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 Abstract—Schizophrenia is a mental illness that can 

negatively impact a patient's mental abilities, emotional 

propensities, and the standard of their private and social lives. 

Processing EEG data has evolved into a useful tool for tracking 

and identifying psychological brain states. In this framework, this 

paper focus on developing an automated approach for recognizing 

schizophrenia using non-invasive EEG signals. The EEG signals 

are segmented and onward decomposed by using the Variational 

Mode Decomposition (VMD). Each mode is termed a variational 

mode function (VMF). Onward, features from each intended VMF 

are mined based on a Rose Spiral Curve (RSC). The mined 

features are concatenated to present an instance. Afterward, the 

most pertinent features are selected using the Butterfly 

Optimization Algorithm (BOA). The selected feature set is 

conveyed to the classification module. Two classification 

approaches are applied in this study namely, the k-nearest 

neighbor (k-NN) and Random Forest (RF). The applicability is 

tested by using a publicly available EEG schizophrenia dataset. 

The highest accuracy of 89.0 % is secured for the case of RF.       
 

Index Terms—Electroencephalogram, Segmentation, Variational 

Mode decomposition, Metaheuristic Optimization, Features 

Extraction, Machine Learning, Schizophrenia, Classification. 

 

I.  INTRODUCTION 

Schizophrenia (SZ) is a serious brain condition that affects a 

person's thinking, memory, comprehension, speech, and 

behavioral traits [1]. When a person's quality of life is damaged 

due to their chronic mental disease, it affects their career, 

marriage, and lifestyle, and 20–40% of them make at least one 

attempt at suicide [2]. According to the World Health 

Organization (WHO), this mental illness affects 20 million 

individuals globally [1]. However, the WHO has also said that 

SZ is treatable, and that an accurate and prompt prognosis is 

beneficial for better treatment and the patient's recovery. 
The SZ usually starts to create problems at a young age, and 

the harm it does gets worse with time. Initiating long-term 
therapy that might aid in lowering brain deformations requires 
an early diagnosis and a prompt prognosis.   

Interviews and behavioral indicators including 
hallucinations, functional deterioration, and disordered speech 
are typically used to diagnose SZ. This laborious and drawn-out 
assessment needs a licensed psychiatrist and takes time. 
Therefore, to assist doctors in beginning medical therapy as 
soon as possible, it is vital to design an automated model to 
diagnose patients. 

To understand brain activity and diagnose mental diseases 

including depression [3], [4], epileptic seizures, alcoholism [5], 

autism [6], Parkinson's disease [7], Alzheimer's disease [8], and 

many others, the Electroencephalography (EEG) signals have 

been widely employed in research. Numerous studies have 

utilized EEG signals to identify SZ in the literature. Due to its 

cheap cost, non-intrusiveness, simplicity of setup, high 

temporal and spatial resolutions, and ease of use, it is regarded 

as the preferable approach for detection. An automated 

approach is required since manually filtering EEG signals is a 

difficult and time-consuming process. 

In the literature, a lot of research has been performed on SZ 

diagnosis. On pre-processed EEG signals, Dvey-Aharon et al. 

[9] performed the Stockwell transformation [10], which 

transforms time-series data into temporal frequency 

representation from which the most important features were 

selected. These characteristics were utilized to train the k-

Nearest Neighbor (k-NN) algorithm for patient categorization. 

Shim et al. [11] looked at the impact of sensor-level and source-

level factors on the machine-learning-based diagnosis of SZ. 

Following the feature selection process, the Support Vector 

Machine (SVM) classifier was trained using the leave-one-out 

cross-validation method. Following the feature selection 

process, the SVM classifier was trained using the leave-one-out 

cross-validation method. In [12], Santos-Mayo et al. mine 

characteristics using a combination of time-frequency analysis 

and Evoked Related Potential. Then, "linear discriminant 

analysis," "mutual information" (MI), and "double input 

symmetrical relevance" were used to choose the most relevant 

characteristics. SVM and Multi-layer Perceptron are trained to 



 

