = 2. Here we
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will prove the remaining direction of Conjecture C for simple groups of Lie type S defined
in characteristic r0. (For the case of Suzuki and Ree groups, we let r be 22n+1 or 32n+1, as
appropriate.)

Several cases here also follow quickly from [19]:

Proposition 4.3 Let S be a simple group of Lie type defined over Fr , and let p, q be primes
such that [P,Q] �= 1 for every Sylow p-subgroup P and Sylow q-subgroup Q of S but that
at least one of the following conditions holds:

1. r0 ∈ {p, q};
2. a Sylow p-subgroup or a Sylow q-subgroup of S is abelian; or
3. dp(r) �= dq(r);

Then either there exists χ ∈ Irrp′(Bp(S)) with degree divisible by q or there exists χ ∈
Irrq ′(Bq(S)) with degree divisible by p.

Proof First suppose that r0 ∈ {p, q} and without loss, say r0 = p. Then Irr(Bp(S)) =
Irr(S) \ {StS} contains all characters of degree divisible by q. Let G be a quasisimple group
of Lie type of simply connected type such that G/Z(G) = S. Suppose first that there is a
semisimple element s of the dual group G∗ that does not centralize a Sylow q-subgroup of
G∗ and which lies in Op′

(G∗). (See e.g. [5, Chapter 4] for a discussion of the dual group
G∗.) Considering a semisimple character χs corresponding to s (in particular, we may fix
χs to correspond to the trivial character of CG∗(s) under Jordan decomposition), we see
that χs(1) = [G∗ : CG∗(s)]p′ (see e.g. [17, (2.1)]) and χs is trivial on Z(G) (see e.g.
[31, Proposition 2.7]), so χs has degree divisible by q but lies in Irrp′(Bp(S)) as a character
of S.

Now suppose that every semisimple element of G∗ that lies in Op′
(G∗) centralizes a

Sylow q-subgroup of G∗. In particular, this means that Op′
(G∗) has abelian Sylow q-

subgroups, so S also has abelian Sylow q-subgroups. (Indeed, in many cases, S ∼= Op′
(G∗),

and otherwise the claim can be seen from the observations in [18, Section 2.1].) In this
case, Irrq ′(Bq(S)) = Irr(Bq(S)) by Brauer’s height zero conjecture for principal blocks
[20]. Then let χ be any nontrivial unipotent character in Irr(Bq(S)). This character will
have degree divisible by p by [17, Theorem 6.8], unless p = r∈{2, 3} and S is one of the
exceptions given in loc. cit. Using Proposition 4.1, this leaves only the case S = Bn(2) =
Cn(2) = Sp2n(2) for n ≥ 4. Let e be the order of r2 = 4 modulo q and write n = me + b

with b < e. Now, following the proof in [17, Theorem 6.8], we see the nontrivial unipotent
characters with degree not divisible by 2 are those whose corresponding symbols contain
only the numbers 0, 1, n. Using the theory of e-core and e-cocore partitions (the relevant
details of which we have summarized in the section on Bn and Cn in the proof of [25, Propo-
sition 3.7]), we have one of the characters indexed by symbols

(0,b+1
me

)
,
(0,me

b+1

)
, or

(
b+1,me

0

)

lies in Bq(S). These characters are not the odd-degree characters, unless b = 0, i.e. e | n. In
the latter case, the Steinberg character has degree a power of 2 and lies in Bq(S).

Next, suppose that r0 �∈ {p, q} and that a Sylow p-subgroup of S is abelian. Then
Irrp′(Bp(S)) = Irr(Bp(S)) by Brauer’s height zero conjecture for principal blocks [20], and
hence the proof of [19, Theorem 5.1] yields the desired character.

Finally, assume that r0 �∈ {p, q}, that no Sylow p- or q- subgroup of S is abelian, and
that dp(r) �= dq(r). Note that the assumption [P,Q] �= 1 for every choice of Sylow p-
and Sylow q-subgroups of S (and hence analogously for G) implies that also [P ∗,Q∗] �=
1 for any Sylow p- and q- subgroups of the dual group G∗. (Again, this is pointed out
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already in [19, Theorem 5.1].) Now, let dp(r) ≤ dq(r) and suppose that there exists 1 �=
s ∈ Z(Q∗) for some Q∗ ∈ Sylq(G∗) such that s centralizes a Sylow p-subgroup of G∗.
Then the same argument as in the first two paragraphs of [19, Proposition 3.5], but now
applied to G∗, yields that dp(r) = dq(r), a contradiction. Hence, given 1 �= s ∈ Z(Q∗),
we havestop CG∗(s) contains Q∗ but does not contain a Sylow p-subgroup P ∗ of G∗.
Then the corresponding semisimple character χs of G has degree divisible by p but lies in
Irrq ′(Bq(G)), since χs(1) = [G∗ : CG∗(s)]r ′

0
and using [12, Corollary 3.4]. Furthermore,

arguing as in [11, Theorem 3.5] shows that such s can be chosen so that χs is trivial on
Z(G), completing the proof.

