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ABSTRACT
Dynamic factor models are a powerful technique for analysing vast volumes of data,
more precisely, time series. However, the large volumes of data that come from
public transport networks tend to have heterogeneity and a cluster structure. In
this paper, Dynamic Factor Models with Cluster Structure (DFMCS) are used to
forecast hourly entrances in the different stations of the Barcelona subway network.
The main and most novel contribution lies in the use of clustering techniques to
make an initial grouping of the behaviour of the elements belonging to the time
series, in order to subsequently be able to predict future patterns.
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1. Introduction

Barcelona is regarded as a major success story in European urban development. Given
that it is Spain’s second-largest city, with the growth this implies, it has made a
big effort to lead the way in smart cities (Bakıcı, Almirall, and Wareham 2013). Its
urban area extends to numerous neighbouring municipalities, making it the fifth most
populous urban area in the European Union. Barcelona is a major cultural, economic,
and financial centre, with a rich cultural heritage, which makes it an important tourist
destination. This is the reason it is such an interesting case to investigate. Figure 1
shows the Barcelona subway map.

The majority of public transportation systems employ automated fare collecting
(AFC) systems, which are regarded as a secure way of user validation and fare payment
and provide new potential for creative and flexible fare structuring (Dempsey 2007).
Furthermore, AFC systems generate massive amounts of highly precise data about on-
board transactions (Pelletier, Trépanier, and Morency 2011). The fare system of the
Barcelona metro only records entry passes, so the end of the trip is unknown. Although
it lies outside the aims of this paper, public transportation destination estimation is one
of the primary challenges for smart card data implementation, and there are numerous
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Figure 1.: Barcelona subway (https://www.metrobarcelona.es/mapas.html)

techniques (see, for example, Li et al. (2018b); Alsger et al. (2018); Alexander et al.
(2015); Jun and Dongyuan (2013)).

The metro network’s passenger volume might change based on the time of day and
the location. The use of the subway varies between the different days of the week, on
holiday periods, between residential areas and business centers or workplaces, and it’s
affected by other factors like weather, for example. Different methodologies are used
in the literature for this sort of studies, the most commonly used involve clustering
techniques (Briand et al. 2017). When performing a cluster analysis with smart card
data, two main approaches have been proposed in the literature. The first consists
in grouping the stations based on spatio-temporal passenger data (Chen, Chen, and
Barry 2009), and the other approach is to directly cluster travellers with common
behaviours (El Mahrsi et al. 2017). The k-means algorithm and hierarchical cluster
analysis have been the most widely used methods. Wang, Lo, and Liu (2015), Kim
et al. (2017), Ding, Cao, and Liu (2019) used gradient boosting decision trees. Montero,
Vilar et al. (2014) developed an R-package, TSclust, for time series clustering. There
are many alternative dissimilarity measures to compare time series and TSclust is the
result of integrating these to conduct time series clustering. The package includes com-
monly used dissimilarity measures, such as complexity-based measures, model-based
measures, feature-based measures and the prediction-based dissimilarity introduced
by Vilar, Alonso, and Vilar (2010). Furthermore, in most articles, data related to one
or two weeks are used to carry out the analyzes. Losing, in some cases, the information
that large databases can provide.

To model a large number of time series, dynamic factor models (DFMs) are very
effective (see, for example, Mestekemper, Kauermann, and Smith (2013); Luciani
(2014)), but they need to be adapted if there is group structure within the set of
series. Golay et al. (1998) and Chouakria and Nagabhushan (2007) used modifications
of the instantaneous cross-correlation, and Ando and Bai (2017) studied dependency
clustering considering the hypothesis that the time series vector has a Dynamic Factor
Model structure where some factors influence different groups of series. Different ap-
proaches on forecasting with Dynamic Factor Models are gathered in Escribano, Peña,
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and Ruiz (2021).
Alonso and Peña (2019) proposed an algorithm to find groups in large time series

vectors using the Generalised Cross-Correlation (GCC), a metric of how similar two
time series are. This measure compares the determinant of the correlation matrix
of the bi-variate vector with those of the two uni-variate time series. The resulting
dissimilarity matrix can then be used in any cluster procedure which requires this
kind of input. The proposed procedure can be used in exploratory analysis of a large
set of time series and, also, can be very useful to build models with grouped factor
structure. In this paper, Dynamic Factor Models with Cluster Structure (DFMCS) are
used, with some factors that are group-specific and others global.

