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Abstract. From new integral representations of the n-th derivative of
Bessel functions with respect to the order, we derive some reflection for-
mulas for the first and second order derivatives of Jν (t) and Yν (t) for
integral order, and for the n-th order derivatives of Iν (t) and Kν (t) for
arbitrary real order. As an application of the reflection formulas obtained
for the first order derivative, we extend some formulas given in the liter-
ature to negative integral order. Also, as a by-product, we calculate an
integral which does not seem to be reported in the literature.
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1. Introduction

Bessel functions are the canonical solutions y (t) of Bessel’s differential equa-
tion:

t2y′′ + t y′ +
(
t2 − ν2

)
y = 0, (1)

where ν denotes the order of the Bessel function. This equation arises when
finding separable solutions of Laplace equation in cylindrical coordinates, as
well as in Helmholtz equation in spherical coordinates [6, Chap. 6]. The general
solution of (1) is a linear combination of the Bessel functions of the first and
second kind, i.e. Jν (t) and Yν (t) respectively. In the case of pure imaginary
argument, the solutions to the Bessel equations are called modified Bessel
functions of the first and second kind, Iν (t) and Kν (t) respectively. Despite
the fact the properties of the Bessel functions have been studied extensively in
the literature [1,10], studies about successive derivatives of the Bessel functions
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with respect to the order ν are relatively scarce. For nonnegative integral order
ν = m, we find in the literature the following expressions in terms of finite
sums of Bessel functions [7, Eqn. 10.15.3&4]

∂Jν (t)
∂ν

∣
∣
∣
∣
ν=m

=
π

2
Ym (t) +

m!
2

m−1∑

k=0

Jk (t)
k! (m − k)

(
t

2

)k−m

, (2)

and

∂Yν (t)
∂ν

∣
∣
∣
∣
ν=m

= −π

2
Jm (t) +

m!
2

m−1∑

k=0

Yk (t)
k! (m − k)

(
t

2

)k−m

. (3)

For modified Bessel functions, we have [7, Eqn. 10.38.3&4]

∂Iν (t)
∂ν

∣
∣
∣
∣
ν=m

= (−1)m

[

−Km (t) +
m!
2

m−1∑

k=0

(−1)k
Ik (t)

k! (m − k)

(
t

2

)k−m
]

, (4)

and

∂Kν (t)
∂ν

∣
∣
∣
∣
ν=m

=
m!
2

m−1∑

k=0

Kk (t)
k! (m − k)

(
t

2

)k−m

. (5)

Also, for the n-th derivative of the Bessel function of the first kind with
respect to the order, we find in [8] a more complex expression in series form.

Regarding integral representations of the derivative of Jν (t) and Iν (t)
with respect to the order, we find in [2] ∀�ν > 0,

∂Jν (t)
∂ν

= πν

∫ π/2

0

tan θ Y0

(
t sin2 θ

)
Jν

(
t cos2 θ

)
dθ, (6)

and

∂Iν (t)
∂ν

= −2ν

∫ π/2

0

tan θ K0

(
t sin2 θ

)
Iν

(
t cos2 θ

)
dθ. (7)

Other integral representations of the order derivative of Jν (z) and Yν (z)
are given in [4] for ν > 0 and t �= 0, |arg t| ≤ π, which read as,

∂Jν (t)
∂ν

= πν

[
Yν (t)

∫ t

0

J2
ν (z)
t

dz + Jν (t)
∫ ∞

t

Jν (z) Yν (z)
z

dz

]
, (8)

and

∂Yν (t)
∂ν

= πν

[
Jν (t)

(∫ ∞

t

Y 2
ν (z)
z

dz − 1
2ν

)

−Yν (t)
∫ ∞

t

Jν (z) Yν (z)
z

dz

]
. (9)
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Recently, in [5], we find the following integral representations of the
derivatives of the modified Bessel functions Iν (t) and Kν (t) with respect to
the order for ν > 0 and t �= 0, |arg t| ≤ π,

∂Iν (t)
∂ν

= −2ν

[
Iν (t)

∫ ∞

t

Kν (z) Iν (z)
z

dz + Kν (t)
∫ t

0

I2ν (z)
z

dz

]
, (10)

and

∂Kν (t)
∂ν

= 2ν

[
Kν (t)

∫ ∞

t

Iν (z)Kν (z)
z

dz − Iν (t)
∫ ∞

t

K2
ν (z)
z

dz

]
. (11)

The great advantage of the integral expressions (8)–(11) is that the in-
tegrals involved in them can be calculated in closed-form [5]. Also, ∀ν /∈ Z,
expressions in closed-form for the second and third derivatives with respect to
the order are found in [3], but these expressions are extraordinarily complex,
above all for the third derivative.

