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The movement of organisms facilitated by anthropogenic activities is a serious

threat to marine diversity, especially for endemic species that may be

outcompeted from non-indigenous species (NIS). In this study, we have

analyzed communities inhabiting the north of the Gulf of Aqaba, Red Sea,

employing environmental DNA (eDNA) metabarcoding. That gulf is especially

rich in species and population endemism. We have detected NIS representing

36% of the total number of species found from eDNA. Primary producers were

more abundant in the NIS than in the native fraction of species, suggesting that

functional diversity could be altered if NIS thrive there. We discuss maritime

traffic as a factor that may enhance the introduction of non-natives in this

region and emphasize the importance of the control of these species that may

threaten the rich endemic biota of the Red Sea.
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Introduction

Maritime traffic is a well-known way of spreading non-indigenous species (NIS)

around the world (Sardain et al., 2019; Iacarella et al., 2020). Many examples demonstrate

that ships carry numerous species in different compartments, principally attached to the

hull (Chan et al., 2022) and in ballast water (Ardura et al., 2020). As a consequence,

commercial ports and marinas are considered hotspots of biological invasions (Ferrario

et al., 2017), and the projected invasion risk due to the global increase of maritime traffic

is surging in many countries (Sardain et al., 2019). Even in islands with only small fishing
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ports, the importance of maritime traffic is reflected in the

significant association between the density of boats and the

abundance of NIS (Ardura et al., 2015).

One of the possible consequences of NIS introduction into a

new ecosystem is the outbreak of biological invasions. However, not

all of the NIS become invasive in the recipient ecosystem. A golden

rule for successful invaders is “the more tolerant are the more

dangerous” (Sakai et al., 2001; Lee, 2002; Madariaga et al., 2014),

with tolerance to salinity, high temperature, and oxygen depletion

acting as natural filters. Temperature fluctuations, oxygen

depletion, and increased salinity may create a bottleneck for

successful invasion (Früh et al., 2012). To become invasive, NIS

must find a niche and reproduce without control (Williamson and

Griffiths, 1996). This process is favored, among other factors, by

depressed native diversity and disturbed habitats (Garcıá-Berthou

et al., 2005), such as heavily anthropic ports and polluted areas

(Miralles et al., 2016; Fernandez et al., 2021).

The Red Sea is a biodiversity hotspot (Roberts, 2002), rich in

endemic species and lineages (Hodge et al., 2014), with a complex

evolutionary history marked by past low-salinity conditions that

enabled some parts, like the Gulf of Aqaba, to act as glacial refugia

(DiBattista et al., 2016). This gulf is characterized by a vertical

offshore profile with limited reefs and a high proportion of

endemisms, where planktonic organisms were able to survive

during the Last Glacial Maximum unlike in other areas of the

Red Sea (Fenton et al., 2000). In the last decades, the whole region is

experiencing an accelerated development that encompasses

important conservation efforts to safeguard the unique diversity

of the Red Sea (Chalastani et al., 2020). However, the conservation is

principally focused on Marine Protected Areas (Gajdzik et al.,

2021); the prevention of biological invasions seems to be

somewhat overlooked, since reports of NIS are scarce in the Red

Sea (Por, 1978). More studies are needed about this important

biodiversity threat in a region that shelters such a rich

endemic biota.

The majority of studies about marine invasive species target

macroscopic taxonomic groups, like vertebrates, metazoans, or

macroalgae, that are easier to spot, sample, and identify.

However, many microscopic taxa living in the plankton can be

invasive as well, like Oithona davisae (Yildiz et al., 2016) and

other planktonic calanoid copepods (Beaver et al., 2019) or other

zooplanktonic species (Kelly et al., 2013). Many of those

invaders are overlooked for the intrinsic difficulty of sampling

and the need of specialized laborious expertise for their

identification (Feckler et al., 2014; Blackman et al., 2022).