In the literature, DFMCS have been studied with different assumptions. Wang
(2008) presented a theory for analysing large dimensional factor models with a multi-
level factor structure and derived conditions for identification of these models. In their
multi-factor model, in each group, the series are influenced by global and specific fac-
tors. Hallin and Lǐska (2011) studied the structures of dynamic interrelations within
and between blocks of time series. They proposed a model with two clusters in which
the factors define four orthogonal sub-spaces: first, the variables which are common
to both groups and are, therefore, common factors; second, for the two groups, sig-
nificantly idiosyncratic variables; finally, those which are considered a common factor
for a cluster and idiosyncratic to the other. In these studies, the number of groups
and the allotment of the series is assumed to be known. On the other hand, Ando
and Bai (2017) introduced a more generic model, assuming unknown membership and
Blasques et al. (2021) used an observation-based strategy, which assumed the factors
as dynamic processes formulated as functions of previous data.

To model and predict passenger flow, both classical methods and machine learning
techniques are commonly used. The latter are increasingly popular due to computa-
tional developments. Tang et al. (2018), designed a non-parametric nonlinear regression
model to capture passenger flow fluctuation characteristics. Li et al. (2018a) proposed
a hybrid model that combines a symbolic regression model and auto-regressive mov-
ing average (ARIMA) model. Ye, Liu, and Xue (2021) proposed three kinds of time
series models: AR, ARIMA and quadratic ARMA, to forecast passenger flow. Gensuo,
Liqin, and Miao (2015) and Sun, Leng, and Guan (2015) forecast transfer passenger
flow for rail transit using a support vector machine (SVM) model. Habtemichael and
Cetin (2016) proposed a non-parametric and data-driven methodology for short-term
traffic forecasting using an enhanced KNN algorithm. Chang et al. (2012) constructed
a KNN-NPR model to predict dynamic multi-period traffic volume.

The use of Neural Networks has also increased in recent years. Long Short-Term
Memory (LSTM) artificial recurrent neural networks and Convolutional Neural Net-
works (CNN) are used to explore spatial and temporal relations. Chen et al. (2021)
used a convolutional long short-term memory (Conv-LSTM) network to extract spa-
tial and temporal characteristics to solve the short-term prediction problem of the
subway congestion delay in the network structure. Xiong et al. (2019) used two deep
learning neural networks to predict an urban rail transit passenger flow time series
and spatio-temporal series, respectively. Zhang et al. (2020) proposed a deep learning
architecture combining the residual network, graph CNN and LSTM network, to fore-
cast short-term passenger flow in urban rail transit on a network scale. Liu, Liu, and
Jia (2019) proposed an end-to-end deep learning architecture, to forecast the metro
inbound/outbound passenger flow. Nagaraj et al. (2022) proposed a graph learning-
based spatial-temporal graph convolutional neural network for traffic forecasting which
is founded on graph learning (Hu et al. 2021).
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This work focuses on the robust procedure to build DFMCS proposed by Alonso,
Galeano, and Peña (2020), which is applied to predict the hourly entrances in the
Barcelona subway stations. Passenger flow varies according to different station char-
acteristics, such as the location, the population and the district where the metro
station is located, as well as the day of the week or hour of the day. The methodology
allows building generalised dynamic factor models to model large time series matrices
and perform predictions. The approach includes defining the factors that influence
all series at a global level, as well as those factors that are specific to each of the
clusters, i.e. they affect only the series included in some clusters, but have no effect
on the series belonging to other clusters. Both global and group-specific factors are
modelled using ARMA models to fit and pre-specify the data. A comparison of the
predictions obtained using DFMCS and a classical approach (ARIMA model) and a
machine learning approach (KNN) is presented.

