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ABSTRACT

We present a worldvolume effective action suitable for the study of the confined phase of a

(Dp, D̄p) system at weak coupling. We identify the mechanism by which the fundamental

string arises from this action as a confined electric flux string when the Dp and the D̄p annihi-

late. We construct an explicit dual action, more suitable for the study of the strong coupling

regime, and show that it realizes a generalized Higgs-Stückelberg phase for the (relative)

(p − 2)-form field dual to the (overall) BI vector. This is the mechanism put forward by Yi

and collaborators based on duality arguments in order to explain the breaking of the overall

U(1) gauge group at strong coupling. Indeed, in our dual description the Goldstone boson is

a (p− 3)-form magnetically charged with respect to the overall BI vector field. This indicates

that the condensing tachyonic objects originate from open D(p−2)-branes stretched between

the brane and the anti-brane. Our results provide an explicit realization of the breaking of

the overall U(1) gauge group perturbatively, in a way consistent with the duality symmetries

of String Theory.
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1 Introduction

DD̄ systems have been widely used in the literature in the study of string theory in time de-

pendent backgrounds (see [1] for a review), and more recently in the study of chiral symmetry

breaking in holographic models of QCD [2, 3, 4, 5, 6]. It is well-known that the superposition

of a Dp-brane and an anti-Dp-brane constitutes a non-BPS system whose instability manifests

itself in the existence of a complex tachyonic mode in the open strings stretched between the

pair [1]. If when the tachyon rolls down to its true minimum its phase acquires a winding

number, because of its coupling to the relative U(1) vector field a magnetic vortex soliton is

created. This vortex solution carries D(p − 2)-brane charge, as inferred from the coupling in

the Chern-Simons action of the (Dp,D̄p):

∫

Rp,1

Cp−1 ∧ (dA− dA′) , (1.1)

where Cp−1 stands for the RR (p− 1)-form potential and A and A′ for the Born-Infeld vector

fields on the brane and anti-brane. Charge conservation therefore implies that a D(p − 2)-

brane is left as a topological soliton3. In this process the relative U(1) vector field acquires a

mass through the Higgs mechanism by eating the phase of the tachyonic field, and is removed

from the low energy spectrum. The overall U(1) vector field, under which the tachyon is

neutral, remains however unbroken, posing a puzzle [10, 11, 12].

It was suggested in [12], based on the duality relation between the Type IIA superstring

and M-theory, that the overall U(1) is in the confined phase. The suggested mechanism for

this confinement is a dual Higgs mechanism in which magnetically charged tachyonic states

associated to open D(p−2)-branes stretched between the Dp and the D̄p condense. Evidence

for such a situation comes from the M-theory description of a (D4, D̄4) system.

The superposition of a D4 and a D̄4 is described in M-theory as an (M5, M̄5) pair wrapped

in the eleventh direction. The open strings that connect the D4 and the D̄4 are realized as

open M2-branes wrapped in the eleventh direction and stretched between the M5 and the

M̄5. These M2-branes must contain as well a complex tachyonic excitation. Since the tachyon

condensing charged object is in this case extended (a tachyonic worldvolume string) there are

no ways to describe quantitatively this type of mechanism. However, duality with the Type

IIA superstring implies that whatever this mechanism is the condensation of this tachyonic

mode should be accompanied by a non-trivial magnetic flux, in this case of the relative

antisymmetric tensor field in the worldvolume of the (M5, M̄5). This magnetic flux generates

charge with respect to the 3-form potential of eleven dimensional supergravity, as inferred

from the coupling in the (M5, M̄5) Chern-Simons action4

∫

R1,5

Ĉ3 ∧ (dÂ2 − dÂ′

2) . (1.2)

3This observation can be made more explicit by showing that the worldvolume theory on the vortex solution

is given by the DBI action on a D(p − 2)-brane [7, 8]. See also [9].
4Here Ĉ3 stands for the 3-form of eleven dimensional supergravity and Â2 and Â′

2 for the worldvolume

2-form fields on the M5 and the M̄5. Note that Â2 (self-dual) and Â′

2 (anti-self-dual) combine to give an

unrestricted relative 2-form field [12].
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An M2-brane would then emerge as the remaining topological soliton.

Let us suppose that one performs now the reduction from M-theory along a worldvolume

direction of the (M5, M̄5) transverse to the stretched M2-branes [12]. In this case a (D4, D̄4)

system is obtained in which tachyonic D2-branes are stretched between the D4 and the D̄4.

Again, if this tachyonic mode condenses in a vortex-like configuration, B2-charge will be

induced in the system, as the reduction from the previous coupling along a worldvolume

direction transverse to the stretched M2-branes shows
∫

R1,4

B2 ∧ (dA2 − dA′

2) , (1.3)

where now A2 and A′

2 are associated to open D2-branes ending on the D4 and the D̄4. A

fundamental string would then arise as the remaining topological soliton.

Note that in this case the Higgs mechanism is intrinsically non-perturbative, given that

this description emerges after interchanging two compact directions in M-theory. Indeed, the

coupling (1.3) shows that the worldvolume dynamics of the (D4, D̄4) system is governed by

the 2-form gauge fields dual in the five dimensional worldvolume to the BI vector fields. These

fields couple in the worldvolume with inverse coupling, and are therefore more adequate to

describe the strong coupling regime of the system.

Therefore, qualitatively the duality between Type IIA and M-theory predicts the occur-

rence of both the perturbative and non-perturbative Higgs mechanisms for the (D4, D̄4)

system. The same conclusion can be reached for arbitrary (Dp, D̄p) systems by T-duality

arguments [12]. Applying T-duality to the coupling (1.3) along (p− 4) transverse directions5

one gets
∫

R1,p

B2 ∧ (dAp−2 − dA′

p−2) . (1.4)

This coupling indicates that the fundamental string would arise as a topological soliton in

a dual Higgs mechanism [13] in which magnetically charged tachyonic states associated to

open D(p − 2)-branes stretched between the Dp and the D̄p condensed6. In terms of the

original variables this would translate into confinement of the overall U(1), given that due to

the opposite orientation of the D̄p-brane the relative (p− 2)-form field is dual in the (p+ 1)-

dimensional worldvolume to the overall BI vector field. Therefore, its localized magnetic flux

at strong coupling translates into a confined overall U(1) electric flux at weak coupling.

The explicit action that describes the dual Higgs mechanism at strong coupling has not

been constructed in the literature, although some qualitative arguments pointing at particular

couplings have been given [12, 14, 15]. In any case, as we have mentioned, this mechanism is

intrinsically non-perturbative, and this makes this description highly heuristic.

