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1 Introduction

As it is well-known, the study of the AdS2/CFT1 correspondence is of paramount importance
to understanding the microscopical description of extremal black holes. Notable efforts have
been devoted to this study in the last decades. More recently it has also been shown to play
a prominent role in the description of conformal line defects. These are one dimensional
defects that preserve a superconformal subalgebra of the superconformal algebra of the field
theory where they are embedded. Being conformal holography provides a very powerful
tool for their study [2–6].

Defect conformal field theories are typically engineered in terms of a brane intersection
consisting on defect branes ending on a bound state of background branes, in which a higher
dimensional CFT lives. Holographically this is described by low dimensional AdS spaces
with non-compact internal manifolds, that reproduce a higher dimensional AdS geometry
asymptotically. The presence of the non-compact direction renders the defect field theory
ill-defined, but this can be interpreted as the need to complete this CFT by the higher
dimensional one far away from the defects. Holographically the associated divergence of
the central charge (or free energy) is absorbed when the non-compact coordinate becomes
part of the higher dimensional AdS space. This approach to the study of defects has been
very fruitful, with substantial amount of work being devoted to identifying low dimensional
AdS solutions dual to defect CFTs in recent years [1, 7–26]. Interestingly, in some of these
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realisations it has been possible to embed the defect CFT within the higher dimensional
theory through explicit quiver-like constructions [1, 19, 20, 25]. In this work we will provide
one further example of AdS2 background with a line defect interpretation, and we will
construct an explicit one dimensional quiver describing the line defect CFT.

The study of the AdS2/CFT1 correspondence is well-known to offer unique challenges
compared to its higher dimensional counterparts. These have to do mainly with the non-
connectedness of the boundary of AdS2, where the putative dual quantum mechanics lives,
and with the peculiarity of AdS2 gravity, which does not support finite energy excitations [27–
30]. Interesting ways to avoid these difficulties have been proposed in the literature [1, 31–42].
These range from the study of nearly AdS2 nearly CFT1 dual pairs to the construction
of AdS2 solutions as null orbifolds of AdS3 backgrounds, for which the 1d superconformal
quantum mechanics (SCQM) is realised as a discrete light-cone compactification of a 2d
CFT [28, 31, 32, 38, 39]. Our results suggest that the SCQM that we will construct in this
paper belongs to this second class.

Our work is organised as follows. In section 2 we start presenting a new class of AdS2
solutions to Type IIA supergravity preserving N = 4 supersymmetries. We construct these
solutions by performing a non-Abelian T-duality transformation (with respect to a freely
acting SU(2) compact group) on the class of solutions to Type IIB supergravity recently
constructed in [1]. These solutions describe D1-F1-D5-NS5 branes ending on D3-branes and
preserve N = 4 supersymmetry (small). For a given brane profile they asymptote locally to
AdS5 × S5, and should thus find an interpretation as dual to line defect CFTs. In [1] some
evidence was gathered that led us to propose that the line defect operators these solutions
are dual to are baryon vertices in N = 4 SYM. We show that after the duality these
solutions describe D2-F1-D4’-NS5’ branes ending on D4-D6-NS5 branes, and for a particular
brane profile asymptote locally to the Gaiotto-Maldacena geometry [43] constructed in [44],
that arises by acting with non-Abelian T-duality on AdS5 × S5. The resulting solution
should then allow for a line defect interpretation. In section 3 we move on to the study of the
defect superconformal quantum mechanics. We start discussing the brane set-up associated
to the solution, given by a D2-brane box model [45–47], in which D2 colour branes are
stretched between NS5 and NS5’ branes in two perpendicular directions. We analyse the
quantisation of the open strings stretched between the D2-branes in the different boxes, as
well as the role played by the D4-D4’ and D6 branes of the brane intersection. From here
we propose a planar quiver QM which can be interpreted as embedded in the linear quiver
that describes the 4d N = 2 SCFT [48] where the defects live. This SCFT is the one dual
to the Gaiotto-Maldacena geometry to which the AdS2 solution flows asymptotically locally
in the UV, studied in [49]. Our SCQMs are far more elaborated than those proposed so far
in the literature, including the ones discussed in [1, 39–42, 50, 51], which consist on linear
quivers. We propose a way of calculating the central charge of the SCQM that we show
agrees with the holographic calculation in the holographic limit, and discuss the reasons
behind this agreement. Finally, we turn to discuss the massive F1-strings present in the
brane intersection. We show that they are interpreted, together with the D4’ and the D2
branes, as baryon vertices in the 4d SCFT. This allows us to interpret the AdS2 solution
as the backreacted geometry that arises after the baryon vertices are introduced in the
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4d SCFT. In section 4 we present our conclusions and open problems. We emphasise the
interesting role played, once more, by non-Abelian T-duality in the context of holography,
in this case in allowing to construct holographic defects described by an elaborated brane
box model. We emphasise as well that this is to our knowledge the first time that a brane
box construction is realised holographically, other than the specific circular brane boxes
discussed in [20], dual to the AdS3 solutions constructed therein. We include details of
the non-Abelian T-duality transformation that we have used to construct our new class
of solutions in appendix A. In appendix B we present a black hole geometry constructed
through non-Abelian T-duality acting on the brane intersection that underlies the AdS2
solutions in Type IIB that have been the starting point of our analysis in this paper. The
resulting solution gives rise to the new class of solutions discussed in section 2 in the near
horizon limit, but presents some obstacles towards a possible interpretation as a brane
intersection. This is a typical situation for AdS solutions constructed through non-Abelian
T-duality, whose underlying brane set-up is not known even in the simplest examples
(see [52]). The interest of the background that we present in appendix B is that it describes
a 4d black hole with N = 4 supersymmetry that should be interesting to explore in the
context of black hole physics.

2 A new class of AdS2× S2× S2 solutions to Type IIA via non-Abelian
T-duality

In this section we take as our starting point the class of AdS2 × S3 × S2 solutions to
Type IIB supergravity recently constructed in [1].1 Besides providing a new class of AdS2
geometries with N = 4 supersymmetries these solutions had the interesting property of
including a particular background that asymptotes locally to AdS5 × S5 in the UV, and
thus allows for an interpretation as holographic dual to a line defect CFT embedded in
4d N = 4 SYM. In [1] some evidence was gathered that led us to propose that the line
defect operators these solutions are dual to are baryon vertices in N = 4 SYM. These
operators would be realised in string theory as (p, q) strings stretched between stacks of
(q, p) 5-branes and D3 colour branes, generalising the constructions in [53, 54] by acting
with SL(2,Z). It was also shown in [1] that these solutions are mapped through Abelian
T-duality to AdS2 × S2 × S2 solutions to Type IIA supergravity arising in the near horizon
limit of F1-D2-D4’-NS5’ defect branes embedded in the Type IIA realisation of 4d N = 4
SYM, namely the semi-localised D4-NS5 brane intersection studied in [49, 55–59]. In turn,
this intersection gives rise in the near horizon limit to a Gaiotto-Maldacena geometry, to
which the IIA AdS2 solutions flow asymptotically in the UV.

