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Abstract. In this paper, we devote our research to the essential spectra of linear relations defined on a
Banach space. We extend the main results of paper [1] to linear relations.

1. Introduction

We adhered with the notation and terminology of the book [3, 16]. Let X,Y,Z, ... denote vector spaces
over K = R or C. A multi-valued linear operator or linear relation T from X to Y is a mapping from
a subspace D(T) of X, called the domain of T, into the collection of nonempty subsets of Y such that
T(αx1+βx2) = αT(x1)+βT(x2) for all nonzero scalars α, β and x1, x2 ∈ D(T). If T maps the point of its domain
to singletons, then T is said to be a single valued or simply an operator. We denote the class of linear
relation from X to Y be LR(X,Y) and we write LR(X) = LR(X,X). A linear relation T ∈ LR(X,Y) is uniquely
determined by its graph, G(T), which is defined by

G(T) = {(x, y) ∈ X × Y : x ∈ D(T), y ∈ Tx},

so that we can identify T with G(T). The inverse of T is the linear relation T−1 defined by

G(T−1) = {(y, x) ∈ Y × X such that (x, y) ∈ G(T)}.

The subspace T−1(0) denoted by N(T) is called the null space of T and T is called injective if N(T) = {0}. The
range of T is the subspace T(D(T)) and T is said to be surjective if R(T) = Y.We denote α(T) := dim N(T),
β(T) := dim Y/R(T), β(T) := dim Y/R(T) and the index of T is the quantity i(T) := α(T) − β(T) provided α(T)
and β(T) are not both infinite. Let M be a subspace of X such that M ∩D(T) , ∅. The restriction of T to M,
denoted T|M is defined by

G(T|M) := {(x, y) : x ∈M, y ∈ Tx}.

For λ ∈ K, T, S ∈ LR(X,Y), the linear relation λ − T and T + S are defined by

G(λ − T) := {(x, λx − y) : (x, y) ∈ G(T)}.

G(T + S) := {(x, y) : y = u + v with (x,u) ∈ G(T), (x, v) ∈ G(S)}.

We say that S ⊂ T if G(S) ⊂ G(T).
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Let T ∈ LR(X,Y) and S ∈ LR(Y,Z) where R(T) ∩D(T) , ∅. The product of ST is defined by

G(ST) := {(x, z) ∈ X × Z : (x,u) ∈ G(T) and (u, z) ∈ G(S) for some u ∈ Y}.

Assume that X and Y are normed spaces and T ∈ LR(X,Y). If M is a closed subspace of X then JM is the
inclusion of M into X and QM is the quotient map from X onto X/M (see[2]-[15]). We shall denote QT(0) by
QT. It easy to see that QTT is single valued so that we can define ∥Tx∥ := ∥QTTx∥; x ∈ D(T) and ∥T∥ := ∥QTT∥.
We say that T is continuous if ∥T∥ < ∞, bounded if it is continuous with D(T) = X, open if T−1 is continuous
and T is called closed if its graph is a closed subspace.

If M is a subspace of X and N is a subspace of X′ where X′ is the dual space of X, then

M⊥ := {x′ ∈ X′ : x′(M) = 0} and N T := {x ∈ X : N(x) = 0}.

The conjugate of T ∈ LR(X,Y) is the linear relation T′ defined by

G(T′) := G(−T−1)⊥ ⊂ Y′ × X′,
so that

(y′, x′) ∈ G(T′) if and only if y′(y) = x′(x) for all (x, y) ∈ G(T).
Let T ∈ LR(X,Y), we say that T is F+ if there exists a finite codimensional subspace M of D(T) for which T|M
is injective and open

(
that is, there exists α > 0 such that α∥m∥ ≤ ∥Tm∥, m ∈ M

)
and T is called precompact

if QTTBX is totally bounded
(
see [16, p. 134]

)
. A closed linear relation T from a Banach space X into a

Banach space Y is said upper semi-Fredholm relation which we abbreviate as Φ+, if T has closed range and
α(T) < ∞, we denoted by T ∈ Φ+(X,Y). T is called lower semi-Fredholm relation which we abbreviate as
Φ−, if R(T) is a closed finite codimensional subspace of Y. T is said semi-Fredholm (resp. Fredholm) relation
if T ∈ Φ+ ∪Φ−, (resp. Φ+ ∩Φ−).

This paper deals the essential spectra of a closed linear relation on a Banach space. In Section 2, we recall
some useful basic properties of linear relations. In Section 3, present some auxiliary results which are
used in the following sections. In Section 4, we define the Gustafson, Weidman, Kato, Wolf, Schechter and
Browder essential spectra of a linear relation and we generalize the Proposition 1.1 (ii), (iii) and Theorem
2.1 in [1]. In Section 5, we prove that the properties Rakoc̆ević and Schmoeger essential spectra of a linear
relation. In Section 6, we extend the results of Theorem 1.1 and Lemma 1.1 of [1] to linear relations.

2. Remember some useful basic properties of linear
relations

We list some algebraic properties of linear relations.

Lemma 2.1. Let X and Y be vector spaces and let T ∈ LR(X,Y). Then

(i)
(
[16, p. 2]

)
D(T−1) = R(T); D(T) = R(T−1).

(ii)
(
[16, p. 3 (9)]

)
T injective if and only if T−1T = ID(T).

(iii)
(
[16, p. 7, I.2.4)]

)
T(0) and T−1(0) are subspaces.

(iv)
(
[16, p. 7, I.2.6 and I.2.8 (ii)]

)
x ∈ N(T) if and only if 0 ∈ Tx if and only if Tx = T(0).

(v)
(
[16, p. 8, I.2.9]

)
T single valued if and only if T(0) = {0}.

(vi)
(
[16, p. 8, I.2.10]

)
TT−1(0) = T(0) and T−1T(0) = T−1(0).

(vii)
(
[16, p. 8, I.2.14 (b)]

)
Let S, T ∈ LR(X,Y) such that D(T) = D(S) and T(0) = S(0). Then T = S or the graphs

of T and S are incomparable.
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(vii)
(
[16, p. 8, I.2.11 (b)]

)
If G(S) ⊂ G(T), then T is an extension of S

(
that is S = T|D(S)

)
if and only if S(0) = T(0).

♢

Lemma 2.2.
(
[22, p. 481, Lemma 7.2]

)
Let X be a vector space, T ∈ LR(X) andλ ∈ K\{0}. Then N(λ−T)n

⊂ R(Tm)
for all n, m ∈N ∪ {0}. ♢

Lemma 2.3.
(
[22, p. 487, Theorem 9.1]

)
Let X be a vector space and T ∈ LR(X).Then

(i) If α(T) ≤ β(T) and α(T) < ∞, then there exists an everywhere defined single valued B with dim R(B) ≤ α(T) such
that T − B is injective.

(ii) If β(T) ≤ α(T) and β(T) < ∞, then there exists an everywhere defined single valued B with dim R(B) ≤ β(T) such
that T − B is surjective.

(iii) If α(T) = β(T) then there exists an everywhere defined single valued B with dim R(B) ≤ α(T) such that T − B is
bijective. ♢

Lemma 2.4. ([23, p. 2167, Proposition 5.2]) Let X, Y, Z be vector spaces and let T ∈ LR(X,Y), S ∈ LR(Y,Z).
Assume that T and S have finite indices, then

i(ST) = i(S) + i(T) + dim
Y

R(T) +D(S)
− dim{T(0) ∩N(S)}.

Also

α(ST) ≤ α(S) + α(T) and β(ST) ≤ β(S) + β(T). ♢

We list some useful properties of closed, continuous and open linear relations in normed spaces.

Lemma 2.5. Let X, Y, Z be normed vector spaces and let T ∈ LR(X,Y). Then

(i)
(
[16, p. 43, II.5.1 and p. 44, II.5.3]

)
T−1 closed if and only if T closed if and only if QTT closed single valued and

T(0) closed space.

(ii)
(
[16, p. 43 (6)]

)
If T is continuous, D(T) and T(0) are closed then T is closed.

(iii)
(
[16, p. 33, II.3.2 (b) and p. 31, II.2.5]

)
T open if and only ifγ(T) > 0 whereγ(T) := sup

{
λ ≥ 0 : λd(X,N(T)) ≤

∥TX∥, X ∈ D(T)
}

which coincides with
1
∥T−1∥

(so that γ(T) > 0 if and only if T−1 is continuous).