A related crucial question which was first addressed in [16, 17, 14, 15] is the possibility of

describing both the perturbative and the non-perturbative Higgs mechanisms simultaneously

at weak coupling. Starting with Sen’s action [16, 17] reference [15] studied the Hamiltonian

classical dynamics of the (Dp, D̄p) system, and showed that it describes a massive relativistic

5Or along a spatial direction of the stretched D2-brane if p < 4.
6When p = 3 this is exactly the S-dual picture of the creation of a D1-brane as a vortex in a (D3, D̄3)

system [12].
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string fluid. The possibility of describing the region of vanishing tachyonic potential in terms

of the (p − 2)-form fields dual to the BI vector fields was also addressed7 and although

the explicit dual action was not constructed it was argued that the dual Higgs mechanism

proposed in [12] could be realized explicitly if this action was the one associated to an Abelian

Higgs model for the relative (p− 2)-form dual field. The fundamental string would then arise

as a Nielsen-Olesen solution. In this construction, however, the (p− 3)-form field playing the

role of the Goldstone boson associated with the dual magnetic objects did not have a clear

string theory origin.

One of the results that we will present in this paper will be the construction of the explicit

dual action describing the strongly coupled dynamics of the (Dp, D̄p) system in terms of the

(p− 2)-form dual potentials and a (p− 3)-form Goldstone boson. The generalization of Sen’s

action to include tachyonic couplings in a (Dp, D̄p) system [18, 19, 20, 21, 22, 23, 24, 25,

26, 7, 27, 28, 29, 30] describes, to second order in α′, an Abelian Higgs model in which the

Abelian field is the relative BI vector of the brane and the antibrane and the phase of the

tachyon plays the role of the associated Goldstone boson. We will show however that the

dual of this action does not describe an Abelian Higgs model for the relative (p − 2)-form

potential, contrary to the expectation in [15]. The explicit dual Abelian Higgs model will

instead arise from a different generalization of Sen’s action from which we will be able to

describe the confining phase (for the overall U(1)) of the (Dp, D̄p) system at weak coupling.

The dualization of the four-dimensional Abelian Higgs model is known since long ago [31],

motivated by the study of the confining phases of four dimensional Abelian gauge theories in

the context of Mandelstam-’t Hooft duality [32]. The dual action constructed by Sugamoto

describes the confining phase of four dimensional vector fields in terms of a massive 2-form

field theory which is an extension of the model for massive relativistic hydrodynamics of

Kalb and Ramond [33]. This field theory allows a quantized vortex solution similarly to the

creation of the Nielsen-Olesen string in the Abelian Higgs model. The extension of Sugamoto’s

construction to arbitrary d-dimensional p-form Abelian Higgs models was carried out more

recently in [34], with the aim at describing the confining phases of p-form field theories in a

generalization of Mandelstam-’t Hooft duality. In this general case the dual action describing

the confining phase is a massive (p+ 1)-form field theory.

In this paper we will develop on the work of [34] and we will extend the construction in

[31] to the (p + 1)-dimensional Abelian Higgs model that describes the Higgs phase (for the

relative U(1)) of a (Dp, D̄p) system. As we will see the massive Abelian field of the Abelian

Higgs model can still be dualized in the standard way into a massless (p− 2)-form field once

the phase of the tachyon is dualized into a (p − 1)-form. We will show that the dual action

is of the type of the massive (p − 1)-form field theories discussed in [34]. Furthermore, we

will show that a D(p − 2)-brane can emerge as a confined electric flux brane associated to

the overall (p − 2)-form dual field. The precise mechanism involved in this process is the

Julia-Toulouse mechanism [35, 34], which as we will see is the exact contrary of the more

familiar Higgs mechanism.

The construction of the dual action is therefore useful in order to identify the mechanism

7This idea was also put forward in [14] in the 2+1 dimensional case.
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by which a D(p−2)-brane can emerge at strong coupling after the annihilation of a Dp and a

D̄p. However, it sheds no light on the issue of the unbroken overall U(1), nor on the creation

of the fundamental string, since it involves only the overall (p − 2)-form potential, and this

field is dual to the relative BI vector field. Indeed, inspired by Mandelstam-’t Hooft duality

one expects that the dual action describes the creation of the D(p−2)-brane in dual variables,

since it should provide an explicit realization of the duality between the Higgs phase (for the

relative U(1)), described at weak coupling by Sen’s action, and the confinement phase (for

the overall (p − 2)-form field) at strong coupling. The Higgs phase for the relative (p − 2)-

form gauge potential at strong coupling should instead be dual to the confining phase for the

overall U(1) at weak coupling.

In this paper we will present a worldvolume effective action suitable to describe pertur-

batively the dynamics of the (Dp, D̄p) system in the confining phase for the overall U(1).

Developing on the work of [34] we will start in the phase in which the tachyon vanishes, the

Coulomb phase, and show that the confining phase arises after the condensation of (p − 3)-

dimensional topological defects which are interpreted as the end-points of D(p−2)-branes. We

will see that the fundamental string emerges at weak coupling as a confined electric flux string

after a Julia-Toulouse mechanism in which a 2-form gauge field associated to the fluctuations

of the topological defects eats the overall U(1) vector field. We will also show, following [34]

closely, that the confined phase for the original overall U(1) vector field can be studied in

the strong coupling regime as a generalized Higgs-Stückelberg phase for its dual (p− 2)-form

field. The explicit dual action is given by an Abelian Higgs model for the relative (p−2)-form

potential. In this description the condensing tachyonic objects are identified as (p−3)-branes

that originate from the end-points of open D(p−2)-branes stretched between the Dp and the

D̄p. The fundamental string then emerges as a topological soliton after the condensation of

this tachyonic mode through a dual Higgs mechanism [13]. Therefore, through this construc-

tion we can make explicit the mechanism suggested in [12] for realizing non-perturbatively

the confinement of the overall U(1).

As we have seen the (Dp, D̄p) system admits two types of topological defects: particles

and (p − 3)-branes. The first originate as the end-points of open strings and are therefore

perturbative in origin. The second originate as the end-points of non-perturbative open

D(p − 2)-branes and can therefore only be described in terms of D(p − 2)-brane degrees of

freedom in the strong coupling regime. We have seen however that using Julia and Toulouse’s

idea we can incorporate these degrees of freedom in the perturbative action, and study the

confining phase for the overall U(1). If we combine the effective actions describing the Higgs

phase for the relative U(1) and the confining phase for the overall U(1) we will be able to

describe perturbatively the breaking of both gauge groups. We will see that from this action

both the D(p − 2)-brane and the fundamental string are realized as solitons in the common

(p+1)-dimensional worldvolume. TheD(p−2)-brane arises after a Higgs mechanism involving

the relative U(1), and the F1 after a Julia-Toulouse mechanism involving the overall U(1).