Our task is now to prove Conjecture C in the case that neither p nor q is the defining
characteristic, dp(r) = dq(r), and no Sylow p- or q-subgroup of S is abelian. We begin
with the case of exceptional groups of Lie type, by which we mean the groups S = G2(r),
F4(r), Eε

6(r), E7(r), E8(r), 3D4(r), 2G2(r), 2F4(r), and 2B2(r).

Proposition 4.4 Let S be an exceptional simple group of Lie type defined over Fr , and let
p, q be primes such that [P, Q] �= 1 for every Sylow p-subgroup P and Sylow q-subgroup
Q of S. Then either there exists χ ∈ Irrp′(Bp(S)) with degree divisible by q or there exists
χ ∈ Irrq ′(Bq(S)) with degree divisible by p.

Proof By Proposition 4.3, we may assume that r is not a power of p nor q, that no Sylow
p- or q- subgroup of S is abelian, and that dp(r) = dq(r). Let d := dp(r) = dq(r). With
these constraints, we see that S is not of Suzuki or Ree type, that p and q are at most 7, and
that d is a regular number in the sense of Springer [33] (see also [32, Definition 2.5]). Hence
we see that the principal blocks Bp(S) and Bq(S) are the unique blocks of S containing p′-,
respectively, q ′-degree unipotent characters (see, e.g., [30, Lemma 3.6]). Under these condi-
tions, we see by observing the explicit list of unipotent character degrees in [5, Section 13.9]
that there exists a unipotent character χ satisfying either χ ∈ Irrp′(Bp(S)) and q | χ(1) or
χ ∈ Irrq ′(Bq(S)) and p | χ(1).

We next consider the case of linear and unitary groups.

Proposition 4.5 Let S = PSLε
n(r) with n ≥ 2, and let p �= q be primes such that [P, Q] �=

1 for every Sylow p-subgroup P and Sylow q-subgroup Q of S. Then either there exists
χ ∈ Irrp′(Bp(S)) with degree divisible by q or there exists χ ∈ Irrq ′(Bq(S)) with degree
divisible by p.

Proof By Proposition 4.1, we may assume S is not isomorphic to a sporadic or alternating
group. Furthermore, by Proposition 4.3, we may assume that r is not a power of p nor q,
that no Sylow p- or q- subgroup of S is abelian, and that dp(r) = d = dq(r).

Write G := SLε
n(r), G̃ := GLε

n(r), and e := dp(εr) = dq(εr). Note that G̃∗ ∼= G̃,
so we will make this identification. Let P̃ ∈ Sylp(G̃) and Q̃ ∈ Sylq(G̃). It suffices to

show that (up to switching p and q) there is some s ∈ Z(P̃ ) ∩ G such that |CG̃(s)| is
not divisible by |Q̃| and sz is not G̃-conjugate to s for any 1 �= z ∈ Z(G̃). (Indeed, that
s ∈ G = Or ′

0(G̃) implies that the corresponding semisimple character χs is trivial on Z(G̃)

and that sz is not conjugate to s for nontrivial z ∈ Z(G̃) implies that χs is irreducible
on restriction to G using e.g. [31, Proposition 2.7] and [30, Lemma 1.4]; the remaining
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conditions imply χs ∈ Irr(Bp(G̃)) using [12, Corollary 3.4] and χs(1) is p′ but divisible by
q since χs(1) = [G̃ : CG̃(s)]r ′

0
.)