In this section we construct more general AdS2 geometries in Type IIA supergravity
allowing for a similar holographic interpretation as line defects within 4d N = 2 SCFTs dual
to Gaiotto-Maldacena geometries. The way we construct these geometries is by acting with
non-Abelian T-duality on the class of AdS2 × S3 × S2 solutions to Type IIB supergravity
constructed in [1]. The new backgrounds are fibrations of AdS2×S2×S2 over four intervals

1In [1] the more general case in which the S5 is orbifolded by Zk was considered. Here we will restrict to
the case k = 1. This does not affect the number of preserved supersymmetries.
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branes t x1 x2 x3 z y x6 x7 x8 x9

D3 × × × × − − − − − −
D1 × − − − − × − − − −
F1 × − − − × − − − − −
D5 × − − − − × × × × ×
NS5 × − − − × − × × × ×

Table 1. BPS/8 intersection describing D1-F1-D5-NS5 branes ending on D3 branes. x1, x2, x3 are
the coordinates realising the SO(3) R-symmetry.

and contain a particular solution that asymptotes locally to the Gaiotto-Maldacena geometry
constructed in [44]. We will show that it is possible to give an explicit interpretation for
this AdS2 solution as a baryon vertex defect embedded in the 4d N = 2 SCFT dual to the
Gaiotto-Maldacena geometry, studied in [49].

Our starting point is the class of solutions given by equation (3.13) in [1], where we do
not include KK-monopoles. The solutions are given by

ds2
10 = q

3/2
D1 q

1/2
F1 H

−1/2
D3

(
ds2

AdS2 + ds2
S2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
dy2 + dz2 + dr2 + r2ds2

S3

)
,

eΦ = qD1q
−1
F1 , H3 = −qD1volAdS2 ∧ dz − qD1volS2 ∧ dy ,

F3 = −qF1volAdS2 ∧ dy + qF1volS2 ∧ dz ,

F5 = d
[
q2

D1q
2
F1H

−1
D3 volAdS2 ∧ volS2

]
+

+ r3 [(∂zHD3dy − ∂yHD3dz) ∧ dr − ∂rHD3dy ∧ dz] ∧ volS3 ,

(2.1)
with HD3 satisfying the master equation

∇2
R4

r
HD3 +∇2

R2
(y,z)

HD3 = 0. (2.2)

These solutions arise in the near horizon limit of the brane intersection depicted in table 1,
and preserve small N = 4 supersymmetry, with the SU(2) R-symmetry group realised on
the S2.

We now perform a non-Abelian T-duality transformation (the details of which are
explained in appendix A) along the S3, that we parametrise as

ds2
S3 =

(
dψ + ω

2
)2

+ 1
4ds

2
S̃2
. (2.3)

After this transformation the S3 group manifold is replaced by R3. The new class of
solutions to Type IIA supergravity reads,

ds2
10 = q

3/2
D1 q

1/2
F1 H

−1/2
D3

(
ds2

AdS2 + ds2
S2

)
+ q

1/2
D1 q

−1/2
F1 H

1/2
D3

(
dy2 + dz2 + dr2

)
+ 4q−1/2

D1 q
1/2
F1 H

−1/2
D3 r−2

(
dρ2 +Hρ2ds2

S̃2

)
,

eΦ = 8q1/4
D1 q

−1/4
F1 H

−3/4
D3 H1/2r−3 ,
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B2 = qD1 (z volAdS2 + y volS2) + 16qF1ρ
3

16qF1ρ2 + qD1HD3r4 volS̃2 ,

F2 = −8−1r3 [(∂zHD3 dy − ∂yHD3 dz) ∧ dr − ∂rHD3 dy ∧ dz] ,

F4 = (volAdS2 ∧ dy − volS2 ∧ dz) ∧
(
qF1ρ dρ− 8−1qD1HD3r

3 dr
)

+

+ 16qF1ρ
3

16qF1ρ2 + qD1HD3r2 volS̃2 ∧ F2 ,

F6 = d
[
q2

D1q
2
F1ρH

−1
D3 volAdS2 ∧ volS2 ∧ dρ

]
+

+ ρ2Hr−2 d
[
qF1ρr

2(volAdS2 ∧ dy − volS2 ∧ dz) ∧ volS̃2

]
, (2.4)

where we have defined
H = qD1HD3r

4

16qF1ρ2 + qD1HD3r4 . (2.5)

HD3 satisfies (2.2) and (ρ, S̃2) parametrise the R3 that arises after the non-Abelian T-
duality transformation. Note that as it is common after non-Abelian T-duality the brane
intersection from where the AdS geometry arises in the near horizon limit cannot be easily
identified.2 The obvious candidate as brane intersection underlying the solutions (2.4) would
be the non-Abelian T-dual of the brane intersection underlying the AdS2 solutions (2.1).
We have presented this solution in appendix B. It is however not obvious to interpret it as
associated to a particular brane intersection, for very similar reasons to the ones encountered
in [52]. Still, the interest of the solution is that it describes a black hole geometry that can
find interesting applications in the description of four dimensional extremal black holes.
For our purposes in this paper, more focused on the defect interpretation of the AdS2
solutions, we will see that the brane intersection depicted in table 2 is fully consistent with
the quantised charges associated to the solutions (2.4), so we will take it as the starting
point of our quiver constructions. Note that the solutions described by (2.4) preserve the
same supersymmetries of the original class of solutions, since the S2 is left untouched after
the non-Abelian T-duality transformation.

In the next subsection we turn to the defect interpretation of the solutions.

2.1 F1-D2-D4’-NS5 line defects within AdS5

It was shown in [1] that taking the semi-localised profile defined by [55]

HD3 = 1 + 4πqD3
(y2 + z2 + r2)2 , (2.6)

a solution in the class given by (2.1) is obtained that asymptotes locally to AdS5 × S5.
Taking this same profile in our new class of solutions given by (2.4) and making the change
of coordinates

y = µ sinα cosφ, z = µ sinα sinφ, r = µ cosα (2.7)
2The reader is referred to [52] where this is discussed for the AdS5 geometry constructed in [44], by

performing non-Abelian T-duality on the AdS5 × S5 background. Even in this simpler example the non-
Abelian T-dual of the solution associated to N D3-branes cannot be easily interpreted as a D4-NS5-D6
brane intersection.
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branes t x1 x2 x3 z y ρ x7 x8 x9

D4 × × × × − − × − − −
D6 × × × × − − − × × ×
NS5 × × × × × × − − − −
D2 × − − − − × × − − −
F1 × − − − × − − − − −
D4′ × − − − − × − × × ×
NS5′ × − − − × − × × × ×

Table 2. BPS/8 intersection describing D2-F1-D4’-NS5’ branes ending on D4-D6-NS5 branes,
associated to the class of solutions (2.4). As before, x1, x2, x3 parametrise the directions realising
the SO(3) R-symmetry.