In view of the literature commented above, the goal of this article is two-
folded. On the one hand, in Sect. 2, we obtain simple integral representations
for the n-th derivatives of the Bessel functions with respect to the order. The
great advantage of these expressions is that its numerical evaluation is quite
rapid and straightforward. As a by-product, we obtain the calculation of an
integral which does not seem to be reported in the literature.

On the other hand, in Sect. 3, we derive some reflection formulas for the
first and second order derivative of Jν (t) and Yν (t) for integral order, from the
expressions obtained in Sect. 2. Also, we derive reflection formulas for the n-th
order derivative of Iν (t) and Kν (t) for arbitrary real order. As an application
of the reflection formulas obtained for the first order derivative, we extend
formulas (2)–(5) to negative integral orders.

Finally, we collect our conclusions in Sect. 4.

2. Integral Representations of n-th Order Derivatives

In order to perform the n-th derivatives of Bessel and modified Bessel functions
with respect to the order, first we state the following n-th derivatives, that can
be proved easily by induction and using the binomial theorem.

Proposition 1. The n-th derivative of the functions

f1 (ν) = cos (t sin x − νx) ,

f2 (ν) = sin (t sin x − νx) ,

f3 (ν) = e−νx sin πν = �
(
e(iπ−x)ν

)
,

f4 (ν) = e−νx cos πν = �
(
e(iπ−x)ν

)
,
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with respect to the order ν are given by

f
(n)
1 (ν) = xn cos (t sin x − νx − nπ/2) , (12)

f
(n)
2 (ν) = xn sin (t sin x − νx − nπ/2) , (13)

f
(n)
3 (ν) = e−νx� [

(iπ − x)n
eiπν

]

= e−νx [pn (x) sinπν + qn (x) cos πν] ,

f
(n)
4 (ν) = e−νx� [

(iπ − x)n
eiπν

]
(14)

= e−νx [pn (x) cos πν − qn (x) sinπν] . (15)

where we have set the polynomials

pn (x) = � [(iπ − x)n]

=
�n/2�∑

k=0

(
n

2k

)
(−1)n+k

π2kxn−2k, (16)

qn (x) = � [(iπ − x)n]

=
�(n−1)/2�∑

k=0

(
n

2k + 1

)
(−1)n+k+1

π2k+1xn−2k−1. (17)

Next, we present the integral representations of the n-th order derivatives
of the Bessel functions from the integral representations of these functions and
the results stated in Proposition 1.

Theorem 2. For n = 0, 1, . . ., the following integral representation holds true:

∂n

∂νn
Jν (t) =

1
π

∫ π

0

xn cos
(
t sin x − νx − π

2
n
)

dx

− 1
π

∫ ∞

0

e−t sinh x−νx [pn (x) sin πν + qn (x) cos πν] dx. (18)

Proof. Perform the n-th derivative w.r.t the order in Schläfli integral repre-
sentation of Jν (t) [7, Eqn. 10.9.6], i.e. ∀�t > 0,

Jν (t) =
1
π

∫ π

0

cos (t sin x − νx) dx − sin νπ

π

∫ ∞

0

e−t sinh x−νxdx, (19)

and apply (12) and (14) to obtain (18), as we wanted to prove. �

Theorem 3. For n = 0, 1, . . ., the following integral representation holds true:

∂n

∂νn
Yν (t) =

1
π

∫ π

0

xn sin
(
t sin x − νx − π

2
n
)

dx

− 1
π

∫ ∞

0

e−t sinhx
(
xneνx + e−νx [pn (x) cos πν − qn (x) sinπν]

)
dx.