The organization of this paper is as follows. In section 2 we construct the dual of the

Abelian Higgs model that describes the (Dp, D̄p) system at weak string coupling. We see

that contrary to expectation in [14] it does not describe an Abelian Higgs model for the dual
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relative (p − 2)-form potential. The worldvolume field content of the dual action consists on

a (p − 1)-form, dual to the phase of the tachyon, and two (p − 2)-form fields dual to the

BI vectors. We show that the (p − 1)-form can become massive by eating the overall dual

(p − 2)-form potential through the Julia-Toulouse mechanism, and that a D(p − 2)-brane

arises as a confined electric flux brane in this process. Therefore the Higgs phase for the

relative BI vector is mapped onto the confining phase for the overall (p−2)-form field, with a

D(p−2)-brane arising either as a vortex solution after the Higgs mechanism at weak coupling

or as a confined electric flux brane after the Julia-Toulouse mechanism at strong coupling. In

section 3 we present our candidate action for describing the confining phase of the overall BI

vector field at weak coupling. We show that from this action the fundamental string arises

as a confined electric flux string after a Julia-Toulouse mechanism. In section 4 we construct

the dual of this action and show that it realizes a generalized Higgs-Stückelberg phase for the

relative (p− 2)-form field. Therefore, the confining phase for the overall BI vector is mapped

onto the Higgs phase for the relative (p − 2)-form field, with a fundamental string arising

either as a confined electric flux string after the Julia-Toulouse mechanism at weak coupling

or as a generalized vortex solution after the Higgs mechanism at strong coupling. Section 5 is

our Discussion section. Here we present the action from which we can describe simultaneously

the Higgs phase for the relative U(1) and the confinement phase for the overall U(1) at weak

string coupling.

2 The (Dp, D̄p) system in dual variables

The effective action describing a brane-antibrane pair has been extensively studied in the

literature using different approaches [18, 19, 20, 21, 22, 23, 24, 25, 26, 7, 27, 28, 29, 30].

Although the complete action has not been derived from first principles it is known to satisfy

a set of consistency conditions [7]. It is invariant under gauge transformations of the tachyon

phase and the relative BI vector: χ→ χ+α(x), A− → A− + dα, it reduces to the sum of the

BI effective actions for the Dp and the D̄p for zero tachyon, and it gives rise to the action for

a non-BPS Dp-brane [16, 36, 37, 38] when modded out by (−1)FL [1]. In the context of our

discussion in this paper this action describes the Higgs phase for the relative BI vector field.

In this paper we will work to second order in α′, and take the RR potentials Cp−3, Cp−5, . . .

to zero. We will also ignore the tachyonic couplings to the Cp−1 RR-potential derived in

[19, 21, 29]. Thus, our action represents a truncated version of the (Dp, D̄p) action that can

be derived from the results in [18, 19, 20, 21, 22, 23, 24, 25, 26, 7, 27, 28, 29, 30] 8. We will

see however that it contains the relevant couplings for describing the most important aspects

of the dynamics of the (Dp, D̄p) system, both in the Higgs and in the confining phases9.

Our starting point is the action:

S(χ,A) =

∫

dp+1x
{

e−φ
(1

2
F+ +B2

)

∧ ∗
(1

2
F+ +B2

)

+

8Note that in comparing with the boundary string field theory results [39] there is the usual discrepancy

by 2 log 2 in the kinetic term of the tachyon [21, 22, 26].
9Once it is extended as we do in next section in order to incorporate the non-perturbative degrees of freedom

associated to the (p − 3)-brane topological defects.

6



+
1

4
e−φF− ∧ ∗F− + |T |2(dχ−A−) ∧ ∗(dχ−A−) + d|T | ∧ ∗d|T | − V (|T |)

+Cp−1 ∧ F
−

}

. (2.5)

Here we have set 2πα′ = 1, A+ and A− are the overall and relative BI vector fields: A+ =

A + A′, A− = A − A′, and the complex tachyon is parametrized as T = |T |eiχ. V (|T |) is

the tachyon potential [17], whose precise form will be irrelevant for our analysis. Finally,

the background fields B2 and Cp−1 are implicitly pulled-back into the (p + 1)-dimensional

worldvolume of the (Dp, D̄p).

The coupling
∫

Cp−1 ∧ F− is the one that we discussed in the introduction. It shows

that when the tachyon condenses in a vortex-like configuration a D(p− 2)-brane is generated

as a topological soliton [1], since the associated localized F− magnetic flux generates Cp−1

charge. In this process the relative U(1) vector field eats the scalar field χ, gets a mass and

is removed from the low energy spectrum. The overall U(1) vector field, under which the

tachyon is neutral, remains unbroken, but it is believed to be confined [12, 16, 17, 14].

In this section we construct the dual of the action (2.5), and show that it describes the

confining phase for the (p−2)-form potential dual to the relative BI vector field, thus providing

an explicit realization of Mandelstam-’t Hooft duality for the Abelian Higgs model associated

to the (Dp, D̄p) system. We also discuss the mechanism by which the D(p − 2)-brane arises

as a confined electric flux brane.

2.1 The duality construction

Let us focus on the worldvolume dependence of the action (2.5) on A+, A− and the phase of

the tachyon. Note that since A− is massive it cannot be dualized in the standard way. We

can however use the standard procedure to dualize the phase of the tachyon and A+. These

fields are dualized, respectively, into a (p−1)-form, Wp−1, and a (p−2)-form, that we denote

by A−

p−2
given that due to the opposite orientation of the antibrane the relative and overall

gauge potentials should be interchanged under duality. The intermediate dual action that is

obtained after these two dualizations are carried out is such that A− becomes massless10 and

can therefore be dualized in the standard way into a (p − 2)-form, which we denote as A+
p−2

11.

The final dual action reads:

S(Wp−1, Ap−2) =

∫

dp+1x
{

eφ
(1

2
F+

p−1
+Wp−1 + Cp−1

)

∧ ∗
(1

2
F+

p−1
+Wp−1 + Cp−1

)

+
1

4
eφF−

p−1
∧ ∗F−

p−1
+

1

4|T |2
dWp−1 ∧ ∗dWp−1 + d|T | ∧ ∗d|T | − V (|T |) −B2 ∧ F

−

p−1

}

(2.6)

with the explicit duality rules being given by:

1

2
F+ +B2 =

1

2
eφ ∗ F−

p−1
(2.7)

10Up to a total derivative term.
11Alternatively, one can use a generalization of the intermediate action presented in [31], from which it is

possible to dualize a massive Abelian 1-form field.
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1

2
F− = eφ ∗

(1

2
F+

p−1
+Wp−1 + Cp−1

)

(2.8)

dχ−A− =
1

2|T |2
(−1)p−1 ∗ dWp−1 . (2.9)

Here we see that the relative and overall gauge potentials are interchanged, as expected due

to the opposite orientation of the antibrane. Note that for p = 3 our notation is ambiguous.

When analyzing this particular case we will use A+ and A− to denote the BI vector fields and

Ã+, Ã− to denote the dual vector fields associated to open D-strings ending on the branes.

The action (2.6) is an extension of the actions proposed in [34] for describing the confining

phases of field theories of compact antisymmetric tensors. After we discuss these actions

in some detail in the next section it will become clear that (2.6) describes the confining

phase for the overall (p − 2)-form dual potential. This phase arises after the condensation

of zero-dimensional topological defects which originate from the end-points of open strings

stretched between the brane and the antibrane. The interpretation of the low energy mode

Wp−1 is as describing the fluctuations of these defects, and is such that away from the defects

Wp−1 = dA+
p−2

.