Environmental DNA (eDNA) and metabarcoding can help in

this, since obtaining individuals for further taxonomic analysis is

not necessary (Uchii et al., 2016; Borrell et al., 2017). eDNA is

DNA directly extracted from environmental samples (water,

soil, and biofilms), containing DNA remains and cells shed by

multicellular organisms in the environment, and indeed

unicellular organisms. The organisms present in the

environment are then identified through high-throughput
Frontiers in Marine Science 02
sequencing a phylogenetically informative DNA region. Many

studies have demonstrated that metabarcoding on DNA samples

reflect the existing biodiversity in aquatic environments (e.g.,

Fernandez et al., 2021; Blackman et al., 2022). The technique is

useful for the identification of exotic plankton species; for

example, eDNA extracted from water samples in French

Polynesia allowed researchers to identify planktonic NIS that

suggest changes in the trophic chain from its lower links (Ardura

et al., 2021).

This study aims at filling the gap of studies about Red Sea NIS,

focusing on those species that can be found from eDNA in coastal

water samples: principally planktonic species, planktonic stages of

metazoans, and other species detectable from eDNA remains.

Water samples were analyzed using eDNA metabarcoding, and

NIS were identified and characterized in terms of their most likely

origin based on their native distribution.
Materials and methods

Sampling locations and procedure

Three locations were targeted in the Gulf of Aqaba:

Hahashmal, The Red Rock, and Neviot beaches. They are

sandy beaches located within 5 km in a touristic area in the

north of the Gulf (Figure 1).

We considered the following environmental stressors: the

maritime traffic, using the proximity to a port and/or a marina as

a proxy; the visible presence of marine litter on the beach as a

proxy offloating litter, which is a secondary NIS dispersal vector;

the occurrence of pollution visualized from sewage discharges (=

disturbed physic-chemical and bacterial environment); and

beach frequentation observed (tourism pressure). These factors

increase the frequency of NIS that are transported by ships

(Ardura et al., 2015) and floating marine litter (Rech et al., 2018;

Fernandez et al., 2022) and are often associated with degraded or

anthropogenic areas (Pysěk and Richardson, 2010). Dummies 1

(stressor present in a beach) and 0 (stressor absent) were

employed. Of the three locations, Hahashmal beach was

subjected to more environmental stresses (litter, a pipeline

discharge nearby, and the proximity of Eilat commercial port)

than Neviot beach (a touristic beach near a marina), and The

Red Rock beach was apparently the least stressed of the three

sampling locations (Table 1).

Water samples were collected in January 2019. Three

samples of 1 L of water were taken from each site using 100-

ml sterilized syringes. Syringes were washed before and after

sampling with 10% bleach and rinsed thrice with sterile water.

The water samples were filtered in situ through PES Supor® 200

Membrane Filters (Pall Corporation, Life Sciences) of 0.2 mm
pore, and the filters were immediately placed in tubes filled with

sterile ethanol. More details about sampling procedures can be

found in Georges et al. (2021).
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Molecular analysis

eDNA was extracted from the filters in a laminar air flow

chamber to prevent contamination using the PowerWater®

DNA Isolation Kit (MoBio Laboratories) following the

manufacturer’s protocol. Negative controls were included at

this step (DNA extraction from pure sterile ethanol samples)

to ensure that contamination did not occur during the

extraction process.

The purified DNA was quantified with Qubit® dsDNA HS

(High Sensitivity) Assay Kits. Once eDNA was extracted, the

filtration replicates (three per beach) were pooled per sampling

point before sequencing to increase eDNA quantity. The primers

mlCOIintF: 5′-GGWACWGGWTGAACWGTWTAYCCYCC-3′
Frontiers in Marine Science 03
and jgHCO2198: 5′-TANACYTCNGGRTGNCCRAARAAYCA-
3′ (Leray et al., 2013) were employed to amplify a 313-bp fragment

within the cytochrome oxidase subunit 1 gene (COI) that shows

good results of plankton diversity recovery (e.g., Ardura et al.,

2015; Suter et al., 2021). Polymerase chain reaction (PCR) was

performed on 12 ml of each eDNA sample. Negative PCR controls

were added as extra samples.