 

utilize the features chosen using these three distinct techniques 

(MLP). By merging the characteristics provided by several 

electrodes, they have experimented with various electrode 

groupings. Relative Wavelet Energy is a method used by Aslan 

and Akin [13] to extract distinguishing characteristics from 

EEG data. These characteristics were then used to train the k-

Nearest Neighbors classifier. From EEG recordings of 78 

people, Thilakvathi et al. calculated the Shannon Entropy, 

Spectral Entropy, Higuchi's Fractal Dimension, and 

Kolmogorov complexity-based features in [14]. SVM and 

Feed-Forward Neural Networks are utilized for classification 

from this point forward. 
There have also been attempts to utilize EEG waves to 

detect SZ using various deep learning architectures. Oh et al. 
create an 11-layered Convolutional Neural Network (CNN) 
model for SZ patient classification in [1].  
The research of Shalbaf et al. [15] examines the impact of the 
frontal, parietal, central, temporal, and parietal brain areas on 
the identification of SZ. This method is intriguing for locating 
the brain area that is most important for the diagnosis of SZ. 
Additionally, it allows for a reduction in the number of EEG 
electrodes and channels that must be processed. As a result, it 
provides an effective solution for data management, processing, 
transmission, and storage. As a result of this study, we have 
concentrated this research on the processing of frontal EEG data 
for the detection of SZ. 
In this paper a novel hybridization of segmentation, 
“Variational Mode Decomposition” (VMD), “Rose Spiral 
Curve” (RSC) based Modes features mining, “Butterfly 
Optimization Algorithm” (BOA) based feature selection and 
machine learning algorithms is devised for an automated 
identification of SZ. The intended dataset and methods are 
described and the results are presented and described. The 
limitation of this study and future works are also presented.  

The remainder of this paper is structured as follows. The 
used materials and methods are described in Section II. Section 
III presents and discusses the findings, and Section IV 
concludes this study. 

 

II. MATERIALS AND METHODS 

The suggested solution, at the block level, is displayed in Fig. 

1. Different system modules are described in the following sub-

sections. 

  
Fig. 1: The system block level diagram. 

 

A. Dataset 

The Institute of Psychiatry and Neurology in Warsaw, 

Poland, provides a collection of EEG signals that are used in 

this study. It includes data from 14 normal and 14 obsessive SZ 

participants. Everyone had their EEG data collected for fifteen 

minutes at a sampling rate of 250 Hz using the conventional 10-

20 technique. During the signal capture process, all subjects had 

their eyes closed and were in a relaxed state. 19 electrodes are 

positioned on 5 distinct cortical areas to capture the EEG from 

normal and SZ patients. 

In this study, the EEG signals captured from the frontal 

region comprises of channels Fp1, Fp2, F7, F3, Fz, F4, and F8 

are considered.  

The EEG signals are splitted into segments of 20-second 

length, each comprises of 5000x7 samples and it is named as an 

instance 𝑥. In total 1419 instances are considered, comprises of 

639 control and 779 SZ instances. 

 

B. Variational Mode Decomposition (VMD) 

In the method of variational mode decomposition (VMD), 

the instance 𝑥 is decomposed into 𝑛𝑘 subcomponents or modes. 

Each mode is termed a variational mode function (VMF). Each 

VMF has a central frequency ω𝑘. The VMD generates the 

modes that are band-limited with compact Fourier support and 

has a specific sparsity property. The bandwidth of each mode is 

computed as follows [16]: 

Step 1: By using Hilbert transform of each mode 𝑛𝑘, the 

corresponding analytic signal is derived as 𝛿(𝑡) + 
𝑗

𝜋𝑡
 ∗  𝑛𝑘(𝑡).      

Step 2: To shift the frequency of each mode to the center 

frequency ω𝑘, each mode is multiplied by an exponential, 

which has  ω𝑘 as its center frequency. The resultant analytic 

signal is [(𝛿(𝑡) + 
𝑗

𝜋𝑡
 ) ∗  𝑛𝑘(𝑡)]𝑒

−𝑗𝜔𝑘𝑡. 