(20)
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Proof. Perform the n-th derivative w.r.t the order in the following integral
representation of the Bessel function of the second kind [7, Eqn. 10.9.7], i.e.
∀�t > 0,

Yν (t) =
1
π

∫ π

0

sin (t sin x − νx) dx

− 1
π

∫ ∞

0

e−t sinhx
(
eνx + e−νx cos νπ

)
dx, (21)

and apply formulas (13) and (14), to obtain (20), as we wanted to prove. �

Theorem 4. For n = 0, 1, . . ., the following integral representation holds true:
∂n

∂νn
Iν (t) =

1
π

∫ π

0

xnet cos x cos
(
νx +

π

2
n
)

dx

− 1
π

∫ ∞

0

e−t cosh x−νx [pn (x) sin πν + qn (x) cos πν] dx. (22)

Proof. Perform the n-th derivative w.r.t the order in the following integral
representation [7, Eqn. 10.32.4], i.e. ∀�t > 0,

Iν (t) =
1
π

∫ π

0

et cos x cos νx dx − sin νπ

π

∫ ∞

0

e−t cosh x−νxdx. (23)

and apply (12) with t = 0 and (14) to obtain (22), as we wanted to prove. �

Theorem 5. For n = 0, 1, . . ., the following integral representation holds true:
∂n

∂νn
Kν (t) =

1
2

∫ ∞

0

xne−t cosh x
[
eνx + (−1)n

e−νx
]

dx (24)

=
1
2

∫ ∞

−∞
xneνx−t cosh xdx. (25)

Proof. Perform the n-th derivative w.r.t the order in the following integral
representations of the Macdonald function [6, Eqn. 5.10.23], i.e. ∀�t > 0,

Kν (t) =
∫ ∞

0

e−t coshx cosh νx dx (26)

=
1
2

∫ ∞

−∞
eνx−t coshx dx. (27)

�

For n = 1, the above integral (25) is calculated in [5] in closed-form, thus
∀ν ∈ R� {−1/2,−3/2, . . .}, �t > 0,

∫ ∞

−∞
x eνx−t coshxdx = ν

[
Kν (z)√

π
G3,1

2,4

(
z2

∣
∣
∣
∣

1/2, 1
0, 0, ν,−ν

)

−√
πIν (z) G4,0

2,4

(
z2

∣
∣
∣
∣

1/2, 1
0, 0, ν,−ν

)]
, (28)
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where the function Gm,n
p,q denotes the Meijer-G function [7, Eqn. 16.17.1]. If

2ν /∈ Z, the above expression is reduced in terms of generalized hypergeometric
functions pFq [7, Eqn. 16.2.1] as [3],

∫ ∞

−∞
x eνx−t cosh xdx

= π csc πν

{
π cot πν Iν (z) − [Iν (z) + I−ν (z)]

[
z2

4 (1 − ν2) 3F4

(
1, 1, 3

2
2, 2, 2 − ν, 2 + ν

∣
∣
∣
∣ z2

)
+ log

(z

2

)
− ψ (ν) − 1

2ν

]}

+
1
2

{
I−ν (z) Γ2 (−ν)

(z

2

)2ν

2F3

(
ν, 1

2 + ν
1 + ν, 1 + ν, 1 + 2ν

∣
∣
∣
∣ z2

)

− Iν (z) Γ2 (ν)
(z

2

)−2ν

2F3

( −ν, 1
2 − ν

1 − ν, 1 − ν, 1 − 2ν

∣
∣
∣
∣ z2

)}
. (29)

It is worth noting that the numerical evaluation of the integral represen-
tations of the n-th order derivatives of the Bessel functions given in (18), (20),
(22), and (25) is quite efficient if we use a “double exponential” strategy [9].

3. Reflection Formulas

3.1. Bessel Functions

Theorem 6. ∀t ∈ C and m = 0, 1, . . ., the following reflection formula holds
true:

∂Jν (t)
∂ν

∣
∣
∣
∣
ν=m

+ (−1)m ∂Jν (t)
∂ν

∣
∣
∣
∣
ν=−m

= π Ym (t) .