Note that the gauge invariance χ→ χ+α(x), A− → A−+dα of the original action has been

mapped under the duality transformation into Wp−1 →Wp−1+dΛp−2, A
+
p−2

→ A+
p−2

−2Λp−2.

This symmetry can be gauge fixed by absorbing F+

p−1
into Wp−1, which becomes then massive.

The overall A+
p−2

gauge potential is then removed from the low energy spectrum, through a

mechanism that is the exact contrary of the Higgs mechanism. This is the Julia-Toulouse

mechanism mentioned in the introduction. Thus, the Julia-Toulouse mechanism is identified

as the mechanism responsible for the removal of the relative U(1) at strong coupling. However

it clearly sheds no light on the removal of A+.

When comparing the action (2.6) to the actions describing the confining phases of anti-

symmetric field theories presented in [34] one sees that the modulus of the tachyon plays the

role of the density of condensing topological defects. In a way one can think of |T | as an indi-

cator of how unstable the system is. Since the instability in the confining phase is originated

by the presence of the topological defects it is reasonable to expect a relation between both

quantities. In the confining models of Quevedo and Trugenberger a consistency requirement

is that the antisymmetric field theory in the Coulomb phase is recovered for zero density of

topological defects. This is indeed satisfied by our action (2.6) for vanishing tachyon, since

the |T | → 0 limit forces the condition that Wp−1 must be exact and can therefore be absorbed

through a redefinition of A+. The action is then reduced to the action describing the (Dp, D̄p)

system in the Coulomb phase, i.e. to (2.5) for zero tachyon.

Finally, following the analysis in [31] we can see that a D(p− 2)-brane arises as a confined

electric flux brane after the Julia-Toulouse mechanism. In order to see this explicitly we

need however to recall some basic facts on the construction of [31], so we will postpone this

discussion till the end of next section.

In the next section we present our candidate action for describing the confining phase for

the overall U(1) at weak coupling. We show that the fundamental string arises from this

action as a confined electric flux string. By direct generalization of this analysis we also show

that the D(p− 2)-brane arises as a confined electric flux brane from the action (2.6) derived

8



in this section.

3 Confinement at weak string coupling

In this section we present our candidate action for describing the dynamics of the (Dp, D̄p)

system in the confining phase. We use the results in [34], where an action describing the

confined phase of field theories of compact antisymmetric tensors of arbitrary rank was de-

rived. We start by summarizing the qualitative points that are relevant for our construction,

to later concretize these ideas to the (Dp, D̄p) system. The reader is referred to [34] for a

more detailed discussion.

Quevedo and Trugenberger made explicit in the framework of antisymmetric field theories

an old idea in solid-state physics due to Julia and Toulouse [35]. These authors argued that

for a compact tensor field of rank (h− 1) in (p+ 1)-dimensions a confined phase might arise

after the condensation of (p−h−1)-dimensional topological defects12. The fluctuations of the

continuous distribution of topological defects generate a new low-energy mode in the theory

which can be described by a new h-form, Wh, such that away from the defects Wh = dAh−1,

whereAh−1 is the original tensor field. The main idea is to extend the h-form in the topological

invariant term13
∫

Sh

ωh (3.10)

to the whole R
p+1 space-time. In this way the (p − h)-form Jp−h = ∗(dωh), which is zero

outside the defect, picks up delta-like singularities at the locations of the topological defects

and can describe the conserved fluctuations of their continuous distributions. Note that due

to Jp−h = ∗(dωh) the new degrees of freedom are associated only with the gauge invariant

part of ωh.

The effective action describing the confining phase of the antisymmetric tensor field then

depends on a gauge invariant combination of the antisymmetric tensor field, Ah−1, and the

extended h-form, Wh. This combination is such that when the density of topological defects

vanishes the original action describing the antisymmetric tensor field theory in the Coulomb

phase is recovered.

As discussed in [34], the finite condensate phase is a natural generalization of the confine-

ment phase for a vector gauge field. For compact QED in four dimensions the induced static

potential between a particle and an antiparticle is linear at large distances, identifying the

monopole condensate phase as a confinement phase. This computation can be generalized to

arbitrary (h − 1)-forms in d dimensions. In this case the leading term in the induced action

is the h-dimensional hypervolume enclosed by the (h− 1)-dimensional closed hypersurface to

which the (h− 1)-form couples. For a more detailed discussion on the confining properties of

these actions see [34, 40].

Given that the worldvolume theory of a (Dp, D̄p) system is a vector field theory, the results

in [34] for h = 2 can be applied to this case, with some obvious modifications coming from

12The mechanism by which these defects originate is irrelevant for the nature of the confining phase.
13Sh is an h-dimensional sphere surrounding the defect on an (h + 1)-dimensional hyperplane perpendicular

to it, and ωh is an h-form which is exact outside Sh.
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the couplings to the background gauge potentials associated to the closed strings. In this

case the Coulomb phase is the phase with zero tachyon, and it is therefore described14 by the

Lagrangian:

L(A) = e−φ
(1

2
F+ +B2

)

∧ ∗
(1

2
F+ +B2

)

+
1

4
e−φF− ∧ ∗F− +Cp−1 ∧ F

− . (3.11)

Developping now on the ideas in [34] for the (Dp, D̄p) system we have that the topological

defects whose condensation will give rise to the confining phase are (p − 3)-branes, which

originate in this case from the end-points of D(p − 2)-branes stretched between the Dp and

the D̄p. The new mode associated to the fluctuations of the defects is described by a 2-form,

W2, which will couple in the action through a gauge invariant combination with the overall

U(1) vector field15. The action should depend as well on the density of topological defects,

such that when this density vanishes the original action in the Coulomb phase, given by (3.11),

is recovered. In the actions constructed in [34] the density of topological defects entered as

a parameter which was interpreted as a new scale in the theory. We will see however that in

the (Dp, D̄p) case duality implies that the density of topological defects must be a dynamical

quantity, because it is related to the modulus of the tachyonic excitation of the open D(p−2)-

branes in the dual Higgs phase. We will denote this field by |T̃ | and, moreover, we will use

the duality with the Higgs phase to include in the action its kinetic and potential terms.

The action that we propose for describing the confining phase of the (Dp, D̄p) system is

then given by:

S(W2, A) =

∫

dp+1x
{

e−φ
(1

2
F+ +W2 +B2

)

∧ ∗
(1

2
F+ +W2 +B2

)

+
1

4
e−φF− ∧ ∗F− +

+
1

4|T̃ |2
dW2 ∧ ∗dW2 + d|T̃ | ∧ ∗d|T̃ | − V (|T̃ |) + Cp−1 ∧ F

−

}

. (3.12)

This action has been constructed under four requirements. One requirement is gauge invari-

ance, both under gauge transformations of the BI vector fields and under W2 → W2 + dΛ1,

which ensures that only the gauge invariant part of W2 describes a new physical degree of

freedom. This transformation must be supplemented by A+ → A+ − 2Λ1, a symmetry that

has to be gauge fixed. The second is relativistic invariance. The third requirement is that

the original action describing the Coulomb phase must be recovered when |T̃ | → 0. Indeed,

when |T̃ | → 0 we must have that dW2 = 0, so that W2 = dψ1 for some 1-form ψ1. This form

can then be absorbed by A+, and the original action (3.11) is recovered. These requirements

were the ones imposed in [34]. The (Dp, D̄p) system, being a string theory object, must also

satisfy consistency with the duality symmetries of string theory. The implications of this

requirement will become more clear when we show the duality between this action and the

action describing the Higgs phase for the dual (p−2)-form gauge field. It implies in particular

that W2 must couple only to the overall U(1) vector field.