(iv)
(
[16, p. 47, II.5.16]

)
If S, T ∈ LR(X,Y) such that T is closed and S is a continuous single valued, then T + S is

closed.

(v)
(
[16, p. 38, II.3.13 and II.3.14]

)
If T ∈ LR(X,Y) and S ∈ LR(Y,Z) with T(0) ⊂ D(S) then ∥STx∥ ≤ ∥S∥∥Tx∥, x ∈

D(ST) and ∥ST∥ ≤ ∥S∥∥T∥.

(vi)
(
[16, p. 146, v.2.9]

)
If T ∈ LR(X,Y) and S ∈ LR(Y,Z) such that T(0) ⊂ D(S) and S is a continuous, then

QSTST = QSTSQ−1
T QTT.

(vii)
(
[16, p. 47, II.5.17]

)
If T ∈ LR(X,Y) and S ∈ LR(Y,Z) such that T closed, α(S) < ∞, γ(S) > 0 and R(S) closed

then ST is closed.

(viii)
(
[16, p. 34, II.3.4]

)
N(T) ⊂ N(QTT) and γ(T) ≤ γ(QTT) with equality if T(0) is closed in R(T).

(ix)
(
[16, p. 36, II.3.9]

)
If T is open and N(T) is closed, then N(T) = N(QTT) and γ(T) = γ(QTT).

(x)
(
[16, p. 48, II.6.1]

)
If M is a subspace of D(T), then γ(T) ≤ γ(T|N(T)+M). ♢

We recall some useful properties of the conjugate T′ of T.
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Lemma 2.6. Let X and Y be normed spaces and let T ∈ LR(X,Y). Then

(i)
(
[16, p. 56, III.1.2 and III.1.4]

)
T′ is closed such that T′(0) = D(T)⊥; N(T′) = R(T)⊥ and if T is closed then

T(0) = D(T′)⊥.

(ii)
(
[16, p. 57, III.1.5 (b)]

)
S ∈ LR(X,Y) continuous such that D(T) ⊂ D(S) then (T + S)′ = T′ + S′.

(iii)
(
[16, p. 72, III.4.6 (a),(c)]

)
T continuous if and only if T(0)⊥ = D(T′). In such case T′ is continuous and

∥T∥ = ∥T′∥.

(iv)
(
[16, p. 72, III.4.6 (b),(d)]

)
T open if and only if R(T′) = N(T)⊥. In such case γ(T) = γ(T′).

(v)
(
[16, p. 58, III.1.6]

)
Let T ∈ LR(X,Y) and S ∈ LR(Y,Z). Then T′S′ ⊂ (ST)′. ♢

Lemma 2.7. Let X and Y be Banach spaces and let T ∈ LR(X,Y) be closed. Then T open⇔ T′ open⇔ R(T) closed
⇔ R(T′) closed. ♢

Proof. T open⇔ R(T) closed, follows immediately from
(
[16, p. 71, III.4.2 (b)]

)
.

T open⇔ T′ open, follows immediately from
(
[16, p. 76, III.5.3 (a)]

)
.

T′ open⇔ R(T′) closed, as T open⇔ R(T) closed.

Lemma 2.8. Let X be a normed space and let T ∈ LR(X). If 0 < |λ| < γ(T). Then

(i)
(
[16, p. 81, III.7.4]

)
α(λ − T) ≤ α(T); β(λ − T) ≤ β(T).

(ii)
(
[16, p. 82, III.7.5]

)
T open with dense range then λ − T has dense range.

(iii)
(
[16, p. 82, III.7.6]

)
T open and injective then λ − T open and β(λ − T) = β(T), here λ − T := λID(T) − T. ♢

3. Auxiliary results

Lemma 3.1. Let M be a closed subspace of a normed space X and let N be a subspace of X containing M. Then

(i) N closed if and only if (N/M) closed.

(ii) If N is closed then (X/N) ≡ (X/M)
/
(N/M) and QN = QN/MQM where ≡ is a canonical isometry.

Proof. (i) it is elementary.

(ii)
(
see [16, p. 124, IV.5.2]

)
.

Lemma 3.2. Let X and Y be normed spaces and let T ∈ LR(X,Y) be closed. Then R(T) closed if and only if R(QTT)
closed. In such case β(T) = β(QTT). ♢

Proof. By Lemma 2.5 (i) QTT is a closed, QTT is a closed operator with T(0) a closed subspace and hence

R(T) + T(0)/T(0) = R(T)/T(0),

clearly T(0) ⊂ R(T) and thus by Lemma 3.1 (i) we have that R(T) closed if and only if R(QTT) closed. In such
case we have by Lemma 3.1 (ii) that

Y/T(0)/R(T)/T(0) ≡ Y/R(T)

so that

β(T) := dim Y/R(T) = β(QTT) := dim Y/T(0)/R(QTT).

We shall use the following result of duality
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Lemma 3.3. Let X and Y be normed spaces and let T ∈ LR(X,Y) be closed. Then

(i) T is not F+ if and only if there is an infinite dimensional subspace M of D(T) such that T|M is precompact.

Now, assume that X and Y are Banach spaces and that T is closed. Then

(ii) T+ is F+ if and only if T is Φ+.

(iii) T ∈ Φ+ ⇔ QTT ∈ Φ+ ⇔ T′ ∈ Φ−. In such case i(T) = i(QTT) = −i(T′).

(iv) T ∈ Φ− ⇔ QTT ∈ Φ− ⇔ T′ ∈ Φ+. In such case i(T) = i(QTT) = −i(T′). ♢

Proof. (i) See
(
[16, p. 136, V.1.6]

)
.

(ii) See
(
[16, p. 138, V.1.7]

)
.

(iii) By Lemma 2.5 (i), QTT is a closed operator and T(0) is a closed subspace. T ∈ Φ+, then R(T) closed,
by Lemma 3.2 we have R(QTT) closed and applying Lemma 2.5 (viii), we obtain N(T) = N(QTT). Since
dim N(T) < ∞ and β(T) = β(QTT) we deduce that QTT ∈ Φ+

(
X,Y/T(0)

)
with the same index that T. That

QTT ∈ Φ+ ⇒ T ∈ Φ+, it is obtained similarly.

T ∈ Φ+ ⇔ T′ ∈ Φ−. In effect we have: By Lemma 2.7, we have R(T) closed⇔ R(T′) closed and applying
Lemma 2.6 (i), we obtain N(T′) = R(T)⊥ which implies that α(T′) = β(T). On the other hand, by Lemma 2.7,
we have R(T) closed ⇔ T open and applying Lemma 2.6 (iv), we infer R(T′) = N(T)⊥ which implies that
β(T′) = α(T) if R(T) is closed. From all the above, we deduce that

T ∈ Φ+ ⇔ T′ ∈ Φ− and in that case i(T) = −i(T′).

(iv) With a reasoning similar to that (i).

In the following lemma, we give small perturbation of semiFredholm relations.

Lemma 3.4. Let X be a Banach space and T ∈ LR(X) be closed. Assume that 0 < |λ| < γ(T). Then

(i) T ∈ Φ+ ⇒ λ − T ∈ Φ+ and i(λ − T) = i(T).

(ii) T ∈ Φ− ⇒ λ − T ∈ Φ− and i(λ − T) = i(T). ♢

Proof. T closed then QTT is a closed operator and by Lemma 2.5 (i) we have T(0) closed, so that X and
Y/T(0) are Banach spaces. Assume T ∈ Φ+ ∪ Φ− then R(T) is closed, by Lemma 3.2, we deduce R(QTT) is
closed. Assume that 0 < |λ| < γ(T) and that T ∈ Φ+ ∪ Φ−. Then, applying Lemma 2.7 and Lemma 2.5 (viii),
we obtain 0 < γ(T) = γ(QTT) and clearly we have

∥λQT∥ = |λ|∥QT∥ ≤ |λ|.

Moreover, by Lemma 2.5 (iv), we note that λ − T is closed. By virtue of Lemma 2.1 (iii) and (v), we obtain
that

λ − T(0) = λ(0) − T(0) = {0} − T(0) = T(0),

so that

(a) Qλ−T = QT. Since T is closed, we deduce from Lemma 2.5 (i), (iv) and (viii) that:

(b) QTT is closed with γ(T) ≤ γ(QTT), T(0) is closed, Y/T(0) is a Banach space and λ − T is closed.