Now, if 2 �∈ {p, q}, we see using the results of Weir [34] that P̃ and Q̃ are naturally
isomorphic to the corresponding Sylow subgroups of GLε

we(r), embedded naturally into
GLε

we(r) × GLε
b(r) ≤ GLε

n(r) where n = we + b with 0 ≤ b < e. The results of Carter–
Fong [6] yield the same when p or q is 2, except that if (e, b) = (2, 1), then |GLε

b(r)|
is divisible by 2 exactly once, and the Sylow 2-subgroup of GLε

n(r) in this case is that of
GLε

we(r) × GLb(r).
Let w = a1p

t1 + a2p
t2 + · · · + akp

tk = b1q
m1 + · · · + bk′qmk′ be the p-adic and q-adic

expansions of w, with t1 < · · · < tk; m1 < · · · < mk′ ; 1 ≤ ai < p for each 1 ≤ i ≤ k;
and 1 ≤ bj < q for each 1 ≤ j ≤ k′. By [6, 34], we have P̃ ∼= P

a1
1 × · · · × P

ak

k × X,
where Pi is a Sylow p-subgroup of GLε

epti
(r) (which, if p is odd, is a Sylow p-subgroup of

GLε
pti

(re) embedded naturally) for each 1 ≤ i ≤ k and X ∈ Sylp(GLε
b(r)) is isomorphic

to C2 if (p, e, b) = (2, 2, 1) and is trivial otherwise. Here we view
∏

GLε
epti

(r) as the

natural diagonally-embedded subgroup. Similarly, Q̃ ∼= Q
b1
1 × · · · × Q

bk′
k′ × Y where Qj ∈

Sylq(GLε

eq
mj (r)) for 1 ≤ j ≤ k′ and Y ∈ Sylq(GLε

b(r)).

Without loss of generality, assume a1p
t1 < b1q

m1 . (Note that we cannot have a1p
t1 =

b1q
m1 , as this would contradict that either a1 < p < q or b1 < q < p.) Let x ∈ Z(P1) have

no eigenvalues equal to 1 (indeed, this can be done by taking x as an element of a Sylow
p-subgroup of Z(GLε

pt1 (r
e)) embedded naturally into GLε

ept1 (r)) and consider the element

s = diag(x, . . . , x, In−ea1p
t1 ) ∈ Z(P̃ ), with a1 copies of x. In fact, taking x (and hence

its eigenvalues) to have order p, we obtain det(x) = 1 and hence s ∈ G. Here CG̃(s) =
CGLε

a1ept1
(r)(diag(x, . . . , x))×GLε

n−ea1p
t1 (r). Now, by considering the structure, and hence

size, of Q̃ (namely, each Qj is a wreath product Q′ �Cq where Q′ is a Sylow q-subgroup of
GLε

eq
mj −1(r)), we see |GLε

a1ep
t1 (r) × GLε

n−ea1p
t1 (r)| is not divisible by |Q̃|. Furthermore,

by considering the block sizes, we see that sz and z cannot have the same eigenvalues (and
hence they cannot be G̃-conjugate) for any nontrivial scalar matrix z ∈ Z(GLε

n(r)). This
completes the proof.

We next consider the remaining classical types, for which the proof is very similar to the
linear and unitary case.

Proposition 4.6 Let S = PSp2n(r) with n ≥ 2, P�2n+1(r) with n ≥ 3, or P�ε
2n(r) with

n ≥ 4. Let p �= q be primes such that [P, Q] �= 1 for every Sylow p-subgroup P and Sylow
q-subgroup Q of S. Then either there exists χ ∈ Irrp′Bp(S) with degree divisible by q or
there exists χ ∈ Irrq ′Bq(S) with degree divisible by p.

Proof As before, we may assume S is not isomorphic to a sporadic or alternating group, r
is not a power of p nor q, no Sylow p- or q- subgroup of S is abelian, and that dp(r) = d =
dq(r).

First we set some notation. We define Hn := Sp2n(r), SO2n+1(r), and SOε
2n(r) in

the cases S = PSp2n(r), P�2n+1(r), and P�ε
2n(r), respectively. Let H := Hn and let

� := Or ′
0(H) so that � is perfect and S = �/Z(�). Note that the dual groups are

H ∗
n = SO2n+1(r), Sp2n(r), and SOε

2n(r), respectively, and we will write H ∗ := H ∗
n . Note

that Z(�) ≤ Z(H) and that H/� and Z(H) are 2-groups. Let P̃ and Q̃ be Sylow p- and
q-subgroups of H ∗.
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In this situation, it suffices to show that (up to switching p and q) there is some s ∈ Z(P̃ )

such that CG̃(s) is not divisible by |Q̃|, using similar reasoning to the above case. Indeed,

if p is odd, then P̃ may be considered as a Sylow p-subgroup of Or ′
0(H ∗) and sz cannot be

H ∗-conjugate to s for any 1 �= z ∈ Z(H ∗) since Z(H ∗) is a 2-group, so a corresponding
semisimple character χs of H is trivial on Z(H) and restricts irreducibly to �. If instead
p = 2, then such a character χs would have odd degree, and therefore restrict irreducibly
to � since H/� is a 2-group. Then since � is perfect, Z(�) is a 2-group, and χs has odd
degree, this forces χs to be trivial on Z(�). Furthermore, as before, χs ∈ Irr(Bp(H)) in
either case.

