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Abstract

Extensive literature supports that fatigue cracks tend to a stable stage driven by an iso crack driving
force (CDF) distribution that produces a quasi-constant crack shape. Here fatigue crack growth is
studied by two means: 1) a finite element simulation based on crack-tip opening displacements and
remeshing and mapping strategies and 2) a theoretical analysis based on the multiple-degree-of-freedom
scheme and power-law crack growth relationships. Contrary to the literature, naturally growing fatigue
cracks are found to converge towards a quasi-constant crack-shape regime promoted by a non-iso CDF
distribution that depends on material properties and the stable crack shape.

Keywords: Crack shape, crack driving force, fatigue crack growth, predictions

∗Corresponding author
Email address: mescalero@ikerlan.es (Mikel Escalero)

Preprint submitted to Engineering Fracture Mechanics October 25, 2022

Manuscript File

https://www.editorialmanager.com/efm/viewRCResults.aspx?pdf=1&docID=8108&rev=2&fileID=206114&msid=8ea595f4-2051-46b1-8302-58e9d624f962
https://www.editorialmanager.com/efm/viewRCResults.aspx?pdf=1&docID=8108&rev=2&fileID=206114&msid=8ea595f4-2051-46b1-8302-58e9d624f962


Nomenclature
Latin characters

a Crack length (mm)
da/dN Crack growth rate (mm/cycle)
K Stress intensity factor (MPa mm1/2)
P Load (N)
s Slope of the crack front (-)
U Ratio between effective and total stress intensity factor ranges (-)
W Width (mm)
z Location in thickness (mm)

Greek characters

β Proportionality constant between ∆CTODp and da/dN (-)
σ Stress (MPa)

Subscripts

()eff Effective
()end End
()ini Initial
()max Maximum
()mid Midplane
()op Opening
()p Plastic
()sur Surface
()y Yield

Abbreviations

CDF Crack Driving Force
CT Compact Tension
CTOD Crack Tip Opening Displacement
FCG Fatigue Crack Growth
FE Finite Element
PICC Plasticity Induced Crack Closure
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1. Introduction and motivation

Fatigue crack growth (FCG) in metallic components is driven by externally applied loads and
the crack-tip plastic phenomena, such as plasticity-induced crack closure (PICC) [1, 2]. Both global
(loading-related) and local (PICC-related) effects vary considerably along the crack front due to the
significant stress-state variations through the thickness [3, 4], producing a crack shape evolution that
has been confirmed empirically [5, 6]. Thus, naturally growing fatigue cracks, which are free from
imposed restrictions, must be based on a point-wise calculation of the fracture parameters acting as
the crack driving force (CDF) and a correct determination of crack shapes.

In the last decades, it has been challenging for researchers to determine CDF distributions and
crack shapes. Commonly, they have done so through the finite element (FE) method, which provides
the versatility to consider different crack configurations [7]. As a result, several FE approaches have
been presented relying on different hypotheses. Some of these approaches calculate the crack shape
evolution by neglecting PICC, others determine the evolution of the CDF by considering fixed crack
shapes or imposed evolving crack shapes, yet others predict the evolution of crack shapes by resorting
to simplified estimations of PICC. Finally, some explicitly calculate the CDFs accounting for PICC
and determine the resulting crack shapes. These approaches and the most remarkable discoveries are
reviewed below.

One of the pioneering approaches is the remeshing proposed by Lin and Smith [8–10]. This ap-
proach uses a 3D linear-elastic FE model containing the crack and iteratively advances the crack front
according to a multiple-degree-of-freedom ∆K-propagation scheme that neglects PICC. Based on this
approach, the literature has agreed to identify two different propagation stages [11, 12]: a transitory
stage characterized by significant crack-shape changes driven by the initial non-uniform K-distribution
[9], and a stable stage where the crack tends towards a converged crack shape promoted by an iso-K
distribution [13], following preferred crack paths that do not depend on the initial crack [14].

Another popular approach is the node release proposed by Chermahini [15]. This approach develops
the plastic wake using a 3D elastic-plastic FE model and a rigid contact surface on the fracture
plane to simulate PICC, under the assumption of a fixed crack shape. Following that approach, and
considering straight through-cracks, it has been found that the through-the-thickness distribution of
the CDF is maintained as the crack propagates, with higher values of ∆Keff in the interior than in
the surface region [16]. Alternatively, Gardin et al. have calculated ∆Keff distributions with two
parallel FE models, one linear elastic to determine Kmax and the other elastic-plastic (with a fracture-
plane rigid surface for simulating PICC) to calculate the normalized crack opening load, Pop/Pmax

(Kop/Kmax = Pop/Pmax) [17]. They use the node release technique in the elastic-plastic FE model
to propagate the crack following intermediate shapes that are assumed based on the initial straight
crack and the final experimentally measured curved crack. Following their approach, Gardin et al.
have identified that ∆Keff stabilizes along the crack front, although some fluctuations were found and
attributed to the intermediate crack-shape uncertainty [17].

