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We obtain the pion decay constant and coefficients of fourth derivative terms in the chiral Lagrangian for
massless quarks in the Witten-Sakai-Sugimoto model. We extract these quantities from the two-pion
scattering amplitude, which we compute directly in the holographic dual through tree-level Witten
diagrams. Identification of the low energy coefficients in the chiral action is subtle as their values will be
shifted when the tower of massive vector bosons are integrated out. Indeed, by a direct comparison with the
existing standard procedure of constructing the chiral action with radial modes in the gravity dual, we
explicitly show that there are finite ’t Hooft coupling corrections that have been missed. This suggests that
past derivations of effective actions from holographic models may have to be revisited and future
derivations more carefully considered.
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I. INTRODUCTION

Since the inception of gauge/gravity, or holographic,
duality there has been a conscious effort to perceive
quantum chromodynamics (QCD) in the nonperturbative
regime [1]. We do not know if the holographic dual of QCD
exists and, even if that is the case, there is likely no weakly
coupled gravity description. To date, quantitative predic-
tions have usually been based on a phenomenological
approach where weakly coupled holographic models are
fitted to known QCD data obtained through experiments or
other nonperturbative approaches. The most developed
model in this respect is presumably [2] (coined V-QCD).
The observables that are relevant in the construction

of a holographic model are low energy coupling constants
(LECs). These constants enter in the effective QCD
action and determine the interactions among hadrons and,
most importantly, their values can be inferred from experi-
ments. Chiral perturbation theory (ChPT) (see [3–5] for
reviews) provides a systematic approach to characterize the
LECs based on the approximate flavor symmetry of the

microscopicQCDLagrangian and the spontaneous breaking
of this symmetry by a chiral condensate in theQCDvacuum.
A holographic model that aspires to quantitatively counter-
feit QCD observables in the confined phase should therefore
be able to reproduce the chiral effective actionwith values of
the LECs that match the experimental observations.
In this program being able to extract the LECs from the

holographic model is fundamental. An early proposal on
how to construct the effective action was within the Witten-
Sakai-Sugimoto (WSS) model [1,6,7] by unveiling the
action in the gravity side for modes of the fields dual to
mesons. Later works in other models followed a similar
approach [8–22]. In this work we follow a different
path; we extract the LECs from the low-energy scattering
amplitude of pions, that we compute directly from Witten
diagrams in the gravity dual following the method devel-
oped in [23,24]. To be definite, we focus on theWSS model
with two flavors of massless quarks and find that the
coefficients originating from pion self-interactions in the
gravity dual were misidentified.

A. Summary of the discrepancy
with existing literature

Let us exbound the nature of the discrepancy, by
examining the original result of Sakai and Sugimoto
in [7]. We postpone a detailed description of the chiral
Lagrangian and scattering amplitudes in Sec. II to keep the
discussion here more concise.
For Nf flavors, the pion field is a Nf × Nf unitary matrix

U ¼ e2iΠ=fπ , with Π a Hermitean matrix. In addition,
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there is a tower of massive vector meson fields vnμ,
n ¼ 1; 2; 3;…. Higher n corresponds to higher mass.
From the dual gravity point of view, n labels Kaluza-
Klein modes in the holographic radial direction. The
effective action (in the absence of sources) was found to
be of the form

L¼−trð∂μΠ∂μΠÞ−
1

3fπ2
tr½Π;∂μΠ�2þ

1

2e2Sfπ
4
tr½∂μΠ;∂νΠ�2

þ
X
n

2trð∂½μvν�Þ2þm2
vnðvnμÞ2

þ2bvnππ
fπ2

trð∂½μvν�½∂μΠ;∂νΠ�Þ; ð1:1Þ

where e2Sfπ
2 ≃ 0.51. Focusing on the quartic terms in the

pion fieldOð∂2Π4Þ, the naïve LECs in this action1 would be
the same as for the Skyrme model [25–27]. For Nf ¼ 3 the
LECs satisfy the relations

LSUð3Þ
2 ¼ 2LSUð3Þ

1 ; LSUð3Þ
3 ¼−3LSUð3Þ

2 ; LSUð3Þ
1 ¼ 1

32e2S
:

ð1:2Þ

The first relation actually always holds in the large-Nc limit,
so there are only two independent coefficients (this is true
for any value of Nf ). For SUð2Þ the term proportional to L3

can be recast as the term proportional to L1, so that for the
WSS model

LSUð2Þ
1 ¼ LSUð3Þ

1 þ 1

2
LSUð3Þ
3 ¼ −LSUð3Þ

2 ¼ −LSUð2Þ
2 : ð1:3Þ

However, the action (1.1) is not in the standard form; in
particular, the last term capturing the coupling between the
vector mesons and the pions is not the expected one from
hidden local symmetry (HLS) considerations. In order to
correct for this, one redefines the vector meson fields as
follows:

v̂nμ ¼ vμ þ
bvnππ
2fπ2

½Π; ∂μΠ�: ð1:4Þ

After this redefinition the action becomes

L ¼ −trð∂μΠ∂μΠÞ þ
X
n

2trð∂½μv̂ν�Þ2 þm2
v̂nðvnμÞ2

− 2gvnππtrðv̂nμ½Π; ∂μΠ�Þ: ð1:5Þ

So, according to this, the actual prediction before vector
mesons have been integrated out is that the LECs are zero.
Sakai and Sugimoto computed the pion scattering ampli-
tude to lowest order in momentum (Sec. 3.7 of [7]) and

found that even though contributions from quartic contact
terms cancel out, the contribution from vector meson
exchange produces the right amplitude (proportional to
1=fπ2) as expected from low energy theorems, but a
complete calculation showing that the LECs are indeed
given by (1.2) was missing.
This is not the whole story, however, because there are

other possible contributions to the LECs in the WSS model
that have been neglected so far. They originate from higher
derivative corrections in the holographic model and would
be relatively suppressed by powers of the ’t Hooft coupling.
We will compute them and show that these contributions
are indeed nonvanishing.
To derive the actual chiral Lagrangian below the rho

meson mass one can integrate out the massive vector
mesons to produce an effective action that contains only
the pion. In this case the LECs are generally shifted relative
to the explicit terms appearing in the actions above. They
can be read off from the pion scattering amplitude
expanded to the suitable order in momentum, taking into
account vector meson exchange contributions. As we will
see, the LECs derived in this way coincide with the values
quoted by Sakai and Sugimoto, up to the corrections we
just mentioned. This coincidence, at least regarding the
relative values of the LECs, stems from vector meson
dominance, which originates from the meson couplings in
(1.5). The LECs in (1.1) in this case give the right value
because the coupling between the vector mesons and the
pions is such that it turns out not to modify their value when
the vector mesons are integrated out.
In conclusion, one should be careful when identifying the

LECs from an action derived holographically, at least when
the action includes massive mesons coupled to the pions, as
the low energy pion scattering amplitude can receive meson
exchange contributions. The actions (1.1) and (1.5) are
related by a field redefinition, so they produce the same low
energy scattering amplitude and, when the massive vector
mesons are integrated out, the same low energy effective
action for the pions. The holographic calculation of the
scattering amplitude seems to be in accord with the action
(1.5); the LECs originally quoted by Sakai and Sugimoto
originate from exchange diagramswhile the new corrections
we have found originate from contact interactions.
The structure of our paper is as follows. In Sec. II we

review the chiral effective action and the ingredients needed
to compute the pion scattering amplitude. We also explain
the contribution from vector meson exchange and how
the values of the LECs are shifted. In Sec. III we review the
salient details of the WSS model and steer focus on the
original calculation of the chiral effective action. In Sec. IV
we derive the scattering amplitude of pions in the WSS
model and extract the LECs. Finally, we contrast our
results with those in the existing literature with some
further implicatory remarks in Sec. V. We also generalize
our results in the large-Nc ’t Hooft limit to an arbitrary1Their precise definition can be found in Eqs. (2.2) and (2.3).
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(but fixed) number of flavors. Technical details of the
holographic calculation of the scattering amplitude have
been compiled in the Appendix.

II. CHIRAL EFFECTIVE ACTION

In this section wewill spell out some basics involving the
chiral effective Lagrangian. Here and in the following we
will have in mind a SUðNcÞ Yang-Mills theory with
additional matter, and work in the large-Nc limit. A theory
with two flavors of massless quarks enjoys a Uð2ÞR ×
Uð2ÞL global symmetry. The diagonal component is the
vector symmetry Uð2ÞV and the off-diagonal part is the
axial symmetry Uð2ÞA. The latter is anomalous, though
the anomaly vanishes for the non-Abelian component.
As we will discuss in Sec. V, in the large-Nc limit this
is enough to extract the LECs we are interested in for an
arbitrary number of flavors.
When a quark condensate is formed, there is a sponta-

neous breaking of symmetry Uð2ÞR ×Uð2ÞL → Uð2ÞV.
The Nambu-Goldstone bosons associated to the broken
SUð2Þ axial symmetry are pions and they can be collected
in a SUð2Þ matrix Σ that transforms as

Σ → ULΣU
†
R: ð2:1Þ

The low energy effective theory of the Nambu-Goldstone
bosons is captured by the chiral Lagrangian, that admits a
systematic expansion in derivatives of Σ. To fourth order in
derivatives one can have the terms

L ¼ −
fπ2

4
Trð∂μΣ†

∂
μΣÞ þ L1ðTrð∂μΣ†

∂
μΣÞÞ2

þ L2ðTrð∂μΣ†
∂νΣÞÞ2: ð2:2Þ

The large-Nc scaling of the coefficients is fπ2 ∼ Li ∼ Nc

[28]. For three flavors there is an additional term

L3Trðð∂μΣ†
∂νΣÞ2Þ: ð2:3Þ

But for SUð2Þ there is the following relation:

Trðð∂μΣ†
∂νΣÞ2Þ ¼

1

2
ðTrð∂μΣ†

∂
μΣÞÞ2: ð2:4Þ

Therefore, to compare with other models where the action

was written for three flavors one should set LSUð2Þ
1 ¼

LSUð3Þ
1 þ 1

2
LSUð3Þ
3 .

The axial current can be obtained by first adding gauge
fields for the right-handed and left-handed symmetries by
promoting the derivative to a covariant derivative with the
left-handed and right-handed gauge fields Lμ and Rμ

∂μΣ → DμΣ ¼ ∂μΣþ iLμΣ − iΣRμ: ð2:5Þ

Considering the SUð2Þ generators τa ¼ 1
2
σa, a ¼ 1, 2, 3,

with σa the Pauli matrices, the components of the left-
handed and right-handed currents are

JaμL ¼ δL
δLa

μ
¼−

ifπ2

4
TrððΣ∂μΣ†−∂

μΣΣ†ÞτaÞþOð∂3Þ;

JaμR ¼ δL
δRa

μ
¼ ifπ2

4
Trðð∂μΣ†Σ−Σ†

∂
μΣÞτaÞþOð∂3Þ: ð2:6Þ

We will introduce the pion field using the exponential
parametrization

Σ ¼ exp

�
i
fπ

π · σ

�
¼ exp

�
i
fπ

πaσa
�
: ð2:7Þ

The axial current in this case is

Jaμ5 ¼ JaμL − JaμR

¼ −fπ∂μπa þ
2

3fπ

�
ðπ · πÞ∂μπa − 1

2
∂
μðπ · πÞπa

�
þ…:

ð2:8Þ
The Lagrangian density expanded to fourth order in the
pion field is

L¼−
1

2
∂μπ ·∂μπ−

1

6fπ2
ðð∂μπ ·πÞ2− ðπ ·πÞð∂μπ ·∂μπÞÞ

þ4L1

fπ4
ð∂μπ ·∂μπÞ2þ

4L2

fπ4
ð∂μπ ·∂νπÞ2þOð∂2π6Þ: ð2:9Þ

A. Pion scattering amplitude

Let us now discuss how the scattering amplitude can be
extracted from the chiral Lagrangian introduced above. The
elastic scattering amplitude for two pions

πaðpaÞ þ πbðpbÞ ⟶ πcðpcÞ þ πdðpdÞ ð2:10Þ

is given by the T-matrix element

T ab;cd ¼ ð2πÞ4δð4Þðpa þ pb − pc − pdÞMab;cd: ð2:11Þ

The function M is determined by a single scalar function
Aðs; t; uÞ ¼ Aðs; u; tÞ defined by the isospin decomposition
(see, e.g., [3,29,30])

Mab;cd ¼ δabδcdAðs; t; uÞ þ δacδbdAðt; s; uÞ
þ δadδbcAðu; t; sÞ; ð2:12Þ

where s, t, u are the Mandelstam variables

s¼−ðpaþpbÞ2; t¼−ðpa−pcÞ2; u¼−ðpa−pdÞ2:
ð2:13Þ
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These variables encode the different scattering processes
and correspond to the three channels as depicted in Fig. 1.
At Oðp4Þ, the original derivation by Weinberg produces at
tree level [31,32]

Aðs; t; uÞ ¼ s
fπ2

þ 8L1

fπ4
s2 þ 4L2

fπ4
ðt2 þ u2Þ: ð2:14Þ

For massless pions there are additional logarithmic
contributions to the amplitude that are introduced by pion
loop corrections. The relevant pion diagram has two quartic
vertices with two derivatives, that from the pion Lagrangian
(2.9) have a large-Nc scaling ∼1=fπ4 ∼ 1=N2

c . The tree-
level contributions on the other hand have a scaling
∼Li=fπ4 ∼ 1=Nc. Therefore, in the large-Nc limit the pion
loop contributions are relatively suppressed and are thus
not captured by the classical holographic dual calculation.
The same statement applies to other meson loop correc-
tions; they are suppressed in the large-Nc limit. Therefore,
our calculation will be limited to tree-level on-shell
amplitudes.
In order to compare to gauge/gravity models we will

consider the axial current correlators for values of the
momenta where the pions are on-shell. We start with the
two-point function of the axial current, which will be
proportional to the pion propagator2

hJaμ5 ð−pÞJbν5 ðpÞi ≈
p2→0

fπ2pμpνhπað−pÞπbðpÞi

¼ −ifπ2δab
pμpν

p2
: ð2:15Þ

This leads to the Ward identity for current conservation

−ipμhJaμ5 ð−pÞJbν5 ðpÞi ≈
p2→0

− fπ2pνδab: ð2:16Þ

However, in the absence of an anomaly and quark masses,
the axial current must be conserved and one would have

expected this Ward identity to vanish. As we will see, this
issue is solved in the holographic model when the two-
point function correlator is computed and we find a
vanishing value [see (4.27)]. The reason is that we are
missing a contact term in landing on (2.16) whose origin
could be understood from contributions to the axial current
other than the gradient of the pion field.
Similarly, the four-point function of the axial current will

be proportional to the one of the pions

hJaμa5 ðpaÞJbμb5 ðpbÞJcμc5 ð−pcÞJdμd5 ð−pdÞi
≈

p2
i→0

fπ4p
μa
a pμb

b pμc
c p

μd
d hπaðpaÞπbðpbÞπcð−pcÞπdð−pdÞi:

ð2:17Þ

From the pion correlator we are interested just in the
leading pole contribution, which gives us the pion scatter-
ing amplitude through the LSZ (Lehmann—Symanzik—
Zimmermann) reduction formula

hπaðpaÞπbðpbÞπcð−pcÞπdð−pdÞic
≈

p2
i→0

ð2πÞ4δð4Þðpa þ pb − pc − pdÞ
iMab;cd

p2
ap2

bp
2
cp2

d

; ð2:18Þ

where Mab;cd in this expression is the amplitude (2.12).

B. Vector boson contributions

Our discussion thus far has been focusing on the chiral
effective action at low energies, where heavier mesons have
been integrated out. However, in most holographic exam-
ples the effective action includes massive vector bosons
coupled to the pions. Whether the vector bosons have been
integrated out or not affects the value of the LECs in the
pion action. Namely, starting from an action

LUV ¼ Lπðfπ; L1; L2Þ þ LV ; ð2:19Þ

where Lπðfπ; L1; L2Þ is (2.2) with the coefficients fπ; L1,
and L2 and the last term LV is the action for the vector
bosons. At sufficiently low energies, the vector bosons can
be integrated out, resulting in an action that only contains
the pions but with modified coefficients

FIG. 1. The three kinematically nonidentical 2-to-2 elastic scattering processes. All propagating particles are pions, hence all legs are
represented by dashed lines. Left: s-channel; middle: t-channel; and right: u-channel.

2In principle there are additional terms depending on the pion
field in (2.8) that introduce pion loop corrections to the axial
current correlator; however, as for the scattering amplitude, these
are suppressed in the large-Nc limit.
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LIR ¼ Lπðf̂π; L̂1; L̂2Þ: ð2:20Þ

Let us show this explicitly for the case when the structure of
the effective action follows the hidden local symmetry
approach [33,34], which is commonly discussed in the
context of holographic models, where it arises from gauge
symmetries in the gravity dual.
In the HLS approach the pion matrix is factorized

ΣðxÞ ¼ ξ†LðxÞξRðxÞ: ð2:21Þ

In addition to the left- and right-moving flavor symmetries
there is an emergent gauge symmetry, so that the fields ξL;R
transform as

ξLðxÞ→ hðxÞξLðxÞU†
L; ξRðxÞ→ hðxÞξRðxÞU†

R: ð2:22Þ

The massive vector boson is identified with the gauge field
for the hidden symmetry and the form of the action is
constrained by demanding local gauge invariance. The
HLS action is directly related to the nonlinear realization of
local chiral transformations introduced by Weinberg [35]
by going to the unitary gauge (see, e.g., [34])

ξ†LðxÞ ¼ ξRðxÞ ¼ e
iπaðxÞ
fπ

σa
2 : ð2:23Þ

Let us denote Vμ ¼ Va
μσ

a as the gauge field associated to
the vector boson and Vμν ¼ ∂μVν − ∂νVμ þ gVμ × Vν as its
field strength with g an effective gauge coupling. In
addition to the terms shown in (2.9), the effective action
has the vector boson contributions

LV ¼−
1

4
Vμν ·Vμν−

1

2
m2

V

�
Vμ−

gVππ
m2

V
π×∂μπ

�
2

; ð2:24Þ

where mV is the mass of the vector boson and gVππ is the
coupling to the pion field. The expansion of the invariant
mass term for the vector boson includes a cubic coupling
with the pions and a Oð∂2π4Þ coupling of the same form as
the terms shown in the first line of (2.9),3 see, e.g., [34,36].
However, in the pion scattering amplitude this additional
vertex contribution is canceled out by the leading contri-
bution from vector boson exchange, so the Oðp2Þ pion
scattering amplitude does not change. In general, there can
be vector bosons transforming as adjoint fields of the chiral
symmetry with different couplings where this cancellation
does not happen, and additional couplings to the vector
bosons that appear at Oðp4Þ and so can also affect the
amplitude.

There are, however, Oðp4Þ contributions that add up to
the contributions shown in (2.14). The tree-level contribu-
tion to the pion scattering amplitude from the vector meson
exchange has the form [37,38]

AVðs; t; uÞ ¼
g2Vππ
m2

V

�
tðs − uÞ
m2

V − t
þ uðs − tÞ

m2
V − u

�
: ð2:25Þ

Expanding for small momenta m4
V ≫ s2; t2; u2, and using

the fact that here the pions are massless particles yields

sðtþ uÞ ¼ −s2; 2ut ¼ s2 − t2 − u2: ð2:26Þ

Therefore, the vector boson contribution to the low energy
scattering amplitude reduces to

AVðs; t; uÞ ¼
g2Vππ
m4

V
½t2 þ u2 − 2s2�: ð2:27Þ

We can compare this expression with Weinberg’s amplitude
(2.14). We see that these contributions can be added to
terms with the same dependence in the momentum, in such
a way that one obtains effective values of the LECs that are
shifted Li → L̂i ¼ Li þ ΔLV

i at energies below the vector
meson mass. Therefore, integrating out the massive vector
boson will shift the LECs of the chiral Lagrangian (2.9) to

ΔLV
2 ¼ −ΔLV

1 ¼ fπ4

4

g2Vππ
m4

V
: ð2:28Þ

Furthermore, one could have several massive vector
bosons Viμ, i ¼ 1; 2;… with similar couplings to the
pions; in this case the shift in the LECs will have
contributions from all of them

ΔLV
2 ¼ −ΔLV

1 ¼ fπ4

4

X
i

g2Viππ

m4
Vi

: ð2:29Þ

We could be in a situation in which the LECs in the
pion action vanish or are much smaller than the vector
boson contribution. In this case, after integrating out the
vector bosons, the LECs would automatically satisfy the
relation L̂2 ¼ −L̂1, which corresponds to the Skyrme
model [25–27]. An Oðp4Þ coupling between the vector
boson and the pions,

∼z4Vμν · ∂μπ × ∂νπ; ð2:30Þ

does not modify this relation; see (4.38) of [36], where z4 is
introduced in (4.27).

III. HOLOGRAPHIC MODEL

In this section we will introduce our string theory setup
that resembles QCD and within which we can derive the

3Any additional free parameters in the HLS model are
absorbed in the coefficients of the gauge-fixed effective action
in such a way that the HLS model is equivalent to the nonlinear
sigma model for tree-level on-shell amplitudes.
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pion scattering amplitude at strong coupling. One of the
closest holographic cousins to QCD is the Witten-Sakai-
Sugimoto model (WSS) [1,6,7]; for a review see [39].
The background geometry is the near-horizon limit of a
nonsupersymmetric (3þ 1)-dimensional D-brane intersec-
tion of Nc D4-branes and Nf D8-D8-brane pairs, arranged
as in Table I. The τ direction is compactified along a circle
with SUSY-breaking boundary conditions, and the D8- and
D8-branes sit at separate points. Reducing along the τ
direction one ends with a (3þ 1)-dimensional theory that
flows at low energies to SUðNcÞ QCD with Nf massless
quarks when the ’t Hooft coupling λYM ¼ g2YMNc is small.
When the coupling is large there is no separation of scales
between the QCD sector and the five-dimensional Kaluza-
Klein modes on the circle. While this latter case corre-
sponds to the regime where the classical supergravity
approximation is valid in the holographic dual, it will still
be useful to use the holographic dual to study those low-
energy observables that do not directly involve the Kaluza-
Klein states.
In the string frame the type IIA supergravity background

sourced by the D4-branes at zero temperature when
Nc → ∞ is

ds210¼
�
U
R

�
3=2

ðημνdxμdxνþfðUÞdτ2Þ

þ
�
R
U

�
3=2

�
dU2

fðUÞþU2dΩ2
4

�
;

fðUÞ¼1−
U3

KK

U3
; eϕ¼ gs

�
U
R

�
3=4

; F4¼dC3¼
2πNc

V4

ϵ4;