Step 3: To estimate the bandwidth of each mode, the squared 

𝐿2-norm of the gradient of shifted analytic signal is taken as: 

||𝜕(𝑡)[(𝛿(𝑡) + 
𝑗

𝜋𝑡
 )]  ∗   𝑛𝑘(𝑡)𝑒

−𝑗𝜔𝑘𝑡||2
2 

Step 4: Now, to formulate VMD as the constrained optimization 

problem, 

minimize⏟      
{𝑛𝑘,𝜔𝑘 }

[∑ ||𝜕(𝑡)[(𝛿(𝑡) +  
𝑗

𝜋𝑡
 )]]  ∗𝑛

𝑘=1

  𝑛𝑘(𝑡)𝑒
−𝑗𝜔𝑘𝑡||2

2                                .    (1)          

such that ∑ 𝑛𝑘
𝑛
𝑘=1 = 𝑥 

 

Eq. (1) can be made an unconstrained optimization problem 

by introducing the Lagrangian multiplier 𝜆 and quadratic 

penalty terms. The augmented Lagrangian is defined as: 

𝐿( { 𝑢𝑘}, { 𝜔𝑘  }, 𝜆) =  𝛼 ∑ ||𝜕(𝑡)[(𝛿(𝑡) + 
𝑗

𝜋𝑡
 )]  ∗𝑛

𝑘=1

  𝑛𝑘(𝑡)𝑒
−𝑗𝜔𝑘𝑡||2

2   + ‖𝑥(𝑡) − ∑ 𝑛𝑘𝑘 (𝑡)‖2
2    

+ 〈𝜆(𝑡), 𝑥(𝑡) − ∑ 𝑛𝑘𝑘 (𝑡)〉.   .  (2)    

     

The parameter 𝛼 is used to balance the data fidelity 

constraint. To solve the original optimization problem of Eq. 

(2), the saddle point of the Lagrangian is determined by using 

the Alternate Direction Method of Multipliers (ADMM). The 

ADMM is an iterative method, where each mode 𝑛𝑘 is updated 

in every iteration as:  

𝑛𝑘
𝑛+1 (𝑤) =  

𝑥(𝜔)−  ∑ 𝑛𝑖𝑖≠𝑘 (𝜔)+ 
𝜆(𝜔)

2

1+2 𝛼 (𝜔−𝜔𝑘)
2  .    (3) 

Here, n denotes the iteration number. In each iteration, the 

center frequency of the mode is updated as: 

𝜔𝑘
𝑛+1 = 

∫ 𝜔 | 𝑛�̂� (𝜔)|
2 

∞
0 𝑑𝜔

∫  | 𝑛�̂� (𝜔)|
2 

∞
0 𝑑𝜔

 .   (4) 
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For the in-depth derivation process of VMD, readers can 

refer [16]. In this study using VMD, each instance is 

decomposed into 11 VMFs. 

 

C. Feature Extraction 

To extract the features from each VMF, we have used phase 

space dimensional features. In this study, we have utilized 

recently reported features based on the rose spiral curve (RSC). 

The brief steps to compute the RSC-based features are provided 

as follows [17]: 

First, the z-score normalized signal 𝑠 is represented in two-

dimensional phase space (2D-PS) as: 

𝐴 = cos(𝜋 × 𝑠) × sin(𝑠).     (5) 

𝐵 = sin(𝜋 × 𝑠) × cos(𝑠).     (6) 

From the 2D-PS trajectory formed by A and B, the attractors 

are quantified with the following four features: 

 

Feat1: It is the summation of all the radial distances of each of 

the data points from the origin, given as: 

Feat1 = ∑ √𝐴𝑘
2 + 𝐵𝑘

2𝑁
𝑘=1 .    (7) 

Feat2: It is the summation of all angles of data points for the x-

axis measured in the anticlockwise direction. The Feat2 is 

defined as: 

𝐹𝑒𝑎𝑡2 = ∑ tan−1
𝐵𝑘

𝐴𝑘

𝑁
𝑘=1 .     (8) 

 

Feat3: It is defined as: 

 

𝐹𝑒𝑎𝑡3 = ∑
|𝐵𝑘+𝐴𝑘||𝐵𝑘+𝐴𝑘|

2

𝑁
𝑘=1  .    (9) 

The above equation essentially represents the shortest distance 

between each point of 45- and 135-degree lines of rectangle 

edges formed between the origin and each data point in 2D-PS.  