Other authors have calculated crack shapes and CDF distributions by explicitly considering the
interaction between the crack shape and PICC, while still applying some assumptions. Branco has
improved on Lin and Smith’s remeshing, by considering that only a portion U of the nominal ∆K acts
effectively for a few nodes close to the surface (∆Keff = U ·∆K) [12, 18]. By postulating close-to-unity
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values (0.88 < U < 1) for those superficial nodes, Branco has identified the already commented trends
in crack shapes at both the transitory and stable stages, finding a more tunneled final crack shape
associated with a greater PICC at the surface [18]. Similarly, Yu and Guo have employed the remeshing
combined with an analytically-estimated ∆Keff (∆Keff = Kmax −Kop), though they resort to a closed-
form expression for the point-wise (node-to-node) calculation of the opening K (Kop) [19, 20]. That
closed-form expression is based on an equivalent thickness conception that eliminates the arbitrary
assignation of U values, but exclusively considers ideal crack shapes (e.g. semi-elliptical) and material
behavior (e.g. no hardening) [20]. Following their approach, Yu and Guo have also discovered that,
under applied tensile loads, different initial semi-elliptical cracks tend to crack shapes with similar
aspect ratios and have achieved a high correlation with experimental beachmarks [19].

In a strict sense, only a few authors have predicted FCG by calculating CDFs that consider PICC
for the particular case while predicting naturally evolving crack shapes. Many of these authors have
proposed approaches that simultaneously run two geometrically identical FE models to calculate the
linear elastic and elastic-plastic components of ∆Keff . In particular, to keep the load history infor-
mation in the elastic-plastic FE model while changing the crack shape, Hou suggests the free-front
technique [21], Gozin and Aghaie-Khafri propose remeshing and mapping strategies [22], and Gardin et
al. employ remeshing operations for a constant-∆K case [23]. All three aforementioned authors (Hou,
Gozin and Gardin) have contrasted the predicted shapes with experimental measurements and have
reported good correlations. However, only Gardin et al. have exhaustively analyzed the evolution of
the CDF distributions with crack propagation, discovering an almost constant through-the-thickness
distribution of ∆Keff for the stable crack, with 7% and 9% fluctuations with respect to the aver-
age values for fitted parabolic and elliptic shapes, respectively [23]. In fact, they use that iso-∆Keff

distribution to declare ∆Keff as the governing CDF [17].
Recently, the present authors have proposed a FCG propagation approach [24] that determines the

CDF values by explicitly accounting for PICC (thus avoiding assumptions or analytical approximations
for Pop/Pmax), which naturally builds the evolving crack shape from the local crack-advances (thus
avoiding postulated or mathematically-fitted shapes). The approach, which requires a single FE model
of the cracked body, 1) relies on crack-tip opening displacements that intrinsically account for plasticity-
induced crack closure, 2) allows crack shape evolution by remeshing of the crack front region, 3) keeps
load history by mapping the finite element results and 4) simulates crack advances by node releases.
The original paper proposing this approach [24] applied it to study a cracked compact tension (CT)
specimen, however, due to the high computational cost, the stable crack shape had to be analytically
extrapolated based on converged intermediate CDF distributions.

In summary, the literature has made significant progress in identifying the trends in crack shapes
and CDF distributions, using a wide variety of FE approaches. However, most of these approaches rely
on hypotheses that may have biased the results. These hypotheses are, on one side, related to crack
shapes: the assumption of constant crack shapes [15, 16], the postulation of the evolving intermediate
shapes [17], or the fits with mathematical functions that force ideal shapes [23]. On the other side,
the hypotheses related to CDF distributions are: the use of essentially linear elastic CDFs such as ∆K
or ∆Keff [8, 11, 13, 18, 23], the neglection of PICC [8, 13], the assumption of the values for the crack
opening loads [18], or the determination of crack opening loads with closed-form expressions developed
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under restrictive material and crack configuration hypotheses [19, 20]. Furthermore, more advanced
approaches are computationally expensive, so the behavior of the crack at its stable stage has only
been estimated based on partial simulation results [24].

Therefore, this work still pursues to understand the evolution of naturally growing fatigue cracks,
to establish the evolution of crack shapes and CDF distributions and their relationship. To do this, the
work first optimizes the authors’ original approach and applies it to the mentioned CT configuration.
Then, it complements the results by using a theoretical analysis that addresses generic crack shapes
and various fracture parameters.