14To second order in α′ and for Cp−3 = Cp−5 = . . . = 0.
15One could in principle expect that W2 coupled to either combination of the U(1) vector fields, but we will

see that consistency with S- and T-dualities implies that it must couple only to the overall vector field. This

will allow ultimately to explain the puzzle of the unbroken overall U(1) through confinement.
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Now, in (3.12) F+ can be absorbed by W2, fixing the gauge symmetry

W2 → W2 + dΛ1

A+ → A+ − 2Λ1 , (3.13)

and the action can then be entirely formulated in terms of W2 and the relative vector field:

S(W2, A
−) =

∫

dp+1x
{

e−φ
(

W2 +B2

)

∧ ∗
(

W2 +B2

)

+
1

4
e−φF− ∧ ∗F− +

+
1

4|T̃ |2
dW2 ∧ ∗dW2 + d|T̃ | ∧ ∗d|T̃ | − V (|T̃ |) + Cp−1 ∧ F

−

}

. (3.14)

In this process the original gauge field A+ has been eaten by the new gauge field W2, and

has therefore been removed from the low energy spectrum. This solves the puzzle of the

unbroken overall U(1) at weak string coupling through the Julia-Toulouse mechanism, which,

as we have seen, is the exact opposite of the Higgs mechanism. Let us now see how the

fundamental string arises from this action.

Consider first the p = 3 case, which can be directly compared to the results in [31]. In

this case the action (3.14) is a generalization of the action proposed in [31] to describe the

confining phase of a four dimensional Abelian gauge theory. We recall from the introduction

that this action was constructed as the dual of the four dimensional Abelian Higgs model,

and that it allows a quantized electric vortex solution similar to the Nielsen-Olesen string.

We see below that in our case this solution is identified as a fundamental string.

The construction of the vortex solution in [31] considers a non-vanishing 2-form vorticity

source16 along the x3 axis:

V 3
e = nδ(x1)δ(x2) , V i

e = 0 for i = 1, 2 , ~Vb = 0 (3.15)

where the subindices e and b refer to the electric and magnetic components, and looks for a

static and axially symmetric solution with the following assumptions:

∂0e
3 = ∂0|T̃ | = 0 , e3 = e3(r) , |T̃ | = |T̃ |(r) , (3.16)

ei = 0 for i = 1, 2 , ~b = 0 (3.17)

where ~e and ~b refer to the electric and magnetic components of W2, and r =
√

(x1)2 + (x2)2.

The solution that is found represents a static circulation of flow around the x3 axis, and

satisfies the quantization condition

∫

D∞

e3ds = 2πn , (3.18)

where D∞ is a large domain in the (x1, x2) plane including the origin. This solution corre-

sponds to the Nielsen-Olesen string in the original Higgs model. As expected, the magnetic

16In the construction in [31] the vorticity source is created by the phase component of the Higgs scalar of the

original Abelian Higgs model. In our case it is created by the phase component of the tachyon field associated

to open D-strings connecting the D3 and the D̄3. This will become clear after the analysis in the next section.
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flux quantization condition has been mapped under duality onto an electric flux quantization

condition, given by (3.18). The reader is referred to [31] for a more detailed discussion. For

arbitrary p it is easy to find a similar, generalized, electric vortex solution with the same

properties.

Let us now see that the confined electric flux string solution corresponds in the (Dp, D̄p)

case to the fundamental string. In this case we have an additional coupling
∫

B2 ∧ ∗W2 (3.19)

in the effective action (3.14), which shows that the quantized electric flux generates B2-charge

in the system. Charge conservation then implies that the remaining topological soliton is the

fundamental string.

As mentioned in the previous section, the D(p− 2)-brane arises from the strongly coupled

confining action (2.6) derived in that section in a very similar way. In this case the vorticity

source is a (p−1)-form which is created by the phase of the tachyon field in the original action

(2.5). Note that in all the duality transformations that we have discussed in this paper we

have ignored total derivative terms. Had we kept these terms in the dualization of the action

(2.5) we would have found a coupling
∫

dWp−1 ∧ dχ in the dual action. This coupling can

be rewritten in terms of a vorticity source, Vp−1 = ∗ddχ, as
∫

Wp−1 ∧ ∗Vp−1, giving then the

generalization to arbitrary dimensions of the vorticity coupling in [31]. Let us suppose that

we fix now χ = nθ, where θ is the azimuthal angle in the (xp−1, xp) plane. For n 6= 0 θ is

not well defined on the worldvolume of a (p − 2)-brane, and therefore the vorticity source is

non-vanishing in this worldvolume. Taking then V 012...p−2

p−1
= nδ(xp−1, xp) and zero otherwise,

we can look for a static and axially symmetric solution with the assumptions

∂0W
012...p−2

p−1
= ∂0|T | = 0 , W

012...p−2

p−1
= W

012...p−2

p−1
(r) , |T | = |T |(r) , (3.20)

where r =
√

(xp−1)2 + (xp)2 and all other components of Wp−1 are taken to vanish. In this

case the solution that is found represents a static circulation of flow around the (p−2)-brane,

and satisfies the quantization condition
∫

D∞

W
01...p−2

p−1
ds = 2πn . (3.21)

The coupling
∫

Cp−1 ∧ ∗Wp−1 (3.22)

in the dual effective action (2.6) then implies that this confined electric flux brane corresponds

to the D(p − 2)-brane, since it shows that the quantized electric flux (3.21) generates Cp−1-

charge in the system. Therefore, the D(p−2)-brane arises either as a magnetic vortex solution

after the Higgs mechanism at weak coupling or as confined electric flux brane after the Julia-

Toulouse mechanism at strong coupling.