(30)

Proof. From the integral representation (18) for n = 1, we have

∂Jν (t)
∂ν

∣
∣
∣
∣
ν=±m

=
1
π

∫ π

0

x sin (t sin x ∓ mx) dx

+ (−1)m+1
∫ ∞

0

e−t sinhxe∓mxdx. (31)

On the one hand, consider m = 2k, thus, according to (31), the LHS of
(30) becomes

∂Jν (t)
∂ν

∣
∣
∣
∣
ν=2k

+
∂Jν (t)

∂ν

∣
∣
∣
∣
ν=−2k

=
2
π

∫ π

0

x sin (t sin x) cos (2kx) dx

−
∫ ∞

0

e−t sinhx
(
e2kx + e−2kx

)
dx. (32)
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To calculate the first integral on the RHS of (32), perform the substitution
ξ = x − π/2, eliminate the term that vanishes by parity, and undo the change
of variables to obtain

2
π

∫ π

0

x sin (t sin x) cos (2kx) dx =
∫ π

0

sin (t sinx) cos (2kx) dx. (33)

Applying the trigonometric identity sin (α + β) = sinα cos β + sin β cos α,
rewrite (33) as

2
π

∫ π

0

x sin (t sin x) cos (2kx) dx =
∫ π

0

sin (t sin x + 2kx) dx

−
∫ π

0

cos (t sin x) sin (2kx) dx. (34)

The second integral on the RHS of (34) vanishes by parity performing the
substitution ξ = x − π/2. Therefore, (32) becomes

∂Jν (t)
∂ν

∣
∣
∣
∣
ν=2k

+
∂Jν (t)

∂ν

∣
∣
∣
∣
ν=−2k

=
∫ π

0

sin (t sin x + 2kx) dx

−
∫ ∞

0

e−t sinhx
(
e2kx + e−2kx

)
dx. (35)

According to the integral representation (21) and the property [7, Eqn. 10.4.1]

Y−m (t) = (−1)m
Ym (t) , (36)

rewrite (35) as (30) for m = 2k. This completes the proof for m = 2k.
On the other hand, consider m = 2k + 1, thus, according to (31), the

LHS of (30) becomes

∂Jν (t)
∂ν

∣
∣
∣
∣
ν=2k+1

− ∂Jν (t)
∂ν

∣
∣
∣
∣
ν=−2k−1

=
−2
π

∫ π

0

x cos (t sin x) sin ((2k + 1) x) dx

+
∫ ∞

0

e−t sinh x
(
e(2k+1)x − e−(2k+1)x

)
dx. (37)

Following the same steps as in (33)–(35), we calculate the first integral on the
RHS of (37) as,

−2
π

∫ π

0

x cos (t sin x) sin ((2k + 1) x) dx = −
∫ π

0

sin (t sin x + (2k + 1) x) dx.

(38)
Therefore, inserting (38) in (37) and taking into account the integral represen-
tation (21) and the property (36), rewrite (38) as

∂Jν (t)
∂ν

∣
∣
∣
∣
ν=2k+1

− ∂Jν (t)
∂ν

∣
∣
∣
∣
ν=−2k−1

= π Y2k+1 (t) ,

which completes the proof. �
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Corollary 7. We can extend the formula given in (2) to negative integral orders
with the aid of the reflection formula (30), resulting in

∂Jν (t)
∂ν

∣
∣
∣
∣
ν=±m

= (±1)m

[
π

2
Ym (t) ± m!

2

m−1∑

k=0

Jk (t)
k! (m − k)

(
t

2

)k−m
]

. (39)

Theorem 8. ∀t ∈ C and m = 0, 1, . . ., the following reflection formula holds
true:

∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=m

+ (−1)m+1 ∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=−m

= 2π
∂Yν (t)

∂ν

∣
∣
∣
∣
ν=m

+ π2Jm (t) .

(40)

Proof. From the integral representation (18) for n = 2, we have

∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=±m

=
−1
π

∫ π

0

x2 cos (t sin x ∓ mx) dx

+ 2 (−1)m
∫ ∞

0

e−t sinh xx e∓mxdx.

Therefore,

∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=m

+ (−1)m+1 ∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=−m

=
−1
π

∫ π

0

x2
[
cos (t sinx − mx) + (−1)m+1 cos (t sinx + mx)

]
dx

+ 2
∫ ∞

0

e−t sinhxx
[
(−1)m

e−mx − emx
]
dx. (41)

On the one hand, calculate the first integral on the RHS of (41) for m = 2k,

1
π

∫ π

0

x2 [cos (t sin x + 2kx) − cos (t sinx − 2kx)] dx

=
−2
π

∫ π

0

x2 sin (t sin x) sin 2kx, dx.