2. Finite element simulation of a naturally growing crack in CT configuration

To study the evolution of crack shapes and CDFs, the representative case of a crack growing in a
CT specimen was analyzed. In particular, the growth of an initially-straight 12-mm long through-crack
was simulated in a standard 2.4-mm thick CT specimen made of S275 structural steel.

2.1. FCG simulation approach

2.1.1. Original approach
The main steps for simulating FCG were the following, as described in detail in the original paper

[24].
In the first place:

1. Definition of elastic-plastic FE model: An FE model of the quarter CT was built in Ansys. The
mesh comprised a bulk region and a fine local region made of structured linear hexahedral
elements (Figure 1a), and both regions were tied together by a bonded contact. A rigid surface
was placed on the fracture plane to simulate the crack-face contact with the other specimen
portion (not modeled explicitly). The local mesh had 25 elements unevenly-distributed through
the thickness (see illustration in Figure 1b). Close to the crack-front, the elements were 8.56 µm
x 8.56 µm in plane, with dimensions between 16 µm and 105 µm in the thickness direction. The
material properties of S275 were assigned to the model, including the linear elastic properties
and the Chaboche hardening behavior [24].
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Figure 1: FE model of the CT specimen.

Then, the following steps were applied repetitively for each crack advance (Figure 2), until the
achievement of a quasi-constant crack shape.

B
Load

Pseudotime

A C

Figure 2: Cyclic load profile applied to the FE model.

2. Simulation of fatigue process (A): A complete load cycle was applied so that the material re-
sponse stabilized in the crack front region. The loading step was divided into many small incre-
ments (80 in this case) to obtain smooth displacement results.

3. Calculation of crack driving force (B): CTOD-based fracture parameters were extracted using
the displacements of the nodes behind the present crack front, as shown in Figure 3. In this
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study, both ∆CTOD [25–28] and ∆CTODp [29, 30] were regarded as CDFs, motivated by their
popularity in the literature.

Pseudo-time

Load

Crack advance 1 Crack advance 2 Crack advance 3

Simulation of
fatigue process

Figure 3: Schematic illustration of the applied load cycles.

2.3. Calculation of crack driving force and PICC parameters

In this study, CTOD is defined as the vertical (perpendicular to the fracture plane) displacement of
the nearest node behind each crack-front node [49] (Figure 6), while the mesh dependence introduced
by such definition can be avoided by being consistent in the choice of the same crack-tip element size
in characterization and prediction crack configurations.

∆CTODp is extracted from the last loading ramp before the node release. For that, 1) the initial
elastic region part is identified, 2) a linear fit is performed to obtain the elastic component and 3)
the difference between total CTOD and elastic CTOD is obtained at maximum load [47]. This simple
procedure contrasts with the energetic methods employed for calculating stress intensity factors, which
imply the evaluation of domain integrals over contours of elements around the crack front [53].

P/Pmax

CTOD

R Pop/Pmax 1

∆CTODe

∆CTODp

∆CTOD

CTOD/2

Figure 4: Crack tip opening displacement measured in the first node behind the crack front in the last loading ramp.

8

Figure 3: Determination of ∆CTOD and ∆CTODp from CTOD curves.

4. Determination of new crack front locations (B): The provisional location of the new crack front
was obtained based on: 1) the normal directions derived from the local slopes of the present
crack front and 2) the crack advances determined using the values of the CDF and the crack
growth law. Initially, a surface advance of approximately 1.5 times the element size (8.56 µm)
was imposed in the global propagation direction (x), to define such crack advances. As the
variations from successive crack fronts decreased, that surface advance was gradually increased
up to 2.5 times the element size to reduce the computational cost.

5. Local remeshing (B): The front portion of the local mesh, ahead of the present crack front, was
replaced by a mesh adapted to the new crack front shape in each crack advance. That new
mesh had nodes defined based on the provisional positions calculated in Step 4, and the original
through-the-thickness distribution of the crack front nodes was preserved by a cubic splines
interpolation. A row of nodes was placed perpendicularly behind the new crack front nodes at a
distance of an element size, between the present and new crack fronts, to measure CTOD in the
following crack advance.

6. Boundary conditions and results mapping (B): The boundary conditions and results were mapped
from the old local mesh portion to the new one. Then, the whole FE model was solved to balance
the residual forces resulting from the mismatch between the internal nodal forces calculated from
the interpolated Gauss point stresses and the external nodal forces.