(i) Assume that T ∈ Φ+(X,Y). Then, by Lemma 3.3 (iii) we have QTT ∈ Φ+
(
X,Y/T(0)

)
and clearly, we obtain

∥λQT∥ ≤ |λ|,

It follows from (a), (b) and [17, p. 112, V.1.6] that

QT(λ − T) ∈ Φ+
(
X,Y/T(0)

)
,
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with the same index that QTT, in this situation the desired assertion (i) follows immediately again from
Lemma 3.3 (iii).

(ii) The proof is similar to that of (i) by using (a), (b) and [17, p. 112, V.1.6] and Lemma 3.3 (iv).

Remark 3.5. We note that the above Lemma 3.4 was proved by Cross [16, p. 205-206, V.15.6 and V.15.7]
using operational quantities which are not introduced in this draft. Our proof is different, it is more short
that the proof of Cross. ♢

We now present an useful result of perturbation of semi-Fredholm relations with compact relations. For
this, we first prove the following lemma:

Lemma 3.6. Let X is a normed space and Y is a Banach space. Let T ∈ LR(X,Y) be closed and S ∈ LR(X,Y) be
continuous such that S(0) ⊂ T(0) and D(T) ⊂ D(S). Then T + S is closed. ♢

Proof. Case 1: T and S single valued. Let (xn) ⊂ D(T + S) = D(T) ∩D(S) = D(T), xn → x and (T + S)xn → y.
Then

∥Txn − Txm∥ ≤ ∥(T + S)(xn − xm)∥ + ∥S(xn − xm)∥
≤ ∥(T + S)(xn − xm)∥ + ∥S∥∥xn − xm∥,

therefore (Txn) is a Cauchy sequence in Y Banach space, so that there exists z ∈ Y such that Txn → z and
since T is closed, z = Tx, x ∈ D(T) and since xn → x ∈ D(T) ⊂ D(S) and S is continuous, Sxn → Sx. Thus
(T + S)xn → Tx + Sx = y. Hence T + S closed.

Case 2: T and S linear relations. As S(0) ⊂ T(0) we have that (T + S)(0) = T(0) + S(0) = T(0) closed, hence
QT+S = QT, applying Lemma 2.5 (i), we obtain QTT closed. Since S(0) ⊂ T(0), again applying Lemma 2.5 (i)
we have S(0) ⊂ T(0) = T(0), so that by Lemma 3.1 we infer that

Y/S(0)
/
T(0)/S(0) ≡ Y/T(0),

with QT = QT(0)/S(0)QS and as S continuous. Therefore, by Lemma 2.5 (ii) we obtain QSS is continuous. We
have that QTS is a continuous single valued. In this situation by the case 1, we obtain that

QT+S(T + S) = QT(T + S) = QTT +QTS is closed. Again applying Lemma 2.5 (i) we have that T + S closed,
as desired.

Lemma 3.7. Let X and Y be Banach spaces and let T ∈ LR(X,Y) be closed. Then for any compact linear relation
K ∈ LR(X,Y) satisfying D(T) ⊂ D(K) and K(0) ⊂ T(0) we have that:

(i) T ∈ Φ+ then T + K ∈ Φ+ with i(T + K) = i(T).

(ii) T ∈ Φ− then T + K ∈ Φ− with i(T + K) = i(T). ♢

Proof. By Lemma 3.6, T + K is closed. Moreover, as K(0) ⊂ T(0) we have QT+S = QT. Using Lemma 2.5
(i), QTT is closed with T(0) closed, so that X and Y/T(0) are Banach spaces. Moreover, K(0) ⊂ T(0) hence
K(0) ⊂ T(0) = T(0). Therefore, applying Lemma 3.1 (ii) we obtain QT = QT(0)/K(0)QK and hence QTK is a
compact operator (and hence strictly singular) with D(QTT) = D(T) ⊂ D(K) = D(QTK). Then

(i) T ∈ Φ+, hence by Lemma 3.6 we obtain QTT ∈ Φ+ and using [17, p. 117, V.2.1] we have that

QT+K(T + K) = QT(T + K) = QT(T) +QT(K) ∈ Φ+,

with the same index that QTT. Again by Lemma 3.3 (iii), we conclude that T + K ∈ Φ+ with the same index
that T.

(ii) Since T ∈ Φ− then applying Lemma 3.3 (iv), we have T′ ∈ Φ+. We shall prove that

(a) K′(0) ⊂ T′(0). Indeed, since D(T) ⊂ D(K) hence by Lemma 2.6 (i)
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K′(0) = D(K)⊥ ⊂ D(T)⊥ = T′(0)

(b) D(T′) ⊂ D(K′). Indeed, since K(0) ⊂ T(0) then applying Lemma 2.6 (i) and (iii), we have

D(T′) =
(
D(T′)⊤

)⊥
= T(0)⊥ ⊂ K(0)⊥ = K′(0).

(c) K′ compact. By [16, p. 163, V.5.15], so that by (i), we have that T′ + K′ ∈ Φ+ with i(T′ + K′) = i(T′). But
T′ + K′ = (T + K)′

(
Lemma 2.6 (ii) since K compact hence K continuous [K compact hence K continuous

QKK compact operator]
)
. Therefore, using Lemma 3.3 (iv), we obtain (T + K)′ ∈ Φ+ ⇐⇒ T + K ∈ Φ− and

i(T + K) = i(T).

Remark 3.8. When, in the above Lemma 6.2, T = λI, then T(0) = {0} and so K(0) ⊂ T(0) then K(0) = {0}, that
is, K single valued. Hence, for T = λI the above Lemma 6.2 is a very know result of operators. ♢

4. Gustafson, Weidman, Kato, Wolf, Schechter and
Browder essential spectra of a linear relation

The main purpose of this Section is to show that the properties of σei(.), i = 1, 2, 3, 4, 5, 6 for closed
densely defined operators on Banach spaces obtained in [1] for Proposition 1.1 and Theorems 2.1 and 2.2
remain valid in the context of linear relations.

In this Section T will denote a closed linear relation in a complex Banach space X.

Definition 4.1. We define ρ(T) the resolvent set of T, and the essential resolvent sets of T where we denote
by ρei(T), i = 1, 2, 3, 4, 5, 6 as follows:

(i) ρ(T) := {λ ∈ C; λ − T bijective}.

(ii) ρe1(T) := {λ ∈ C; λ − T ∈ Φ+}.

(iii) ρe2(T) := {λ ∈ C; λ − T ∈ Φ−}.

(iv) ρe3(T) := {λ ∈ C; λ − T ∈ Φ+ ∪Φ−}.

(v) ρe4(T) := {λ ∈ C; λ − T ∈ Φ+ ∩Φ−}.

(vi) ρe5(T) := {λ ∈ C; λ − T ∈ Φ+ ∩Φ− and i(λ − T) = 0}.

(vii) ρe6(T) := {λ ∈ C; λ ∈ ρe5(T) such that all scalars near λ are in ρ(T)}. ♢

It is usual λ − T := λID(T) − T. The spectrum of T, σ(T), and the essential spectra, σei(T), i = 1, 2, 3, 4, 5, 6
are the respective complements of ρ(T) and ρei(T) respectively: σ(T) := C\ρ(T) and σei(T) := C\ρei(T), i =
1, 2, 3, 4, 5, 6.

We denote that in [16, p. 220, V.I.1.2], for S ∈ LR(X) where X complex normed space define ρ(S) := {λ ∈
C : λ − S bijective, open with dense range}, so that by virtue Lemma 2.7, we have that the notion of ρ(S)
when S is closed and X is complete coincides with our notion of resolvent set.

Proposition 4.2. Let X be a Banach space and T ∈ LR(X). Then

σei(T), i = 1, 2, 3, 4, 5, 6, are closed. ♢

Proof. The case i = 4 is a generalization of Proposition 1.1 (i) in [1]. Let λ ∈ ρei(T), i = 1, 2, 3, 4, 5, 6. Then
R(λ−T) is closed and sinceλ−T is closed in X

(
see Lemma 2.5 (iv)

)
. By Lemma 2.7, we have that γ(λ−T) > 0.