 

Feat4: For computing this feature, let us consider two 

successive points in 2D-PS with trajectories as (𝐴𝑘, 𝐵𝑘), 

(𝐴𝑘+1, 𝐵𝑘+1), which defines the corner of the triangle for the 

origin (0,0). The Feat4 is the summation of these triangle areas 

computed as, 

 

Feat4 = 0.5∑ |det [
𝐴𝑘 𝐴𝑘+1 𝐴𝑘+2
𝐵𝑘 𝐵𝑘+1 𝐵𝑘+2
1 1 1

]|𝑁−2
𝑘=1 .  (10) 

In this manner, 4 features are mined from each VMF, 

resulting in 44 features per instance for 11 VMFs. 

 

D. Butterfly Optimization Algorithm, (BOA) 

Metaheuristic optimization techniques have gained much 

attention from research communities due to their fast 

convergence and interpretability [18]. In this work, we have 

used a popular metaheuristic algorithm for the feature selection 

tasks. In the following text, a brief on artificial butterfly 

optimization has been provided. 

The BOA is inspired by the mate search approach of speckled 

wood butterflies, the BOA divides the solutions into two 

categories, namely, the sunspot and canopy. Initially, the 

population is initialized randomly as [19]: 

 

𝑍𝑖,𝑗
𝑡+1 = 𝑍𝑖,𝑗

𝑡 + (𝑍𝑖,𝑗
𝑡 − 𝑍𝑘,𝑗

𝑡 ). 𝑟𝑛𝑑().    (11) 

 

In Eq. (11), the 𝑍𝑖,𝑗
𝑡  and 𝑍𝑖,𝑗

𝑡+1 represent the butterflies at 

iteration number 𝑡 and 𝑡 + 1. The j denotes the search space 

dimension. The 𝑟𝑛𝑑() is a random number between +1 and -1. 

To update the butterflies, the following equation is used: 

 

𝑍𝑖,𝑗
𝑡+1 = 𝑍𝑖,𝑗

𝑡 +
𝑍𝑘,𝑗
𝑡 −𝑍𝑖,𝑗

𝑡

‖𝑍𝑘,𝑗
𝑡 −𝑍𝑖,𝑗

𝑡 ‖
(𝑈 − 𝐿) × 𝑠𝑡𝑝 × 𝑟𝑛𝑑().  (12) 

 

where the quantity ‖𝑋𝑘,𝑗
𝑡 − 𝑋𝑖,𝑗

𝑡 ‖ shows the distance between 

the 𝑍𝑘,𝑗
𝑡  and 𝑍𝑖,𝑗

𝑡  butterflies with U and L representing the upper 

and lower bounds of search space. To control the exploration 

and exploitation, the step size is used, which is denoted as 𝑠𝑡𝑝 

and consequently defined as: 

  

𝑠𝑡𝑝 = 1 − (1 − 0.02) (
𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑇maximum
).    (13) 

 

where, the current and maximum number of iterations are 

denoted by  𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and 𝑇maximum, respectively. For 

binarization of the BOA, a thresholding-based approach has 

been utilized, wherein, the values greater than 0.5 are rounded 

off to 1 and less than 0.5 are rounded off to 0.  

 

E. Classification  

With the use of the mined and chosen feature set, the 

performance of two well-known and reliable supervised 

machine learning algorithms is evaluated in this study to 

identify SZ. The "k-Nearest Neighbor" (k-NN) and "Random 

Forest" algorithms are being taken into consideration (RF). 

This decision was based on how frequently they were used in 

the literature for SZ detection. These classifiers' settings are 

adjusted incrementally while keeping in mind optimal 

performance. To avoid the limitation of dataset size on the 

performance of classifiers, the 1à-fold cross-validation scheme 

is followed. The biasness in findings is diminished by 

considering multiple evaluation measure criteria (cf. Section II-

F). 

1. K-Nearest Neighbor (k-NN) 

The K-nearest neighbor (K-NN) is one of the most popular 

machine algorithms because of its simplicity and efficiency in 

pattern recognition. It classifies cases based on their 

similarities. K-NN takes the point with the lowest distance 

between the training point and the sample point. This 

classification is mostly implemented when all the attributes are 

continuous [20]. In this study, the model type is coarse k-NN 

and the number of neighbors, used to approximate each label is 

set to 3, the distance metric is Euclidean, and the distance 

weight is equal. 