7. Node release (C): Finally, the nodes of the present crack front and the nodes for measuring
CTOD for the new crack front were released (i.e., their normal-to-fracture-plane displacement
restrictions were removed) to simulate the crack advance. A load cycle was applied between both
releases (Figure 2) to avoid generating irregular crack faces.
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2.1.2. Optimization of the original approach: improvements in remeshing
The FCG simulation required many crack advances to reach the stable crack-shape, so this was not

fully accomplished by the present methodology following the previous remeshing strategy [24]. The
problem was that the initial front portion of the local mesh had to be extremely dense, not to run out
of nodes/elements ahead of the crack-front as the crack propagated. Note that crack propagation is
simulated by node release, what means that every crack-advance leaves two rows of nodes/elements
behind.

In this study, an improved remeshing strategy was designed to overcome the above problem. The
solution was to start with a sparse front portion of the local mesh and to introduce, in each remeshing,
as many additional nodes as left behind by the crack-front in each advance. This strategy still suffers
from a progressive increase of the local mesh as the crack propagates, given the nodes/elements that
accumulate behind the crack-front, but avoids having a heavy mesh from the beginning.

For a clearer comparison, Figure 4 shows an illustrative example of a crack propagation comprising
two advances. Let us consider that 6 element rows are needed at least ahead of the crack-front for a
good representation of the displacement and stress fields. Following the previous remeshing strategy,
the local mesh would always have 15 rows of elements, fewer ahead and more behind each time the
crack grows. In that strategy, the front portion would become less and less dense up to reaching the
optimum ahead-of-crack elements (6 rows). Following the new remeshing strategy, the local mesh could
start with just 6 rows of elements ahead of the crack-front. Through the propagation, more and more
elements would appear behind the crack front, but ahead elements would not be consumed because
each remeshing introduces new ones at each advance. Therefore, the local mesh would have 15 rows
of elements only in the last step of the simulation.

Obviously, the mesh difference between strategies was much greater in the studied CT model.
In fact, the computational time was reduced by a factor of 4-5, managing to complete the FCG
simulation based on 75 crack advances in approximately 7 days, using a workstation with 12 cores and
128 RAM. Additionally, results were checked, finding the same tunneling evolution (amid − asur) with
both remeshing strategies (Figure 5).
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6 rows ahead (11 in total)

6 rows ahead (13 in total)

6 rows ahead (15 in total)
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8 rows ahead (15 in total)
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Crack advance 1 Crack advance 1

Crack advance 2 Crack advance 2
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(a) Previous remeshing strategy

6 rows ahead (11 in total)

6 rows ahead (13 in total)

6 rows ahead (15 in total)

10 rows ahead (15 in total)

8 rows ahead (15 in total)

6 rows ahead (15 in total)

Crack advance 1 Crack advance 1

Crack advance 2 Crack advance 2

Start Start

(b) Improved remeshing strategy

Figure 4: Illustration of previous and improved remeshing strategies.
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Figure 5: Evolution of the tunneling according to simulations with ∆CTODp.

2.2. Results

2.2.1. Crack shapes
Figure 6 shows the predicted beachmarks and the evolution of the crack tunneling distance (amid−

asur). Under both CDFs, the initial straight crack front progressively bends, growing more at the
midplane than at the surface. Branco et al. [18] have attributed this trend to a higher CDF acting at
the midplane.

At the start of the propagation, the tunneling distance changes quickly, indicating significant crack
shape changes. For example, by the time the crack reaches the initial plastic zone size (rp,inimax =
190 µm) at the midplane, the tunneling distances are as high as 77 µm and 67 µm with ∆CTODp and
∆CTOD.

As the crack propagates beyond that, the changes in tunneling distance slow down, and a prac-
tically constant tunneling distance is achieved according to both CDFs at ∆amid ≈ 1.5 mm. Such
stabilization indicates that the crack front has achieved a quasi-constant shape. The predicted values
of the tunneling distance, 253 µm with ∆CTODp and 247 µm with ∆CTOD, are close to the experi-
mental value (264 µm) [24], presenting errors of -4.17% and -8.93%, respectively. The trends found are
consistent with the literature, because studies have already numerically [17, 19] and experimentally
[5, 6] demonstrated that the crack front reaches a stable shape.
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(a) Beachmarks (b) Tunneling distance

Figure 6: Predicted beachmarks and tunneling distance.

Figure 7 shows the stable crack-shapes determined at ∆amid ≈ 1.5 mm (the scale is distorted to
highlight differences), and compares the absolute local slopes for a better discussion about shape.

The results indicate that the experimental beachmark changes more gradually through the thick-
ness, whereas the simulated shapes are flatter in the bulk region and bend more quickly at the surface.
Both CDFs yield a similar front, but in contrast with the correlation in tunneling, the result with
∆CTOD is closer to the experimental shape all along the crack-front.