ð3:1Þ

where R3 ¼ πgsNcl3s , and the Kaluza-Klein mass is
MKK ¼ ð3=2ÞU1=2

KK=R
3=2. In our convention the τ direction

has periodicity 2π=MKK and ϵ4 is the volume form of a unit
S4, of volume V4 ¼ 8π2=3. The factor fðUÞ in the metric
implies that the circle collapses to zero size at U ¼ UKK,
where the geometry ends. The ðτ; UÞ part of the geometry
can then be visualized as a “cigar,” with U ¼ UKK the tip.
Following the usual holographic dictionary, U corresponds
to an energy scale of the theory in such a way that a lower
bound for U ≥ UKK sets a minimal energy scale for states
in the dual field theory, thus encoding the mass gap of
Yang-Mills in the confining phase. The map to field theory
quantities of the parameters in the D4-brane geometry is

R3 ¼ 1

2

λYMl2s
MKK

; UKK ¼ 2

9
λYMMKKl2s ; gsNc ¼

1

2π

λYM
MKKls
ð3:2Þ

with ls the string length and λYM ¼ g2YMNc the ’t Hooft
coupling of the (3þ 1)-dimensional dual Yang-Mills
theory.
Flavors are included by introducing Nf probe D8-branes

in the geometry induced by D4-branes [6,40]. In the near-
horizon limit where the D4-branes are replaced by the
geometry displayed above, each D8 and D8, that sit at
separated points in the τ direction asU → ∞, join at a finite
value of the radial coordinate and form a single object. This
is the geometric realization of the formation of a quark
condensate and chiral symmetry breaking. The asymptotic
separation between the D8 and D8 can be changed,
producing different values of the quark condensate. In this
paper we will consider the simplest scenario where the D8-
and D8-branes sit at antipodal points in τ and join at the tip
of the cigar. Quark masses may be introduced for non-
antipodal embeddings [41]; we will discuss this important
generalization in Sec. V. The illustration of the D8-D8
embeddings in the cigar geometry is included in Fig. 2.
The action for the D8-branes in the string frame

SD8 ¼ SDBI þ SWZ ð3:3Þ
consists of Dirac-Born-Infeld (DBI) and Wess-Zumino
(WZ) actions

SDBI ¼ −T8

Z
D8

d9x e−ϕSTr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðGMN þ 2πα0FMNÞ

p
;

ð3:4Þ

SWZ ¼ 1

3!ð2πÞ3
Z
D8

C3 ∧ STrF3; ð3:5Þ

FIG. 2. Embedding of the D8-branes in the Witten background.
We only consider massless pions in the zero temperature
confining phase, which corresponds to configurations where
D8- and D8-branes are fixed at antipodal points of the τ direction
in the asymptotic boundary and they join at a holographic radial
position UKK where the geometry smoothly closes off.

TABLE I. D-brane intersection in the WSS model. Branes are
extended along the directions marked with ×.

0 1 2 3 τ 5 6 7 8 9

D4 × × × × × · · · · ·
D8 × × × × · × × × × ×
D8 × × × × · × × × × ×
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where T8 ¼ 1=ðð2πÞ8l9s Þ is the tension of the D8-brane.
FMN is the field strength of the non-Abelian UðNfÞ gauge
field living on the brane, while GMN is the induced metric
GMN ¼ gμνðXÞ∂MXμ

∂NXν, with gμν the 10d background
metric (3.1). The embedding functions Xμ are also Nf × Nf

Hermitian matrices, but we will take them to be propor-
tional to the identity matrix in the following as this is
sufficient for our purposes. STr stands for symmetrized
trace; this prescription for the trace is unambiguous up to
OðF4Þ in the gauge fields [42–45]. At higher orders there
can be additional corrections in α0 ¼ l2s , but fortunately we
will not need them. The WZ term captures the axial
anomaly of the dual field theory [6]. In the following
we will take Nf ¼ 2, so that the purely non-Abelian
contributions to the WZ term vanish, corresponding to
the absence of a SUð2Þ3 axial anomaly in the dual field
theory.
The Abelian and non-Abelian components of the gauge

field on the D8-branes are split according to

AM ¼ aM
12
2
þ Aa

M
σa

2
: ð3:6Þ

We will denote the Abelian field strength as fμν ¼
∂μaν − ∂νaμ. For the non-Abelian part, we will distinguish
between the linear and nonlinear part of the field strength as
follows:

Fa
μν ¼ faμν þ ϵabcAb

μAc
ν; faμν ¼ ∂μAa

ν − ∂νAa
μ: ð3:7Þ

For an antipodal D8-brane embedding it is convenient to
introduce a change of coordinates ðτ; UÞ → ðy; zÞ with

y¼rcosθ; z¼rsinθ; θ¼MKKτ; U3¼U3
KKþUKKr2:

ð3:8Þ

The D8-brane will be localized at y ¼ 0 and extended along
the z direction. The induced metric on the D8-brane in this
case reads

ds28 ¼
4

9

�
R
Uz

�
3=2UKK

Uz
dz2 þ

�
Uz

R

�
3=2

ημνdxμdxν

þ R3=2U1=2
z dΩ2

4; ð3:9Þ

where

U3
z ¼ U3

KK þUKKz2: ð3:10Þ

It will be convenient to introduce dimensionless coor-
dinates Z ¼ z=UKK, xμ ¼ x̂μ=MKK and define

uðZÞ ¼ ð1þ Z2Þ1=3: ð3:11Þ

Then, the induced metric in the dimensionless quantities is
GMN ¼ L2ĜMN , where

dŝ28 ¼ uðZÞ1=2
�
dZ2

uðZÞ3 þ uðZÞημνdx̂μdx̂ν þ
9

4
dΩ2

4

�
;

L2 ¼ 4

9
R3=2U1=2

KK ¼ 4

27
λYMl2s : ð3:12Þ

The DBI action can be split according to the factors of the
field strength, expanding up to OðF4Þ,

SDBI ¼ −T̃8

Z
d4x̂dZ uðZÞ2

�
2þ

�
πα0

L2

�
2

L½2�
DBI

þ
�
πα0

L2

�
4

L½4�
DBI þ…

�
; ð3:13Þ

where

T̃8 ¼
3

2gs
V4R3L6T8 ¼

Ncλ
3
YM

39π5
;

πα0

L2
¼ 27π

4λYM
: ð3:14Þ

The Lagrangian densities, in terms of dimensionless gauge
fields, coordinates, and the metric read

L½2�
DBI ¼

1

2
Fa
MNF

aMN þ 1

2
fMNfMN;

L½4�
DBI ¼ −

1

6

�
FaMAFa

NAF
b
MBF

bNB þ 1

2
FaMNFaABFb

MBF
b
AN

−
1

8
ðFaMNFa

MNF
bABFb

AB þ 2FaMNFaABFb
MNF

b
ABÞ

�

þOðf2F2; f4Þ: ð3:15Þ

In the quartic action (3.15) we omitted writing the explicit
form of the Abelian and mixed terms since at tree level they
do not contribute to a quartic interaction with non-Abelian
fields in the external legs.
The Wess-Zumino action is nonvanishing due to the

background four-form

1

2π

Z
S4
F4 ¼ Nc ð3:16Þ

in such a way that the Wess-Zumino action is proportional
to a five-dimensional Chern-Simons term for the gauge
fields on the brane

SWZ ¼ Nc

24π2

Z
M4×R

ω5ðAÞ ¼
Z

d4x̂dZLWZ: ð3:17Þ

For purely non-Abelian SUð2Þ fields, the Chern-Simons
term vanishes, as mentioned before. However, there
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are mixed terms between Abelian and non-Abelian
components

LWZ ¼ Nc

32π2
ϵMNLPQaM∂NAa

L∂PA
a
Q þOðA4aÞ: ð3:18Þ

A. Chiral symmetry and pion mode

Let us discuss the realization of chiral symmetry and the
existence of a massless mode corresponding to the pion.
Considering only fields that are constant on the S4, there are
two boundary values that have to be specified for the gauge
field on the D8-branes, each of them mapping to back-
ground values for the UðNfÞL and UðNfÞR gauge fields

lim
Z→þ∞

Aμðx; ZÞ ¼ LμðxÞ ¼ VμðxÞ þ A5μðxÞ;
lim

Z→−∞
Aμðx; ZÞ ¼ RμðxÞ ¼ VμðxÞ − A5μðxÞ; ð3:19Þ

where Vμ are the UðNfÞV (vector) and A5μ the UðNfÞA
(axial) gauge fields. The set of gauge transformations
Uðx; ZÞ of the field on the D8-branes

AM ¼ U−1AMU − iU−1
∂MU; ð3:20Þ

generate gauge transformations of the background left- and
right-handed gauge fields in the dual field theory

lim
Z→þ∞

Uðx;ZÞ¼ULðxÞ; lim
Z→−∞

Uðx;ZÞ¼URðxÞ: ð3:21Þ

In the AZ ¼ 0 gauge the set of allowed bulk gauge
transformations is reduced to Z-independent transforma-
tions UL;RðxÞ, and the global subgroup are constant trans-
formations. These global transformations are identified
with the UðNfÞL ×UðNfÞR flavor group of the dual field
theory. Note that, when the sources for the flavor currents
are turned off limZ→�∞Aμ ¼ 0, the global transformations
do not change the boundary values of the gauge field as
expected. As we mentioned, chiral symmetry is sponta-
neously broken UðNfÞL ×UðNfÞR → UðNfÞV in the dual
field theory, so there should be a mode on the D8-brane
that corresponds to massless pions. We will elucidate
this below.
From the quadratic action in (3.15) we obtain the

following set of linearized equations,

∂Z½uðZÞ3faZμ� þ
1

uðZÞ η
αβ
∂αfaβμ ¼ 0;

ηαβ∂αfaβZ ¼ 0; ð3:22Þ

where faMN ¼ ∂MAa
N − ∂NAa

M. We will split the gauge
potential in transverse, longitudinal, radial, and gauge
parts:

Aa
μ ¼ A⊥ a

μ þ ∂μAk a þ ∂μCa;

Aa
Z ¼ Ba

Z þ ∂ZCa; ημν∂μA⊥ a
ν ¼ 0: ð3:23Þ

The second equation in (3.22) imposes the conditions
(∂2 ¼ ηαβ∂α∂β)

∂
2Ba

Z ¼ ∂
2
∂ZAk a: ð3:24Þ

Then, either ∂2Aa
M ¼ 0, or BZ and Ak a are pure gauge and

can be absorbed in Ca. In the case when the first condition
is true, corresponding to a massless mode, the first equation
in (3.22) becomes

∂Z½uðZÞ3ð∂ZAa
μ − ∂μAa

ZÞ� ¼ 0: ð3:25Þ

The solutions are, up to gauge transformations Caðx; ZÞ,

Aa
μðx; ZÞ ¼ V̂a

μðxÞ þ Âa
5 μðxÞ

2

π
arctanðZÞ;

Aa
Zðx; ZÞ ¼ 2φaðxÞϕ0ðZÞ ¼

2

π

φaðxÞ
1þ Z2

: ð3:26Þ

If we set V̂a
μ ¼ Â5 μ ¼ 0 the mode is normalizable, so there

is a massless particle in the dual field theory, which will be
identified with the pion. This in fact is an exact solution of
the OðF2Þ action. The normalizable solution has the field
strength

Fa
μZ ¼ 2∂μφ

aϕ0ðZÞ; Fa
μν ¼ 0: ð3:27Þ

Let us show now that indeed φa is the pion field up to an
overall normalization. Following the usual prescription of
the holographic dictionary, we first compute the canonical
momentum conjugate to the gauge field

πμa ¼ δSD8

δð∂ZAa
μÞ
: ð3:28Þ

From (3.13),

πμa ¼ −T̃8

�
πα0

L2

�
2

uðZÞ2
�
Π½2� μ

a þ
�
πα0

L2

�
2

Π½4� μ
a þ…

�
;

ð3:29Þ

where, using (3.15),

Π½2� μ
a ¼ 2FaZμ;

Π½4� μ
a ¼ 1

6
½4Fb

LνðFa μLFbZν þ Fb μLFaZνÞ þ 4Fa
LνF

b μLFbZν

þ ðFaZμFb
NLF

bNL þ 2FbZμFbNLFa
NLÞ�: ð3:30Þ
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The expectation values of the flavor currents Ja μL and Ja μR
are obtained from the boundary values of the canonical
momentum4

hJμ aL i ¼ lim
Z→þ∞

πμa; hJμ aR i ¼ − lim
Z→−∞

πμa: ð3:31Þ

To leading order in the field, and restoring units in the xμ

directions,

hJμ a5 i ¼ hJμ aL i − hJμ aR i ≃ fπ2ημν∂νφa;

hJμ aV i ¼ hJμ aL i þ hJμ aR i ≃ 0; ð3:32Þ

where fπ2 is given in (3.39). This shows that φa is
proportional to the pion field, since the axial current is
proportional to its gradient. Our next goal is to find the pion
effective action. Usually this has been done by identifying
φa as the pion field and using the D8-brane action
integrated over the holographic radial coordinate Z as
the effective action for the field φa. Within this general
idea there are two different approaches, an off-shell
approach where φa is taken to be an arbitrary function
and an on-shell approach where it is a massless field
∂
2φa ¼ 0. The off-shell approach is the one used originally
in the WSS model [6,7], and has been also employed in
other phenomenological models [9–11,13–15,17,19,20],
while the on-shell approach was introduced in [18] for
the AdS/QCD model of [9].