Performing the change of variables ξ = x−π/2 and cancelling the correspond-
ing terms by parity, we arrive at

2 (−1)k
∫ π/2

−π/2

ξ sin (t cos ξ) sin (−2kξ) dξ, (42)

Applying the trigonometric identity cos (α + β) = cos α cos β−sinα sin β, elim-
inating one of the resulting integrals by parity, and undoing the substitution
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performed, we rewrite (42) as

− 2
∫ π

0

(
x − π

2

)
cos (t sin x − 2kx) dx

= −2
∫ π

0

x cos (t sin x − 2kx) dx + π2 J2k (t) , (43)

where we have applied the integral representation (19).
On the other hand, calculate the first integral on the RHS of (41) for

m = 2k + 1,
−1
π

∫ π

0

x2 [cos (t sin x − (2k + 1) x) + cos (t sin x + (2k + 1) x)] dx

=
−2
π

∫ π

0

x2 cos (t sinx) cos ((2k + 1) x) dx.

Following the same steps as in (42)–(43), but applying the trigonometric iden-
tity sin (α + β) = sin α cos β + sin β cos α, we rewrite the first integral on the
LHS of (41) as

− 2
∫ π

0

x cos (t sinx − (2k + 1) x) dx + π2J2k+1 (t) . (44)

From (43) and (44), Eq. (41) becomes

∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=m

+ (−1)m+1 ∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=−m

= −2
∫ π

0

x cos (t sin x − mx) dx + π2Jm (t)

+ 2
∫ ∞

0

e−t sinhxx
[
(−1)m

e−mx − emx
]
dx. (45)

Finally, take into account the integral representation (20) for n = 1, to express
(45) as (40), as we wanted to prove. �
Corollary 9. Taking into account (3), Eq. (40) becomes

∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=m

+ (−1)m+1 ∂2Jν (t)
∂ν2

∣
∣
∣
∣
ν=−m

= π m!
m−1∑

k=0

Yk (t)
k! (m − k)

(
t

2

)k−m

.

(46)

Similar derivations to those obtained above in Theorems 6 and 8, and
Corollaries 7 and 9, can be obtained for the Bessel function of the second
kind. Next, we present these results, omitting details.

Theorem 10. ∀t ∈ C and m = 0, 1, . . ., the following reflection formula holds
true:

∂Yν (t)
∂ν

∣
∣
∣
∣
ν=m

+ (−1)m ∂Yν (t)
∂ν

∣
∣
∣
∣
ν=−m

= −π Jm (t) . (47)
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Corollary 11. We extend the formula given in (3) to negative integral orders
with the aid of the reflection formula (47), resulting in

∂Yν (t)
∂ν

∣
∣
∣
∣
ν=±m

= (±1)m

[

−π

2
Jm (t) ± m!

2

m−1∑

k=0

Yk (t)
k! (m − k)

(
t

2

)k−m
]

. (48)

Theorem 12. ∀t ∈ C and m = 0, 1, . . ., the following reflection formula holds
true:

∂2Yν (t)
∂ν2

∣
∣
∣
∣
ν=m

+ (−1)m+1 ∂2Yν (t)
∂ν2

∣
∣
∣
∣
ν=−m

= −2π
∂Jν (t)

∂ν

∣
∣
∣
∣
ν=m

+ π2Ym (t) .

(49)

Corollary 13. Taking into account (2), Eq. (49) becomes

∂2Yν (t)
∂ν2

∣
∣
∣
∣
ν=m

+ (−1)m+1 ∂2Yν (t)
∂ν2

∣
∣
∣
∣
ν=−m

= −π m!
m−1∑

k=0

Jk (t)
k! (m − k)

(
t

2

)k−m

.

(50)

Remark 1. We can prove Theorems 6, 8, 10 and 12 in an alternatively way,
considering the following function proportional to the first Hankel function
and defined as:

Fν(t) =
1
π

∫ π

0

ei(t sin x−νx)dx − ie−iνπ

π

∫ ∞

0

e−i sinhx−νxdx

− i

π

∫ ∞

0

e−i sinhx+νxdx,

since

� (Fν(t)) = Jν(t), � (Fν(t)) = Yν(t).