Thermocycling conditions were as follows: initial denaturing

at 95°C for 5 min; 35 cycles of 95°C for 1 min, 48°C for 1 min, and

72°C for 1 min; 72°C for 5 min extension; and 4°C on hold. The

2100 Bioanalyzer instrument (Agilent Technologies) was

employed to confirm fragment size and no occurrence of by-

products. Amplicons were analyzed in the platform Ion Torrent

PGM (ThermoFisher Scientific, USA) in the University of Oviedo.
TABLE 1 Characteristics of the sampling sites considered in this study.

Environmental stressors

Beach Coordinates Marine litter Port Sewage discharge Beach frequentation

Hahashmal 29°32’29.8”N/34°56’54.3”E 1 1 1 0

The Red Rock 29°32’51.3”N/34°57’12.6”E 0 0 0 1

Neviot 29°32’54.2”N/34°57’44.5”E 0 1 0 1
Geographical coordinates and environmental stressors (1 present, 0 absent).
FIGURE 1

Map showing the beaches sampled in the Gulf of Aqaba, north Red Sea: 1: Hahashmal, 2: The Red Rock and 3: Neviot. Source: modified by the
authors from Google Maps.
frontiersin.org

https://doi.org/10.3389/fmars.2022.940889
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fernandez et al. 10.3389/fmars.2022.940889
Different barcodes were added to the forward primer in order to

identify the nine samples. The libraries were constructed with the

Ion PGM Hi-Q view OT2 kit. High-throughput sequencing was

done with the Ion PGM Hi-Q view Sequencing Kit on an Ion 314

Chip v.2 (ThermoFisher Scientific).
Bioinformatics of NGS data

QIIME software (Caporaso et al., 2010), although initially

developed for prokaryote community analysis, is also employed

on studies of eukaryote communities that use COI as ametabarcode

(e.g., Von Ammon et al., 2018; Gueuning et al., 2019; Giebner et al.,

2020; Georges et al., 2021). The open-source version QIIME 1.8.0

was employed in this study, as in Von Ammon et al. (2018) and

Georges et al. (2021). Ion Torrent sequences were processed as

follows: Low‐quality and polyclonal sequences were automatically

filtered out, and the PGM adaptor was trimmed within the PGM

software. QIIME was used to split the fastq files into constituent.fna

and.qual files using convert_fastqualfastq. Py” python script, and to

filter sequences by quality and size (minimum and maximum size

of 250–400 and quality score of 25) using “split_libraries.py” python

script. Qiime2 version was also employed as described in Garcia-

Vazquez et al. (2021), to confirm the results.

OTU tables were constructed clustering reads with a 100%

identity (exact sequence variants or ESV). Removal of singletons

is often employed to eliminate false positives as proposed by

Scott et al. (2018); however, in the context of early NIS detection

for biosecurity surveillance, a false negative is more costly than a

false positive (Von Ammon et al., 2018); thus, singletons were

retained in the OTU table to allow maximum sensitivity for

species detection. For the taxonomic assignation, Basic Local

Alignment Search Tool (BLAST) alignment was performed

against a locally built partial NCBI database of COI sequences,

obtained and stored locally in September 2017. The following

criteria were employed for the assignment of a sequence to a

species: E value ≤ 10−50 and minimum percent identity = 97.0,

which is generally enough for species identification from COI

barcode (Hebert et al., 2003). For those sequences with multiple

BLAST hits at a 100% identity to different species, or which best

BLAST hit had no available species-level taxonomic

identification, ESVs were taxonomically assigned at a genus

level only.
Taxonomic and biogeographic information

Species taxonomy nomenclature followed the World

Register of Marine Species WoRMS (WoRMS Editorial

Board, 2022). For biogeographic analysis, only the taxonomic

units identified down to a species level were considered. The

status (whether native or alien) (NIS) in each region was

determined from relevant literature and databases, such as
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WoRMS, Algaebase (Guiry and Guiry, 2022), and regional

species lists like that of El-Sherif and Aboul Ezz (2000). Species’

invasive status was determined according to the Global

Invasive Species Database (GISD) (Invasive Species Specialist

Group, 2015), and the Invasive Species Compendium CABI

(2022). Species causing harmful algal blooms (HAB) were

checked in the IOC-UNESCO taxonomic reference list

(Lundholm et al., 2009 onwards).
Statistical analysis

ESVs assigned to a species or genus using the bioinformatics

pipeline described above were employed for downstream

analysis. ESV diversity in each location was estimated from the

number of species of each phylum as a variable. The Shannon–

Weiner index was calculated from these data. The significance of

differences in diversity between locations was checked from

t-tests.