Figure 7: Numerical-experimental correlation of the experimental beachmark.
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2.2.2. CDF distributions
Figure 8 shows the through-the-thickness distributions of ∆CTODp (left column) and ∆CTOD

(right column) throughout a total crack propagation of approximately 1.5 mm (7.89rp,inimax) in the
midplane.

For the initial straight crack front, both CDFs present a relatively constant value in the central
region of the mid-thickness, and display a significant decrease at the surface (Figure 8a, Figure 8b). In
particular, the central values are approximately ∆CTODp ≈ 7.2e−5 mm and ∆CTOD ≈ 2.6e−4 mm,
with respective decreases of 37% and 30% at the surface. The length of the surface region is around
0.2 mm for both CTOD-based CDFs. It should be noted that the same distribution has already been
reported in ∆Keff for the initial straight crack [16, 17].

When the crack starts to propagate (Figure 8a, Figure 8b), the arched shape of the CDF distribution
is accentuated, because the CDFs increase in the central part and decrease close to the surface. This
trend has also been reported under straight crack assumption [17], and it has attributed to a higher
crack closure being developed close to the surface.

As the crack continues to propagate beyond the initial plastic envelope (Figure 8c, Figure 8d),
∆CTODp increases all along the mid-thickness and especially at the surface, whereas ∆CTOD increases
almost exclusively at the surface. In that way, at a midplane crack advance of 1.8rp,inimax, both CDFs
change from displaying maxima and minima at the two extremes, to presenting a valley close to the
surface. That valley progressively moves away from the surface.

From ∆amid/rp,inimax = 3.7 onward (Figure 8e, Figure 8f), the through-the-thickness distribution
of the CDFs is kept relatively constant, although the values in the thickness increase uniformly as the
crack advances. Eventually, both CDFs converge to a non-iso distribution that is kept constant as the
crack propagates. That stabilization occurs at ∆amid = 1.39 mm (7.32rp,inimax) for ∆CTODp. The
stable distribution presents a maximum value of ∆CTODp = 8.3e−5 mm at the midplane, a minimum
value (23% lower) at 0.1 mm from the surface, and an intermediate value (13% lower) at the surface.
In the case of ∆CTOD, the stabilization occurs slightly later at ∆amid = 1.47 mm (7.75rp,inimax), and
the stable CDF distribution displays: 1) a maximum value of ∆CTOD = 2.8e−4 mm at the midplane,
a minimum value (22% lower) at 0.08 mm from the surface and an intermediate value (5% lower) at
the surface.
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Figure 8: Evolution of ∆CTODp (left) and ∆CTOD (right) distributions with crack advance.
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The identified non-iso CDF distribution is clearly represented by the evolution of the normalized
CDFs at different locations in thickness (Figure 9). In fact, there are variations within the initial plastic
zone for both ∆CTODp and ∆CTOD (especially in the surface region, 0.994 mm ≤ z ≤ 1.2 mm).
However, the normalized CDFs then gradually converge to saturated values different from 1.

As far as the authors know, this is the first time this trend has been identified, and its discovery
contradicts the extensive literature [10, 13, 17, 18, 23]. Previous studied have examined different crack
configurations regarding ∆K or ∆Keff as CDF, so section 3 presents a theoretical analysis considering
generic crack shapes and other fracture parameters.

z

(a) ∆CTODp

z

(b) ∆CTOD

Figure 9: Normalized CDF evolution against midplane advance for different thickness-locations.

3. Theoretical analysis of naturally growing generic cracks

Although unexpected considering the literature, it can be theoretically deduced that an iso-CDF
distribution and a stable crack-shape growth are geometrically incompatible. Both the crack growth
rate and CDF are defined perpendicular to the crack front and are univocally related by a crack
growth law. Thus, the curvature of a non-straight crack front makes a crack growing with a stable
shape (where every point advances the same in the global direction) incompatible with an iso-CDF
distribution (where every point advances the same in the local perpendicular direction).

This section addresses various generic cracks that propagate under the action of different fracture
parameters, to provide a practical demonstration of the above statement.

3.1. Strategy

Like the previous FE simulations, the present theoretical analysis is based on the multiple-degree-
of-freedom approach (Figure 10), which consists of building the new crack front from 1) the new
locations determined point by point and 2) a cubic splines interpolation. Crack growth was set to be
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governed by a power-law relationship (Equation 1), which is representative for the most relevant linear
elastic and elastic-plastic fracture parameters used as CDF.

da
dN = C1CDFC2 →


da
dN = C∆Kn

eff
da
dN = C∆Jn

da
dN = β∆CTOD
da
dN = β∆CTODp

(1)

Figure 10: Illustration of multiple-degree-of-freedom approach.