The database consists of 132 stations with the hourly entrances of each day of
2018. To perform the analysis, those times at which most of the stations are closed are
omitted, resulting in 21 hours analysed daily for every station. The proposed approach
can be applied on its own when working with large sets of time series or, alternatively, it
may be considered a starting point for estimation techniques for these types of models.
Moreover, this procedure is part of Big Data and Data Science technologies, which are
not often used in the area of public transport studies but can produce accurate results.

The rest of the paper is organised as follows: Section 2 introduces DFMCS. Section
3 applies the methodology to fit the DFMCS to the data set from the Barcelona metro,
performs forecasting for a week and presents the results. Finally, Section 4 highlights
the main conclusions of the paper.

2. Dynamic factor models with cluster structure

Suppose a vector of zero-mean stationary time series, xt = (x1t, ..., xkt)
′. Each element

of the observed series vector is assumed to be a linear combination of global and specific
components in k clusters or groups (and some noise). Let these factors be represented:

• The global factors by the r0-dimensional vector f0t = (f01t, ..., f0r0t)
′.

• The global factor loading matrix by P0 = [P′
0,1 | · · · | P′

0,s]
′
, with dimensions

k × r0 and where P0,i, for i = 1, ..., s, is the ki × r0 loading matrix for the ki
series of the i-th group.

• The specific factors for the i-the cluster as the ri-dimensional vector fit =
(fi1t, ...firit)

′.

• The matrix of specific factors loadings, that only affect the ki time series in the
i-th group, by Pi = [0

′

i,1 | ... | P
′

i,i | ... | 0
′

i,s], with dimensions k × ri.

Then, the Dynamic Factor Model with Cluster Structure (DFMCS) can be written
as:

xt = P0f0t +

k∑
i=1

Pifit + ηt. (1)

The series are considered to be in order, and therefore, the first ki series belong to the
first group and so on. Then,

∑k
i=1 ki = k. This does not incur loss of generality. The
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idiosyncratic term or noise, ηt = (η1t, ..., ηmt)
′ , is a general sequence of stationary time

series with mean 0m, and weak dependency. For more details, see Alonso, Galeano,
and Peña (2020).

The procedure to fit the DFMCS consists of the following steps: first, the observed
times series are cleaned, including removal of additive outliers, level changes, and
outlying time series. Then, the factors and factor loadings are estimated in the first
place by minimising:

SE1 =

T∑
t=1

∥xt −Pf t∥2 , (2)

where ∥·∥2 represents the Euclidean vector norm. The resulting estimates of the factor
loading matrix, P̂, are the eigenvectors associated to the rc largest eigenvalues of the
time series’ sample covariance matrix (the test proposed in Ahn and Horenstein (2013)

is used to specify rc, the number of factors). Then, f̂i,t = P̂′
ixt estimates the factors

and the common component is ct = P̂′xt. Then, the clustering algorithm proposed
by Alonso and Peña (2019) to divide the time series in groups with similar linear
dependence, is used to locate the groupings in these common components.

Once the series are divided into groups, those inside each one are used to estimate
the new factors and their loadings. The method by Ahn and Horenstein (2013) is used
again to find the number of factors for each group, rsi , i = 1, . . . , k . Analogously to the
global factors and their loadings, the specific loading matrices are estimated from the
eigenvalues of the time series sample covariance matrices in each group. The specific
loading matrices P̂i, of dimension m×rsi and columns P̂i1, . . . , P̂irsi are built by adding
a set of zero values for the observations which are not in the group, to the eigenvectors
of the largest rsi eigenvalues in the ith group. f̂ sij,t = P̂′

ijxt, with j = 1, . . . , rsi , estimates

the factors of each group. The primer set of rc factors and the second set of
∑k

i=1 r
s
i

factors are divided into global or specific. To determine whether a factor belongs to
a specific factor set, the empirical canonical correlation between the factor and those
in the set is calculated. Then, the residuals vt = xt − P̂0f̂0t are computed, where the
factors have been estimated using ARMA models. f̂0t and P̂0 are the final vector of
estimated global factor and its loading matrix respectively. The specific factors are
re-estimated using the series vit corresponding to each group. Then, we check whether
all the groups have at least one specific factor. Finally, with the estimated factors,
groups and loadings, the residuals, or idiosyncratic component, can be computed and
the SE minimised.