2. Random Forest (RF) 

The Random Forest is an ensemble made up of many 

different decision trees. The relative priority that the random 



 

 

forest assigns to the input characteristics can be plainly seen, 

and it is frequently employed for classification problems. 

It is a useful algorithm as its default hyperparameters 

frequently produce reliable predictions [21]. Some of its 

characteristics include Trees in a random forest can be de-

correlated; it chooses the training sample and assigns a portion 

of the attributes to each tree; minimizing errors. A group of 

decision trees makes up a random forest. Individual tree 

mistakes and overall variation and error are reduced because 

random forest uses all the inputs from the trees to forecast the 

outcome of a particular row. Large data volumes can be 

handled: In addition to handling missing data well and 

managing vast volumes of data with higher dimensional 

variables, it can also manage outliers with little to no impact: 

Outlier data points may have a small influence on Random 

Forest since the outcome is determined by consulting numerous 

decision trees. 

 

F. Evaluation Measures 

1. Optimization  

For evaluating the performance during optimization, we have 

used K-nearest neighbor with K=1 and classification accuracy 

as performance measure with the following equation:  

Fitness= 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛽 × 𝑒𝑟𝑟𝑜𝑟 + (1 − 𝛽)
|𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑|

|𝐹𝑡𝑜𝑡𝑎𝑙|
.  (14) 

where the misclassification parameter is  𝑒𝑟𝑟𝑜𝑟 which is the 

value of accuracy subtracted from 1. The 𝛽 is kept at a constant 

value of 0.99 to give more emphasis on classification accuracy. 

The selected and total number of features are denoted as 

𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  and 𝐹𝑡𝑜𝑡𝑎𝑙, respectively [22].  

 

2. Classification:  

There are several factors to consider when assessing a 

machine learning algorithm's performance. The algorithm's 

accuracy indicates how many cases were properly or wrongly 

predicted. There are four elements to this statement: the ‘True 

Positive” (TP), “False Positive” (FP), “False Negative” (FN), 

and the “True Negative” (TN). The performance of classifiers 

is tested using multiple well-known measures given by:    

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
.    (15) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
.      (16) 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.      (17) 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
.     (18) 

Where, the Acc, Sp, Se and F1 are the “accuracy”, 

“specificity”, “sensitivity” and “F-measure”.  

Two dimensions may be seen in the ROC curve graphic. On th

e X-axis and the Y-axis, respectively, are depicted the false po

sitive rate and the real positive rate. AUC stands for the region 

under the ROC curve [20]. The AUC is another metric used to 

assess performance. 

III. RESULTS AND DISCUSSION 

The results, obtained with the proposed method, are 

presented in this section. The whole chain is implemented by 

using the MATLAB® R2022b software. The signals from the 

frontal region EEG channels are segmented and concatenated. 

These are named instances.  

Onward, each instance is decomposed into 11 VMFs. 

Examples of control and SZ instances and their corresponding 

11 VMFs are respectively displayed in Fig. 2 and Fig. 3. 

 

 
Fig. 2: Example of control instance and its 11 VMFs. 

 
Fig. 3: Example of SZ instance and its 11 VMFs. 

 

In the next step, 4 features are mined from each VMF, 

resulting in 44 features per instance. After BOA-based 

optimization, 11 features are selected per instance. The 

dimension reduction is carried out based on the fitness test. It 

renders a dimension reduction of 4 times and is beneficial in 

terms of data management, transmission, storage, and 

processing effectiveness [23].  



 

 

The selected feature set is processed by the intended 

classifiers namely, k-NN and RF. The obtained classification 

evaluation measures are outlined in Tables 1 and 2. 

 
 

Table I: The [%age] evaluation measures for the k-NN classifier  

Class 𝑷𝑻 𝑷𝟏  𝑷𝟑 𝑷𝟏 

Measure ACC. Sp. Se. F1 AUC 

Ctrl 85.00  83.40 85.60 83.20 84.00 

SZ 85.00  85.60 83.44 85.47 91.00 

Avg. 85.00  84.52 84.52 84.33 87.50 

 
Table II: The [%age] evaluation measures for the RF classifier  

Class 𝑷𝑻 𝑷𝟏  𝑷𝟑 𝑷𝟏 

Measure ACC. Sp. Se. F1 AUC 

Ctrl 89.00  88.84 89.21 87.96 95.00 

SZ 89.00  89.21 88.83 89.87 97.00 

Avg. 89.00  89.02 89.02 88.92 96.00 

 

Tables I and II show that the RF outperforms the k-NN 

classifier for the studied dataset and feature extraction and 

selection chain. On average, for both intended classes, the RF 

secures the ACC score of 89.00%, Sp value of 89.02%, Se value 

of 89.02%, F1 score of 88.92%, and AUC value of 96.00%. 