If λ−T ∈ Φ+
(
resp. Φ−

)
and |η−λ| < γ(T−λ)

(
resp. |η−λ| < γ(λ−T)

)
then, by Lemma 3.4 (i)

(
resp. (ii)

)
, we

have η−T = (η−λ)− (λ−T) ∈ Φ+
(
resp. Φ−

)
with the same index that λ−T. Therefore ρei(T), i = 1, 2, 3, 4, 5

are open. Furthermore, since each component of ρe5(T) is open, so ρe6(T) is open.
Now, we try to generalize Proposition 1.1 (ii) and (iii).
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Proposition 4.3. Let T ∈ Φ+ ∩Φ−. Then there exists η > 0 such that α(λ− T) and β(λ− T) are constant whenever
0 < |λ| < η. ♢

Proof. Case 1: T ∈ Φ+, let λ ∈ C\{0}. Then

(a) By Lemma 2.5 (iv) we have λ − T is closed.

(b) Applying Lemma 2.2, we obtain N(λ − T) ⊂ R∞(T) :=
⋂
n∈N

R(Tn).

(c) R∞(T) closed. We prove by induction that R(Tn) is closed. For n = 1, it is clear by the hypothesis T ∈ Φ+.
Assume that R(Tn) is closed. Then N(T) + R(Tn) is closed (as dim N(T) < ∞) and thus since T is closed, we
have that T0 := T|N(T)+R(Tn) is also closed and applying Lemmas 2.7 and 2.5 (x), we have 0 < γ(T) < γ(T0).
Hence, T0 is open and so, by Lemma 2.7, we have R(T0) is closed. But

R(T0) := T
(
N(T) + R(Tn)

)
:= T

(
N(T)

)
+ T
(
R(Tn)

)
,
(
see [16, p. 9, I.3.1]

)
:= TT−1(0) + R(Tn+1)

:= T(0) + R(Tn+1),
(
see Lemma 2.1 (vi)

)
:= R(Tn+1),

(
clearly T(0) ⊂ R(Tp), for all p ∈N

)
.

Therefore (c) is true.

Now, we define T∞ the restriction of T to R∞(T). Then

(d) T∞ is closed, T∞ : R∞(T) −→ R∞(T) is surjective. Indeed, T∞ is closed. Follows immediately observing
that T is closed and by (c) we have R∞(T) is closed. Let m ≥ n, then N(T) ∩ R(Tm) ⊂ N(T) ∩ R(Tn) and since
dim
(
N(T) ∩ R(Tp)

)
< ∞ for all p ∈ N, then we have that the sequence

(
N(T) ∩ R(Tn)

)
n∈N

is a stationary
sequence for n large enough. This shows that there exists d ∈N for which

N(T) ∩ R(Tm) = N(T) ∩ R(Td), n ≥ d. (1)

This property (1) helps to see that T∞ is surjective. In fact, let z ∈ R∞(T), then for each n ∈ N, there exists
(xn) ∈ D(T)∩R(Tn) such that z ∈ Txn hence 0 = z− z ∈ Txn − Txm = T(xn − xm), so that by Lemma 2.1 (iv) we
have xn − xd ∈ N(T) and if n ≥ d then xn − xd ∈ N(T) ∩ R(Td) which coincides with N(T) ∩ R∞(T) ⊂ R∞(T),(
using Eq. (1)

)
and hence xd ∈ R∞(T) ∩ D(T) and since z ∈ Txd we obtain that z ∈ T(R∞(T) ∩ D(T)). Hence

R∞(T) ⊂ T(R∞(T) ∩D(T)). Clearly T(R∞(T) ∩D(T)) ⊂ R∞(T). Therefore (d) is true.

(e) T∞ is open. We can see by (d) and Lemma 2.7.

( f ) N(λ − T) = N(λ∞ − T∞); β(λ∞ − T∞) = β(T∞) = 0 if 0 < |λ| < γ(T∞). λ∞ denotes the restriction of λI to
R∞(T)∩D(T). By Lemma 2.8 (i) and the assertion (d) we have β(λ∞ − T∞) ≤ β(T∞) = 0, α(λ∞ − T∞) ≤ α(T∞).
Furthermore, by Eq. (1) we have N(T∞) := N(T) ∩ R∞(T) = N(T) ∩ R(Td) finite dimensional so that
i(T∞) = α(T∞) < ∞ and also applying the assertion (b) we obtain N(λ∞−T∞) = N(λ−T)∩R∞(T) = N(λ−T).
On the other hand, by Lemma 3.4 (i) we infer i(λ∞−T∞) = i(T∞) and λ∞−T∞ ∈ Φ+ (in particular R(λ∞−T∞)
is closed). In short, ( f ) is true.

(1) There exists ε > 0 such that if 0 < |λ| < ε then by Lemma 3.4 (i) we obtain λ−T ∈ Φ+ with i(λ−T) = i(T).
Now, ( f ) and (1) implies the desired result if T ∈ Φ+.

Case 2: T ∈ Φ−. The result is obtained applying the case 1 to the conjugate T′ of T. Indeed, by Lemma 2.5
(iv) we have (λ − T)′ = λ − T′ and therefore T ∈ Φ− ⇐⇒ T′ ∈ Φ+, in such case, applying Lemma 3.3 (iv), we
obtain i(T) = i(T′).

Now, we can generalize the Proposition 1.1 (ii) and (iii) in [1].
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Proposition 4.4. Let T ∈ LR(X) and C denotes a component of ρei(T), i = 1, 2, 3, 4. Then

(i) α(λ − T) and β(λ − T) have constant values n1 and n2, respectively, except perhaps at isolated points where
n1 < α(λ − T) and n2 < β(λ − T).

(ii) The index is constant in C. ♢

Remark 4.5. In the assertion (i)
(
resp. (ii)

)
, the case i = 4 generalizes Proposition 1.1 (iii)

(
resp. (ii)

)
in [1]. ♢

Proof. Since any component of an open set of C, is open, we have that C is open. Define α(T) := α(λ − T)
and choose λ0 such that α(λ0) := n1 is the smallest nonnegative integer attained by α(λ) on C. Suppose
α(λ′) , n1. Owing to the connectivity of C, there exists an arc Γ lying in C with endpoints λ0 and λ′. It
follows from the above Proposition 4.3 and the fact that C is open, that about each η ∈ Γ there exists an
open ball B(η, r) ⊂ C such that α(λ) is constant on B(η, r)\{η}. Since Γ is compact and connected, there exists
λ1, ..., λn = λ′ such that

B(η1, r1), ...,B(ηn, rn) cover Γ and B(ηi, ri) ∩ B(ηi+1, ri+1) , ∅, 0 ≤ i ≤ n − 1. (2)

We assert from Lemma 3.4 (small perturbation) that α(λ) ≤ α(λ0) for λ sufficiently close to λ0. Thus , since
α(λ0) is the minimum value attained by α(λ) on C, it follows that α(λ) = α(λ0) for λ sufficiently close to λ0.
Since α(λ) is constant for all λ , λ0 in B(λ0, r0), this constant must be α(λ0). Similarly α(λ) is constant on
B(λi, ri)\{λi}, 1 ≤ i ≤ n. Thus by Eq. (2) we have α(λ) = α(λ0) for all λ ∈ B(λ′, r′)\{λ′} and α(λ′) > η1. To see
that the result is true for β(λ − T), we pass to the conjugate T′ of T and apply the above using the equality
α(λ − T′) = β(λ − T).

(ii) If λ and λ′ are distinct points in C and Γ is an arc in C with endpoints λ and λ′, then by Lemma 3.4,
there exists ε > 0 such that i(η − T) = i(λ − T) for any 0 < |η| < ε. Clearly the open balls B(λ, .), λ ∈ Γ cover
C which is compact and thus a finite number of these balls overlap, it follows that i(λ − T) = i(λ′ − T), are
desired.

Now, we prove the homologous of Theorem 2.1 in [1].