In summary, the series are first cleaned up, outliers are eliminated, and the common
elements of the series are computed. The series are then separated into clusters using
generalised cross correlation and factors are determined for each cluster. Finally, in
order to forecast the series, the factors are adjusted with seasonal ARIMA models.

3. Analysis and results of Barcelona data

The data provided by the Transport Metropolitan of Barcelona correspond to the
hourly daily entrances of 2018 of the different subway stations. To apply the method-
ology, a total of 2772 series are used. In order to carry out the clustering taking into
account the temporal characteristics of the data, each series is subdivided by the hours
of the day. A new matrix is built, where in each row only the day of the year is taken
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into account and where the columns collect the number of passengers at each station
in each hour, that is, the new matrix has as many rows as days of the year and 2772
columns that correspond to the 132 stations times 21 hours.

The procedure by Alonso, Galeano, and Peña (2020) starts with the selection and
estimation of the common factors, calculated using all the time series. Therefore, the
clustering is done in the common part so that the effect of the noise is “eliminated”.
Figure 2 shows the total variability explained by each global factor. The first three
factors explain over 80% of the observed variability.

Figure 2.: Variability explained by each global factor.

The clusters are now calculated following Alonso and Peña (2019). Figure 3 shows
the dendrogram obtained from applying hierarchical clustering algorithm with single
linkage to the dissimilarity matrix.

Cluster No. of Series Percentage
1 2098 75.69%
2 674 24.31%

Table 1.: Series in each cluster.

There is a strong dependency between the series, which is confirmed below by the
existence of two clearly global factors. There is a large group of series with a very
strong relationship and therefore, it is decided to consider one unique cluster for those
series with a dependency level below 0.001. The other group consists of series that are
dependent but with smaller dependency levels. Table 1 shows the resulting number
of series in each cluster and the percentage they represent over the total number of
series.

The factors in each group are then calculated. All specific factors are presumed to
be part of the group factors, together with some (or all) global factors. After this,
together with the initial estimations, there are a total of 3 factors that need to be
classified as global or specific. This is done using the canonical correlations between
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Figure 3.: Dendrogram of the series.

the factors and the clusters.
Table 2 shows the correlation between each factor and the clusters. It can be noted

how the first factor (Factor 1) is highly correlated with the first cluster and somewhat
less with the second. Factors 2 and 3 are correlated with both clusters similarly. For
this reason, Factor 1 is classified as a specific factor of Cluster 1, while Factors 2 and
3 are categorised as global, given there is not a clear very strong correlation with just
one of the two clusters. Moreover, it is found that the factor for Cluster 1 explains
88% of the variability in the group, after removing information from the global factors.
When estimating specific factors, it also appeared that there may be two factors for
Cluster 2, however, the variability explained by them is very small and therefore it
is concluded that there are no specific factors for the second cluster. Figure 4 shows
the variability explained by the specific factors of each cluster. The final model has,
therefore, two global factors and one specific factor for Cluster 1.

Cluster 1 Cluster 2
Factor 1 1.0000 0.6106
Factor 2 0.9154 0.9504
Factor 3 0.8926 0.7037

Table 2.: Correlation between factor and cluster.
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Figure 4.: Variability explained by each factor in Cluster 1 (left) and Cluster 2 (right).

Out of sample predictions are used to assess the performance of the models when the
cluster effects are included or not. Thus, two models are considered: Model 1, a DFM
with two global factors and Model 2, a DFMCS model with two global factors and one
specific factor. In both models, the idiosyncratic term is supposed to be random and
seasonal ARIMA models are fitted to the factors, following Garćıa-Martos and Conejo
(2013) and Alonso, Bastos, and Garćıa-Martos (2016). Throughout the testing period,
one-day ahead forecasting is done, using a rolling window approach.