we again find a solution that asymptotes locally to an AdS5 geometry, in the µ→ 0 limit.
This solution reads3

ds2
10 =

locally AdS5 geometry︷ ︸︸ ︷
µ2 (ds2

AdS2 + ds2
S2) + dµ2

µ2 +dα2 + s2dφ2 + 4c−2
(
dρ2 + ρ2c4

16 ρ2 + c4ds
2
S̃2

)
,

eΦ = 2π−1q−1
D3c
−1(16 ρ2 + c4)−1/2 ,

B2 = µs(s̃volAdS2 + c̃volS2) + 16 ρ3

16 ρ2 + c4 volS̃2 ,

F2 = −2πqD3sc
3dα ∧ dφ ,

F4 = d[4πqD3ρµs(c̃volAdS2 − s̃volS2) ∧ dρ] + 16 ρ3

16 ρ2 + c4 volS̃2 ∧ F2+

+ 2−1πqD3c
3[(c̃volAdS2 − s̃volS2) ∧ dµ ∧ dα+ s(s̃volAdS2 + c̃volS2) ∧ d(µc dφ)] ,

F6 = −4πqD3ρ
3c4

16 ρ2 + c4 d[µs(c̃ volAdS2 − s̃ volS2)] ∧ d[log(ρµ2c2) volS̃2 ]+

+ 16πqD3ρµ
3 volAdS2 ∧ volS2 ∧ dµ ∧ dρ .

(2.8)

Note that in order to obtain this solution we could have alternatively non-Abelian T-dualised
the solution in (2.1) that asymptotes to AdS5 × S5, given by equation (3.15) in [1].

The geometry defined by (2.8) asymptotes locally to the Gaiotto-Maldacena geometry
constructed in [44], by acting with non-Abelian T-duality on AdS5 × S5. The fluxes
associated to this solution are,

F2 = −2πqD3sc
3dα ∧ dφ

F4 = −25πqD3sc
−1ρ3Hdα ∧ dφ ∧ volS̃2

H3 = d

(
16 ρ3

16 ρ2 + c4

)
∧ volS̃2 . (2.9)

3We have fixed the constants such that the AdS5 subspace has radius one.
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The isometries of the AdS5 solution are however broken by the presence of the extra,
subleading in µ, fluxes in (2.8), that give rise to new global charges associated to the defect
branes. The defect branes backreact then into a geometry described by a 5d curved domain
wall with AdS2 × S2 slicings that is only locally AdS5. The presence of the extra fluxes
forbids as well for any supersymmetry enhancement to the 4d N = 2 supersymmetry of the
AdS5 solution. Note that as in the examples discussed in [19, 20, 25] the R-symmetry of
the 4d N = 2 AdS5 solution is realised on the internal space, in this case on the S̃2 × S1

φ

subspace, while the R-symmetry of the AdS2 solution becomes part of the superconformal
group of the higher dimensional theory.

Let us now proceed with a detailed analysis of the solution described by (2.8).

3 Line defects within 4d N = 2 SCFTs and brane boxes

In this section we construct the brane set-up associated to the solution (2.8) and show that
it consists on D2 colour branes stretched between perpendicular NS5-branes. This realises a
one dimensional brane box model from which the 1d quiver CFT can be read. We show that
this quiver can be embedded within the 4d N = 2 SCFT dual to the Gaiotto-Maldacena
geometry arising in the asymptotics, described by a linear quiver with gauge groups of
increasing ranks [49]. Furthermore, we discuss in detail the interpretation of the F1-strings
present in the brane intersection, and show that together with the D2 and one of the families
of D4-branes describe baryon vertices in the 4d SCFT.

3.1 The 4d superconformal background theory

As a Gaiotto-Maldacena geometry, the AdS5 solution constructed in [44] is dual to a 4d
N = 2 superconformal field theory living in a D4-NS5-D6 brane intersection. This CFT was
thoroughly studied in [49], to which the reader is referred for more details. The D4-NS5-D6
intersection is the one depicted in the first three lines in table 2. We start computing the
quantised charges associated to the NS5-branes, following [49]. Integrating

BS̃2
2 = 16 ρ3

16 ρ2 + c4volS̃2 (3.1)

on the cycle defined by the S̃2 positioned at α = π/2, we have,

1
(2π)2

∫
Σ2
BS̃2

2 = ρ

π
. (3.2)

Since this quantity has to take values between 0 and 1 in order to have a well-defined
partition function, the ρ direction must be divided in intervals of length π, such that when
ρ ∈ [nπ, (n+ 1)π] a large gauge transformation of parameter n must be performed for (3.2)
to be satisfied. BS̃2

2 must thus be modified as

BS̃2
2 =

(
16 ρ3

16 ρ2 + c4 − nπ
)
volS̃2 , (3.3)

for ρ ∈ [nπ, (n+ 1)π]. One effect of this split into intervals is that upon crossing ρ = nπ a
NS5-brane is created, generating a Hanany-Witten brane creation effect. Indeed, we have

– 7 –
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Figure 1. Brane set-up associated to the 4d background theory. NS5-branes are located at ρn = nπ

and nQD6 D4-branes are stretched between them in each [ρn, ρn+1] interval.

in each interval

QNS5 = 1
(2π)2

∫
Σ3
H3 = 1

(2π)2

∫ (n+1)π

nπ

∫
Σ2
H3 = 1, (3.4)

with Σ2 the S̃2 located at α = π/2. Moreover, the n term in (3.3) contributes to the 4-form
Page flux with S̃2 component such that

F̂ S̃
2

4 = nπ volS̃2 ∧ F2, (3.5)

which using4

QDp = 1
(2π)7−p

∫
Σ8−p

F̂8−p, (3.6)

gives, in the ρ ∈ [nπ, (n+ 1)π] interval,

QD4 = nQD6, (3.7)

where5

QD6 = π

2 qD3. (3.8)

These quantised charges give rise to the Hanany-Witten brane set-up depicted in figure 1,
in which the D4-branes play the role of colour branes, and there are no D6 flavour branes
as the D6-brane charge remains constant across intervals. Note that this brane set-up
extends infinitely in the ρ-direction, due to the non-compact character of the ρ-coordinate.
Indeed, as such, the solution constructed in [44] does not have a well-defined 4d dual
CFT. This happens because after the non-Abelian T-duality transformation the S3 of
the original solution is replaced by an R3 subspace, and due to our lack of knowledge of
how non-Abelian T-duality extends beyond spherical worldsheets it is not possible to infer

4We use units in which gs = α′ = 1.
5Note that as usual the quantised charges need to be renormalised after a non-Abelian T-duality

transformation. This can be done through a redefinition of Newton’s constant. This will affect our
normalisation of the holographic central charge in section 3.4 (see for instance [49]).
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Figure 2. Quiver describing the 4d N = 2 SCFT dual to the background geometry.

its global properties [60]. In view of this in [49] different ways of terminating the brane
set-up, and therefore the quiver constructed from it, were discussed. These completions
of the quiver imply analog completions of the geometry, through well-controlled scenarios
where the CFT “informs” the dual geometry. Here we will choose the simplest scenario
studied in [49], namely, we will terminate the brane set-up at ρP = Pπ by adding a set of
PQD6 D6-branes (or semi-infinite D4-branes). The resulting geometry thus exhibits this
singular behaviour at the end of the space. The resulting quiver is the one depicted in
figure 2. The interested reader can find the precise way in which the completed geometry
can be obtained as a superposition of Maldacena-Nunez solutions [61] in [49], where this
was studied in detail.