Proposition 4.6. If ρe4(T) is connected and ρ(T) , ∅. Then

σe4(T) = σe5(T). ♢

Proof. Clearly, σe4(T) ⊂ σe5(T).We prove that σe5(T) ⊂ σe4(T) showing that ρe4(T) ∩ σe5(T) = ∅. Assume that
there exists

λ0 ∈ ρe4(T) ∩ σe5(T), (3)

and let λ1 ∈ ρ(T) (so that λ1 − T ∈ Φ+ ∩ Φ− with i(λ1 − T) = 0). Since ρe4(T) is connected, it follows from
the above Proposition 4.4 (ii) that i(λ − T) is constant on any component of ρe4(T). Therefore i(λ1 − T) =
i(λ0 − T) = 0, hence λ0 < σe5(T) which contradicts for Eq. (3).
In the following, we prove the homologous of Theorem 2.2 for i = 1, 2, 3, 4, 5 in [1].

Proposition 4.7. If 0 ∈ ρ(T) then for λ ∈ C\{0}, we have

λ ∈ σei(T) if and only if
1
λ
∈ σei(T−1), i = 1, 2, 3, 4, 5. ♢

Proof. (a) T−1 is a bounded single valued and closed. Indeed, T closed and injective, so by Lemma 2.1 (v)
we have N(T) := T−1(0) = {0} equivalently T−1 is a single valued. Moreover, applying Lemma 2.1 (i) and
since T is surjective then we obtain D(T−1) = R(T) = X. By Lemmas 2.5 (iii) and 2.7 then T−1 is continuous.
Again, applying Lemma 2.5 (i) T closed hence T−1 closed.
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(b) λ − T = −λ(λ−1
− T−1)T. Indeed, we pose A := λ − T := λID(T) − T, S := −λ(λ−1

− T−1) and B :=
−λ(λ−1

− T−1)T := ST, then D(A) = D(B). Indeed, D(A) = D(λ − T) = D(λ) ∩D(T) = D(T) and

D(B) = D(ST) := {x ∈ D(T); Tx ∩D(S) , ∅},
(
see [16, p. 2, I.1.3]

)
:= D(T),

(
as D(S) = D(λ−1

− T−1) =

D(T−1) = R(T) = X
)

:= D(T).

B = A. Indeed, by
(
[16, p. 11, I.4.2 (d)]

)
we have

(λ−1
− T−1)T ⊂ λ−1T − T−1T.

= λ−1T − ID(T)

(
see Lemma 2.1 (ii)

)
−λ(λ−1

− T−1)T ⊂ −λλ−1T + λID(T)

= λ − T := A

B(0) ⊂ A(0). Since B ⊂ A, it is clear that B(0) = A(0). Furthermore, A(0) := (λ − T)(0) = −T(0) = T(0)
(
as T(0)

is a subspace Lemma 2.1 (iii)
)
. Let z ∈ T(0) then λ−1z − T−1 = λ−1z since T−1z ∈ T−1T(0) = T−1(0) = {0}

(
T−1

is single valued by (a)
)
. Hence, if z ∈ T(0) then −λ

(
λ−1
− T−1

)
T(0) := B(0), thus A(0) ⊂ B(0). In consequence

A(0) = B(0). Now, it follows from Lemma 2.1 (vii) that A = B, so that (b) is true.

(c) N(λ − T) = N(λ−1
− T−1) and R(λ − T) = R(λ−1

− T−1). In fact, applying (b) we have R(λ − T) =
R
(
λ−1
− T−1)T

)
= (λ−1

− T−1)R(T) = R(λ−1
− T−1)

(
as R(T) = X by (a)

)
. Moreover, N(λ − T) = N(λ−1

− T−1).
Indeed,

x ∈ N(λ − T) ⇐⇒

{
x ∈ D(λ − T) = D(T)
(λ − T)x = (λ − T)(0)

(
see Lemma 2.1 (iv)

)
⇐⇒ λx − Tx = −T(0) = T(0)

(
T(0) is a subspace

(
see Lemma 2.1 (iii)

))
⇐⇒ Tx = λx − T(0)

(
since T−1T = ID(T)

(
see Lemma 2.1 (ii)

)
and

applying Lemma 2.1 (vi) and (a) T−1T(0) = T−1(0) = {0}
)

⇐⇒ x = T−1Tx = λT−1x − T−1T(0) = λT−1x
⇐⇒ 0 = x − λT−1x
⇐⇒ 0 = λ−1x − T−1x = (λ−1

− T−1)x
⇐⇒ x ∈ N(λ−1

− T−1).

Therefore (a) and (c) ensures the desired Proposition 4.7.

5. Rakoc̆ević and Schmoeger Essential Spectra of a linear relation

The main purpose of this section is to prove that the properties of σe7(.) and σe8(.) for closed densely
defined operators in Banach spaces obtained in [1, 18–20] are valid for closed linear relations. Perhaps we
must write σe7(.) := σeap(.) and σe8(.) := σeδ(.). In this Section T will denote a closed linear relation on a
complex Banach space X.

Definition 5.1. We define σe7(T) :=
⋂

K∈KT

σap(T + K) and σe8(T) :=
⋂

K∈KT

σδ(T + K), with KT :=
{
K ∈ LR(X) :

K compact, D(T) ⊂ D(K), K(0) ⊂ T(0)
}
, σap(T) := {λ ∈ C : λ−T not bounded below}, where bounded below

is injective and open and σδ(T) := {λ ∈ C : λ − T is not surjective}. ♢
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We now prove the analogous of Proposition 1.3 in [1].

Proposition 5.2. Characterization of σe7(.) and σe8(.).

(i) λ < σe7(T) if and only if λ − T ∈ Φ+ and i(λ − T) ≤ 0.

(ii) λ < σe8(T) if and only if λ − T ∈ Φ− and i(λ − T) ≥ 0. ♢

Proof. We note that λ − T is closed by Lemma 2.5 (iv).

(i) (⇒) Let λ < σe7(T). Then there exist K ∈ KT such that λ − T − K = (λ − T) − K = λ − (T + K) is
bounded below. Then, by Lemma 3.6 we have λ − (T + K) is closed, and applying Lemma 2.7 we infer
that λ − (T + K) is injective with closed range, since is closed and open. Hence λ − (T + K) ∈ Φ+ and
i((λ − T) − K) := α(λ − T − K) − β(λ − T − K) = 0 − β(λ − T − K) ≤ 0. Therefore

(a) There exists K ∈ KT such that λ − (T + K) is injective, open and with index ≤ 0. Moreover

(b) If S := (λ−T)− (K−K) then QT = Qλ−T = QS and QT(λ−T) = QTS = QSS. Indeed, K(0) ⊂ T(0), T is closed
and by Lemma 2.5 (i) we have that K(0) ⊂ T(0) = T(0). Note that T(0) and K(0) are subspaces

(
see Lemma

2.1 (iii)
)
, we have that S(0) := (λ − T)(0) + (K − K)(0) = λ(0) − T(0) + K(0) − K(0) = T(0) + K(0) = T(0), so that

S(0) = T(0) = T(0) and thus QS = QT and as (λ − T)(0) = −T(0) = T(0) is QT = Qλ−T. Moreover, applying
Lemma 3.1 (ii) we obtain QT = QT(0)/K(0)QK and hence QT(λ−T) = QTS, since, clearly QK

(
(λ−T)+ (K−K)

)
=

QK(λ − T) +QKK −QKK = QK(λ − T), because QKK is an operator. Hence (b) is true.

Now, we have the following chain of implications: (a) ⇒ λ − (T + K) ∈ Φ+ ⇒ λ − (T + K) + K ∈
Φ+ ⇒ (λ − T) + (K − K) ∈ Φ+ with the same index that λ − (T + K) (see Lemma 6.2. Therefore, applying
(b) we infer that QT(λ − T) = QT(S) = QS(S) ∈ Φ+ and by Lemma 3.3 (iii), we have the same index that S,
λ− T ∈ Φ+ and i(λ− T) = i(QT(λ− T)) = i(S) which coincides on the index of λ− (T +K) which is ≤ 0 by (a).

(⇐) Let λ ∈ C such that λ−T ∈ Φ+ and i(λ−T) ≤ 0. Then by Lemma 2.3 (i) we can construct an everywhere
defined single valued B such that dim R(B) ≤ α(λ − T) and (λ − T) − B is injective. Furthermore, see the
proof of Lemma 2.3 (i). B is defined by

B : X −→ Bx :=
n∑

i=1

x′i (x)yi, x ∈ X.