In particular, Equation 2 (derived from Equation 1) determined the magnitudes of the local crack
advances, by defining a small-enough midplane crack-advance (damid) and using C2 exponents ranging
from 1 (suitable for ∆CTOD(p) [29]) to 4 (suitable for ∆K [31]). On the other side, Equation 3 deter-
mined the directions of those local crack advances, based on the local slopes (si), in turn, determined
by the differentiation of the interpolating function.

dai =
(

CDFi

CDFmid

)C2

damid (2)

#»n i =

 −si√
1+s2

i

1√
1+s2

i


zx

(3)

Finally, following the above formulation, Equation 4 (derived from Equation 2) back-calculated the
CDF distribution required to provide the propagation between two given crack fronts.

CDFi

CDFmid
=
(

dai

damid

)1/C2

(4)
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3.2. Results
3.2.1. Crack growth under iso-CDF vs. crack growth under constant shape

Figure 11 shows two crack fronts obtained from a generic crack under two different conditions: 1)
growth under iso-CDF distribution, where all the points advance the same distance in the local normal
directions (dai = damid from Equation 2), and 2) growth under constant crack shape, where all the
points advance the same offset-distance in the global propagation direction. The dashed circles are
drawn to highlight that the crack advances are identical in the two directions.

Both crack fronts only coincide in the midplane, where the local normal is parallel to the global
propagation direction. For the rest of the points, the points’ new locations are different for the two
conditions. Therefore, this simple illustration demonstrates that, for curved crack fronts, crack growth
under iso-CDF distribution and crack growth with constant crack shape are geometrically incompatible.

In fact, the only way to guarantee such compatibility is to have a crack front whose all local normal
directions relate with the global propagation direction in the same angle, that is, to have a straight
front.

Figure 11: Crack growths 1) under iso-CDF and 2) under constant shape.

3.2.2. Crack shape evolution under iso-CDF distribution
Figure 12a shows the shape evolution determined for four different cracks under an assumed iso-

CDF distribution (small-enough ≈ 1 µm advances). The first two cracks are initially ideal and follow
respectively parabolic and elliptical shapes, the third crack is arbitrary, and the last one is the ex-
perimental beachmark measured at ∆amid = 1.5 mm. Note that the same evolution is predicted for
any fracture parameter and material property (namely C1 and C2), because dai = damid (from the
particularization of Equation 2 to iso-CDF).

All the results display, from the beginning, a progressive flattening of the initial curved crack-fronts,
with changes that gradually decrease. All the different crack-fronts reach similar “preferred paths”
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after some extent of propagation, regardless of the initial tunneling distance and shape irregularities.
In this sense, the flattening observed under iso-CDF contradicts wide experimental evidence [5, 6] that
has found that fatigue cracks reach and consecutively preserve a stable shape.

In particular, Figure 12b shows the comparison between a beachmark directly measured at ∆amid =
11 mm and the one predicted by the iso-CDF analysis starting from the experimental stable crack-front
at ∆amid = 1.5 mm. The difference is clear, because the analysis estimates a tunneling decrease from
264 µm at ∆amid = 1.5 mm to 49 µm at ∆amid = 11 mm, whereas in reality the tunneling is kept
practically constant 264 µm vs. 269 µm.

Based on the above discovery, the FCG under an iso-CDF distribution is concluded to be physically
inconsistent.

(a) FCG under iso-CDF (b) Experimental vs. iso-CDF

Figure 12: Crack shape evolution under iso-CDF for different cracks.

3.2.3. CDF distribution for a stable crack shape
Figure 13a shows the CDF distributions calculated by Equation 4 to provide a crack growth with

constant shape. The already presented crack-fronts are considered and various C2 values ranging
between the lower (C2 = 1) and upper bounds (C2 = 4) are assumed. All distributions are found
to display a non-uniform (non-iso) profile that depends on both the crack shape and the power-law
exponent. The higher the curvature or the lower the exponent, the more irregular the CDF distribution.

Figure 13b shows the CDF distributions determined by the simulations at the stable crack-shape
regime and compares them to the profile back-calculated from the experimental beachmark (C2 = 1 for
linear laws). The three distributions display again a non-iso profile, characterized by a relatively con-
stant central region and a valley close to the surface. As already observed at the beachmark comparison
(Figure 6), the simulations indicate more abrupt changes at the surface than expected experimentally
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and ∆CTOD yields better approximation through the thickness. The value CDFmin/CDFmid is lower
in the simulations (0.77 for ∆CTOD and 0.79 for ∆CTODp) than deduced from the experiment (0.89).

These results represent the definitive proof that, as long as the crack is curved (as expected at the
stable growth regime [5, 6]) and FCG is driven by a power-law, a quasi-constant crack shape can only
be maintained by a non-iso CDF distribution.