In the next section we show that the action (3.12) can be made exactly equivalent to

an action describing the Higgs phase for the dual relative (p − 2)-form potential. We also

show that, as expected, the fundamental string arises from this strongly coupled action as a

generalization of the Nielsen-Olesen magnetic vortex solution.
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4 Confinement at strong string coupling: The dual Higgs mech-

anism

Let us consider the action (3.12) describing the confining phase for the overall U(1) at weak

string coupling. Inspired by Mandelstam-’t Hooft duality we expect that the dual of this

action describes the Higgs phase for the (p− 2)-form field dual to the overall BI vector. The

dualization of the BI vector fields in (3.12) takes place in the standard way, given that they

only couple through their derivatives. In turn, the 2-form W2 is massive, but it can still

be dualized in the standard way from the intermediate dual action that is obtained after

dualizing the BI vector fields, in which it only couples through its derivatives. Let us call the

dual of this form, a (p− 3)-form, χp−3. The final dual action reads:

S(χp−3, Ap−2) =

∫

dp+1x
{

eφ
(1

2
F+

p−1
+ Cp−1

)

∧ ∗
(1

2
F+

p−1
+ Cp−1

)

+
1

4
eφF−

p−1
∧ ∗F−

p−1

+|T̃ |2
(

dχp−3 −A−

p−2

)

∧ ∗
(

dχp−3 −A−

p−2

)

+ d|T̃ | ∧ ∗d|T̃ | − V (|T̃ |) −B2 ∧ F
−

p−1

}

(4.23)

and the explicit duality relations are given by

1

2
F− = eφ ∗

(1

2
F+

p−1
+ Cp−1

)

(4.24)

1

2
F+ +W2 +B2 =

1

2
eφ ∗ F−

p−1
(4.25)

1

2
dW2 = |T̃ |

2
(−1)p−1 ∗

(

dχp−3 −A−

p−2

)

. (4.26)

Notice that once again the overall and the relative gauge fields are interchanged.

The action (4.23) describes an Abelian Higgs model for the relative (p−2)-form field, with

the dual (p− 3)-form χp−3 playing the role of the associated Goldstone boson. The effective

mass term reads

|T̃ |2
(

dχp−3 −A−

p−2

)2

(4.27)

and it is gauge invariant under χp−3 → χp−3 + Λp−3, A
−

p−2
→ A−

p−2
+ dΛp−3. That a coupling

of this sort could drive the dual Higgs mechanism was suggested in [12, 14, 15] (see also

[13]) although it could not be explicitly derived from the action describing the Higgs phase

at weak coupling, i.e. from Sen’s action. In this paper we have seen that consistently with

Mandelstam-’t Hooft duality the dual Abelian Higgs model arises from the action describing

the confining phase at weak coupling. In the dual action (4.23) the dual Goldstone boson χp−3

is associated to the fluctuations of the (p − 3)-dimensional topological defects that originate

from the end-points of the D(p − 2)-branes stretched between the Dp and the D̄p. This is

consistent with the fact that this field is the worldvolume dual of the field W2, which was

accounting for these fluctuations in the confining action (3.12). Moreover, we can identify for

p = 3 the condensing Higgs scalar as the modulus of the tachyonic mode associated to open

D-strings stretched between the D3 and the D̄3. Indeed when p = 3 the action (4.23) reads17:

L(χ,A) =

∫

dp+1x
{

eφ(
1

2
F̃+ +C2) ∧ ∗(

1

2
F̃+ + C2) +

1

4
eφF̃− ∧ ∗F̃−

17Here we have used tildes to denote the dual fields, as mentioned in section 2.
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+|T̃ |2(dχ̃− Ã−) ∧ ∗(dχ̃− Ã−) + d|T̃ | ∧ ∗d|T̃ | − V (|T̃ |) −B2 ∧ F̃
−

}

, (4.28)

i.e. it is the S-dual of the original action (2.5) describing the perturbative Higgs phase of

the (D3, D̄3) system. This is an important consistency check for the actions that we have

constructed, although strictly speaking S-duality invariance would only be expected for zero

tachyon, i.e. when the system becomes BPS and the worldvolume field content is not expected

to change at strong coupling. Note that in this duality relation the modulus of the perturbative

tachyon is mapped into |T̃ |, which can then be interpreted as the modulus of the tachyonic

excitation associated to the open D-strings. Since χ̃ has also an interpretation as the phase of

the dual tachyon we can think of T̃ = |T̃ |eiχ̃ as the complex tachyonic mode associated to the

D-strings stretched between the D3 and the D̄3. For p 6= 3 |T̃ | plays formally the role of the

modulus of a tachyonic excitation. However, since the tachyonic condensing charged object is

in this case a (p− 3)-brane the phase of the tachyon is replaced by a (p− 3)-form18. It would

be interesting to clarify the precise way in which these fields arise as open D(p − 2)-brane

modes.

Finally, let us discuss the way the fundamental string arises from the action (4.23) when

the Dp and the D̄p annihilate. If the brane and the antibrane annihilate through a generalized

Higgs-Stückelberg mechanism in which A−

p−2
gets a mass by eating the Goldstone boson χp−3,

we have that, if the Goldstone boson acquires a non-trivial winding number:

∫

Rp−1

F−

p−1
=

∮

Sp−2

A−

p−2
=

∮

Sp−2

dχp−3 = 2πn , (4.29)

B2-charge is induced in the configuration through the coupling in (4.23)

∫

Rp,1

B2 ∧ F
−

p−1
. (4.30)

Charge conservation therefore implies that after the annihilation a fundamental string is left

as a topological soliton. Since in this process the relative (p − 2)-form field is removed from

the low energy spectrum, and this field is dual to the original overall U(1), this solves the

puzzle of the unbroken U(1), through the mechanism suggested in [12] which is intrinsically

non-perturbative.

5 Discussion

As we have seen, a (Dp, D̄p) system admits two types of topological defects: particles and

(p − 3)-branes. The first are perturbative in origin, while the second are non-perturbative.

The combined electric and magnetic Higgs mechanisms introduce mass gaps to both U(1) vec-

tor potentials, being the only remnants D(p− 2)-branes and fundamental strings, realized as

solitons on the common (p+ 1)-dimensional worldvolume. The system is described perturba-

tively in terms of Sen’s action, which incorporates the tachyonic degrees of freedom associated

18Reference [12] suggests a more concrete relation between the field χ1 for p = 2 and the phase of the dual

tachyon, by imagining the relevant string field defined over a loop space as ei
H

χ1 . Imposing single-valuedness

in the loop space would then imply
H

Σ
dχ1 = n.
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to the perturbative point-like defects. However, in order to incorporate the non-perturbative

degrees of freedom associated to the (p−3)-dimensional topological defects one has to restrict

to the strong coupling regime of the theory, where the degrees of freedom associated to these

defects become perturbative. Even in this case, as we have seen, it is not obvious to account

for the right fields describing the tachyonic excitations. We have seen in this paper that

it is also possible to incorporate the non-perturbative degrees of freedom associated to the

extended topological defects in the weak coupling regime, using Julia and Toulouse’s idea.

Essentially one introduces a new form which describes the fluctuations of these defects and

imposes a set of consistency conditions based on gauge invariance and duality. In section 3

we have presented the weakly coupled action that is formulated in terms of this new form

and the U(1) vector fields associated to the open strings. In fact, one can combine this action

with Sen’s action in order to incorporate the degrees of freedom associated to both the zero

dimensional and extended topological defects, with the explicit combined action being given

by:

S(χ,W2, A) =

∫

dp+1x
{

e−φ
(1

2
F+ +W2 +B2

)

∧ ∗
(1

2
F+ +W2 +B2

)

+
1

4
e−φF− ∧ ∗F− +

+|T |2(dχ−A−) ∧ ∗(dχ−A−) + d|T | ∧ ∗d|T | +
1

4|T̃ |2
dW2 ∧ ∗dW2 +

+d|T̃ | ∧ ∗d|T̃ | − V (|T |) − V (|T̃ |) + Cp−1 ∧ F
−

}

. (5.31)

This action describes both the perturbative and the non-perturbative Higgs mechanisms si-

multaneously at weak coupling, and it admits both a magnetic vortex solution, which by

charge conservation is identified with the D(p − 2)-brane, and an electric vortex solution,

identified as the fundamental string.