Forecasting results comparison

The aim now is to evaluate whether the models fitted adjust well to the data. For
this, the validation is done using dividing the data in training and test data-sets. An
extended practice is to choose a model merely upon how well it fits the data. However,
while a model may fit and reproduce the data very well, this does not necessarily imply
that it can predict future data well (usually, the better the model fits the data, the
worse it predicts future data, which is called over-training). To avoid this, the series are
split into two groups, one to estimate the model (training data), and one to measure
the quality of the model predictions (test data). Specifically, the method used in this
paper is Leave-one-out cross-validation (LOOCV). This is a particular case of ‘leave-
p-out’ cross-validation, making a more efficient use of the data, since omitting one or
several observations does not eliminate all the information associated with them due
to the inherent correlation between observations in a time series. Moreover, a rolling
forecast origin approach was adopted. The testing period chosen is a 7 days forecast
using the previous 90 days.

To compare the forecasting results of Model 1 and Model 2 (without and with cluster
structure respectively) two error measures are used: Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE), calculated using the target values, yi, and the
predictions ŷi:

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

RMSE =

(
1

n

n∑
i=1

(yi − ŷi)
2

)1/2

(4)
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As previously mentioned, the data from the Barcelona subway consists on 21 hours
registered daily in 2018 in the 132 stations. Then, to make predictions for, say, a week
after the day 90, then the errors would be calculated as:

MAE =
1

268× 132× 21

365−7∑
d=90

132∑
s=1

21∑
h=1

|yd,s,h − ŷd,s,h| (5)

RMSE =

(
1

268× 132× 21

365−7∑
d=90

132∑
s=1

21∑
h=1

(yd,s,h − ŷd,s,h)
2

)1/2

(6)

Prediction is done from 1 to 7 days. Table 3 shows the MAE and RMSE for Model
1 (without cluster structure) and Model 2 (with cluster structure) and the percentage
of improvement achieved using the second model with respect to the first. The im-
provement percentage is always positive, which indicates that model 2 is superior to
model 1 in all cases. Given that Cluster 2 has no specific factors, the same results are
obtained using both models. The one-day forecast results are similar to the rest, with
an improvement of almost 3% in the MAE using the model with cluster structure. This
is even more evident in Cluster 1, where the percentages of improvement are generally
larger.

(a) MAE (b) RMSE

Figure 5.: MAE and RMSE for Model 1 (left) and Model 2 (right).

Figures 5a and 5b show boxplots for the MAE and RMSE for a 7-days forecast for
both models. A comparison between the true values and the predicted supports the
adequate predictive capacity of these models. Model 2 improves the predictions.

To further inspect the accuracy of predictions, two stations are studied. “Station
1”, which corresponds to the Airport and “Station 132”, in the university area, each
belonging to a different cluster. Station 132 belongs to Cluster 1, i.e. there can be
differences between the predictions using model 1 or 2, even if small. Moreover, pre-
dictions with a traditional method (ARIMA) and machine learning techniques (KNN)
are compared. For the KNN model, the MIMO (Multiple Input Multiple Output)
strategy is used. This strategy is commonly applied with KNN and it is characterised
by the use of a vector of target values. The length of this vector is equal to the number
of periods to forecast (Mariñas-Collado et al. 2022).

Table 4 shows MAES and RMSEs for predictions 1-7 days ahead, using the previous
90 days. A Rolling Window approach is used in which the 90 days window moves 30
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Global Cluster 1 Cluster 2
1 day MAE RMSE MAE RMSE MAE RMSE

Model 1 72.68 192.10 79.32 199.92 51.99 165.42
Model 2 70.57 189.29 76.54 196.35 51.99 165.42
% imp. 2.90 1.46 3.51 1.78 0 0

Global Cluster 1 Cluster 2
2 days MAE RMSE MAE RMSE MAE RMSE
Model 1 68.99 182.20 74.66 187.41 51.33 164.94
Model 2 67.63 179.41 72.87 183.81 51.33 164.94
% imp. 1.96 1.54 2.39 1.92 0 0