3.2. Modified Bessel functions

Theorem 14. ∀t ∈ C and μ ∈ R, the following reflection formula holds true:

∂nIν (t)
∂νn

∣
∣
∣
∣
ν=μ

+ (−1)n+1 ∂nIν (t)
∂νn

∣
∣
∣
∣
ν=−μ

=
−2
π

sinπμ

�n/2�∑

k=0

(
n

2k

)
(−π2

)k ∂n−2kKμ (t)
∂μn−2k

− 2 cos πμ

�(n−1)/2�∑

k=0

(
n

2k + 1

)
(−π2

)k ∂n−2k−1Kμ (t)
∂μn−2k−1

. (51)
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Proof. Applying the integral representation (22), we arrive at

∂nIν (t)
∂νn

∣
∣
∣
∣
ν=μ

+ (−1)n+1 ∂nIν (t)
∂νn

∣
∣
∣
∣
ν=−μ

= − 1
π

∫ ∞

0

e−t cosh x

{
pn (x) sin πμ

[
e−μx + (−1)n

eμx
]

+ qn (x) sinπμ
[
e−μx + (−1)n+1

eμx
] }

dx,

wherein the first integral of (22) vanishes. Taking into account the definitions
of the polynomials pn and qn given in (16) and (17),

∂nIν (t)
∂νn

∣
∣
∣
∣
ν=μ

+ (−1)n+1 ∂nIν (t)
∂νn

∣
∣
∣
∣
ν=−μ

=
−1
π

sin πμ

�n/2�∑

k=0

(
n

2k

)
(−π2

)k

∫ ∞

0

e−t cosh xxn−2k
[
e−μx (−1)n + eμx

]
dx

− cos πμ

�(n−1)/2�∑

k=0

(
n

2k + 1

)
(−π2

)k

∫ ∞

0

e−t cosh xxn−2k−1
[
e−μx (−1)n+1 + eμx

]
dx. (52)

Finally, taking into account the integral representation (24), rewrite (52) as
(51), as we wanted to prove. �

From the general expression (51), we obtain some interesting particular
cases. For non-negative integral orders μ = m = 0, 1, . . ., Eq. (51) is reduced
to

∂nIν (t)
∂νn

∣
∣
∣
∣
ν=m

+ (−1)n+1 ∂nIν (t)
∂νn

∣
∣
∣
∣
ν=−m

= 2 (−1)m+1
�(n−1)/2�∑

k=0

(
n

2k + 1

)
(−π2

)k ∂n−2k−1Kν (t)
∂νn−2k−1

∣
∣
∣
∣
ν=m

. (53)

Taking n = 0 in (53), we obtain the well-known expression given in the liter-
ature [7, Eqn. 10.27.1],

Im (t) − I−m (t) = 0. (54)

Taking n = 1, 2 in (53), we obtain respectively:

∂Iν (t)
∂ν

∣
∣
∣
∣
ν=m

+
∂Iν (t)

∂ν

∣
∣
∣
∣
ν=−m

= 2 (−1)m+1
Km (t) , (55)
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and
∂2Iν (t)

∂ν2

∣
∣
∣
∣
ν=m

− ∂2Iν (t)
∂ν2

∣
∣
∣
∣
ν=−m

= 4 (−1)m+1 ∂Kν (t)
∂ν

∣
∣
∣
∣
ν=m

. (56)

The above results (55) and (56) allow us to state the following Corollaries.

Corollary 15. We extend the formula given in (4) to negative integral orders
with the aid of the reflection formula (55), resulting in

∂Iν (t)
∂ν

∣
∣
∣
∣
ν=±m

= (−1)m

[

−Km (t) ± m!
2

m−1∑

k=0

(−1)k
Ik (t)

k! (m − k)

(
t

2

)k−m
]

. (57)

Corollary 16. Taking into account (5), Eq. (56) becomes

∂2Iν (t)
∂ν2

∣
∣
∣
∣
ν=m

− ∂2Iν (t)
∂ν2

∣
∣
∣
∣
ν=−m

= 2 (−1)m+1
m!

m−1∑

k=0

Kk (t)
k! (m − k)

(
t

2

)k−m

.