The average accuracy ACC score of RF is 4% superior 

compared to the one obtained with k-NN. Both the Sp and Se 

values, obtained with RF, are 4.5% higher than the ones attained 

with k-NN. The F1 score of RF is 4.59% higher compared to 

the F1 score of k-NN. The AUC value of RF is 8.50% superior 

to the AUC value of k-NN. It confirms an outperformance of 

the RF over the k-NN. It is achieved due to the ensemble 

learning feature of the RF, as it diminishes the confusion of 

testing data labeling compared to the case of k-NN.      

The performance of the devised solution is also 

compared with the previous contemporary studies. A 

summary of key findings and methods is presented in 

Table III. It shows that the devised solution attains a 

comparable or superior performance.  
Table III: Comparison with previous methods   

Study Classifier  Features Extraction. Acc.  

(%) 

[11] SVM Sensor-level” and 

“source-level” features 
extraction 

88.24 

[14] SVM Welch power spectral 

density-based features 
extraction. 

Dimension reduction with 

Student’s t-test. 

88.00 

[24] 2D-CNN-Long 
Short Term 

Memory 
(LSTM) 

Not Applicable 72.54 

[25] RF EEG time series based 

features 

81.10 

[26] Ensemble 
Bagged Tree 

(EBT) 

Kolmogorov complexity, 
approximate entropies, 

and Empirical Mode 

Decomposition (EMD) 
based characteristics 

89.59 

Proposed RF VMD + RSC based 

features extraction. 

89.00 

BOA based dimension 

reduction. 

The event-driven and signal-piloted processing based 

approaches can be beneficial in terms of the 

computational effectiveness, compression, consumption 

reduction, and diminishing in the hardware complexity 

[27], [28]. The feasibility if incorporating these tools, in 

the suggested method, can be investigated in future.  

 

IV. CONCLUSION 

In this paper, a new hybridization of segmentation, 

“Variational Mode Decomposition”, “Rose Spiral Curve” 

based features extraction, “Artificial Butterfly Optimization 

Algorithm” based dimension reduction, and machine learning 

algorithms are devised for an effective schizophrenia detection. 

The multichannel EEG signals, from the frontal region, are 

segmented and concatenated to form an instance. Onward, each 

instance is decomposed into 11 VMFs and features from each 

VMF are mined. Four features are mined from each Mode using 

the base of the “Rose Spiral Curve” from each VMF. It rendered 

44 features per instance. In the next step, the most pertinent 

features are selected, based on the fitness test, using the 

“Artificial Butterfly Optimization Algorithm”. It renders 11 

selected features per instance. The selected features it is 

processed by the considered machine learning-based classifiers. 

The devised model secures 89.00% average accuracy for the 

case of the Random Forest classifier. A comparison is also 

made with previous related studies. It is shown that the 

performance secured by the devised method is comparable to 

the counterparts.  

In this study, only the signals from frontal region are 

examined. In future, the EEG signals from other regions like 

central, temporal and occipital will be examined and the 

findings will be analyzed and compared. Moreover an 

optimized selection and hybridization of multi-region EEG 

signals will be investigated in the aim of attaining the best SZ 

identification performance while employing a minimum 

number of EEG signal channels. The evaluation measures 

clarify the performance of a classifier. However, the 

performance of the classifier will differ according to the 

employed dataset. Many factors contribute to the outcome and 

accuracy result. These results will vary when using different 

datasets, feature extraction methods, dimension reduction 

approaches, and classification algorithms. In the future, the 

performance of devised method will be studied while 

incorporating other decomposition, feature mining, and 

dimension reduction approaches. Another prospect is to explore 

the performance of robust ensemble and deep learning models 

for categorizing the mined dataset. Moreover, the feasibility of 

applying this method to other EEG datasets will be explored in 

the future.   
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