Global Cluster 1 Cluster 2
3 days MAE RMSE MAE RMSE MAE RMSE
Model 1 67.61 170.63 72.91 172.19 51.09 165.69
Model 2 66.20 167.68 71.06 168.31 51.09 165.69
% imp. 2.08 1.73 2.55 2.25 0 0

Global Cluster 1 Cluster 2
4 days MAE RMSE MAE RMSE MAE RMSE
Model 1 69.98 177.78 76.13 183.39 50.83 159.06
Model 2 68.76 174.92 74.52 179.72 50.83 159.06
% imp. 1.74 1.61 2.11 2.00 0 0

Global Cluster 1 Cluster 2
5 days MAE RMSE MAE RMSE MAE RMSE
Model 1 62.94 161.54 66.92 162.61 50.56 158.16
Model 2 61.09 158.44 64.48 158.53 50.56 158.16
% imp. 2.94 1.92 3.65 2.51 0 0

Global Cluster 1 Cluster 2
6 days MAE RMSE MAE RMSE MAE RMSE
Model 1 65.29 175.91 70.21 182.67 49.96 152.98
Model 2 63.43 173.18 67.76 179.19 49.96 152.98
% imp. 2.84 1.55 3.48 1.90 0 0

Global Cluster 1 Cluster 2
7 days MAE RMSE MAE RMSE MAE RMSE
Model 1 68.82 175.41 74.54 183.12 51.02 148.89
Model 2 67.69 172.75 73.05 179.74 51.02 148.89
% imp. 1.63 1.52 1.99 1.84 0 0

Table 3.: MAE and RMSE for Model 1 (without cluster structure) and Model 2 (with
cluster structure) for all the series and both clusters.
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days ahead each time, so that the last observed value of each window corresponds
to days: 90, 120, 150 and 180. It can be noted that the errors are smaller for the
predictions obtained with DFM (with or without cluster structure). This is done first
independently for the two selected stations, and then the mean of the errors for all the
stations together are shown.

Station 1
Model ARIMA KNN Model 1 Model 2
MAE 47.03 52.70 37.95 37.95
RMSE 62.77 68.21 50.07 50.07

Station 132
Model ARIMA KNN Model 1 Model 2
MAE 185.97 162.87 91.88 94.00
RMSE 286.9 233.78 146.91 149.26

All series
Model ARIMA KNN Model 1 Model 2
MAE 178.31 155.16 68.04 66.48
RMSE 346.16 294.95 176.51 173.67

Table 4.: MAE and RMSE for ARIMA, KNN, Model 1 (without cluster structure) and
Model 2 (with cluster structure) for two stations separately and overall the stations.

The results for each station are shown in Figures 6 and 7 respectively. In each figure,
only the previous 7 days are shown (although data from the previous 90 days has been
used to make the predictions). The true series are shown in black and Model 1 and 2 in
blue and green, respectively. Recall that in Station 1, belonging to Cluster 2, Models
1 and 2 are the same, since Cluster 2 has no specific factors.
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Figure 6.: Forecasting after day 90, 120, 150 and 180 in Station 1.
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Figure 7.: Forecasting after day 90, 120, 150 and 180 in Station 132.

To illustrate the predictions with the different models, Figure 8 shows three days
of predictions after one window in Station 132 (where Model 1 and 2 also differ). It
can be noted that ARIMA repeats the same pattern, which the DFMCS are able to
capture. The cluster structure in Model 2 allows for a better prediction of the patterns.
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Figure 8.: Forecasting in Station 132 after day 150.

The results shown were obtained modelling the procedure in Matlab (MATLAB
2021), using the TS function: TRAMO-SEATS (Román 2022), which allows to auto-
matically determine the optimal parameters of ARMA models in time series. ARIMA
and KNN models haven been implemented in R (R Core Team 2021).
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4. Conclusions

The prediction of passenger hourly entries at each Barcelona metro station is a complex
task to perform as there is a large volume of data from all stations on the network.
Making use of the procedure by Alonso, Galeano, and Peña (2020) to estimate a
Dynamic Factor Model with Cluster Structure, has made it possible to characterise
the stations based on the hourly distribution. These forecasts would serve to obtain
accessibility improvements throughout the Barcelona Metro network.