Distributions of quantitative data like the number of species

of each taxon, or number of species of different origins, were

compared between samples employing contingency Chi-square

and post-hoc tests when needed. The effect size was tested from

Cramer’s V tests.

Associations between diversity indicators like species

richness, Shannon index, and proportion of alien species were

tested using r-statistics. Parametric or non-parametric tests were

employed depending on data normality. Normality was checked

using Shapiro–Wilk tests.

The statistical analysis was conducted with the free software

PAST v.4 (Hammer et al., 2001).
Results

High-throughput sequencing (HTS) results from eDNA

metabarcoding of the Gulf of Aqaba samples are available in

NCBI’s Sequence Read Archive repository with the following

references: BioProject ID PRJNA631156 and BioSample

SAMN14853927. Summing the three replicates of each site

(only one from Hahashmal beach because the other two had

too little DNA and PCR failed), the total number of BLAST hits

at 97% identity ranged from 4,692 in Neviot to 17,299 in

Hahashmal beach (Table 2). The results obtained with Qiime2

were practically identical and confirmed species assignations

(data not shown). The number of sequences assigned to marine

species was much lower, especially in Hahashmal beach where

the majority of sequences were of Homo sapiens; these were

discarded from further downstream analysis (Table 2). The

abundance of H. sapiens sequences therein could be explained

from the nearby occurrence of sewage discharges, which contain

much human eDNA from urine and fecal matter (Harrison

et al., 2019).
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Despite small water volumes analyzed, the diversity captured

was relatively high. Excluding the sequences assigned to

terrestrial species, the number of marine ESVs, or putative

species, ranged from 18 in Hahashmal to 42 in The Red Rock

beach (Table 3, Supplementary Table 1).

The three locations contained many arthropods, principally

copepods (see Supplementary Table 1), and dinoflagellates

(Myzozoa) were also relatively abundant in the three beaches,

between 0.22 and 0.43 (Figure 2). Despite being located quite

close to each other, the taxonomic profiles of the three beaches

(Figure 2) were significantly different (c2 = 25.81, with 14 d.f.

and p = 0.02 < 0.05, Cramer’s V = 0.3, indicating medium effect

size). Red algae (Rodophyta) were found only from The Red

Rock beach, and Cnidarians were found in The Red Rock and

Hahashmal beaches, but not in Neviot.

The taxonomic diversity (Shannon indices) oscillated

between 0.69 in Hahashmal to 1.27 in The Red Rock beach. In

pairwise comparisons, the least stressed, The Red Rock (one

stressor: beach frequentation), was significantly more diverse

than the most stressed Hahashmal beach, which is littered,

polluted, and located near the commercial port of Eilat (t =

3.94, 38 d.f., p = 0.0003). Neviot, stressed from beach

frequentation and a marina but not highly polluted, was also

significantly more diverse than Hahashmal Beach (t = 2.23,

38 d.f., p = 0.03). The Red Rock beach diversity was higher than
Frontiers in Marine Science 05
that of Neviot beach, but the difference was not significant (t =

0.77, 59 d.f., p = 0.45 > 0.05 n.s.).

We made an analysis of the native geographic distribution of

the species detected (Table 3). The proportion of Red Sea native

and cosmopolitan/cryptogenic species in the Gulf of Aqaba

samples analyzed was 63.9% overall; thus, 36.1% were NIS.

The proportion of NIS was 44% in Hahashmal, 30% in Neviot,

and 28.6% in The Red Rock, just inverting the order of beach

stress as expected. Correlational analysis was not done for the

small number of locations analyzed.