Assume first that p and q are odd. In these cases, the work of Weir [34] again describes
the structure of P̃ and Q̃, building off of the case of linear groups. If H ∗ = SO2n+1(r) or
Sp2n(r), we have Sylow p- and q-subgroups are already Sylow subgroups of GL2n+1(r)

(and hence of GL2n(r)) when d is even, and are Sylow subgroups of the naturally-embedded
GLn(r) if d is odd. For these cases, let e := dp(r2) = dq(r2), write n = ew + b with
0 ≤ b < e, and let w = a1p

t1 + a2p
t2 + · · · + akp

tk = b1q
m1 + · · · + bk′qmk′ be the p-

adic and q-adic expansions of w as before. Again without loss, we assume a1p
t1 < b1q

m1 .
In particular, P̃ and Q̃ are again isomorphic to Sylow subgroups of H ∗

ew and of the form
P̃ ∼= P

a1
1 × · · · × P

ak

k , where each Pi is a Sylow p-subgroup of GLdpti (r) and can be
identified with a Sylow p-subgroup of H ∗

epti
, and similar for Q̃. As before, let x ∈ Z(P1)

with no eigenvalues equal to 1 and let s = (x, . . . , x, 1, . . . 1) ∈ Z(P̃ ) with a1 copies of
x. Then we can see from the centralizer structure of semisimple elements that CH ∗(s) ∼=
CH ∗

a1ept1
(x, . . . , x) × H ∗

n−ea1p
t1
. Since the Sylow q-subgroups of H ∗

a1ep
t1

and H ∗
n−ea1p

t1

can be identified with Sylow subgroups of linear groups in an analogous way as for H ∗,
depending on whether d was even or odd, we have |Q̃| � |CH ∗(s)| for the same reason as in
the case of linear groups above.

If H ∗ = SOε
2n(r), then we have embeddings SO2n−1(r) ≤ H ∗ ≤ SO2n+1(r), and P̃

and Q̃ are both Sylow subgroups of either SO2n−1(r) or SO2n+1(r). In this case, letting
m ∈ {n, n − 1} so that P̃ , Q̃ are Sylow subgroups of SO2m+1(r) and now writing m =
ew + b with w written with p- and q-adic expansions as before, P̃ can again be written
P̃ ∼= P

a1
1 × · · · × P

ak

k with each Pi a Sylow subgroup of GLdpti (r), which in this case can
also be identified with a Sylow p-subgroup of either SO+

2epti
(r) or SO−

2epti
(r). From here,

arguing similar to before, we obtain an element s ∈ Z(P̃ ) with CH ∗(s) isomorphic to a
subgroup of CGO±

2a1ept1
(r)(diag(x, . . . , x)) ×GO±

2(n−ea1p
t1 )

(r). Since q is odd, we again see

in the same way as above that |Q̃| does not divide |CH ∗(s)|.
We are finally left with the case that 2 ∈ {p, q}. Let Ĥ ∗ denote the group GO2n+1(r),

Sp2n(r), or GO
ε
2n(r) respectively, so that [Ĥ ∗ : H ∗] divides 2. Note that if p = 2 and

H ∗ �= Ĥ ∗, then P̃ is index-2 in a Sylow 2-subgroup P̂ of Ĥ ∗, which are again described by
Carter–Fong [6]. Here in the case of GO2n+1(r) or Sp2n(r), writing n = 2t1 + · · · + 2tk for
the 2-adic expansion with t1 < · · · < tk , we have P̂ ∼= P1×· · ·×Pk , where Pi is a Sylow 2-
subgroup of GO2·2ti +1(r), respectively, Sp2·2ti (r). In the case Ĥ ∗ = GOε

2n(r), we have P̂ is
either a Sylow 2-subgroup of GO2n+1(r), embedded as before, or of the form P0×C2×C2,
where P0 is a Sylow 2-subgroup of GO2n−1(r). From here, we may argue analogously to
before, keeping in mind that when p = 2, choosing x ∈ Z(P1) to have 2t1+1 eigenvalues
−1 yields an element of determinant 1, and hence an element of P̃ = P̂ ∩ H ∗.

Conjecture C for simple groups (and Theorem E) now follows from Propositions 4.1–4.6.
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