B. Effective action for the pion field
and vector mesons

The basic idea of the off-shell approach is to expand the
field in “Kaluza-Klein” modes of the holographic radial
direction, which, excluding the massless mode, are of the
form

Aμðx; ZÞ ¼
X
n

AðnÞ
μ ðxÞψnðZÞ; AðnÞ

Z ¼ 0: ð3:33Þ

Here the functions ψn are eigenfunctions of the radial
derivative part of the equations

uðZÞ∂Z½uðZÞ3∂ZψnðZÞ� ¼ −m2
nψnðZÞ;

lim
Z→�∞

ψnðZÞ ¼ 0; ð3:34Þ

where m2
n determine the masses of mesons in the dual field

theory. Then, from (3.22)

∂
2AðnÞ

μ −m2
nA

ðnÞ
μ ¼ 0; ηαβ∂αA

ðnÞ
β ¼ 0: ð3:35Þ

Introducing the Kaluza-Klein expansion, together with the
massless solution back in the action (3.13) and integrating
over the radial coordinate results in an action for the 4D

fields AðnÞ
μ and φ. This is to be interpreted as the effective

action for the meson fields in the dual field theory, with
interactions determined by nonquadratic terms. In this
derivation the 4D fields are off-shell, i.e., the equations
of motion (3.35) are not imposed. In previous derivations
only theOðF2Þ terms were kept, while higher α0 corrections
to the DBI action were neglected. This restricts the terms in
the action to be at most quartic in the fields (for pions and
vector mesons) and to have at most four derivatives in the
field theory directions. Terms OðF4Þ can contribute at the
same order of derivatives and fields, so they must be
included if one is interested in computing the value of the
LECs at finite ’t Hooft coupling.
The off-shell Kaluza-Klein expansion is essentially

the approach applied to the WSS construction in [6,7] to
derive the meson effective action. The action (1.1) was
actually computed in a slightly different way. Allowing
the boundary conditions of the gauge field to be fixed only
up to boundary gauge transformations, it is possible to
apply a gauge transformation to the solution (3.26) (with
V̂μ ¼ Â5 μ ¼ 0) such that the radial component vanishes
and the pion field φa is moved to the components of the
gauge potential along the field theory directions. Beyond
the linear approximation, this amounts to fixing AZ ¼ 0
and introducing instead a pure gauge configuration for the
boundary gauge fields, that is taken to be

V̂μ ¼ −
i
2
Σ−1

∂μΣ; Â5 μ ¼ −
i
2
Σ−1

∂μΣ: ð3:36Þ

We then identify ΣðxÞ as the SUðNfÞmatrix of the pions. In
this case the field strengths are

FZμ ¼ −iΣ−1
∂μΣϕ0ðZÞ;

Fμν ¼ −i½Σ−1
∂μΣ;Σ−1

∂νΣ�ðψ0ðZÞ − 1Þψ0ðZÞ ð3:37Þ

with

ψ0ðZÞ ¼
1

2
þ 1

π
arctanðZÞ; ð3:38Þ

and we have used ψ 0
0ðZÞ ¼ ϕ0ðZÞ. Plugging (3.37) back in

the action (3.13) and keeping only OðF2Þ terms one finds
(1.1) up to quartic order in the fields. The terms that involve
only the pion have the form (2.2) with

4The relative sign stems from the variation of the D8-brane on-
shell action δSon−shell ¼

R
d4xðhJμaL iδLa

μ þ hJμ aR iδRa
μÞ, with the

left current at the upper limit of the radial integration and the right
current at the lower limit.
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fπ2 ¼ 8M2
KK

NcλYM
4233π3

Z
∞

−∞
dZu3ϕ2

0 ¼
NcλYM
54π4

M2
KK;

LSUð2Þ
2 ¼ −LSUð2Þ

1 ¼ 2
NcλYM
4233π3

Z
∞

−∞
dZ

ðψ0 − 1Þ2ψ2
0

u

¼ NcλYM
63π7

b; b ≈ 15.25: ð3:39Þ

One should note that since the boundary values of the
gauge potentials do not vanish, this actually corresponds to
having a nonzero source proportional to the derivatives of
the pion field, in such a way that the pion field enters as a
“spurion.” In order to demonstrate this we will introduce
external gauge fields V̂μ, Â5 μ coupled to the axial and
vector currents by modifying the boundary conditions
in (3.36)

V̂μ ¼ Σ−1V̂μΣ −
i
2
Σ−1

∂μΣ;

Â5 μ ¼ Σ−1Â5 μΣ −
i
2
Σ−1

∂μΣ: ð3:40Þ

Then, a simultaneous transformation of the pion field and
the boundary gauge fields leaves the boundary values of the
bulk gauge field invariant.
Expanding up to quartic order in the fields, the shift (1.4)

removes the source terms depending on the pion field from
the effective action and as we have discussed in the
Introduction, terms quartic in the pion field go away, so
the only contributions depending on the pion field left are
quadratic or interaction terms involving vector mesons.
That the spurion action is able to capture the LECs can be
understood from the fact that external gauge fields should
be dressed by the physical pion field (once massive vector
mesons have been integrated out) in the same way as they
are for the spurion in (3.40). However, even when the
massive vector mesons have not been integrated out, there
are terms at OðF4Þ in the action (3.13) not included in the
original derivation [6] that contribute at the same order in
fields (quartic) and derivatives (four), albeit they are
relatively suppressed by a 1=λ2YM factor.
Moving on to the on-shell approach, it has not really

been applied to the WSS model, but to other AdS/QCD
models with an IR cutoff in the holographic radial direction
[18]. In this case the pion field is typically identified with
the value of the gauge field at the cutoff, which together
with a fixed asymptotic value at the boundary determines
the solution for the gauge field. Then one proceeds in a
similar way as in the off-shell derivation, evaluating the
action on the solution and integrating over the radial
direction to obtain the effective action. However, there
are two main differences with the off-shell approach. The
first one is that there is no expansion in Kaluza-Klein
modes. Instead, solutions are found by fixing the value of
the field at the cutoff, so even for the linearized equations

they will typically consists of a superposition of the
massless mode and the whole Kaluza-Klein tower. The
second difference is that the full set of equations is solved,
including equations with only field theory derivatives and
nonlinear terms. This can be done systematically using an
expansion in derivatives and factors of the pion field, which
is on-shell in this derivation (i.e., terms proportional to the
equations of motion of the pion field vanish).
It was also argued in [18], and shown for the AdS/QCD

model introduced in [9], that the off-shell and on-shell
derivations of the effective action should agree if the former
is put on-shell which in the low momentum expansion
requires integrating out all the massive vector bosons. In the
WSS model one could in principle attempt a similar on-
shell derivation contemplating the pion as the value of the
field at an IR cutoff at Z ¼ 0.
Our approach of using scattering amplitudes has some

similarities with the on-shell approach in that we will be
solving the equations of motion in an expansion around the
linearized solution; however, it will be theUV rather than the
IRvalueof thegauge fields thatwill determine the expansion.

IV. HOLOGRAPHIC CALCULATION OF THE
PION SCATTERING AMPLITUDE

The holographic dictionary instructs one to map gauge-
invariant operators to fields in the gravity dual. The pion
should be understood as a mode produced by the axial
current operator. We can thus obtain the pion scattering
amplitudes from axial current correlators via an LSZ
reduction formula where we have to identify the massless
poles appearing in the correlators. The pion propagator will
be determined by the two-point function of the axial current
and the 2 → 2 scattering amplitude henceforth by the four-
point function.
From (3.31), the vacuum expectation value (vev) of the

axial current can be computed from the asymptotic values
of the canonical momentum conjugate to the gauge fields

hJμ5 ai ¼
�
lim
Z→∞

þ lim
Z→−∞

�
πμa: ð4:1Þ

We can extract higher order correlators from the vev by
taking variationswith respect to an external axial gauge field

hJμ a5 ðxÞJμ1 a15 ðy1Þ � � � Jμn an5 ðynÞi

¼ ð−iÞn
Yn
i¼1

δ

δAai
5 μi

ðyiÞ
hJμ5 aðxÞi; ð4:2Þ

where the external gauge fields are identified as the
asymptotic values of the gauge fields (3.19). Taking into
account that

Z
d4xAa

5 μðxÞJμ a5 ðxÞ ¼
Z

d4q
ð2πÞ4 A

a
5 μð−qÞJμ a5 ðqÞ; ð4:3Þ
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the analogous formula in momentum space reads

hJμ a5 ðpÞJμ1 a15 ðq1Þ � � � Jμn an5 ðqnÞi

¼ ð−iÞn
Yn
i¼1

δ

δAai
5 μi

ð−qiÞ
hJμ5 aðpÞi: ð4:4Þ

A. Expansion in a background axial gauge field

We will set Va
μ ¼ 0 and Aa

5 μ ∼OðϵÞ with ϵ treated as a
small parameter. The solutions for the gauge field on the
D8-branes will be expanded in ϵ, that counts the number of
factors of the source appearing in each term of the
expansion

AM ¼ ϵAð1Þ
M þ ϵ2Að2Þ

M þ ϵ3Að3Þ
M þ…: ð4:5Þ

TheOðϵÞ term contribution captures the two-point function
of the current and the Oðϵ3Þ contribution the four-point
function. Our goal is to compute both in the following.
At each order we can arrange the equations of motion for

the gauge field as follows:

∂Z½uðZÞ3fðnÞ aZμ � þ 1

uðZÞ η
αβ
∂αf

ðnÞ a
βμ ¼ IðnÞ aμ ;

uðZÞ3ηαβ∂αfðnÞ aβZ ¼ IðnÞ aZ ; ð4:6Þ
where Ið1Þ aμ ¼ Ið1Þ aZ ¼ 0. Following the holographic dic-
tionary, we should impose boundary conditions such that

lim
Z→�∞

Að1Þ a
μ ðx; ZÞ ¼ �Âa

5 μðxÞ;

lim
Z→�∞

AðnÞ a
μ ðx; ZÞ ¼ 0; n > 1: ð4:7Þ

Wewill work with Fourier transforms of the fields, and split
the gauge potentials as before in transverse, longitudinal,
radial, and gauge parts