Focusing on the NIS found in this study, half of them (50%)

were native to the Atlantic Ocean (Table 4), followed by those of

Pacific origin (27.3%) and finally five (22.7%) from the

Mediterranean Sea. One of those, the invasive HAB-causing

Karlodinium veneficum, is recognized as invasive in international

databases (CABI, 2022). Biota distribution by geographical origin

(summing native and cosmopolitan/cryptogenic) was not

significantly different between the three beaches (c2 = 6.03 with

6 d.f. and p = 0.41 > 0.05 n.s., Cramer’s V = 0.18, indicating

moderate effect size).

The taxonomic profile of native species and NIS (Figure 3)

was significantly different (c2 = 11.14 with 4 d.f. and p = 0.02,

large effect size with Cramer’s V = 0.4), and the differences

occurred principally for Cnidarians (more NIS than natives in

this gulf) and planktonic species, with NIS dinoflagellates being
TABLE 2 NGS results in the analyzed samples, as number of raw reads, proportion of quality-filtered sequences, proportion of sequences
assigned to a taxonomic unit from BLAST using 97% identity threshold, and proportion of sequences assigned to marine species.

Beach Raw reads Quality-filtered sequences (%) BLAST hits 97% (%) Sequences assigned to marine species (%)

Hahashmal 59,901 39.04 28.88 0.25

The Red Rock 55,377 61.87 28.55 19.48

Neviot 54,849 35.92 8.42 7.23
FIGURE 2

Taxonomic profile of the analyzed samples. Results are presented as the number of ESV (putative species) of different phyla in each location.
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more abundant than the native ones and copepods being the

other way around (Figure 3, Supplementary Table 1, Table 4).
Discussion

In this study, we have found an important proportion of

non-native species in the north of the Gulf of Aqaba employing
Frontiers in Marine Science 06
eDNA as a monitoring tool. The NIS found in this study may

have the capacity to change the rich Red Sea native biota. For

example, some NIS of this study are known producers of HAB

(Table 4). They would be able to harm the environmental status

of the Gulf of Aqaba, as it happened in the Baltic Sea where alien

bloom-forming dinoflagellates have caused devastating effects

(Telesh et al., 2016). On the other hand, we found DNA of the

Mediterranean fish Raja clavata (Table 4). This species is not
TABLE 3 Characteristics of the communities detected from eDNA in the sampling sites considered.

Hahashmal Red Rock Neviot

Diversity from eDNA

ESV count 18 42 30

Shannon-Weiner diversity 0.62* 1.27 1.12

% phytoplankton species 0.22 0.4 0.43

Native distribution of the putative species

Mediterranean and Black Sea Marine System 0.00 0.07 0.07

Red and Indian 0.33 0.33 0.23

Shared Mediterranean and Red Sea 0.06 0.12 0.10

Pacific 0.11 0.10 0.03

Atlantic 0.33 0.12 0.20

Cosmopolitan/Cryptogenic 0.17 0.26 0.37
frontie
The number of ESV (Molecular Operational Taxonomic Units) represents putative species. The sample with significantly lower diversity is marked with an asterisk.
TABLE 4 Non-indigenous species found from eDNA in this study.