Finally, we would like to comment on two alternative mechanisms for recovering the

fundamental string after DD̄ annihilation that have been proposed in [9, 41, 42] and in

[15, 46, 47, 48, 49]19. In the first proposal [9, 41, 42] the fundamental string emerges as a

classical solution to Sen’s action, with confinement being realized through the dielectric effect

of [43], with the tachyon potential playing the role of the dielectric constant. The second

proposal [15, 44, 45, 46, 47, 48, 49] is based on the study of the description of the string

fluid of [15] in terms of closed strings. In this setup when there is a net electric flux the

energy of the electric flux lines is associated to winding modes of fundamental strings. These

mechanisms are distinct to the one that we have proposed in this paper. In particular they

do not seem to have a simple relation with the dual Higgs mechanism of [12, 14].

Acknowledgements

We would like to thank Fernando Quevedo for useful discussions. N.G. would like to thank the

IFT at Universidad Autónoma de Madrid for hospitality while some parts of this work were

done. Y.L. would like to thank the Theory Division at CERN for hospitality and support. The

work of N.G. was supported by a FPU Fellowship from the Spanish Ministry of Education.

19See also [50, 51, 52, 53], in the framework of c = 1 matrix models.

15



This work has been partially supported by the CICYT grant MEC-06/FPA2006-09199 and

by the European Commission FP6 program MRTN-CT-2004-005104, in which the authors

are associated to Universidad Autónoma de Madrid.

References

[1] A. Sen, “Tachyon dynamics in open string theory”, Int. J. Mod. Phys. A20 (2005) 5513,

[arXiv:hep-th/0410103].

[2] R. Casero, E. Kiritsis, A. Paredes, “Chiral symmetry breaking as open string tachyon

condensation”, [arXiv:hep-th/0702155].

[3] O. Bergman, S. Seki, J. Sonnenschein, “Quark mass and condensate in HQCD”,

arXiv:0708.2839 [hep-th].

[4] A. Dhar, P. Nag, “Sakai-Sugimoto model, tachyon condensation and chiral symmetry

breaking”, JHEP 0801 (2008) 055, arXiv:0708.3233 [hep-th].

[5] A. Dhar, P. Nag, “Tachyon condensation and quark mass in modified Sakai-Sugimoto

model”, arXiv:0804.4807 [hep-th].

[6] T. Sakai, S. Sugimoto, “Low energy hadron physics in holographic QCD”, Prog. Theor.

Phys. 113 (2005) 843, [arXiv:hep-th/0412141]; “More on a holographic dual of QCD”,

Prog. Theor. Phys. 114 (2006) 1083 [arXiv:hep-th/0507073].

[7] A. Sen, “Dirac-Born-Infeld action on the tachyon kink and vortex”, Phys. Rev. D68

(2003) 066008, [arXiv:hep-th/0303057].

[8] K. Hashimoto, S. Nagaoka, “Realization of brane descent relations in effective theories”,

Phys. Rev. D66 (2002) 026001, [arXiv:hep-th/0202079].

[9] J.A. Harvey, P. Kraus, F. Larsen, E.J. Martinec, “D-branes and strings as non-

commutative solitons”, JHEP 0007 (2000) 042, [arXiv:hep-th/0005031].

[10] M. Srednicki, “IIB or not IIB”, JHEP 9808 (1998) 005, [arXiv:hep-th/9807138].

[11] E. Witten, “D-branes and K-theory”, JHEP 9812 (1998) 019, [arXiv:hep-th/9810188].

[12] P. Yi, “Membranes from five-branes and fundamental strings from Dp-branes”, Nucl.

Phys. B550 (1999) 214, [arXiv:hep-th/9901159].

[13] S. Rey, “Higgs mechanism for Kalb-Ramond gauge field”, Phys. Rev. D40 (1989) 3396.

[14] O. Bergman, K. Hori, P. Yi, “Confinement on the brane”, Nucl. Phys. B580 (2000) 289,

[arXiv:hep-th/0002223].

[15] G. Gibbons, K. Hori, P. Yi, “String fluid from unstable D-branes”, Nucl. Phys. B596

(2001) 136, [arXiv:hep-th/0009061].

16

http://arxiv.org/abs/hep-th/0410103
http://arxiv.org/abs/hep-th/0702155
http://arxiv.org/abs/0708.2839
http://arxiv.org/abs/0708.3233
http://arxiv.org/abs/0804.4807
http://arxiv.org/abs/hep-th/0412141
http://arxiv.org/abs/hep-th/0507073
http://arxiv.org/abs/hep-th/0303057
http://arxiv.org/abs/hep-th/0202079
http://arxiv.org/abs/hep-th/0005031
http://arxiv.org/abs/hep-th/9807138
http://arxiv.org/abs/hep-th/9810188
http://arxiv.org/abs/hep-th/9901159
http://arxiv.org/abs/hep-th/0002223
http://arxiv.org/abs/hep-th/0009061


[16] A. Sen, “Supersymmetric worldvolume action for non-BPS D-branes”, JHEP 9910 (1999)

008, [arXiv:hep-th/9909062].

[17] A. Sen, “Universality of the tachyon potential”, JHEP 9910 (1999) 008,

[arXiv:hep-th/9911116].

[18] I. Pesando, “On the effective potential of the Dp-D̄p system in Type II theories”, Mod.

Phys. Lett. A14 (1999) 1545, [arXiv:hep-th/9902181].

[19] C. Kennedy and A. Wilkins, “Ramond-Ramond couplings on brane-antibrane systems”,

Phys. Lett. B464 (1999) 206, [arXiv:hep-th/9905195].

[20] J.A. Minahan, B. Zwiebach, “Gauge fields and fermions in tachyon effective field theo-

ries”, JHEP 0102 (2001) 034, [arXiv:hep-th/0011226].

[21] P. Kraus, F. Larsen, “Boundary string field theory of the DD̄ system”, Phys. Rev. D63

(2001) 106004, [arXiv:hep-th/0012198].

[22] T. Takayanagi, S. Terashima, T. Uesugi, “Brane-antibrane action from boundary string

field theory”, JHEP 0103 (2001) 019, [arXiv:hep-th/0012210].

[23] M. Alishahiha, H. Ita and Y. Oz, “On superconnections and the tachyon effective action”,

Phys. Lett. B503 (2001) 181, [arXiv:hep-th/0012222].

[24] N.D. Lambert, I. Sachs, “On higher derivative terms in tachyon effective actions”, JHEP

0106 (2001) 060, [arXiv: hep-th/0104218].

[25] R.J. Szabo, “Superconnections, anomalies and non-BPS brane charges”, J. Geom. Phys.