Where {x1, ..., xn} is a basis of N(λ − T). Choose linear functionals x′1, ..., x
′
n such that x′i (x j) = δi j and

choose y1, ..., yn ∈ X such that [y1], ..., [yn] ∈ X/R(λ − T) are linearly independent
(
such elements exist since

n ≤ β(λ − T)
)
. Hence, it is clear that B is continuous, so that B is a bounded finite rank operator and so it is

clear that B ∈ KT and also (λ − T) − B = λ − (T + B) is injective. Since λ − T ∈ Φ+ we have by Lemma 3.6 (i)
that λ − (T + B) ∈ Φ+ with the same index that λ − T. In this situation we have that B ∈ KT, λ − (T + B) is
injective, closed with closed range then by Lemma 2.7 λ − (T + B) is open, so that λ ∈ ρap(T + K). Therefore
λ < σe7(T).

(ii) (⇒) Similar to (i) (⇒) then using Lemmas 3.3 (ii) and 6.2 (ii).

(⇐) Similar to (i) (⇐) using Lemma 2.3 (ii) hence

B : X −→ Bx :=
n∑

i=1

x′i (x)yi, x ∈ X.

Let 1 ≤ q := β(λ−T) where let x1, ..., xq be a set of q linearly independent elements of N(λ−T)
(
such elements

exist because q ≤ α(λ − T)
)
. Choose linear functionals x′1, ..., x

′
q such that x′i (x j) = δi j, 1 ≤ i, j ≤ q and choose

y1, ..., yq such that [y1], ..., [yq] ∈ X/R(λ − T) determine a basis of X/R(λ − T).

Now, we prove the analogous Theorem 2.2 (i) in [1] of i = 7, 8.
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Proposition 5.3. If 0 ∈ ρ(T) then for λ ∈ C\{0} we have

λ ∈ σe7(T)
(
resp. λ ∈ σe8(T)

)
i f and only i f

1
λ
∈ σe7(T−1)

(
resp. λ ∈ σe8(T−1)

)
. ♢

Proof. Arguing as in Proposition 4.7 we have that

(a) T−1 is a bounded, closed and single valued.

(b) N(λ − T) = N(λ−1
− T−1) and R(λ − T) = R(λ−1

− T−1).

Now, the result follows immediately from the above Proposition 5.3.

In following, we gives other properties of σe7(.) and σe8(.).

Proposition 5.4. σe7(T) = σe8(T′) and σe7(T′) = σe8(T). ♢

Proof. λ < σe7(T). Then by Proposition 5.2 (i), we have λ − T ∈ Φ+ with i(λ − T) ≤ 0, hence by Lemma 3.3
(iii), we infer (λ − T)′ ∈ Φ− with i(λ − T) = −i

(
(λ − T)′

)
and since by Lemma 2.6 we have (λ − T)′ = λ − T′

we infer (λ − T)′ ∈ Φ− with i(λ − T′) ≥ 0, by Proposition 5.2, we have λ < σe8(T′). Hence σe7(T) = σe8(T′).

Let λ < σe8(T). Then by Proposition 5.2 (ii), we have λ − T ∈ Φ− with i(λ − T) ≥ 0, hence by Lemma 3.3 (iv),
we infer (λ− T)′ ∈ Φ+ with i(λ− T) = −i(λ− T)′ and since by Lemma 2.6 we have (λ− T)′ = λ− T′ we infer
(λ − T)′ ∈ Φ− with i(λ − T′) ≤ 0, by Proposition 5.2 (ii), we have λ < σe8(T′). Therefore σe7(T′) = σe8(T).

Proposition 5.5. σe7(T) and σe8(T) are closed. ♢

Proof. Since, by Proposition 5.4 σe8(T) = σe7(T′) it is enough to show that σe7(T) is closed. For this, it is
enough to see that σap(T) is closed by the definition of σe7(T). Let λ ∈ ρap(T), that is, λ−T is bounded below,
that is λ− T is injective and open so that γ(λ− T) > 0. Assume that η ∈ C such that |η− λ| < γ(λ− T). Then
it follows from Lemma 2.8 (iii) that η − T = (η − λ) + (λ − T) is open and it follows from Lemma 2.8 (i) that
α(η − T) ≤ α(λ − T) = 0. Hence η − T is bounded below. Therefore ρap(T) is open, as desired.

6. Fredholm and semi-Fredholm perturbation

In this Section, we extend the results of Theorem 1.1 and Lemma 1.1 of [1] to linear relations.

6.1. Product of semi-Fredholm linear relations
Proposition 6.1. Let X, Y and Z be Banach spaces and let S ∈ LR(X,Y) and T ∈ LR(Y,Z) be closed. Then

(i) S, T ∈ Φ+ =⇒ TS ∈ Φ+.

(ii) S, T ∈ Φ− and TS closed =⇒ TS ∈ Φ−.

(iii) S, T ∈ Φ =⇒ TS ∈ Φ and i(TS) = i(T) + i(S) + dim
(
Y/R(S) +D(T)

)
− dim{S(0) ∩N(T)}. ♢

Proof. (i) (a) TS closed. It follows immediately from Lemmas 2.7 and 2.5 (vii).

(b) α(TS) < ∞. By Lemma 2.4, α(TS) ≤ α(T) + α(S). Hence, it only remains to see that.

(c) R(TS) closed. In fact, by (a) we have TS is closed, with X and Z Banach spaces, the Lemma 2.7 say that
R(TS) closed, hence TS is open. We now prove that TS is open, we define T0 := T|N(T)+R(S). Then

(d) T0 closed. It is obvious since T is closed and N(T) + R(S) is closed because dim N(T) < ∞ and R(T) is
closed.

The above Proposition generalizes Theorem 1.1 (iii) in [1], since S and T are bounded operators on a Banach
space X, then it is clear that both are closed, that TS is bounded and hence closed and that by Lemma 2.1
(v), we have T(0) = S(0) = {0}. We observe that for linear relations in general, the index of the product is not
the sum of the index of the both linear relations.
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Now, we generalize the Theorem 1.1 (i), (ii) and (iv) in [1]. For this end, we first prove the following
elementary lemma.

Lemma 6.2. Let X and Y be Banach spaces and let T ∈ LR(X,Y) be closed. Then T is continuous therefore D(T) is
closed. ♢

Proof. Case 1: T single valued. It is very known
(
(⇒) it is clear: x ∈ D(T) hence there exist xn ⊂ D(T), xn → x

so that ∥Txn − Txm∥ ≤ ∥T∥∥xn − xm∥, n, m ∈ N, therefore Txn ⊂ Y cauchy with Y complete therefore y ∈ Y,
Txn → y and thus as T is closed we have that x ∈ D(T) and Tx = y. (⇐) It follows by the closed graph
theorem for operators

)
.

Case 2: T linear relation. Passing to QTT and using the case 1. Indeed, QTT is closed with T(0) closed(
see Lemma 2.5 (i)

)
, X and Y/T(0) are complete. Then T continuous, hence by Lemma 2.5 (ii), we have

∥T∥ := ∥QTT∥ < ∞, therefore, by the case 1 we obtain D(QTT) = D(T) is closed.

In particular we have ”If X is a Banach space and T ∈ LR(X) be closed and everywhere defined, then T is
bounded.”

Proposition 6.3. Let X, Y and Z be Banach spaces and let S ∈ LR(X,Y), T ∈ LR(Y,Z) be closed and everywhere
defined such that TS ∈ Φ+(X,Z). Then S ∈ Φ+(X,Y). ♢

Proof. (a) S and T are bounded. By the above consequence of Lemma 3.4.

(b) QTSTS = (QTSTQ−1
S )(QSS). Indeed, by Lemma 2.5 (i) we have S(0) = S(0) ⊂ D(T) = Y, so that (b) follows

from Lemma 2.5 (vi).

(c) TQ−1
S and QTSTQ−1

S are continuous. Indeed, QS : Y −→ Y/S(0) surjective single valued, hence by Lemma
2.7 QS is open and γ(QS) > 0, by Lemma 2.5 (iii) we have Q−1

S is continuous. Since Q−1
S (0) := N(QS) = S(0) =

S(0) ⊂ D(T) = Y, it follows from Lemma 2.5 (v) that TQ−1
S is continuous and since D(QTS) = Z it follows

again Lemma 2.5 (v) that QTSTQ−1
S is continuous.