Beach
Origin Species group Species Hahashmal The Red Rock Neviot

Mediterranean Arthropoda Euphausia brevis 0 0 1

Dinoflagellate Karlodinium veneficum * 0 1 0

Dinoflagellate Kryptoperidinium foliaceum 0 0 1

Elasmobranchii Raja clavata 0 1 0

Hydrozoan Praya reticulata 0 1 0

Atlantic Copepod Euchirella messinensis 1 1 0

Copepod Calocalanus contractus 1 1 1

Copepod Oncaea scottodicarloi 0 0 1

Copepod Paracalanus quasimodo 1 0 0

Dinoflagellate Alexandrium ostenfeldii 0 1 1

Dinoflagellate Azadinium poporum 1 0 1

Dinoflagellate Lepidodinium chlorophorum 0 1 1

Dinoflagellate Scrippsiella lachrymosa 1 0 0

Dinoflagellate Thoracosphaera heimii 0 0 1

Hydrozoan Cyclocanna producta 0 1 0

Sea anemone Cervera atlantica 1 0 0

Pacific Bryozoan Flustrellidra armata 0 1 1

Dinoflagellate Togula jolla 0 1 0

Hydrozoan Bonneviella regia 0 1 0

Red algae Palisada crustiformans 0 1 0

Sea anemone Sarcophyton tumulosum 1 0 0

Sea anemone Sinularia slieringsi 1 0 0
Presence/absence as 1/0. Invasive species recognized in the Invasive Species Compendium (CABI, 2022) are marked with an asterisk. Species causing algal blooms are highlighted in bold.
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invasive, but it carries parasites that could endanger Red Sea

native elasmobranchs (Petter and Radujković, 1989; Youssef

et al., 2019).

For some authors, alien species should not have a negative

connotation, and the conservation of a good environmental

status to guarantee a normal ecosystem functioning should be

prioritized over eradication of invasive species (Giangrande

et al., 2020). However, the taxonomic composition of NIS

found in the Gulf of Aqaba in our study was significantly

different from that of the native species. The majority of NIS

inferred from eDNA in Gulf of Aqaba samples were algae; if

settling and expanding, they could modify the trophic web as

suggested for French Polynesian ports (Ardura et al., 2021),

perhaps increasing the primary production or favoring algal

blooms (Telesh and Naumenko, 2021). Thus, a change in

ecosystem functioning may be expected if those NIS thrive

and replace the native species.

Considering the intensemaritime traffic in the Red Sea, which is

a main route of connection between the Indo-Pacific and the

Atlantic oceans, likely many NIS found in this study have used

ships as vectors. A higher proportion of NIS in the beaches closest

to the port and the marina than in The Red Rock beach, which is

less influenced by maritime traffic, would support this view; even at

a very short scale, since the three beaches are located near each

other. Since species can travel attached to ship hulls, in ballast water

and in other vessel compartments (e.g., Sardain et al., 2019; Ardura

et al., 2020), measures like a control of hull fouling and ensuring the

compliance of the International Convention for the management of

ballast water could help to improve biosecurity preventing NIS

introductions in the Red Sea.

Although maritime traffic could explain the relative

abundance of NIS in the three studied locations, other

explanations are possible. NIS may have arrived in other areas

within the Red Sea and move to the north of the Gulf of Aqaba

by unaided ways, like secondary dispersal drifting with currents
Frontiers in Marine Science 07
and maritime tides (Kraus et al., 2019; Wood et al., 2021).

Rafting on floating marine litter (Rech et al., 2018; Fernandez

et al., 2022) cannot be excluded either as a way of secondary

dispersal, because the most littered Hahashmal beach was the

most biopolluted (but it is the closest to the commercial port;

thus, it is not possible to distinguish between the two factors).

The north of the Gulf of Aqaba is heavily anthropogenic and

these results cannot be directly applied to other regions of the

Red Sea; instead, they could be taken as a call of attention

because planktonic species occupying the Gulf of Aqaba can be

transported to other areas by currents and tides. Expanding the

geographical coverage of this type of studies to other Red Sea

areas will help to understand the real extent of NIS risks and

explain their ways of introduction and dispersal.

The particular habitat of the different beaches could also

explain differences in diversity. Red algae, all native species

except one, were found only from the least stressed beach

(The Red Rock); this could be explained simply because that

beach has more rocks than the others for red algae to attach to.

Bryozoans (identified as Flustrellidra armata from eDNA)

appeared in The Red Rock and Neviot beaches, but not in

Hahashmal. The colonies of this species are distributed in rocky

intertidal zones (Grischenko et al., 2010), but, opposite to the

two other beaches, the substrate of Hahashmal beach is mainly

sandy, with no rocks; thus, this bryozoan would not find its

optimal habitat there.