One can check that at each node of the completed quiver the condition on the ranks of
the gauge groups, li,

2ln = ln+1 + ln−1, (3.9)

required for the β-function to vanish [48], is satisfied. Moreover the field theory and
holographic central charges can be shown to agree to leading order in P (the holographic
limit in these quiver constructions) [49].

3.2 The line defect theory

We proceed now to the description of the D2-F1-D4’-NS5’ defect branes whose backreaction
in the AdS5 geometry generates the AdS2 solution. We start focusing on the F1- and NS5’
branes. For this purpose it is useful to define

y = µ sinα cosφ, z = µ sinα sinφ, (3.10)

as in equation (2.7). The B2 field then reads

B2 = z volAdS2 + y volS2 + 16 ρ3

16 ρ2 + c4volS̃2 . (3.11)

The component along the S̃2 is associated, as we have shown, to the NS5-branes of the 4d
background theory, so we will no longer discuss it. In turn, the first and second components
are associated to the F1 and NS5’ defect branes. Let us start looking at the NS5’-branes. A
very similar analysis to the one performed previously for the NS5-branes of the background
theory shows that we must divide the y-direction in [mπ, (m+ 1)π] intervals and perform a
large gauge transformation of gauge parameter m in each one of them to satisfy that B2
lies in the fundamental region. This fixes

BS2
2 = (y −mπ)volS2 , (3.12)
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in these intervals, and creates NS5’-branes along the y direction at y = mπ. Let us now
turn our attention to the electric component of B2. The F1-strings are electrically charged
with respect to the NS-NS 3-form. Therefore, their charges are computed according to

QeF1 = 1
(2π)2

∫
H3 = 1

(2π)2

∫
AdS2

Be
2, (3.13)

where we use the superscript e to denote that we are referring to electric as opposed to
magnetic charges. Regularising the volume of the AdS2 space such that VolAdS2 = 4π,6 and
dividing the z direction into intervals of length [kπ, (k + 1)π] a F1-string lies in each such
interval. This is also implied by the condition that the integral of B2 lies in the fundamental
region, as previously discussed (see [40]). In this case a large gauge transformation of gauge
parameter k must be performed for z ∈ [kπ, (k + 1)π], such that

Be
2 = (z − kπ)volAdS2 (3.14)

in this interval. We will come back to the physical interpretation of this condition after we
discuss the quiver quantum mechanics associated to the solution.

For this purpose let us now look at the D2 and D4’ defect branes. The large gauge
transformations of parameters m and k modify the S2 and AdS2 components of the Page
fluxes, according to

F̂4 → F̂4 +mπF2 ∧ volS2 + kπF2 ∧ volAdS2 , (3.15)

F̂6 → F̂6 +mnπ2F2 ∧ volS2 ∧ volS̃2 + knπ2F2 ∧ volAdS2 ∧ volS̃2 , (3.16)

generating a Hanany-Witten brane creation effect. This affects the (α, φ) components of
the Page fluxes, where F2 lies. Since in the absence of large gauge transformations we have
for these components that

F4 = F2 ∧B2 , F6 = F4 ∧B2 −
1
2F2 ∧B2 ∧B2 , (3.17)

we find that

F̂4 = kπF2 ∧ volAdS2 +mπF2 ∧ volS2 + nπF2 ∧ volS̃2 , (3.18)

F̂6 = mnπ2F2 ∧ volS2 ∧ volS̃2 + knπ2F2 ∧ volAdS2 ∧ volS̃2 . (3.19)

Let us focus on the magnetic components. Equations (3.18), (3.19) imply that D4’ branes
are created across NS5’-branes as we move in the y-direction, and D2-branes are created
both across NS5’-branes as we move in the y-direction and across NS5-branes as we move
in the ρ-direction. To this we have to add the D4-branes that were already created across
NS5-branes in the ρ-direction in the background theory. The corresponding quantised
charges in the y ∈ [mπ, (m+ 1)π], ρ ∈ [nπ, (n+ 1)π] intervals are given by

QD4′ = mQD6, QD2 = mnQD6, QD4 = nQD6. (3.20)
6This regularisation prescription is based on the analytical continuation that relates the AdS2 space with

an S2.
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Figure 3. Brane set-up associated to the AdS2 solution (2.8) (in units of QD6 = 1).

We thus find a brane scenario in which two directions, y and ρ, play the role of field theory
directions. Being the D2-branes stretched between both types of NS5 and NS5’ branes
in these directions they are interpreted as the colour branes where a 1d supersymmetric
field theory lives. In turn, the charges carried by the D4’ and D4 branes are induced by
the D2-branes they end on, with which they share, respectively, the y and ρ field theory
directions (see table 2). The brane set-up in the (ρ, y) plane is then the one depicted in
figure 3. Once we have identified the brane set-up we can proceed to construct the quiver
mechanics that describes the field theory living in the D2-branes. In order to do that we
must look at the quantisation of the open strings that stretch between the branes in the
different boxes. As it is customary for 1d N = 4 multiplets we will use 2d (0, 4) notation.
We will follow closely [47], where the quantisation of open strings in D3-brane box models
realising 2d (0,4) field theories was studied in detail. Our brane set-up is simply related to
the D3-NS5-D5-NS5’-D5’ brane intersection studied in [47] by (Abelian) T-duality along
the x1 direction therein, and thus realises a 1d N = 4 instead of a 2d (0,4) field theory.
Other than this the analysis is completely analogous. There are four types of D2-D2 strings
to consider:

• When the end-points of the string lie on the same stack of D2-branes the projections
induced by both the NS5 and the NS5’ branes leave behind a (0,4) vector multiplet,
since the D2-branes cannot move in any of the transverse directions.

• When the end-points of the string lie on two different stacks of D2-branes separated
by an NS5-brane the degrees of freedom along the (x7, x8, x9) directions are fixed,
leaving behind the scalars associated to the (x1, x2, x3) directions, which together with
the Ay component of the gauge field give rise to a (0,4) twisted hypermultiplet in the
bifundamental representation, since the scalars are charged under the R-symmetry.

• When the end-points of the string lie on two different stacks of D2-branes separated
by an NS5’-brane the degrees of freedom along the (x1, x2, x3) directions are fixed,
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leaving behind the scalars associated to the (x7, x8, x9) directions, which together
with the Aρ component of the gauge field give rise to a (0,4) hypermultiplet in the
bifundamental representation, since the scalars are uncharged under the R-symmetry.