(d) QTSTQ−1
S is single valued. Indeed, QTSTQ−1

S is single valued, applying Lemma 2.5 (i) we have
QTSTQ−1

S (0) = {0}. But QTSTQ−1
S (0) := QTSTN(QS) = QTSS(0) = QTSTS(0), so S closed, applying Lemma

2.5 (i) we have S(0) closed. Therefore QTSTQ−1
S = {0} since QTSTS is single valued.

(e) QTSTQ−1
S is everywhere defined. It is clear by [16, p. 3, (2)] D(QTSTQ−1

S ) = QSD(QTST) and

D(QTST) := {y ∈ D(T); Ty ∩D(QTS) , ∅}
:= {y ∈ D(T) = Y; Ty , ∅}
:= D(T) = Y.

Therefore, QTSTQ−1
S and QSS are bounded operators in Banach spaces such that QTSTS = (QTSTQ−1

S )(QSS)
and by Lemma 3.3 (iii) we have QTSTS ∈ Φ+, hence TS ∈ Φ+. In this situation by [21] we have that QSS is a
Φ+-operator and thus S ∈ Φ+ by virtue of Lemma 3.3 (iii).

Now, we extend Theorem 1.1 (ii) to linear relations. But, here appear many problems, for example:

(a) For bounded operators S and T is (TS)′ = S′T′, but for linear relations in general only is true that
S′T′ ⊂ (TS)′

(
see Lemma 2.6 (v)

)
.

(b) T is a bounded operator hence T′ is a bounded operator. However we have that, if T is a bounded closed
not single valued hence T′ continuous single valued and D(T′) , Y′ (so that T′ is not bounded).

Proof. (b) D(T′) , Y′. Indeed, if D(T′) = Y′, then D(T′)T = (Y′)T = {0} and since T is continuous, hence
applying Lemma 2.6 (iii) we have T(0)⊤ = D(T′), therefore, we deduce that if T is closed (as T(0) is closed),
continuous and D(T′) = Y′, then T(0) = T(0) = (T(0)⊥)⊤ = D(T′)⊤ = {0}, that is, T(0) = {0} equivalently, by
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Lemma 2.1 (v) we have T is single valued. Furthermore, D(T) = X hence by Lemma 2.6 (i) T′(0) = D(T)⊥ = {0}
therefore applying Lemma 2.1 (v) T′ single valued. Also T continuous therefore by Lemma 2.6 (iii) we have
T′ continuous.

It seems that there are many problems to extend Theorem 1.1 (ii), but we give the similar result in the
following proposition.

Proposition 6.4. Let X, Y and Z be Banach spaces and let S ∈ LR(X,Y) and T ∈ LR(Y,Z) be closed with D(T) = Y
and S continuous. If TS ∈ Φ−(X,Z) then T ∈ Φ−(Y,Z). ♢

Proof. (a) D(TS) = D(S), T′(0) = {0} and S′T′(0) = S′(0) = (TS)′(0). Indeed,

D(TS) := {x ∈ D(S); Sx ∩D(T) , ∅}
= {x ∈ D(S); Sx , ∅} (as D(T) = Y)
:= D(S).

Applying Lemma 2.6 (i), we have T′(0) = D(T)⊥ = {0} (as D(T) = Y), again by Lemma 2.6 (i), we obtain
(TS)′(0) = D(TS)⊥ = D(S)⊥ = S′(0) = S′T′(0). Hence (a) holds.

(b) (TS)′ is an extension of S′T′. Indeed, by Lemma 2.6 (v), we have S′T′ ⊂ (TS)′, by (a) we have S′T′(0) =
(TS)′(0). Now, applying Lemma 2.1 (viii), (b) is holds.

(c) S′T′ is F+. Assume S′T′ is not F+. Then by Lemma 3.3 (i), there exists an infinite dimensional subspace
M of (S′T′) such that S′T′

|M is precompact and so by (b), (TS)′
|M is precompact which implies by Lemma

3.3 (i) that (TS)′ is not F+, but as TS ∈ Φ+, in particular TS is closed. Applying Lemma 3.3 (iv), we obtain
(TS)′ ∈ Φ+, by Lemma 3.3 (ii) we have (TS)′ ∈ F+. Since, applying Lemma 2.6 (i), we infer (TS)′ is closed.

(d) T′ ∈ Φ+. In fact, by (c), we have S′T′ ∈ F+, so by the definition of F+ there is a finite codimensional
subspace M of D(S′T′)) for which α∥m∥ ≤ ∥S′T′m∥, m ∈ M, for some α > 0. Since S continuous, applying
Lemma 2.6 (iii), we have S′ continuous. By (a) we obtain T′(0) = {0} ⊂ D(S′). We deduce from Lemma 2.5
(v) that

α∥m∥ ≤ ∥S′T′m∥ ≤ ∥S′∥∥T′m∥.

Therefore
α
∥S′∥

≤ ∥T′m∥, m ∈M.

Hence T′inF+ and since T is closed, applying Lemma l11 (ii) and (iii) we have that T ∈ Φ−, as desired.

Now, this suggests that we try to extend Theorem 1.1 (iv) (only (iv) because (iii) is generalized in
Proposition 6.1).

Proposition 6.5. Let X be a Banach space and let S,T ∈ LR(X) be closed and everywhere defined. If TS and ST are
Fredholm then T and S are Fredholm. ♢

Proof. (a) S and T are Φ+. By Proposition 6.3.

(b) β(T) < ∞ and β(S) < ∞. Indeed, as ST ∈ Φ− is R(ST) a closed finite codimensional subspace of X and by
(a), we have R(S) is closed then by Lemma 3.1 (ii), we obtain that

X/R(ST)
/
R(S)/R(ST) ≡ Y/R(S),

and consequently R(S) is finite codimensional and closed. Hence, S ∈ Φ−. since TS ∈ Φ− with a similar
argument we obtain that T ∈ Φ−. The proof is now complete.
In the above Proposition 6.5 we have that

i(TS) = i(T) + i(S) − dim[S(0) ∩N(T)]
i(ST) = i(T) + i(S) − dim[S(0) ∩N(T)],
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so that i(TS) = i(ST) ≤ i(T) + i(S).

In short, our extension of Theorem 1.1 in [1] is the following theorem

Theorem 6.6. Let X be a Banach space and let S,T ∈ LR(X) be closed Then

(i) If S,T ∈ Φ+ then ST ∈ Φ+ and TS ∈ Φ+.

(ii) If S,T ∈ Φ− with TS (resp. ST) is closed then TS ∈ Φ− (resp. ST ∈ Φ−).

(iii) If S,T ∈ Φ then TS ∈ Φ and i(TS) = i(T) + i(S) + dim X
/
R(S) +D(T) − dim[S(0) ∩N(T)].

(iv) If S and T everywhere defined and TS ∈ Φ+ then S ∈ Φ+.

(v) If S and T everywhere defined such that TS ∈ Φ and ST ∈ Φ then S ∈ Φ and T ∈ Φ. ♢

6.2. Semi-Fredholm perturbation classes

Our Lemma in Section 3, Definition 1.1 and Lemma 1.1 in [1] suggest the following notion.

Definition 6.7. Let X be a Banach space and let S ∈ LR(X) be continuous. Then

(i) S is called a Fredholm perturbation if T + S ∈ Φwhenever T ∈ Φwith D(T) ⊂ D(S) and S(0) ⊂ T(0).

(ii) S is called an upper semi-Fredholm perturbation if T + S ∈ Φ+ whenever T ∈ Φ+ with D(T) ⊂ D(S) and
S(0) ⊂ T(0).

(iii) S is called an lower semi-Fredholm perturbation if T + S ∈ Φ− whenever T ∈ Φ− with D(T) ⊂ D(S) and
S(0) ⊂ T(0). ♢

The Lemma 6.2 shows that if K ∈ LR(X) is compact then K is aΦ+, Φ− andΦ-perturbation and moreover the
index is stable. We now try to extend Lemma 1.1 in [1] concerning the stability of the index under Φ+, Φ−
and Φ-perturbation (in the sense of Definition 6.7). For this end, we shall use the following elementary
Lemma.