AðnÞ a
μ ðqÞ ¼ AðnÞ μ⊥ a

μ þ iqμAðnÞ k a þ iqμCðnÞ a;

AðnÞ a
Z ðqÞ ¼ BðnÞ a

Z þ ∂ZCðnÞ a: ð4:8Þ

The equations of motion for each component of the gauge
field are

∂Z½uðZÞ3∂ZAðnÞ⊥ a
μ � − q2

uðZÞA
ðnÞ⊥ a
μ ¼ IðnÞ⊥ a

μ ;

q2∂Z½uðZÞ3ðBðnÞ a
Z − ∂ZAðnÞ k aÞ� ¼ iqαIðnÞ aα ;

q2uðZÞ3ð∂ZAðnÞ k a − BðnÞ a
Z Þ ¼ IðnÞ aZ : ð4:9Þ

Here and in the following indices will be raised and
lowered with the flat Minkowski metric. At orders n > 1
we have to solve inhomogeneous equations. Since

iqαIðnÞ aα þ ∂ZI
ðnÞ a
Z ¼ 0 we can split

IðnÞ aμ ¼ iqμ∂ZJðnÞ a þ IðnÞ⊥ a
μ ; IðnÞ aZ ¼ q2JðnÞ a: ð4:10Þ

Then, the inhomogeneous solution for the longitudinal and
radial parts is, up to gauge transformations,

AðnÞ k a ¼ 0; BðnÞ a
Z ¼ −

1

uðZÞ3 J
ðnÞ a: ð4:11Þ

The field strengths are

fðnÞ aZμ ¼ ∂ZA
ðnÞ⊥ a
μ þ iqμ

q2
IðnÞ aZ

u3
;

fðnÞ aμν ¼ iðqμAðnÞ⊥ a
ν − qνA

ðnÞ⊥ a
μ Þ: ð4:12Þ

For the transverse component of the gauge field, the
inhomogeneous solution can be formally found using a
Green’s function

AðnÞ⊥ aðZÞ ¼
Z

∞

−∞
dZ1 GðZ; Z1; q2ÞIðnÞ⊥ a

μ ðZ1Þ: ð4:13Þ

The Green’s function is the solution to

∂Z½uðZÞ3∂ZGðZ; Z1; q2Þ� −
q2

uðZÞGðZ; Z1; q2Þ ¼ δðZ − Z1Þ

ð4:14Þ
with the boundary conditions

lim
Z→�∞

GðZ; Z1; q2Þ ¼ 0: ð4:15Þ

For general values of q2 we have not been able to find a
closed form analytic solution for the Green’s function.
However, for q2 ¼ 0 it takes a simple form

GðZ; Z1; 0Þ ¼ π

	
ψ0ðZÞðψ0ðZ1Þ − 1Þ; Z < Z1

ψ0ðZ1Þðψ0ðZÞ − 1Þ; Z > Z1

; ð4:16Þ

where ψ0ðZÞ was given in (3.38).5 The asymptotic expan-
sion is

GðZ; Z1; 0Þ ≃
jZj→∞

−
1

Z

	
ψ0ðZ1Þ − 1; Z → −∞
ψ0ðZ1Þ; Z → þ∞

: ð4:19Þ

5Although not needed in our paper, one can obtain the finite
momentum result using an analytic expansion of the Green’s
function around q2 ¼ 0:

GðZ; Z1; q2Þ ¼ Gð0ÞðZ; Z1Þ þ q2Gð1ÞðZ; Z1Þ
þ ðq2Þ2Gð2ÞðZ; Z1Þ þ…; ð4:17Þ

whereGð0ÞðZ; Z1Þ ¼ GðZ; Z1; 0Þ and where higher order terms in
the expansion can be computed iteratively using

GðnÞðZ; Z1Þ ¼
Z

∞

−∞
dZ2GðZ; Z2; 0Þ

Gðn−1ÞðZ2; Z1Þ
uðZ2Þ

: ð4:18Þ
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B. Two-point function of the axial current

Before computing the scattering amplitude we need to
compute the residue of the massless pole in the axial current
two-point function. This determines the pion decay con-
stant, that enters as well in the coefficients of the four-pion
interaction, so it is necessary to know its value in order to
compare with ChPT.
In order to compute the two-point function it is enough to

find the solution for the D8-brane gauge field at OðϵÞ, so
the solutions to the linearized equations of motion suffice.
Since we are interested in the massless pole, we can expand
around q2 ¼ 0. Then, the solution is (3.26) plus small
corrections

Að1Þ a
μ ¼ 2

π
arctanðZÞÂa

5 μðqÞ þOðq2Þ;

Að1Þ a
Z ¼ −2

iqα

q2
Âa
5 αðqÞϕ0ðZÞ þOðq2Þ: ð4:20Þ

Here we have taken into account (3.24) for q2 ≠ 0. The
field strength at OðϵÞ is

fð1Þ aZμ ¼ 2ϕ0ðZÞ
�
δνμ −

qμqν

q2

�
Âa
5 νðqÞ: ð4:21Þ

The expectation value of the axial current is determined
by the canonical momentum as in (4.1), and to OðϵÞ we
only need the term originating from the OðF2Þ terms in the
D8-brane action, Π½2� in (3.29). We find for the canonical
momentum, using (3.14),

πμa ≃ −4T̃8

�
πα0

L2

�
2
�
ημν −

qμqν

q2

�
Âa
5 νðqÞuðZÞ3ϕ0ðZÞ

¼ −
NcλYM
108π4

�
ημν −

qμqν

q2

�
Âa
5 νðqÞ: ð4:22Þ

Restoring units, the expectation value of the axial current at
this order reads

hJa μ5 ðqÞi ≃ −
NcλYM
54π4

M2
KK

�
ημν −

qμqν

q2

�
Aa
5 νðqÞ

¼ −fπ2
�
ημν −

qμqν

q2

�
Aa
5 νðqÞ: ð4:23Þ

This determines the susceptibilities of the axial current.
Indeed, considering configurations constant in time,

δAa
5 0ðqÞ ¼ δμa5ð2πÞδðq0Þ;

δhJa 05 ðqÞi ¼ δρa5ð2πÞδðq0Þ; ð4:24Þ

with μa5 the axial chemical potentials and ρa5 the axial charge
densities, we obtain

δρa5 ≃ fπ2δabδμb5 ⇒
∂ρa5
∂μb5

≃ fπ2δab: ð4:25Þ

The two-point function of the axial current is, at this order,

hJa μ5 ð−qÞJb ν5 ðqÞi ≃ ifπ2
�
ημν −

qμqν

q2

�
δab: ð4:26Þ

The residue of the massless pole agrees with the expect-
ation from the effective action. Note that the Ward identity
for current conservation is satisfied,

−iqμhJa μ5 ð−qÞJb ν5 ðqÞi ¼ 0: ð4:27Þ

This mends the problem of the chiral effective theory Ward
identity for the axial current that we mentioned before; one
should have included the contact term proportional to the
susceptibilities in (2.16).

C. Four-point function of the axial current

Before computing the scattering amplitude we need to
find the leading pole contributions to the four-point
function of the current, from the Oðϵ3Þ terms in the
expansion of the D8-brane gauge field. This boils down
to the calculation of the Oðϵ2Þ and Oðϵ3Þ inhomogeneous
terms in (4.9), which are then introduced in (4.11) and
(4.13) to get the solution for the gauge field.
The inhomogeneous terms at Oðϵ3Þ can be split in two

types of contributions, corresponding to different Witten

diagrams. One contribution, Ið3Þv , corresponds to a four-
point vertex, a diagram where four gauge field propagators
join at a single point in the bulk. The other contribution,

Ið3Þe , takes the form of an exchange diagram between two
three-point vertices, the field propagates in the bulk
between two points, and there are two other propagators
at each point. We have sketched the two Witten diagrams in
Fig. 3. For each type we are interested only in terms with
massless poles that will be the only ones contributing to the
pion scattering amplitude. The leading pole contribution to
the scattering amplitude has a massless pole for each
external leg. Within Oðϵ3Þ, the only leading pole contri-
butions are those terms with two (three) massless pole
factors in IZ (Iμ). From (4.20) one can see that the only
terms depending on the first order Abelian field strength

that contain massless poles are those proportional to Að1Þ a
Z

or fð1Þ aZμ . This fact will significantly reduce the number of
terms we need to consider.
The details of the calculation have been relegated to the

Appendix. We identify three types of terms that can give a
contribution to the four-point function:

(i) Contributions from OðF4Þ terms in the canonical
momentum. The OðϵÞ solution to the gauge fields
could give a direct contribution to the four-point
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function of the axial current through the ∼F3 term in
the canonical momentum, Π½4� in (3.29). However, it
turns out that this does not give any contribution to
the leading pole, so we can ignore it for the purpose
of computing the scattering amplitude.

(ii) Contributions from OðF2Þ terms. The non-Abelian
terms in the field strength introduce a cubic coupling
among gauge fields in the bulk. Joining two
such vertices with a bulk gauge field propagator
results in an exchange Witten diagram (cf. right
panel of Fig. 3) that does give a contribution to
the leading pole of the four-point function. The
contribution is

hJμ1 a15 ðp1ÞJμ2 a25 ðp2ÞJμ3 a35 ðp3ÞJμ4 a45 ðp4Þie ≃ −2ifπ2
�Y4

i¼1

pμi
i

p2
i

�
δP4

i¼1
pi

�	
ðp1 · p2Þ

−
4b

π3M2
KK

½ðp1 · p3Þ2 þ ðp1 · p4Þ2 − 2ðp1 · p2Þ2�


δa1a2δa3a4

þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ
�
; ð4:28Þ

where b is given in (3.39). Non-Abelian terms also introduce quartic couplings among gauge fields, but these do not
contribute to the leading pole.