As a final remark, the technique employed in this study is

able to detect NIS that are not always found from conventional

surveys, as highlighted in other studies that used the same

approach (Furlan et al., 2019; Ardura et al., 2021; King et al.,

2022). Despite current gaps in DNA reference databases

(Weigand et al., 2019), eDNA metabarcoding could be used as

a barometer of disturbance, helping to understand marine

environments and complementing the existing survey methods

(DiBattista et al., 2020).
Limitations of this study

This study has some limitations. Being based on small water

volumes and only one metabarcode, the eDNA quantity and the

number and diversity of ESVs recovered were relatively low;

thus, we may either under- or overestimate the proportion of

NIS. Another technical problem is the lack of replications.

Moreover, given the small number of locations sampled, it is

very difficult to establish sound correlations between the

environmental stresses—here shallowly measured from

dummies—and the diversity. Although Garcia-Vazquez et al.

(2021) have reported the utility of eDNA from small water

samples for the detection of some plankton taxa, for all these

limitations, the results of the present study cannot reflect the true

diversity and impact of NIS in the northern Red Sea and should

be considered exploratory.
FIGURE 3

Taxonomic profile of the native and non-indigenous
communities found from eDNA in the Gulf of Aqaba samples
analyzed. Results are presented as ESV counts for native and
non-indigenous species, per phylum.
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Conclusions and management
recommendations

This study based on eDNA metabarcoding reports the

presence of an important proportion of non-native species in

the north of the Gulf of Aqaba. The taxonomic profile of NIS

differs from that of the native species detected, suggesting

changes in ecosystem functioning that could be predicted in

case of proliferation of those NIS. Some of them are potentially

harmful microalgae, which also implies functional changes.

For management, systematic monitoring for surveillance of

non-native species would be recommended in the Gulf of Aqaba.

Gajdzik et al. (2021) proposed the Red Sea nations to gather in a

“Red Sea Challenge” to concert marine conservation efforts in

the region. We would add the control of non-native species to

their proposal, because biosecurity is important for biodiversity

conservation. Improving the control of hull fouling and ballast

water, and conducting periodical monitoring of biota from

coastal and offshore waters, could help to keep biopollution

out of Red Sea waters.
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Y. J., et al. (2022). Flotsam, an overlooked vector of alien dispersal from ports. Est.
Coast. Shelf Sci. 271, 107879. doi: 10.1016/j.ecss.2022.107879

Fernandez, S., Miller, D. L., Holman, L. E., Gittenberger, A., Ardura, A., Rius, M.,
et al. (2021). Environmental DNA sampling protocols for the surveillance of
marine non-indigenous species in Irish coastal waters.Mar. Poll. Bull. 172, 112893.
doi: 10.1016/j.marpolbul.2021.112893

Ferrario, J., Caronni, S., Occhipinti-Ambrogi, A., and Marchini, A. (2017). Role
of commercial harbours and recreational marinas in the spread of non-indigenous
fouling species. Biofouling 33 (8), 651–660. doi: 10.1080/08927014.2017.1351958

Früh, D., Stoll, S., and Haase, P. (2012). Physico-chemical variables determining
the invasion risk of freshwater habitats by alien mollusks and crustaceans. Ecol.
Evol. 2 (11), 2843–2853. doi: 10.1002/ece3.382

Furlan, E. M., Gleeson, D., Wisniewski, C., Yick, J., and Duncan, R. P. (2019). eDNA
surveys to detect species at very low densities: A case study of European carp eradication
in Tasmania, Australia. J. Appl. Ecol. 56 (11), 2505–2517. doi: 10.1111/1365-2664.13485

Gajdzik, L., Green, A. L., Cochran, J. E. M., Hardenstine, R. S., Tanabe, L. K., and
Berumen, M. L. (2021). Using species connectivity to achieve coordinated large-
scale marine conservation efforts in the red Sea. Mar. Poll. Bull. 166, 112244.
doi: 10.1016/j.marpolbul.2021.112244
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Petter, A. J., and Radujković, B. M. (1989). Parasites of marine fishes from
Montenegro: nematodes. Acta Adriatica 30 (1-2), 195–236. doi: 10.13140/
RG.2.1.2613.9600

Por, F. D. (1978). Lessepsian migration: the influx of red Sea biota into the
Mediterranean by way of the Suez canal Vol. 23. (New York: Springer-Verlag).
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