Lemma 6.8. Let X be a space complete and S, T ∈ LR(X) such that T is closed, S is continuous, D(T) ⊂ D(S) and
S(0) ⊂ T(0). Then T′ is closed, S′ is continuous, D(T′) ⊂ D(S′) and S′(0) ⊂ T′(0). ♢

Proof. We note by Lemma 2.6 (i) that T′ is closed. Since S is continuous then applying Lemma 2.6 (iii), we
have that S′ is continuous and D(S′) = S(0)⊥, so that

D(S′) = S(0)⊥ ⊃ T(0)⊥

=
(
D(T′)⊤

)⊥ (
see Lemma 2.6 (i)

)
⊃ D(T′)
⊃ D(T′).

Hence D(T′) ⊂ D(S′). Finally, by Lemma 2.6 (i) S′(0) = D(S)⊥ ⊂ D(T)⊥
(
as again Lemma 2.6 (i) we have that

D(T) ⊂ D(S) = T′(0)
)
. Therefore S′(0) ⊂ T′(0).

The following proposition is the generalization of Lemma 1.1 in [1].

Proposition 6.9. Let X and Y be Banach spaces and let T ∈ LR(X,Y) be closed and S ∈ LR(X,Y) be continuous such
that D(T) ⊂ D(S) and S(0) ⊂ T(0). Then

(i) If T ∈ Φ+ and S is a Φ+-perturbation, then T + S ∈ Φ+ and i(T + S) = i(T).

(ii) If T ∈ Φ− and S is a Φ−-perturbation, then T + S ∈ Φ− and i(T + S) = i(T).

(iii) If T ∈ Φ and S is a Φ-perturbation, then T + S ∈ Φ and i(T + S) = i(T). ♢
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Proof. We first note that

(a) (T + S)(0) = T(0) closed and QT+S(T + S) = QTT + QRQSS is closed where R := T(0)/S(0). Indeed,
(T + S)(0) = T(0) + S(0) = T(0) (as S(0) ⊂ T(0)) which is closed, since T closed then applying Lemma 2.5 (i)
we have T(0) closed. Hence QT+S = QT. Moreover, by [16, p. 11, I.4.2 (e)] we obtain QT+S = QT(T + S) =
QTT +QTS and since S(0) ⊂ T(0) then S(0) ⊂ T(0) = T(0). Furthermore, applying Lemma 3.1 (ii) we have

Y/S(0)
/
T(0)/S(0) ≡ Y/T(0),

and QT = QRQS where R := T(0)/S(0). Therefore (a) is true.

(b) T + S is closed. Indeed, T is closed hence, by Lemma 2.5 (i) we have QTT is closed single valued.
Clearly QRQSS is single valued continuous, so applying 2.5 (iv), we infer that QT +QRQSS is closed. Since,
QT+S(T + S) = QT +QRQSS then by (a), we have that QT+S(T + S) is a closed single valued and (T + S)(0), so
that by 2.5 (i) we obtain that T + S is closed.

(i) Assume that T ∈ Φ+. Then T is closed with closed range in Banach spaces, hence by Lemma 2.7 γ(T) > 0
and dim N(T) < ∞, hence N(T) is closed, we can apply Lemma 2.5 (ix) to say that N(T) = N(QTT) and
0 < γ(T) < γ(QTT). Let us consider two cases for S:

Case 1: ∥S∥ < γ(T). We note by Lemma 3.6 (i), we have that T ∈ Φ+ if and only if QTT is single valued
upper semiFredholm. D(QTT) = D(T) ⊂ D(S) = D(QRQSS) and ∥QRQSS∥ ≤ ∥QSS∥ := ∥S∥ < γ(T) = γ(QTT).
Then, by virtue of [17, p. 112, v.1.6 (e)], we have that QT +QRQSS ∈ Φ+ and i(QT +QRQSS) = i(QTT). Now,
applying (a), we obtain that QT+S(T + S) ∈ Φ+ with i(QTT) = i

(
QT+S(T + S)

)
and by (b), we have T + S is

closed, we can apply Lemma 3.6 (i) to conclude that T + S ∈ Φ+ and i(T) = i(T + S).

Case 2: S is a Φ+-perturbation. It is clear that

∥λS∥ := ∥QλSλS∥ = |λ|∥QSS∥ := |λ|∥S∥,

since, by Lemma 2.1 (iii) we have λS(0) = S(0) which is a subspace and D(λS) = D(S) which is a subspace,
for all λ ∈ K, hence λS is a Φ+−perturbation and so by Definition 6.7, we have that

(c) T + λS ∈ Φ+ for all λ ∈ K, so that, we can consider i(T + λS). Let I := [0, 1] which its usual topology
and let Z := Z ∪ {−∞} (Z := integers) with the discrete topology. We shall prove that the map Θ : I −→ Z
defined by Θ(λ) = i(T + λS), λ ∈ I, is continuous. For this,

(d) Let λ0 ∈ I arbitrary but fixed. Then, for λ ∈ I such that |λ − λ0| < γ(T + λS)
/∥∥∥S∥ we have that

T + λS + λ0S − λ0S ∈ Φ+ and i(T + λS) = i(T + λS + λ0S − λ0S).

Indeed, by (c), T+λ0S ∈ Φ+, in particular γ(T+λ0S) > 0 and since 0 < ∥S∥ < ∞, we have γ(T+λ0S)
/∥∥∥S∥ > 0.

Let λ ∈ I such that |λ − λ0| < γ(T + λ0S)
/∥∥∥S∥, then ∥(λ − λ0)S∥ = ∥λS − λ0S∥ = |(λ − λ0)|∥S∥ < γ(T + λ0S) and

thus by substituting T + λ0S for T and (λ − λ0)S for S in the case 1, it follows the property (d).

(e) Let λ, λ0, T and S satisfy the hypothesis in (d). Then

i(T + λS) = i(T + λ0S).

Indeed, since S(0) ⊂ T(0) we have that

QT = QT+λS = QT+λ0S = QT+λS+λ0S−λ0S.

We write A := T + λS + λ0S − λ0S and QT = QRQS

(
as in (a)

)
. We have that

QS(T + λS + λ0S − λ0S) = QS(T + λS) + λ0QSS − λ0QSS
= QS(T + λS).
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So that QTA = QAA = QRQSA = QRQS(T+λS) = QT(T+λS) = QT + λS(T+λS), that is QAA = QT+λS(T+λS)
with A ∈ Φ+ by

(
(d)
)

and T + λS ∈ Φ+ by
(
(c)
)

Then by Lemma 2.3 (i) we have i(QAA) = i(A) and also

i
(
QT+λS(T + λS) = i(T + λS) and since i(A) = i(T + λ0S) by (d) we conclude that

i(T + λ0S) = i(T + λS),

as desired.

( f ) The map

Θ : I −→ Z

λ −→ Θ(λ) := i(T + λS)

is continuous. Indeed, let ε > 0, applying (e), we have that there exists δ := γ(T + λ0)/∥S∥ such that, if λ ∈ I
with |λ − λ0| < δ, then |i(T + λS) − i(T + λ0S)| = |0| = 0 < ε, so that Θ is continuous.

(1) i(T) = i(T + S). By ( f ) Θ is continuous, so that Θ(I) is a connected set which therefore consists of only
one point. It follows that i(T) := Θ(0) = Θ(1) := i(T + S). Therefore (1) is true.

This completes the proof of (i).

(ii) By definition ofΦ−perturbation, we have clearly that for λ ∈ K\{0}, T+λS ∈ Φ− equivalently (T+λS)′ ∈
Θ+ and since (T + λS)′ = T′ + (λS)′ = T′ + λS′

(
obvious that (λS)′ = λS′, λ , 0

)
. Hence T′ + λS′ ∈ Φ+.

Furthermore by Lemma 6.8, S′ is continuous then λS′ is continuous λs′(0) = S′(0) ⊂ T′(0) and D(T′) ⊂
D(S′) = D(⊂ λS′) so that, we can apply (i) obtaining that i(T′) = i(T′ + S′) with T′ and T′ + S′ ∈ Φ+ and thus

−i(T) = i(T′) = i(T′ + S′) = i((T + S)′) = −i(T + S).

Therefore i(T) = i(T + S), as required.
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