• When the end-points of the string lie on two different stacks of D2-branes separated by
both an NS5 and an NS5’ brane all the scalars are fixed, leaving behind the fermionic
mode associated to a bifundamental (0,2) Fermi multiplet.

The previous fields give rise to the planar quiver depicted in figure 4. This quiver
consists of two arrows of linear quivers, associated to the D2-branes stretched between
NS5-branes in the ρ direction and NS5’-branes in the y direction, with mutual interactions
consisting of (0,2) Fermi multiplets. Note that due to the non-compact character of the
ρ and y directions the AdS2 geometry does not have, per se, a well-defined 1d dual CFT.
As in the previous subsection, we have terminated the quiver in both directions with two
families of flavour groups, arising from nP ′ D6-branes (or semi-infinite D4’-branes) placed
at ρ = nπ, with n = 1, 2, . . . , P , yP ′ = P ′π and mP D6-branes (or semi-infinite D4-branes)
placed at ρP = Pπ, y = mπ with m = 1, 2, . . . , P ′. This allows to construct a well-defined
one dimensional quiver quantum mechanics from which we can compute the degrees of
freedom of the 1d SCQM that arises in the IR, as we will pursue in section 3.4. As in the
previous subsection the completed SCQM implies a concrete completion of the AdS2 solution,
that should now exhibit a singular behaviour at both ends of the space. It would be very
interesting to see how this is explicitly realised in the geometry, and whether in particular
the superposition in terms of Maldacena-Nunez solutions found in [49] for the AdS5 solution
could be of any use. Our proposal is that the quiver depicted in figure 4 describes a 1d
field theory that flows in the IR to the 1d SCQM dual to the AdS2 solution. Note that as a
one dimensional field theory there is no condition for gauge anomaly cancelation. Yet, it is
striking that the quiver mechanics satisfies the conditions for gauge anomaly cancelation of
a 2d (0,4) field theory. This can be checked straightforwardly in our 2d (0,4) notation for
the superfields. For this we need to recall the contribution from the different fields to the
U(N) gauge anomaly (see for instance [47, 62–64]). This contribution is as follows. (0,4)
twisted or untwisted hypermultiplets contribute with a factor 2N if they are in the adjoint
or with a factor 1 if they are in the fundamental representation. (0,4) vector multiplets
contribute with a factor -2N. (0,2) Fermi multiplets in the fundamental contribute with a
factor -1/2. With these contributions one can easily check that all nodes in the quiver in
figure 4 satisfy that the gauge anomaly vanishes. We will discuss further this property of
the quiver when we interpret our result for the central charge in section 3.4.

Another interesting property of the quiver is that it can be seen as the result of
embedding the D2-D4’-NS5’-F1 defect branes in the 4d N = 2 SCFT living in the D4-NS5-
D6 brane intersection. Let us describe how this happens. From the point of view of the 4d
theory the R-symmetry is realised on the x7, x8, x9 directions, as mentioned in section 2.
The 4d quiver depicted in figure 2 is then decomposed in terms of 2d (0,4) matter fields
as shown in figure 5. In this decomposition the 4d N = 2 vector multiplet gives rise to
a (0,4) vector multiplet with gauge field Aα, α = t, z, plus a (0,4) adjoint hypermultiplet,
arising from combining the reduction of the gauge field along the (x1, x2, x3) directions and
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Figure 4. Quiver quantum mechanics associated to the AdS2 solution given by (2.8). Circles
denote (0,4) vector multiplets, red lines (0,4) bifundamental twisted hypermultiplets, black lines
(0,4) bifundamental hypermultiplets and dashed lines bifundamental (0,2) Fermi multiplets. We
have taken units in which QD6 = 1.

Figure 5. Field theory living in the D4-NS5-D6 subsystem (in units of QD6 = 1) in terms of 2d
(0,4) multiplets.

the fluctuations in the y-direction. In turn, the 4d N = 2 bifundamental hypermultiplet
gives rise to a (4,4) bifundamental twisted hypermultiplet, arising from combining the Aρ
component of the gauge field with the fluctuations in (x7, x8, x9).

We can consider in an analogous way the D4’-NS5’-D6 brane subsystem of the brane
set-up shown in table 2. The 4d SCFT living in this brane subsystem is again the one
depicted in figure 2, with y playing now the role of field theory direction. However, in the
decomposition into 2d (0,4) matter multiplets the 4d N = 2 vector multiplet decomposes into
a (0,4) vector multiplet plus a (0,4) adjoint twisted hypermultiplet, arising from combining
the reduction of the gauge field along the (x7, x8, x9) directions and the fluctuations in the
ρ-direction. As it is well-known these multiplets combine into a (4,4) vector multiplet. The
difference with the decomposition of the gauge field living in the D4-branes is that the
scalars are now charged with respect to the SU(2) R-symmetry. In turn, the 4d N = 2
bifundamental hypermultiplet gives rise to a (4,4) bifundamental hypermultiplet, arising
from combining the Ay component of the gauge field with the fluctuations in (x1, x2, x3).
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Figure 6. Field theory living in the D4’-NS5’-D6 subsystem (in units of QD6 = 1) in terms of 2d
(0,4) multiplets. Red circles represent (4,4) vector multiplets.

Again, the difference with the decomposition of the 4d hypermultiplet living on the D4-
branes is that the scalars are now uncharged with respect to the SU(2) R-symmetry. The
4d quiver living in the D4’-NS5-D6 branes is represented in terms of 2d (0,4) multiplets
in figure 6. The quiver depicted in figure 4 can now be seen as the result of assembling
the two quivers represented in figures 5 and 6. In this assembly the charges carried by the
D4 and D4’-branes are now carried by D2-branes, that stretch in both the ρ and y field
theory directions. Our proposal is that the 1d field theory described by this quiver flows
in the IR to the SCQM dual to the AdS2 solution (2.8). We would like to stress that the
SCQM proposed in this section is far more elaborated than those previously constructed in
the literature [1, 39–42, 50, 51], since it involves the highly non-trivial brane box models
constructed in [47], now realising an N = 4 supersymmetric quantum mechanics. Moreover,
we have at our disposal the explicit holographic dual, and therefore a well-controlled string
theory realisation that allows to study these constructions geometrically. We will see that
this is particularly useful when addressing the, non-trivial issue, of the computation of the
central charge. Our construction provides, to our knowledge, the first example in which
a brane box model has been described holographically.7 We would like to emphasise the
non-trivial role played by non-Abelian T-duality in making this possible.

In the next section we turn to a more precise interpretation of the massive F1-strings
present in the defect sector of the theory. Our discussion follows very closely the analysis
carried out in section 4.6 in [1]. In that reference a brane set-up like the one shown in table 2
was studied in the particular case in which the ρ and y directions are circular and the D4
and the D6-branes are smeared along them. This gave rise to a class of AdS2 solutions
that were missing an AdS5 asymptotics. Yet the analysis of the field theory dual allowed to
interpret the D2-D4’-F1 branes as baryon vertices for the D4-D6-NS5 subsystem, suggesting
that a defect interpretation should still be possible. In the next section we show that
the previous baryon vertex interpretation goes through, as expected, for our AdS2/CFT1
set-up, which finds in this way a defect interpretation from both the field theory and the
geometrical sides.