(iii) Contributions from OðF4Þ terms in the D8-brane action. These terms introduce a quartic coupling between the
Abelianized field strengths. This quartic coupling results in a vertex Witten diagram (cf. left panel of Fig. 3) that also
contributes to the leading pole of the four-point function as follows:

hJμ1a15 ðp1ÞJμ2a25 ðp2ÞJμ3a35 ðp3ÞJμ4a45 ðp4Þiv≃i
fπ2

M2
KK

35Γð13
6
Þ

4
ffiffiffi
π

p
Γð8

3
Þλ2YM

�Y4
i¼1

pμi
i

p2
i

�
δP4

i¼1
pi
ðδa1a2δa3a4þδa1a3δa2a4þδa1a4δa2a3Þ

× ½ðp1 ·p2Þðp3 ·p4Þþð2↔3Þþð2↔4Þ�: ð4:29Þ

D. Scattering amplitude

We are now ready to extract the pion correlators and the
scattering amplitude. Recall the expression in (2.17), where
the current four-point function is given in terms of the pion
four-point function. We can thus read off the pion four-
point function from (4.28) and (4.29) by removing the pμi

i
factors and dividing by fπ4. Furthermore, the scattering
amplitude appears in the four-point function of the pions,
recall (2.18), as the residue of the leading pole, once the
delta function corresponding to the momentum conserva-
tion and an i factor have been factored out.
The resulting amplitude has the expected structure

(2.12), with the exchange contribution (4.28) being

Aeðs; t; uÞ ¼ −
2ðp1 · p2Þ

fπ2
þ 8b
π3fπ2M2

KK

× ½ðp1 · p3Þ2 þ ðp1 · p4Þ2 − 2ðp1 · p2Þ2�

¼ s
fπ2

þ 2b
π3fπ2M2

KK
½t2 þ u2 − 2s2�: ð4:30Þ

The first term in the exchange contribution agrees with the
first term in Weinberg’s amplitude (2.14). This therefore
proves that the dual holographic derivation is indeed
consistently capturing pion dynamics from spontaneous
chiral symmetry breaking. The remaining terms take the
form expected from vector meson exchange, giving a

FIG. 3. Four-point vertex (left) and exchange (right) Witten
diagrams used to compute the one-point function of the axial
current. Lines ending at the boundary represent bulk-to-boundary
propagators and introduce factors proportional to the source,
while lines connecting points in the interior represent bulk
propagators.
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contribution to the Oðp4Þ terms which agrees with the
expressions in (3.39),

Le
2 ¼ −Le

1 ¼
NcλYM
63π7

b: ð4:31Þ

The vertex contribution (4.29) contains further terms that
we can associate to pion self-interactions

Avðs; t; uÞ ¼
1

fπ2M2
KK

35Γð13
6
Þ

4
ffiffiffi
π

p
Γð8

3
Þλ2YM

× ½ðp1 · p2Þðp3 · p4Þ þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ�

¼ 35Γð13
6
Þ

24
ffiffiffi
π

p
Γð8

3
Þλ2YM

s2 þ t2 þ u2

fπ2M2
KK

: ð4:32Þ

Comparing with Weinberg’s amplitude (2.14), and using
the expression for fπ2 in (3.39), we can read off an
additional contribution to the value of the coefficients in
the pion effective action

Lv
2 ¼ 2Lv

1 ¼
18Nc

ð4πÞ4λYM
Γð13

6
Þffiffiffi

π
p

Γð8
3
Þ : ð4:33Þ

The numerical value of the constant factor with the gamma

functions is approximately Γð13
6
Þffiffi

π
p

Γð8
3
Þ ≈ 0.406.

The full value of the LECs when the vector bosons are
integrated out is the sum of the exchange and vertex
contributions L̂1 ¼ Le

1 þ Lv
1, L̂2 ¼ Le

2 þ Lv
2. However, if

the vector bosons are kept in the effective action, then only
the vertex contributions produce nonvanishing LECs in the
chiral Lagrangian L1 ¼ Lv

1, L2 ¼ Lv
2.

E. Integrating out vector bosons
and hidden local symmetry

One might find it convenient to integrate out only the
vector mesons above some mass threshold, in particular
keeping only the lightest vector mode. In the scattering
calculation the contribution from each massive vector mode
can be identified using an eigenfunction expansion of the
bulk propagator (4.14) entering in the exchange diagram

GðZ; Z1; qÞ ¼ −
X∞
n¼1

ψnðZÞψnðZ1Þ
q2 þm2

n
; ð4:34Þ

where the eigenfunctions satisfy the following equations:

∂ZðuðZÞ3∂ZψnðZÞÞ þ
m2

n

uðZÞψnðZÞ ¼ 0;

lim
Z→�∞

ψnðZÞ ¼ 0;
Z

∞

−∞
dZ

ψnðZÞψmðZÞ
uðZÞ ¼ δnm: ð4:35Þ

It should be noted that the Oðp2Þ contribution to the pion
scattering amplitude is obtained from the q2 ¼ 0 value of

the bulk propagator. When expressed in this form, the value
of fπ obtained from the amplitude is determined by the
exchange of an infinite tower of massive modes. Notice that
a bulk vertex diagram or a bulk exchange diagram might
not correspond necessarily to vertex or exchange processes
in the field theory dual, although it seems natural to do this
identification. Under this assumption, though, the vector
bosons corresponding to mass eigenstates would not couple
to the pions as Weinberg’s ρ meson discussed in Sec. II B
and the effective action of the pion field (before integrating
out the massive modes) does not have the Oð∂2π4Þ terms
expected in the chiral Lagrangian. Then, the effective
action written in terms of these fields would not comply
with HLS invariance in any obvious way.
The LECs obtained from integrating out all massive

vector modes except the lightest one would naïvely be
obtained by replacing the full bulk propagator by the
truncated sum

Gn>1ðZ; Z1; qÞ ¼ −
X∞
n¼2

ψnðZÞψnðZ1Þ
q2 þm2

n
: ð4:36Þ

In this case the effective action of the pion would have the
expected Oð∂2π4Þ terms of the chiral Lagrangian, with an
effective value of fπ determined by the modes that have
been integrated out. However, the right value of fπ
measured in the full scattering amplitude would be recov-
ered only after considering the tree-level exchange by the
lightest vector meson.
The issue with HLS invariance of mass eigenstates has

been pointed out for instance in [12,16,19], where an
alternative basis of radial functions has been proposed to
construct an explicitly HLS invariant action. It would be
interesting if the scattering amplitude calculation could be
connected to the HLS covariant formalism in some way.

V. DISCUSSION

In this paper we presented a computation of the pion
scattering amplitude for two massless flavors in the WSS
model [1,6,7]. Our main result is given in (4.33). These
would be the coefficients of pion self-interactions in the
effective action before vector mesons have been integrated
out. It differs from the result that was extracted from the
effective action (1.1) appearing in the seminal work [6,7],
where the coefficients can be removed by a field redefi-
nition of the vector meson fields that puts the action in the
standard form (1.5). The main qualitative difference
between the previously quoted results and the actual value
of the LECs can be summarized in the following Table II:
These relations hold before massive vector mesons, corre-
sponding to mass eigenstates in the gravity dual, have been
integrated out. At lower energies, vector meson exchange
contributions modify the LECs, and we find that the

relation L̂SUð2Þ
2 ≃ −L̂SUð2Þ

1 , with the values that were
originally proposed, holds up to the 1=λ2YM corrections
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in the strong coupling limit that we have computed.6 In
other cases where the massive vector bosons do not
correspond to the mass eigenstates of the holographic dual
(e.g., [12,16,19]), the identification of the Li coefficients is
not as straightforward, but there will be a correction to the
coefficients of the effective action ∼1=λ2YM such that the
low momentum amplitude reproduces our results.
We will elaborate more on the implications below. In

addition to the WSS model, the relation LSUð2Þ
2 ¼ −LSUð2Þ

1

was also obtained in bottom-up models that followed
essentially the same approach to derive the effective
action [8,9,14,15,17,18], with slight deviations from the
classical value when other fields are integrated out [10]. The
relation between L1 and L2 could possibly be modified
alreadyat the classical level if theLECsare extracted from the
pion scattering amplitude following the method used in our
work, depending onwhether they are completely determined
by vectormeson exchange or not. However, in the bottom-up
models there is an additional bilinear field dual to the chiral
condensate whose effect in the scattering amplitude should
be studied more carefully, so we cannot extrapolate directly
the WSS results to those models. We also expect that the
value of the LECs in the effective action depend generically
on which fields have been integrated out.
The result for two flavors determines already the four-

derivative terms of the chiral effective action for an
arbitrary number of flavors Nf . The reason is that, in the
large-Nc limit, the only contributions to the chiral effective
action with OðNcÞ coefficients are single trace terms (see,
e.g., [28])

Lp4 ¼ LSUðNfÞ
3 Trð∂μΣ†

∂
μΣ∂νΣ†

∂
νΣÞ

þ L̃SUðN fÞ
3 Trð∂μΣ†

∂νΣ∂μΣ†
∂
νΣÞ: ð5:1Þ

But for Nf ¼ 3 the last term can be rewritten as combi-

nation of the term proportional to LSU ðN fÞ
3 and double-trace

terms, giving

LSUð3Þ
1 ¼ 1

2
L̃SUðN fÞ
3 ; LSUð3Þ

2 ¼ L̃SUðNfÞ
3 ;

LSUð3Þ
3 ¼ LSUðN fÞ

3 − 2L̃SUðN fÞ
3 : ð5:2Þ

Then, for Nf ¼ 2, the two independent terms that are left
have coefficients

LSUð2Þ
1 ¼ LSUðN fÞ

3 − L̃SUðN fÞ
3

2
; LSUð2Þ

2 ¼ L̃SUðN fÞ
3 : ð5:3Þ

Therefore for an arbitrary number of flavors we claim

that the result is simply L̃SUðN fÞ
3 ¼ 2LSUðN fÞ

3 ¼ LSUð2Þ
2 with

LSUð2Þ
2 determined by Eq. (4.33).
We have limited our calculation to the leading contri-

butions to the pion scattering amplitude at low momentum.
Higher order corrections in momentum can be computed
systematically using the expressions for the bulk propaga-
tor introduced in (4.17) and (4.18). For momentum of the
order or larger than the confinement scale the full form of
the bulk propagator would be necessary. At very large
momentum, though, stringy α0 corrections become relevant,
and the scattering amplitude might be approximated by
integrating a flat space string amplitude along the holo-
graphic coordinate [21,46–50], an approach that has been
applied in [51] to holographic duals of confining theories.
However, as discussed there, in the high energy regime the
WSS model is dual to a six-dimensional theory, so not
suitable for a comparison with high-momentum scattering
in QCD.
A further important extension of our work would be to

study pion scattering with nonzero quark masses. Within
the WSS model this requires considering nonantipodal
embeddings and in the presence of an additional “tachyon”
field [41] that is dual to a quark bilinear. In bottom-up
models, such as the original AdS/QCD hard wall model
[11], or V-QCD [2], the tachyon field is already included,
and in addition the V-QCD model also has quartic terms in
the action of the gauge fields dual to the flavor currents.
The quark mass explicitly breaks the axial flavor symmetry
and gives a mass to the pions. ChPT can still be used, but
with additional terms in the effective action.
When quarks are massive, there is a finite scattering

length determined by the pion mass that can be obtained
from the pion scattering amplitude at leading order in low
momentum (see, e.g., [52]). A general prescription and a
few examples to compute the scattering length of massive
particles in strongly coupled theories using the holographic
dual were given in [23,24]. Higher momentum corrections
to the scattering amplitude can also be computed and used
to constrain the LECs appearing in the chiral effective
action. It would be interesting to extract the scattering
amplitude in holographic models and compare with recent
large-Nc lattice results [53].
Finally, let us pronounce the main message of our work.

That is, the calculation of scattering amplitudes should be
applied also to other setups. As our example on the WSS
model shows, this might be a requisite step to correctly
identify the low energy effective theory that captures the
dynamics encoded by the holographic dual.

TABLE II. D-brane intersection in the WSS model. Branes are
extended along the directions marked with ×.

Previous result Scattering result

LSUð2Þ
2 ¼ −LSUð2Þ

1 LSUð2Þ
2 ¼ 2LSUð2Þ

1

Li ∼ NcλYM Li ∼ Ncλ
−1
YM

6The modified LECs are measured always at energies much
below the vector meson masses, where the vector meson
exchange contribution can be approximated by an effective local
pion self-interaction, as in (2.27).
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APPENDIX: CALCULATION OF THE
FOUR-POINT FUNCTION

In this appendix we spell out the details of the calculation
of the axial current four-point function following the
procedure described in the main text. As listed in
Sec. IV C, there are three possible contributions we have
to study:OðF4Þ terms in the action and the associated terms
in the canonical momentum as well as OðF2Þ terms in the
action.