(58)

For positive half-integral orders, i.e. μ = m + 1
2 with μ = m = 0, 1, . . . in

(51), we have

∂nIν (t)
∂νn

∣
∣
∣
∣
ν=m+1/2

+ (−1)n+1 ∂nIν (t)
∂νn

∣
∣
∣
∣
ν=−m−1/2

(59)

=
2
π

(−1)m+1
�n/2�∑

k=0

(
n

2k

)
(−π2

)k ∂n−2kKν (t)
∂νn−2k

∣
∣
∣
∣
ν=m+1/2

. (60)

Taking n = 0, 1 in (59), we have respectively

Im+1/2 (t) − I−m−1/2 (t) =
2
π

(−1)m+1
Km+1/2 (t) ,

which is given in the literature [7, Eqn. 10.47.11], and

∂Iν (t)
∂ν

∣
∣
∣
∣
ν=m+1/2

+
∂Iν (t)

∂ν

∣
∣
∣
∣
ν=−m−1/2

=
2
π

(−1)m+1 ∂Kν (t)
∂ν

∣
∣
∣
∣
ν=m+1/2

,(61)

which is fulfilled for m = 0 by the formulas found in [7, Eqn. 10.38.6&7].

Theorem 17. ∀t ∈ C and m = 0, 1, . . ., the following reflection formula holds
true:

∂nKν (t)
∂νn

∣
∣
∣
∣
ν=μ

+ (−1)n+1 ∂nKν (t)
∂νn

∣
∣
∣
∣
ν=−μ

= 0. (62)

Proof. First, consider the case n = 2k and take into account the integral
representation (11), thereby (62) reads as

∂2kKν (t)
∂ν2k

∣
∣
∣
∣
ν=μ

− ∂2kKν (t)
∂ν2k

∣
∣
∣
∣
ν=−μ

=
∫ ∞

−∞
x2ke−t coshx sinh (μx) dx = 0,
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which vanishes by parity. Second, consider the case n = 2k+1 and the integral
representation (11), thus (62) becomes

∂2k+1Kν (t)
∂ν2k+1

∣
∣
∣
∣
ν=μ

+
∂2k+1Kν (t)

∂ν2k+1

∣
∣
∣
∣
ν=−μ

=
∫ ∞

−∞
x2k+1e−t cosh x cosh (μx) dx = 0,

which is also null by parity. This completes the proof. �

Corollary 18. We extend the formula given in (5) to negative integral orders,
taking n = 1 and μ = m = 0, 1, . . . in (62), resulting in

∂Kν (t)
∂ν

∣
∣
∣
∣
ν=±m

= ±m!
2

m−1∑

k=0

Kk (t)
k! (m − k)

(
t

2

)k−m

. (63)

Corollary 19. From (25) with n = 1 and (63), we obtain, ∀m = 0, 1, . . .

∫ ∞

−∞
x e±mx−t cosh xdx = ±m!

m−1∑

k=0

Kk (t)
k! (m − k)

(
t

2

)k−m

. (64)

4. Conclusions

On the one hand, we have obtained new integral expressions for the n-th
derivatives of the Bessel functions with respect to the order in (18), (20), (22),
and (25). As a by-product, we have calculated an integral, which does not
seem to be reported in the literature, in three forms, i.e. (28), (29), and (64),
depending on the parameter ν.

On the other hand, we have derived reflection formulas for the first and
second order derivative of Jν (t) in (30) and (46), and of Yν (t) in (47) and (50).
Also, for arbitrary order ν, we have derived the reflection formula (51) for the
n-th order derivative of Iν (t), and the reflection formula (62) for the n-th
order derivative of Kν (t) in. As particular cases, for Iν (t) and integral order
m, we have obtained the reflection formula (55) for the first order derivative,
and (58) for the second order derivative. Also, for half-integral order, we have
obtained formula (61).

Finally, it is worth noting that the reflection formulas of the modified
Bessel function given in (55) and (56) are obtained from the general formula
(51). This is not the case of the reflection formulas given in (30), (40), (47)
and (49) for the Bessel functions of first and second kinds, where we do not
have a general formula as in the case of modified Bessel function. Moreover,
in the case of the Macdonald function, we have obtained a reflection formula
for arbitrary order in (62). This situation shows the different behavior of the



30 Page 14 of 15 J. L. González-Santander Results Math

order derivatives of Bessel functions with respect to order derivatives of the
modified Bessel functions.
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