(a) Back-calculated CDF distributions (b) Experimental vs. simu-
lations

Figure 13: CDF distributions required to maintain constant crack shapes.
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4. Conclusions

This work studied the evolution of naturally growing fatigue cracks, to establish the evolution of
crack shapes and crack driving force distributions and their relationship.

To do this, the work simulated crack growth using an FCG propagation approach that 1) determines
the CDF values by explicitly accounting for PICC (avoiding assumptions or analytical approximations
for Pop/Pmax), and 2) naturally builds the evolving crack shape from the local crack advances (avoiding
postulated or mathematically fitted shapes). The approach had to be optimized to reduce the previous
high computational cost, allowing to understand the whole FCG process up to the stable crack shape
without artifacts.

Simulations were performed on the basis of CTOD-based fracture parameters considering the ex-
ample of crack in a compact tension specimen. It was concluded that:

• There is an initial transitory stage where the through-the-thickness CDF distribution changes
due to the development of the plastic wake. Consequently, the crack shape driven by the CDF
distribution also changes.

• There is a final stage where the through-the-thickness CDF distribution converges to a non-iso
(non-uniform) distribution. Such a non-iso CDF distribution produces a crack shape change that
progressively decreases, therefore leading to a quasi-constant crack shape.

• The stable crack-shape predictions are validated by the good numerical-experimental correlation
obtained at the tunneling of the stable crack (-4.17% error with ∆CTODp and -8.93% with
∆CTOD).

In a second approach, motivated by the discovery of a quasi-constant crack shape provided by a
non-iso CDF distribution, a theoretical analysis was performed. That analysis relied on crack growth
predictions based on the multiple degree-of-freedom approach and power-law crack growth relation-
ships, and considered generic CDFs and cracks. The analysis arrived at the following findings:

• Constant crack-shape growth and crack growth under iso-CDF distribution are incompatible for
curved crack fronts, because the local normal directions of the crack do not coincide with the
global propagation direction.

• The non-iso CDF distribution required by a constant crack-shape growth depends on the expo-
nent that relates the fracture parameter and the crack growth rate and on the crack shape.

• An iso-CDF distribution is inconsistent at the stable fatigue crack growth regime, because such
distribution produces a progressive flattening of the advancing crack front that contradicts the
experimental evidence.

19



Acknowledgement

The authors would like to express their gratitude to the Spanish Ministry of Science and Innovation
for the financial support given through project MCI-20-PID2019-105593GB-I00/AEI/10.13039/501100011033
and project CER-20190001 within the program "AYUDAS CERVERA PARA CENTROS TECNOLÓGI-
COS 2019". Ikerlan is currently certificated as CENTRO DE EXCELENCIA CERVERA.

References

[1] E. Wolf, Fatigue crack closure under cyclic tension, Engineering Fracture Mechanics 2 (1) (1970)
37 – 45. doi:https://doi.org/10.1016/0013-7944(70)90028-7.
URL http://www.sciencedirect.com/science/article/pii/0013794470900287

[2] J. Newman, A crack opening stress equation for fatigue crack growth, International Journal of
Fracture 24 (4) (1984) R131–R135. doi:10.1007/BF00020751.

[3] J. C. Newman Jr, C. A. Bigelow, K. N. Shivakumar, Three-dimensional elastic-plastic finite-
element analyses of constraint variations in cracked bodies, Tech. rep., National Aeronautics and
Space Administration, Hampton (1993).

[4] T. Machniewicz, Fatigue crack growth prediction models for metallic materials. part ii: Strip
yield model – choices and decisions, Fatigue & Fracture of Engineering Materials & Structures 36
(2012) 361 – 373. doi:10.1111/ffe.12009.

[5] M. Mahmoud, A. Hosseini, Assessment of stress intensity factor and aspect ratio variability of
surface cracks in bending plates, Engineering Fracture Mechanics 24 (2) (1986) 207–221. doi:

https://doi.org/10.1016/0013-7944(86)90052-4.
URL https://www.sciencedirect.com/science/article/pii/0013794486900524

[6] F. Bovecchi, L. Boni, D. Fanteria, L. Lazzeri, Assessment of a numerical strategy for fatigue growth
and shape evolution of a corner crack from a pin-loaded hole, Engineering Fracture Mechanics
254 (2021) 107918. doi:https://doi.org/10.1016/j.engfracmech.2021.107918.
URL https://www.sciencedirect.com/science/article/pii/S001379442100343X

[7] R. McClung, H. Sehitoglu, On the finite element analysis of fatigue crack closure—2. numerical
results, Engineering Fracture Mechanics 33 (2) (1989) 253 – 272. doi:https://doi.org/10.