43 (2002) 241, [arXiv:hep-th/0108043].

[26] N.T. Jones, S.-H.H. Tye, “An improved brane anti-brane action from bound-

ary superstring field theory and multi-vortex solutions”, JHEP 0301 (2003) 012,

[arXiv:hep-th/0211180].

[27] M.R. Garousi, “D-brane anti-D-brane effective action and brane interaction in open

string channel”, JHEP 0501 (2005) 029, [arXiv:hep-th/0411222].

[28] M.R. Garousi, “On the effective action of D-brane-anti-D-brane system”,

arXiv:0710.5469 [hep-th].

[29] M.R. Garousi, E. Hatefi, “On Wess-Zumino terms of brane-antibrane systems”,

arXiv:0710.5875 [hep-th].

[30] M.R. Garousi, “Higher derivative corrections to Wess-Zumino action of brane-antibrane

systems”, arXiv:0712.1954 [hep-th].

[31] A. Sugamoto, “Dual transformation in Abelian gauge theories”, Phys. Rev. D19 (1979)

1820.

17

http://arxiv.org/abs/hep-th/9909062
http://arxiv.org/abs/hep-th/9911116
http://arxiv.org/abs/hep-th/9902181
http://arxiv.org/abs/hep-th/9905195
http://arxiv.org/abs/hep-th/0011226
http://arxiv.org/abs/hep-th/0012198
http://arxiv.org/abs/hep-th/0012210
http://arxiv.org/abs/hep-th/0012222
http://arxiv.org/abs/hep-th/0104218
http://arxiv.org/abs/hep-th/0108043
http://arxiv.org/abs/hep-th/0211180
http://arxiv.org/abs/hep-th/0411222
http://arxiv.org/abs/0710.5469
http://arxiv.org/abs/0710.5875
http://arxiv.org/abs/0712.1954


[32] S. Mandelstam, “Vortices and quark confinement in non-Abelian gauge theories”, Phys.

Rep. C23 (1976) 237; G. ’t Hooft, “On the phase transition towards permanent quark

confinement”, Nucl. Phys. B138 (1978) 1.

[33] M. Kalb, P. Ramond, “Classical direct interstring action”, Phys. Rev. D9 (1974) 2273.

[34] F. Quevedo, C. Trugenberger, “Phases of antisymmetric tensor fields”, Nucl. Phys. B501

(1997) 143, [arXiv:hep-th/9604196].

[35] B. Julia, G. Toulouse, J. Physique, Lett. 40 (1979) 396.

[36] M.R. Garousi, “Tachyon couplings on non-BPS D-branes and Dirac-Born-Infeld action”,

Nucl. Phys. B584 (2000) 284, [arXiv:hep-th/0003122].

[37] E.A. Bergshoeff, M. de Roo, T.C. de Wit, E. Eyras, S. Panda, “T-duality and actions

for non-BPS D-branes”, JHEP 0005 (2000) 009, [arXiv:hep-th/0003221].

[38] J. Kluson, “Proposal for non-BPS D-brane action”, Phys. Rev. D62 (2000) 126003,

[arXiv:hep-th/0004106].

[39] D. Kutasov, M. Mariño, G.W. Moore, “Remarks on tachyon condensation in superstring

field theory”, [arXiv:hep-th/0010108].

[40] U. Ellwanger, N. Wschebor, “Confinement with Kalb-Ramond fields”, JHEP 0110 (2001)

023, [arXiv:hep-th/0107196].

[41] M. Kleban, A. Lawrence, S. Shenker, “Closed strings from nothing”, Phys. Rev. D64

(2001) 066002, [arXiv:hep-th/0012081].

[42] H. Kawai, T. Kuroki, “Strings as flux tube and deconfinement on branes in gauge theo-

ries”, Phys.Lett. B518 (2001) 294, [arXiv:hep-th/0106103].

[43] J. Kogut, L. Susskind, “Vacuum polarization and the absence of free quarks in four

dimensions”, Phys. Rev. D9 (1974) 3501.

[44] A. Sen, “Fundamental strings in open string theory at the tachyonic vacuum”, J. Math.

Phys. 42 (2001) 2844, [arXiv:hep-th/0010240].

[45] G. Gibbons, K. Hashimoto, P. Yi, “Tachyon condensates, Carrollian contrac-

tion of Lorentz group, and fundamental strings”, JHEP 0209 (2002) 061,

[arXiv:hep-th/0209034].

[46] O.K. Kwon, P. Yi, “String fluid, tachyon matter and domain walls”, JHEP 0309 (2003)

003, [arXiv:hep-th/0305229].

[47] A. Sen, “Open-closed duality at tree level”, Phys. Rev. Lett. 91 (2003) 181601,

[arXiv:hep-th/0306137].

[48] H.U. Ye, P. Yi, “Open/closed duality, unstable D-branes and coarse-grained closed

strings”, Nucl. Phys. B686 (2004) 31, [arXiv:hep-th/0402027].

18

http://arxiv.org/abs/hep-th/9604196
http://arxiv.org/abs/hep-th/0003122
http://arxiv.org/abs/hep-th/0003221
http://arxiv.org/abs/hep-th/0004106
http://arxiv.org/abs/hep-th/0010108
http://arxiv.org/abs/hep-th/0107196
http://arxiv.org/abs/hep-th/0012081
http://arxiv.org/abs/hep-th/0106103
http://arxiv.org/abs/hep-th/0010240
http://arxiv.org/abs/hep-th/0209034
http://arxiv.org/abs/hep-th/0305229
http://arxiv.org/abs/hep-th/0306137
http://arxiv.org/abs/hep-th/0402027


[49] M. Gutperle, P. Yi, “Winding strings and decay of D-branes with flux”, JHEP 0501

(2005) 015, [arXiv:hep-th/0409059].

[50] J. McGreevy, H. Verlinde, “Strings from tachyons: The c=1 matrix reloaded”, JHEP

0312 (2003) 054, [arXiv:hep-th/0304224].

[51] T. Takayanagi, N. Toumbas, “A matrix model dual of Type 0B string theory in two

dimensions”, JHEP 0307 (2003) 064, [arXiv:hep-th/0307083].

[52] M.R. Douglas, I.R. Klebanov, D. Kutasov, J. Maldacena, E. Martinec, N. Seiberg, “A

new hat for the c=1 matrix model”, [arXiv:hep-th/0307195].

[53] I.R. Klebanov, J. Maldacena, N. Seiberg, “D-brane decay in two dimensional string

theory”, JHEP 0307 (2003) 045, [arXiv:hep-th/0305159].

19

http://arxiv.org/abs/hep-th/0409059
http://arxiv.org/abs/hep-th/0304224
http://arxiv.org/abs/hep-th/0307083
http://arxiv.org/abs/hep-th/0307195
http://arxiv.org/abs/hep-th/0305159

	Introduction
	The (Dp,"7016Dp) system in dual variables
	The duality construction

	Confinement at weak string coupling
	Confinement at strong string coupling: The dual Higgs mechanism
	Discussion