1. Contributions from OðF4Þ terms in the canonical
momentum: Contact terms

The OðϵÞ solution to the gauge fields could give a direct
contribution to the four-point function of the axial current
through the ∼F3 term in the canonical momentum, Π½4� in
(3.29). The leading pole contribution involves just the fð1ÞZμ

components

Π½4� μ
a ≃

1

6
½4fbZνðfa μZfbZν þ fb μZfaZνÞ þ 4faZνf

b μZfbZν

þ2ðfaZμfbZνfbZν þ 2fbZμfbZνfaZνÞ�

¼ −
1

3
½fbZνfbZνfaZμ þ 2fbZνf

aZνfbZμ�: ðA1Þ

However, this contribution to the canonical momentum
vanishes when jZj → ∞, since from (4.21),

πμa ∼ u2Π½4� μ
a ∼ u4ϕ0ðZÞ3 ∼

jZj→∞

1

jZj10=3 → 0: ðA2Þ

Therefore, there is no contribution to the expectation value
of the axial current or the four-point function from
these terms.

2. Contributions from OðF2Þ terms:
Exchange diagram

Let us discuss the contributions coming from terms
quadratic in the field strength. The OðA4Þ non-Abelian
quartic term in the action introduces Oðϵ3Þ nonlinear terms
in the equations of motion, proportional to

I½2�aZ ∼ϵabcϵdecημνAð1Þb
μ Að1Þd

ν Að1Þe
Z ;

I½2�aμ ∼ϵabcϵdecAð1Þb
Z Að1Þd

Z Að1Þe
μ ; ϵabcϵdecηαβAð1Þb

α Að1Þd
β Að1Þe

μ :

ðA3Þ

The antisymmetry of the structure constants guarantees that

there are no ∼ðAð1Þ
Z Þ3 terms. But these would be the only

terms contributing to the leading pole. As they are absent,
we can neglect the contributions coming from the quartic
terms in the gauge potentials.
The nonlinear terms in the equations of the bulk gauge

field originating from the OðA3Þ terms in the action are

I½2� aZ ¼ −u3ϵabc½ηαβ∂αðAb
βA

c
ZÞ þ ηαβAb

αFc
βZ�;

I½2� aμ ¼ −ϵabc
h
∂Zðu3Ab

ZA
c
μÞ þ u3Ab

ZF
c
Zμ þ

1

u
ηαβ∂αðAb

βA
c
μÞ

þ 1

u
ηαβAb

αFc
βμ

i
: ðA4Þ

Let us first identify the vertex contributions, they are those
with three field factors

I½2� ð3Þ aZv ¼ −u3ϵabcϵcdeηαβAð1Þ b
α Að1Þ d

β Að1Þ e
Z ;

I½2� ð3Þ aμv ¼ −ϵabcϵcde
h
u3Að1Þ b

Z Að1Þ d
Z Að1Þ e

μ

þ 1

u
ηαβAð1Þ b

α Að1Þ d
β Að1Þ e

μ

i
: ðA5Þ

Since all the terms have less massless pole factors than
those required to give a contribution to the leading pole
term, we can neglect these contributions in the correlator.
Let us now move on to the exchange contributions, they

are those with two field factors

I½2� ð3Þ aZ e ¼ −u3ϵabc½ηαβ∂αðAb
βA

c
ZÞ þ ηαβAb

αfcβZ�ð1Þ;ð2Þ; ðA6Þ

I½2� ð3Þ aμ e ¼ −ϵabc
h
∂Zðu3Ab

ZA
c
μÞ þ u3Ab

Zf
c
Zμ þ

1

u
ηαβ∂αðAb

βA
c
μÞ

þ 1

u
ηαβAb

αfcβμ
ið1Þ;ð2Þ

: ðA7Þ

The superscript notation means that from the two factors in
each term in the brackets, one should beOðϵÞ and the other
Oðϵ2Þ, and we must consider all possibilities. In order to
compute this contribution we will need the Oðϵ2Þ inho-
mogeneous terms as well

I½2�ð2ÞaZ ¼−u3ϵabc½ηαβ∂αðAð1Þb
β Að1Þc

Z ÞþηαβAð1Þb
α fð1ÞcβZ �; ðA8Þ

I½2� ð2Þaμ ¼−ϵabc
h
∂Zðu3Að1Þb

Z Að1Þc
μ Þþu3Að1Þb

Z fð1ÞcZμ

þ 1

u
ηαβ∂αðAð1Þb

β Að1Þc
μ Þþ 1

u
ηαβA½2� ð1Þb

α fð1Þcβμ

i
: ðA9Þ
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In this case there is a contribution to the leading pole term

of the correlator from terms in Ið2ÞM with two massless pole
factors, corresponding to two external legs of the exchange
Witten diagram joining in a vertex with the internal leg.
This leaves only one term that needs to be considered

I½2� ð2Þ aZ ≃ 0; ðA10Þ

I½2� ð2Þ aμ ≃ −ϵabcu3Að1Þ b
Z fð1Þ cZμ : ðA11Þ

Taking this into account, we can set Að2Þ a
Z ≃ 0 to compute

the leading pole contribution. This leaves

I½2� ð3Þ aZ ≃ −u3ϵabc½ηαβ∂αðAð2Þ b
β Að1Þ c

Z Þ þ ηαβAð2Þ b
α fð1Þ cβZ �;

ðA12Þ

I½2� ð3Þ aμ ¼ −ϵabc½∂Zðu3Að1Þ b
Z Að2Þ c

μ Þ þ u3Að1Þ b
Z fð2Þ cZμ �: ðA13Þ

Finally, there could have been an Oðϵ3Þ exchange con-
tribution where the internal leg of the Witten diagram is the
Abelian component of the D8-brane gauge field and the
vertices are determined by the Wess-Zumino action (3.18).
To compute this contribution one should first find theOðϵ2Þ
solution for the Abelian field. The inhomogeneous terms in
the Abelian field equation are proportional to

I½WZ�
Z ∼ ϵZμναβfð1Þaμν fð1Þaαβ ; I½WZ�

μ ∼ ϵνZαβμ fð1ÞaνZ fð1Þaαβ : ðA14Þ

But none of these terms has two massless pole factors, so
they do not contribute to the leading pole term in the
correlator of the axial current.
Moving on to the calculation of the solution to the gauge

field, given the OðϵÞ solutions (4.20) with momenta pi, pj,
the Oðϵ2Þ inhomogeneous term contributing to the leading
pole would be

I½2� ð2Þ aμ ðpi; pj;Z; qÞ

≃
4

π
ϕ0ðZÞ

Z
pi

Z
pj

δq−pi−pj

ipα
i

p2
i

�
δμ

β −
pjμp

β
j

p2
j

�

× ϵabcÂb
5αðpiÞÂc

5 βðpjÞ; ðA15Þ

where we are using as shorthand notation

Z
p
≡
Z

d4p
ð2πÞ4 δp ¼ ð2πÞ4δð4ÞðpÞ: ðA16Þ

One can check using the symmetries of the integrand that

qμIð2Þμ ¼ 0, so this is a transverse term and in addition it is
independent of the radial coordinate Z. We can further
simplify this expression by keeping only the leading pole
term

I½2� ð2Þ aμ ðpi; pj;Z; qÞ ≃ ið2Þ aμ ðpi; pj; qÞϕ0ðZÞ; ðA17Þ

where, in order to make expressions more manageable we
have defined

ið2Þ aμ ðpi; pj; qÞ ¼ −
4

π

Z
pi

Z
pj

δq−pi−pj

ipα
i

p2
i

pjμp
β
j

p2
j

× ϵabcÂb
5 αðpiÞÂc

5 βðpjÞ: ðA18Þ

Then, from (4.11), the Oðϵ2Þ gauge field solution is

Að2Þ a
μ ðZ; qÞ ≃

Z
dZ1GðZ; Z1; q2ÞI½2� ð2Þ aμ ðpi; pj;Z1; qÞ

≃ ið2Þ aμ ðpi; pj; qÞ½Φð2ÞðZÞ þ q2Φ̃ð2ÞðZÞ�
þOðq4Þ; ðA19Þ

where

Φð2ÞðZÞ¼
Z

dZ1GðZ;Z1;0Þϕ0ðZ1Þ¼
π

2
ψ0ðZÞðψ0ðZÞ−1Þ;

Φ̃ð2ÞðZÞ¼
Z

dZ1Gð1ÞðZ;Z1Þϕ0ðZ1Þ: ðA20Þ

Here we are introducing an additional approximation, not
only p2

i ≃ 0, p2
j ≃ 0 are close to lightlike values, but also we

assume jðpi þ pjÞ2j ≪ 1, i.e., low energy and momentum
for the external pions.
Next, we compute the Oðϵ3Þ inhomogeneous terms

I½2� ð3Þ aZ ≃ −2u3ϵabcηαβAð2Þ b
α ∂βA

ð1Þ c
Z ; ðA21Þ

I½2� ð3Þ aμ ≃ −2ϵabcu3Að1Þ b
Z ∂ZA

ð2Þ c
μ ; ðA22Þ

where we have used ∂Zðu3Að1Þ
Z Þ ¼ 0, ηαβ∂αA

ð2Þ a
β ¼ 0 and

kept the leading pole terms only. Assigning momentum pk
to the OðϵÞ factors

I½2� ð3Þ aZ ðZ; plÞ ≃ −
4

π
½Φð2ÞðZÞ þ q2Φ̃ð2ÞðZÞ�

×
Z
pk

Z
q
δpl−pk−qϵ

abcið2Þ bα ðpi; pj; qÞ

×
pα
kp

β
k

p2
k

Âc
5 βðpkÞ; ðA23Þ

I½2� ð3Þ aμ ≃ −
4

π
½∂ZΦð2ÞðZÞ þ q2∂ZΦ̃ð2ÞðZÞ�

×
Z
pk

Z
q
δpl−pk−qϵ

abcið2Þ bμ ðpi; pj; qÞ
ipα

k

p2
k

Âc
5 αðpkÞ:

ðA24Þ
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Let us define

ið3Þ aμ ðpi; pj; pk; plÞ

¼ −
4

π

Z
pk

Z
q
δpl−pk−qϵ

abcið2Þ bμ ðpi; pj; qÞ
ipα

k

p2
k

Âc
5 αðpkÞ;

ðA25Þ

then

I½2� ð3Þ aZ ðZ; plÞ ≃ −½Φð2ÞðZÞ þ q2Φ̃ð2ÞðZÞ�
× ipμ

l i
ð3Þ a
μ ðpi; pj; pk; plÞ; ðA26Þ

I½2�ð3Þaμ ≃ ½Φð2Þ0ðZÞþq2Φ̃ð2Þ0ðZÞ�ið3Þaμ ðpi;pj;pk;plÞ: ðA27Þ

Following (4.11) and (4.13), the Oðϵ3Þ solution for the
gauge potential is

A½2� ð3Þ a
μ ðZ; plÞ ≃

�
δ ν
μ −

plμpα
l

p2
l

�
ið3Þ aα ðpi; pj; pk; plÞ

× ½Φð3ÞðZÞ þ q2Φ̃ð3ÞðZÞ�;

A½2� ð3Þ a
Z ðZ; plÞ ¼

Φð2ÞðZÞ þ q2Φ̃ð2ÞðZÞ
1þ Z2

ipα
l

p2
l

× ið3Þ aα ðpi; pj; pk; plÞ; ðA28Þ

where

Φð3ÞðZÞ ¼
Z

dZ1GðZ; Z1; 0ÞΦð2Þ0ðZ1Þ

¼ π

6
arctanðZÞψ0ðZÞðψ0ðZÞ − 1Þ;