Some subway stations have a highly polarised temporary demand, so their efficiency
decreases. Achieving a more balanced demand over time is an essential objective to
ensure better use of metro infrastructure and services. Since the temporal distribution
of the travellers who access the stations depends, to a large extent, on the character-
istics of the station environment, land use policies could improve the efficiency of the
metro system by promoting the mix of uses and activities.

The novel methodology used allows to obtain good estimations in passenger predic-
tion in Barcelona subway stations using the information provided by the time series,
which implies the analysis of large amount of data. It has been proved to be a very
robust procedure for prediction in Big Data. The procedure rearranges the series to
better capture the dynamics of the temporal frequency, it classifies them into differ-
ent clusters and then extracts global and common factors, which are predicted with
ARIMA models to compute forecasts. Moreover, since the ARIMA models to predict
the factors allow the incorporation of regressor variables, these can be used to deal
with special events and extended the applications of the method. It is important to
highlight that this methodology has not been previously used to predict passenger
flow, although it is able to capture the temporal structure of the data, as well as the
information from the different clusters of series. The fundamental contribution lies in
its ability to group and predict jointly, using the information of the factors that are
calculated to make the groupings for the adjustment and prediction. The approach
commonly used in these cases consists in defining the clusters first and then taking a
representative of each cluster, without incorporating information related to the cluster
to which it belongs. This results in a more precise fitting of the data that improves
forecasting, as can be seen in the comparison with other used methodologies such as
ARIMA applied directly to the series and the KNN algorithm.

The results that can be obtained with this methodology can help make decisions to
determine public transport strategies. Controlling the number of passengers at rush
hour, increasing the number of wagons and the frequency of the subway, orienting
passengers to enter or leave stations that are not as busy at certain times... are some
of the measures that can be taken knowing the hourly forecast of passengers in the
Barcelona subway stations.
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forecasting by averaging dynamic factor models.” Energies 9 (8): 600.

Alonso, Andrés M, Pedro Galeano, and Daniel Peña. 2020. “A robust procedure to build
dynamic factor models with cluster structure.” Journal of Econometrics 216 (1): 35–52.

Alonso, Andrés M, and Daniel Peña. 2019. “Clustering time series by linear dependency.”
Statistics and Computing 29 (4): 655–676.

Alsger, Azalden, Ahmad Tavassoli, Mahmoud Mesbah, Luis Ferreira, and Mark Hickman.
2018. “Public transport trip purpose inference using smart card fare data.” Transportation
Research Part C: Emerging Technologies 87: 123–137.

Ando, Tomohiro, and Jushan Bai. 2017. “Clustering huge number of financial time series: A
panel data approach with high-dimensional predictors and factor structures.” Journal of the
American Statistical Association 112 (519): 1182–1198.

Bakıcı, Tuba, Esteve Almirall, and Jonathan Wareham. 2013. “A smart city initiative: the
case of Barcelona.” Journal of the Knowledge Economy 4 (2): 135–148.

Blasques, Francisco, Meindert Heres Hoogerkamp, Siem Jan Koopman, and Ilka van de Werve.
2021. “Dynamic factor models with clustered loadings: Forecasting education flows using
unemployment data.” International Journal of Forecasting .
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Román, Juan Bógalo. 2022. TS function: TRAMO-SEATS under Matlab. MATLAB Central
File Exchange.

Sun, Yuxing, Biao Leng, and Wei Guan. 2015. “A novel wavelet-SVM short-time passenger
flow prediction in Beijing subway system.” Neurocomputing 166: 109–121.

Tang, Liyang, Yang Zhao, Javier Cabrera, Jian Ma, and Kwok Leung Tsui. 2018. “Forecasting
short-term passenger flow: An empirical study on shenzhen metro.” IEEE Transactions on
Intelligent Transportation Systems 20 (10): 3613–3622.
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