7See [20] for AdS3 solutions dual to D3- brane boxes with one circular direction.
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Figure 7. Wilson loop in the QD6 (QD4) antisymmetric representation of U(QD2) (U(QD4′)).

3.3 Baryon vertex interpretation

In this section we turn to the interpretation of the F1-strings of the solution. We show that
together with the D2 and the D4’ branes they find a baryon vertex interpretation within
the 4d N = 2 background theory.

Let us start looking at the D2-branes. The following worldvolume coupling

SD2 = T2

∫
F2 ∧At, (3.21)

shows that a D2-brane lying on (t, φ, α) behaves as a baryon vertex for the D6-branes, since
it carries QD6 units of F1-string charge. Analogously, the coupling

SD4′ = T4

∫
F̂4 ∧At (3.22)

in the worldvolume of a D4’-brane shows that a D4’-brane lying on (t, φ, α, S̃2) and located
at a fixed position in the ρ ∈ [nπ, (n + 1)π] interval behaves as a baryon vertex for the
D4-branes lying in this interval, since it carries QD4 = nQD6 units of F1-string charge.
Indeed, the relative orientation between the D4’ and the D4 branes, and between the D2
and the D6 branes in the brane set-up is the one that allows to create F1-strings stretched
between the D4’ and the D4 and the D2 and the D6 branes, as depicted in figure 7. These
strings have as their lowest energy excitation a fermionic field, which upon integration leads
to a Wilson loop. It was shown in [53, 54] that in order to describe a half-BPS Wilson
loop in an antisymmetric representation labelled by a Young tableau (depicted in figure 8)
one must consider a configuration of stacks of branes separated a distance L from the
colour branes, with (l1, l2, . . . , lM ) F1-strings stretched between the stacks. This generalises
the description of a Wilson loop in [65, 66] to all other antisymmetric representations.8
Coming back to our brane configuration the relevant fluxes that give the quantised electric
charges of the D2 and D4’ branes playing the role of baryon vertices are the (AdS2, φ, α)
and (AdS2, φ, α, S̃

2) components of F̂4 and F̂6 found in (3.18) and (3.19), given by

F̂ e4 = kπ F2 ∧ volAdS2

F̂ e6 =nkπ2 F2 ∧ volAdS2 ∧ volS̃2 .
(3.23)

8See [54, 67] for a similar description of half-BPS Wilson loops in symmetric representations.
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Figure 8. Young tableau labelling the irreducible representations of U(N).

Figure 9. Brane set-up in the z-direction, for y and ρ constants. The numbers of D4 and D6 branes
at each interval are given by their respective magnetic charges. Instead, for the numbers of D2 and
D4’ branes we give their electric charges (computed in (3.24) and (3.25)) as these are the ones that
play a role in their interpretation as baryon vertices.

These fluxes give rise to the quantised charges

QeD2 = k QD6, (3.24)

for z ∈ [kπ, (k + 1)π], and
QeD4′ = nQeD2 = nkQD6, (3.25)

for z ∈ [kπ, (k + 1)π] and ρ ∈ [nπ, (n + 1)π]. From these charges we can read the brane
set-up along the z direction for constant y and ρ, that we depict in figure 9. In this set-up
the sets of D6-branes located at ρ = nπ, yP ′ = P ′π that terminated the quiver quantum
mechanics in the y direction allow us to also terminate the brane set-up in the z direction, if
we locate them at zP ′ = P ′π.9 The brane set-up depicted in figure 9 can now be related by
a combination of a T-duality, an S-duality, successive Hanany-Witten moves and a further
T-duality to the brane set-up depicted in figure 10. This is carefully explained in [40] (see
also [1]). In this description of the system the relation with the constructions in [53, 54]
becomes manifest. In our case the sum of the F1-strings stretched between each D2 (D4’)
and the flavour D6 (D4) branes coincides with the rank of the gauge group of the D2

9Note that the relations (3.10) imply that z and y must reach the same maximum values.
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Figure 10. Hanany-Witten brane set-up equivalent to the brane configuration in figure 9.

(D4’) branes. This implies that the Wilson lines are in the fundamental representation of
the gauge groups. Therefore, the D2-D4’ branes describe baryon vertices for the D6-D4
branes of the 4d background theory. As we move in the ρ direction the NS5-branes located
in the different positions in ρ allow to create D4-branes stretched between them in an
increasing number in units of QD6. Exactly the same phenomenon takes place for the
D4’-branes, which are created, orthogonal to the D4-branes, as the NS5-branes are crossed,
in an increasing number in units of QD2, since they carry electric charge. In turn, as the
number of D2-branes varies as we move in the z direction, the same happens with the
D4’-branes. In this way one finds an analogous interpretation to that of the D2 branes for
the D4’-branes, as baryon vertices for the D4-branes.

The conclusion of our analysis in this section is that the AdS2 solution can be interpreted
as describing backreacted baryon vertices within the 4d N = 2 CFT living in the D4-NS5-D6
branes. Consistently with this interpretation the AdS5 solution associated to the D4-NS5-D6
intersection arises asymptotically locally far away from the defect. Even if the baryon
vertices are described in terms of D2-D4’-F1 branes, NS5’-branes need also be introduced
in the background such that a solution to Type IIA supergravity arises. The full brane
set-up allows then for a field theory description of the AdS2 solution in terms of D2-branes
stretched between both the NS5-branes and the NS5’-branes in two perpendicular directions.

3.4 Computation of the central charge

In this section we turn to the computation of the central charge of the SCQM. The definition
of the central charge of a superconformal quantum mechanics involves some caveats related
to the fact that the energy momentum tensor of a conformal quantum mechanics must
vanish identically. The central charge should then be interpreted as counting the degeneracy
of ground states of the system. Some proposals exist in the literature for computing this
degeneracy. In [68–70] the number of ground states of quiver quantum mechanics with
gauge group ∏v U(Nv) with the U(Nv) subgroups connected by bifundamentals (so-called
Kronecker quivers) was computed by quantising the classical moduli space in the Higgs
branch. The result is

M =
∑
v,w

NvNw −
∑
v

N2
v + 1, (3.26)
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where Nw stands for the rank of the gauge groups adjacent to a given colour group of
rank Nv. Alternatively, it was shown in [31, 32] that when the AdS2 solution dual to a
N = 4 SCQM can be obtained from an AdS3 space through a null compactification (the
so-called null orbifold construction) the dual SCQM is realised as a chiral half of the 2d
CFT dual to the AdS3 solution. The AdS3 spaces considered in [31, 32] preserve N = (4, 4)
supersymmetries, but the result can be extrapolated to the case in which they preserve
N = (0, 4), where the SCQM simply arises upon compactification of the 2d dual (0,4)
CFT. In these situations the obvious interpretation of the central charge of the SCQM is
as counting the excitations of the 2d CFT, and the caveats mentioned above do not apply.
Moreover, one can use the expression that allows to compute the central charge of the 2d
CFT from the R-symmetry anomaly to obtain the central charge of the SCQM. This was
done explicitly for the class of AdS2 solutions constructed in [39], obtained by T-dualising a
sub-class of the AdS3 solutions to Type IIA supergravity with N = (0, 4) supersymmetries
constructed in [71].10 The central charge computed this way was shown to agree with the
holographic calculation in the holographic limit.