Φ̃ð3ÞðZÞ ¼
Z

dZ1GðZ; Z1; 0ÞΦ̃ð2Þ0ðZ1Þ: ðA29Þ

The Oðϵ3Þ field strength is proportional to the pion mode
solution (3.27). First note that

fð3Þ aZμ ðZ; plÞ ¼ ∂ZA
½2� ð3Þ a
μ ðZ; plÞ − ipl μA

½2� ð3Þ a
Z

∝ ∂ZðΦð3ÞðZÞ þ q2Φ̃ð3ÞðZÞÞ

−
Φð2ÞðZÞ þ q2Φ̃ð2ÞðZÞ

1þ Z2
: ðA30Þ

On the other hand, using the definition of the Green’s
function in (A29)

∂Z½u3ðZÞ∂ZΦð3Þ� ¼ Φð2Þ0ðZÞ;
∂Z½u3ðZÞ∂ZΦ̃ð3Þ� ¼ Φ̃ð2Þ0ðZÞ: ðA31Þ

We can integrate once each equation and, since uðZÞ3 ¼
1þ Z2 ¼ 1=ðπϕ0ðZÞÞ, it follows that

∂ZΦð3Þ ¼ Φð2ÞðZÞ
1þ Z2

þ cπϕ0ðZÞ;

∂ZΦ̃ð3Þ ¼ Φ̃ð2ÞðZÞ
1þ Z2

þ c̃πϕ0ðZÞ: ðA32Þ

In the limit Z → ∞ the terms proportional to Φð2Þ, Φ̃ð2Þ in
the equations above are subleading, while the leading terms
have the asymptotic form

∂ZΦð3Þ∼cπϕ0ðZÞ∼
c
Z2

; ∂ZΦ̃ð3Þ∼ c̃πϕ0ðZÞ∼
c̃
Z2

: ðA33Þ

Using the expansion in (4.19), the coefficients of the
asymptotic terms are determined by the following integrals:

c ¼ lim
Z→∞

Z2
∂ZΦð3Þ ¼

Z
∞

−∞
dZ1 ψ0ðZ1ÞΦð2Þ0ðZ1Þ ¼

π

12
;

c̃ ¼ lim
Z→∞

Z2
∂ZΦ̃ð3Þ ¼

Z
∞

−∞
dZ1 ψ0ðZ1ÞΦ̃ð2Þ0ðZ1Þ: ðA34Þ

The first integral can easily be done taking into account that
ϕ0ðZÞ ¼ ψ 0

0ðZÞ, so the integrand turns out to be a total
derivative. The second integral can be manipulated to show
it is equal to

c̃ ¼
Z

∞

−∞
dZ1ψ0ðZ1ÞΦ̃ð2Þ0ðZ1Þ ¼ −

Z
∞

−∞
dZ̃

ðΦð2ÞðZ̃ÞÞ2
uðZ̃Þ

¼ −
b

ð2πÞ2 ; ðA35Þ

where b is given in (3.39).
The leading pole contribution in the field strength can be

identified as

fð3Þ aZμ ðZ; plÞ ≃ −
�
π2

12
−

b
4π

q2
�
ϕ0ðZÞ

pl μpα
l

p2
l

× ið3Þaα ðpi; pj; pk; plÞ: ðA36Þ

Plugging in (A18) and (A25), and integrating over q
results in

fð3Þ aZμ ðZ; plÞ ≃
4

3
ϕ0ðZÞ

Z
pi

Z
pj

Z
pk

δpl−pk−pi−pj

pl μpα
i p

β
jp

γ
k

p2
l p

2
i p

2
jp

2
k

× ðpl · pjÞ
�
1 −

12b
π3

ðpi · pjÞ
�

× ϵabcϵbdeÂd
5 αðpiÞÂe

5 βðpjÞÂc
5 γðpkÞ: ðA37Þ

Note that the radial dependence is the same as for the pion
mode solution (3.27). Then, the calculation of the canonical
momentum and expectation value of the current will
proceed along similar steps, resulting in an exchange
contribution to the axial current,
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hJμ a5 ðplÞie ≃
2

3
fπ2

Z
pi

Z
pj

Z
pk

δpl−pk−pi−pj

pμ
l p

α
i p

β
jp

γ
k

p2
l p

2
i p

2
jp

2
k

ðpl · pjÞ
�
1 −

12b
π3

ðpi · pjÞ
�
ϵabcϵbdeÂd

5 αðpiÞÂe
5 βðpjÞÂc

5 γðpkÞ: ðA38Þ

Restoring units, the exchange contribution to the leading pole in the four-point function of the current is

hJμ1 a15 ðp1ÞJμ2 a25 ðp2ÞJμ3 a35 ðp3ÞJμ4 a45 ðp4Þie

≃ −2ifπ2
�Y4

i¼1

pμi
i

p2
i

�
δP4

i¼1
pi

×

�	
ðp1 · p2Þ −

4b
π3M2

KK
½ðp1 · p2Þðp2 · ðp3 þ p4ÞÞ − ðp1 · p4Þðp2 · p4Þ − ðp1 · p3Þðp2 · p3Þ�



δa1a2δa3a4

þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ
�
: ðA39Þ

Or, using momentum conservation

hJμ1 a15 ðp1ÞJμ2 a25 ðp2ÞJμ3 a35 ðp3ÞJμ4 a45 ðp4Þie

≃ −2ifπ2
�Y4

i¼1

pμi
i

p2
i

�
δP4

i¼1
pi

�	
ðp1 · p2Þ −

4b
π3

½ðp1 · p3Þ2 þ ðp1 · p4Þ2 − 2ðp1 · p2Þ2�


δa1a2δa3a4

þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ
�
: ðA40Þ

3. Contributions from OðF4Þ terms: Vertex diagram

The last possible contribution we have to study origi-
nates from the OðF4Þ terms in the D8-brane action, the
one that would introduce the nonlinear terms in the
equations

I½4�aZ ¼ 1

2

�
πα0

L2

�
2

u2
�
∂αΠ

½4� α
a þ δL½4�

DBI

δAa
Z

�
;

I½4�aμ ¼ −
1

2

�
πα0

L2

�
2
��

∂Zðu2Π½4� μ
a Þ − u2

δL½4�
DBI

δAa
μ

�

þ u2
�
∂α

�
δL½4�

DBI

δ∂αAa
μ

�
−
δL½4�

DBI

δAa
μ

��
: ðA41Þ

At Oðϵ3Þ we need to keep only terms that are at most cubic

in the fields, so terms ∼ δL½4�
DBI

δAa
M

can be dropped, and only

terms involving three factors of the Abelianized field

strengths fð1ÞaMN remain. Among these, the leading pole
contributions must come from terms with three factors of

the fð1ÞZμ components. One can check using (3.15) that δL½4�
DBI

δ∂αAa
μ

does not introduce any such terms. Hence, using (A1), all
leading pole contributions are the following:

I½4� ð3Þ aZ ≃ −
1

6

�
πα0

L2

�
2

u4ηγληαβ∂αðfð1Þ bZγ fð1Þ bZλ fð1Þ aZβ

þ 2fð1Þ bZγ fð1Þ aZλ fð1Þ bZβ Þ;

I½4� ð3Þ aμ ≃
1

6

�
πα0

L2

�
2

ηγλ∂Zðu4ðfð1Þ bZγ fð1Þ bZλ fð1Þ aZμ

þ 2fð1Þ bZγ fð1Þ aZλ fð1Þ bZμ ÞÞ: ðA42Þ

Going to momentum space, and using (4.21) and (3.14),
yields

I½4� ð3ÞaZ ðZ;qÞ≃−uðZÞϕ0ðZÞ2iqαjð3Þaα ðpi;pj;pk;qÞ;
I½4� ð3Þaμ ðZ;qÞ≃∂ZðuðZÞϕ0ðZÞ2Þjð3Þaμ ðpi;pj;pk;qÞ; ðA43Þ

where the leading pole factor is

jð3Þ aμ ðpi; pj; pk; qÞ ≃ −
35π

4λ2YM

Z
pi

Z
pj

Z
pk

δq−pi−pj−pk

×
pkμpν

kp
σ
i p

ρ
j

p2
i p

2
jp

2
k

ðpi · pjÞ

× ðδaiajδaak þ δaiakδaaj þ δajakδaaiÞ
× Âai

5 σðpiÞÂaj
5 ρðpjÞÂak

5 νðpkÞ: ðA44Þ
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Following (4.11) and (4.13), the Oðϵ3Þ solution for the
gauge potential is

A½4� ð3Þ a
μ ðZ; plÞ ≃ Ψð3ÞðZÞ

�
δνμ −

pl μpα
l

p2
l

�
jð3Þ aμ ðpi; pj; pk; plÞ

A½4� ð3Þ a
Z ðZ; plÞ ¼

uðZÞϕ0ðZÞ2
1þ Z2

ipα
l

p2
l

jð3Þ aα ðpi; pj; pk; plÞ;

ðA45Þ

where

Ψð3ÞðZÞ ¼
Z

dZ1GðZ; Z1; 0Þ∂Z1
ðuðZ1Þϕ0ðZ1Þ2Þ

¼ 7Z2F1ð12 ; 23 ; 32 ;−Z2Þ
40π2

þ 3Zð7Z2 þ 11Þ
40π2ðZ2 þ 1Þ5=3

−
Γð13

6
Þ arctanðZÞ
π5=2Γð8

3
Þ : ðA46Þ

The leading pole contribution in the field strength can be
identified as

fð3Þ aZμ ðZ; plÞ ≃ −
Γð13

6
Þ

π3=2Γð8
3
Þϕ0ðZÞ

pl μpα
l

p2
l

jð3Þ aα ðpi; pj; pk; plÞ:

ðA47Þ

Plugging in (A44) results in

fð3Þ aZμ ðZ; plÞ ≃ ϕ0ðZÞ
35Γð13

6
Þ

4
ffiffiffi
π

p
Γð8

3
Þλ2YM

Z
pi

Z
pj

Z
pk

δpl−pi−pj−pk

×
pl μpν

kp
σ
i p

ρ
j

p2
i p

2
jp

2
kp

2
l

ðpi · pjÞðpk · plÞ

× ðδaiajδaak þ δaiakδaaj þ δajakδaaiÞ
× Âai

5 σðpiÞÂaj
5 ρðpjÞÂak

5 νðpkÞ: ðA48Þ

Note that the radial dependence is, once more, the same as
for the pion mode solution (3.27). Then, the calculation of
the canonical momentum and expectation value of the
current will proceed along similar steps, resulting in a
vertex contribution to the axial current

hJμ a5 ðplÞiv ≃ fπ2
35Γð13

6
Þ

8
ffiffiffi
π

p
Γð8

3
Þλ2YM

Z
pi

Z
pj

Z
pk

δpl−pi−pj−pk

×
pμ
l p

ν
kp

σ
i p

ρ
j

p2
i p

2
jp

2
kp

2
l

ðpi · pjÞðpk · plÞ

× ðδaiajδaak þ δaiakδaaj þ δajakδaaiÞ
× Âai

5 σðpiÞÂaj
5 ρðpjÞÂak

5νðpkÞ: ðA49Þ
Restoring units, the vertex contribution to the leading pole
in the four-point function of the current is

hJμ1 a15 ðp1ÞJμ2 a25 ðp2ÞJμ3 a35 ðp3ÞJμ4 a45 ðp4Þiv

≃ i
fπ2

M2
KK

35Γð13
6
Þ

4
ffiffiffi
π

p
Γð8

3
Þλ2YM

�Y4
i¼1

pμi
i

p2
i

�

× δP4

i¼1
pi
ðδa1a2δa3a4 þ δa1a3δa2a4 þ δa1a4δa2a3Þ

× ½ðp1 · p2Þðp3 · p4Þ þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ�: ðA50Þ
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