Remarkably, in [1, 40, 41] other classes of AdS2 solutions with N = 4 supersymmetry
were constructed that do not bear any relation with AdS3. Still, the expression that gives
the central charge of a 2d (0,4) CFT was used to compute the central charge and it was
shown to agree with the holographic result. This agreement is a remarkable result that
should be investigated in more detail. It could be related to the fact that the 2d expression
can be shown to agree to leading order with the 1d expression given by (3.26), when applied
to the same type of quivers. In this section we show that the SCQM proposed in the
previous sections provides one further example in which the central charge computed from
the 2d expression is in agreement with the holographic calculation. Let us now show how
this happens.

As mentioned, the central charge of a 2d (0,4) CFT can be computed from the R
symmetry anomaly (see for instance [62]),

cR = 3Tr[γ3Q2
R], (3.27)

where the trace is over the Weyl fermions of the theory, γ3 is the 2d chirality matrix and
QR is the U(1)R charge. Recalling the well-known facts:

• (0,4) vector multiplets contain two left-moving fermions with R-charge 1,

• (0,4) twisted hypermultiplets contain two right-moving fermions with R-charge 0,

• (0,4) hypermultiplets contain two right-moving fermions with R-charge -1,

• (0,2) Fermi multiplets contain one left-moving fermion with R-charge 0,

and substituting in (3.27), one gets the well-known expression

cR = 6 (nhyp − nvec), (3.28)
10It is straightforward to see that the Abelian T-duality transformation performed in [39] is equivalent to

the null orbifold construction in [31, 32].

– 18 –



J
H
E
P
0
2
(
2
0
2
3
)
1
9
3

where nhyp stands for the number of (0,4) untwisted hypermultiplets and nvec for the number
of (0,4) vector multiplets. If we now use this formula for our 1d quiver in figure 4 we find,11

nhyp =
P−1∑
n=1

P ′−1∑
m=1

n2m(m+ 1)Q2
D6

nvec =
P−1∑
n=1

P ′−1∑
m=1

n2m2Q2
D6. (3.29)

This gives
cR = 1

2P (P − 1)(2P − 1)P ′(P ′ − 1)Q2
D6 (3.30)

and, to leading order in P and P ′ (large number of nodes limit),

cR ∼ P 3P ′2Q2
D6. (3.31)

In order to compare with the holographic calculation we need to compute as well cL, since

chol = 1
2(cL + cR). (3.32)

We compute cL from
cL = cR + Tr γ3. (3.33)

We can easily see that Trγ3 = 0 for our quiver in figure 4, such that cL = cR.
Let us compute now the holographic central charge. Here we have to account for

the proper normalisation of Newton’s constant, as mentioned previously. The proper
normalisation is

chol = 3
25π8Vint = 3

25π8

∫
d~θ e−2Φ

√
det(gij), (3.34)

where gij is the metric of the inner space and ~θ are coordinates defined over it. Using this
expression and integrating ρ between [0, Pπ] and µ between [0, P ′π] we find

chol = P 3P ′2Q2
D6, (3.35)

in perfect agreement with the field theory calculation, in the large number of nodes limit.

4 Conclusions

In this paper we have constructed a new class of AdS2 solutions to Type IIA supergravity
with N = 4 supersymmetry realised as AdS2 × S2 × S2 foliations over 4 intervals. These
solutions arise after performing a non-Abelian T-duality transformation (with respect to a
freely acting SU(2) group) on the class of solutions to Type IIB supergravity constructed
in [1]. We have then focused on their defect CFT interpretation. We have shown that for a
particular brane profile the resulting background asymptotes locally to a Gaiotto-Maldacena
geometry, which suggests that it should be dual to a line defect CFT within the 4d N = 2

11Here we have reinstated QD6 6= 1.
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SCFT dual to this geometry. We have identified the brane set-up associated to this solution
and from it we have constructed a 1d quiver quantum mechanics that, we propose, flows in
the IR to the SCQM dual to the AdS2 solution. We stress that the 1d quiver field theory
that we have constructed is an elaborated quantum mechanics described by a D2-brane box
model of the type constructed in [47]. We have shown that this quiver can be interpreted as
a result of embedding the defect branes of the solution in the 4d N = 2 background theory.

Following [40] we have given an interpretation to the massive F1-strings present in
the solution in terms of baryon vertices within the 4d N = 2 SCFT, in analogy with the
findings in [1, 40, 41]. This is consistent with an interpretation of the AdS2 solution as
describing backreacted baryon vertices within the 4d N = 2 SCFT, living in a D4-NS5-D6
subsystem of the complete brane set-up. In this interpretation the SCQM arises in the very
low energy limit of a system of D4-NS5-D6 branes in which one dimensional defects are
introduced. The one dimensional defects consist on D4’-brane baryon vertices, connected to
the D4 with F1-strings, and D2-brane baryon vertices connected to the D6 with F1-strings.
In the IR the gauge symmetry on the D4-branes, that played the role of colour branes in
the 4d SCFT, becomes global, turning them from colour to flavour branes. In turn, the
D2-branes, stretched between the two field theory directions present in the brane set-up,
become the new colour branes of the backreacted geometry. Extra NS5’-branes present in
the brane set-up make this possible.

Our construction in this paper provides one further example of the successful applications
of non-Abelian T-duality to holography [42, 44, 49, 72–85]. In this case it has allowed to
construct a line defect CFT within a 4d N = 2 SCFT in a well-controlled string theory
set-up, with a known holographic dual. As a spin-off of this construction the first holographic
dual to a general brane box model has been provided.12 Our construction provides one
concrete example involving a particular 4d N = 2 SCFT, but one would expect that a
full class of AdS2 solutions that asymptote in the UV to more general Gaiotto-Maldacena
geometries should exist. The success of the applicability of non-Abelian T-duality in the
context of holography has been the possibility to access particular solutions that have
inspired the construction of more general classifications. Notable examples in the literature
of this sort are the AdS solutions reported in [74, 77, 79, 80, 84, 85]. Our construction in this
paper could very well provide one further example that prompts an extension to a general
classification of AdS2 solutions asymptoting Gaiotto-Maldacena geometries in the UV.

Finally, we think it should be of interest to further explore the applications of the new
geometry constructed in appendix B to the description of four dimensional extremal black
holes with N = 4 supersymmetries.
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A The non-Abelian T-duality transformation

In this appendix we give the details of the non-Abelian T-duality transformation used to
construct the class of solutions presented in section 2 (and in the following appendix). We
perform the non-Abelian T-duality with respect to a freely acting SU(2) on the S3 in the
background (2.1). The sigma model describing the propagation of a string on the NS-NS
sector of this background can be cast in the general form

L = Gµν(X)∂+X
µ∂−X

ν +Gµi(X)(∂+X
µLi− + ∂−X

µLi+) + gij(X)Li+L
j
−. (A.1)

Here Li± = −iTr(tig−1∂±g), g is an element of SU(2), ti stand for the generators of SU(2),
and Xµ run over AdS2, S2, y, z and r. Using the invariance of the sigma model under
g → hg, with h ∈ SU(2), the following non-Abelian T-dual NS-NS background can be
generated (see for instance [86])

L̃ = Gµν∂+X
µ∂−X

ν + (∂+vi + ∂+X
µGµi)M−1

ij (∂−vj −Gµj∂−Xµ) . (A.2)

Here M = g+ f , with f the SU(2) structure constants in the normalisation [ti, tj ] = iεijkt
k,

and g has been replaced by the Lagrange multipliers vi, i = 1, 2, 3, which take values on the
Lie algebra of SU(2). The Lagrange multipliers enforce the flat connection condition in the
proof of equivalence between the original Lagrangian (A.1) and its NATD (A.2) [87]. The
dual metric and NS-NS 2-form read

g̃ij = 1
2M

−1
(ij) , B̃ij = 1

2M
−1
[ij] , G̃iµ = −1

2M
−1
[ij]Gjµ

B̃iµ = −1
2M

−1
(ij)Gjµ , G̃µν = Gµν −M−1

ij GµiGνj (A.3)

where in our conventions M(ij) = Mij +Mji and M[ij] = Mij −Mji. The dilaton in turn
transforms as

Φ→ Φ− 1
2 log (detM) . (A.4)

The general procedure to generate the dual RR fields was worked out in [44], and
later applied in [73] (see also [88]) to obtain general formulas for the duals of M7 × S3

backgrounds with warpings depending on the M7 directions and RR fluxes consistent with
this structure.

Writing the RR field strengths of the original background as

Fp = G(0)
p +Gap−1 ∧ ea + 1

2G
ab
p−2 ∧ ea ∧ eb +G

(3)
p−3 ∧ e

1 ∧ e2 ∧ e3 , (A.5)

the ones in the NATD background13

F̃p = G̃(0)
p + G̃ap−1 ∧ ẽa + 1

2G̃
ab
p−2 ∧ ẽa ∧ ẽb + G̃

(3)
p−3 ∧ ẽ

1 ∧ ẽ2 ∧ ẽ3 , (A.6)

13We use tildes to denote them throughout this section.
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can be derived from the transformation rules

G̃(0)
p =

(
−A0G

(3)
p +AaG

a
p

)
G̃ap−1 =

(
−A0

2 εabcGbcp−1 +AbG
ab
p−1 +AaG

(0)
p−1

)
G̃abp−2 =

[
εabc

(
AcG

(3)
p−2 +A0G

c
p−2

)
−
(
AaG

b
p−2 −AbGap−2

)]
G̃

(3)
p−3 =

(
Aa
2 εabcGbcp−3 +A0G

(0)
p−3

)
. (A.7)

Here a, b, c run over the directions of the S3 on which the dualisation is performed, which
here is taken to be squashed for generality, ea are the frames on these directions and the
coefficients A0 and Aa are given by

A0 = eB1+B2+B3 , Aa = vae
Ba , (A.8)

where Aa and Ba are functions of the spectator coordinates, vi are the Lagrange multipliers
living in the Lie algebra of SU(2), and we have assumed an original geometry of the form

ds2
str = gµνdx

µdxν + e2Ba(ωa +Aa)2, (A.9)

where ωa are left invariant 1-forms and Aa = Aaµdx
µ are fibration terms.

B A black hole geometry through non-Abelian T-duality

In this appendix we present the non-Abelian T-dual (with respect to a freely acting SU(2),
as reviewed in the previous appendix) acting on the brane solution that underlies the AdS2
solutions (2.1), given by equation (3.8) in [1]. One can check that the solutions (2.4) arise in
the near horizon limit of this solution. However we have not succeeded in given a concrete
interpretation in terms of a brane intersection, that would be underlying the near-horizon
geometries (2.4). As we have explained in the main text this is a common feature for
AdS solutions constructed through non-Abelian T-duality. Still, the solution presented
in this section should have an interesting interpretation as describing 4d N = 4 extremal
black holes.

The solution is given by:

ds2
10 = H

−1/2
D3

[
−H−1/2

D1 H−1
F1 H

−1/2
D5 dt2 +H

1/2
D1 H

1/2
D5 HNS5

(
dζ2 + ζ2ds2

S2

)
+

+ 4r−2H
−1/2
D1 H

1/2
D5

(
dρ2 +Hρ2ds2

S̃2

) ]
+H

1/2
D3

[
H
−1/2
D1 H

−1/2
D5 HNS5dy

2+

+H
1/2
D1 H

−1
F1 H

1/2
D5 dz

2 +H
1/2
D1 H

−1/2
D5 dr2

]
,

eΦ = (r/2)−3H1/2H
−1/4
D1 H

−1/2
F1 H

1/4
D5 H

1/2
NS5H

−3/4
D3 ,

B2 = z∂ζH
−1
F1 dt ∧ dζ − yζ

2∂ζHNS5 volS2 + 16HD5ρ
3

16ρ2HD5 +HD1HD3r4 volS̃2 ,

F2 = −8−1r3
[(
HF1H

−1
D5∂zHD3 dy −HD1H

−1
NS5∂yHD3 dz

)
∧ dr − ∂rHD3 dy ∧ dz

]
,
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F4 = −8−1r3HD3
(
∂ζH

−1
D5dt ∧ dζ ∧ dy + ζ2∂ζHD1volS2 ∧ dz

)
∧ dr+

+ ρ
(
∂ζH

−1
D1dt ∧ dζ ∧ dy + ζ2∂ζHD5volS2 ∧ dz

)
∧ dρ+

+ 16HD5ρ
3

16ρ2HD5 +HD1HD3r4 volS̃2 ∧ F2 ,

F6 = d
[
HD5HNS5H

−1
D3ρζ

2 dt ∧ dζ ∧ volS2 ∧ dρ
]

+

− ρ2H[2r−2ρH−1
D1HD5

(
∂ζH

−1
D5dt ∧ dζ ∧ dy + ζ2∂ζHD1volS2 ∧ dz

)
∧ dr+

+
(
∂ζH

−1
D1dt ∧ dζ ∧ dy + ζ2∂ζHD5volS2 ∧ dz

)
∧ dρ] ∧ volS̃2 , (B.1)

where we have defined
H = HD1HD3r

4

16ρ2HD5 +HD1HD3r4 . (B.2)
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