1016/0013-7944(89)90028-3.
URL http://www.sciencedirect.com/science/article/pii/0013794489900283

[8] X. Lin, R. Smith, Finite element modelling of fatigue crack growth of surface cracked plates: Part
i: The numerical technique, Engineering Fracture Mechanics 63 (5) (1999) 503 – 522. doi:https:

//doi.org/10.1016/S0013-7944(99)00040-5.
URL http://www.sciencedirect.com/science/article/pii/S0013794499000405

[9] X. Lin, R. Smith, Finite element modelling of fatigue crack growth of surface cracked plates: Part
ii: Crack shape change, Engineering Fracture Mechanics 63 (5) (1999) 523 – 540. doi:https:

20



//doi.org/10.1016/S0013-7944(99)00041-7.
URL http://www.sciencedirect.com/science/article/pii/S0013794499000417

[10] X. Lin, R. Smith, Finite element modelling of fatigue crack growth of surface cracked plates: Part
iii: Stress intensity factor and fatigue crack growth life, Engineering Fracture Mechanics 63 (5)
(1999) 541 – 556. doi:https://doi.org/10.1016/S0013-7944(99)00042-9.
URL http://www.sciencedirect.com/science/article/pii/S0013794499000429

[11] N. Couroneau, J. Royer, Simplified model for the fatigue growth analysis of surface cracks in
round bars under mode i, International Journal of Fatigue 20 (10) (1998) 711–718. doi:https:

//doi.org/10.1016/S0142-1123(98)00037-1.
URL https://www.sciencedirect.com/science/article/pii/S0142112398000371

[12] R. Branco, F. Antunes, Finite element modelling and analysis of crack shape evolution in mode-i
fatigue middle cracked tension specimens, Engineering Fracture Mechanics 75 (10) (2008) 3020 –
3037. doi:https://doi.org/10.1016/j.engfracmech.2007.12.012.
URL http://www.sciencedirect.com/science/article/pii/S0013794407004481

[13] M. Gilchrist, R. Smith, Finite element modelling of fatigue crack shapes, Fatigue & Fracture of
Engineering Materials & Structures 14 (6) (1991) 617–626.

[14] Z. Wu, The shape of a surface crack in a plate based on a given stress intensity factor distribution,
International Journal of Pressure Vessels and Piping 83 (3) (2006) 168–180. doi:https://doi.

org/10.1016/j.ijpvp.2006.01.004.
URL https://www.sciencedirect.com/science/article/pii/S0308016106000196

[15] R. G. Chermahini, Three dimensional elastic-plastic finite element analysis of fatigue crack growth
and closure, Ph.D. thesis, Old Dominion University (1986).

[16] C. Gardin, S. Fiordalisi, C. Sarrazin-Baudoux, J. Petit, 3d numerical study on how the local
effective stress intensity factor range can explain the fatigue crack front shape, Advanced Materials
Research Vols (2014) 295–300.

[17] C. Gardin, S. Fiordalisi, C. Sarrazin-Baudoux, J. Petit, Numerical simulation of fatigue plasticity-
induced crack closure for through cracks with curved fronts, Engineering Fracture Mechanics 160
(2016) 213 – 225. doi:https://doi.org/10.1016/j.engfracmech.2015.11.023.
URL http://www.sciencedirect.com/science/article/pii/S0013794416301643

[18] R. BRANCO, D. M. RODRIGUES, F. V. ANTUNES, Influence of through-thickness crack
shape on plasticity induced crack closure, Fatigue & Fracture of Engineering Materials & Struc-
tures 31 (2) (2008) 209–220. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.

1460-2695.2008.01216.x, doi:10.1111/j.1460-2695.2008.01216.x.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-2695.2008.01216.x

[19] P. Yu, W. Guo, An equivalent thickness conception for prediction of surface fatigue crack growth
life and shape evolution, Engineering Fracture Mechanics 93 (2012) 65 – 74. doi:https://doi.

21



org/10.1016/j.engfracmech.2012.06.008.
URL http://www.sciencedirect.com/science/article/pii/S0013794412002627

[20] P. Yu, W. Guo, An equivalent thickness conception for evaluation of corner and surface fatigue
crack closure, Engineering Fracture Mechanics 99 (2013) 202 – 213. doi:https://doi.org/10.

1016/j.engfracmech.2012.12.013.
URL http://www.sciencedirect.com/science/article/pii/S0013794412004742

[21] C.-Y. Hou, Simultaneous simulation of closure behavior and shape development of fatigue surface
cracks, International Journal of Fatigue 30 (6) (2008) 1036 – 1046. doi:https://doi.org/10.

1016/j.ijfatigue.2007.08.020.
URL http://www.sciencedirect.com/science/article/pii/S0142112307002514

[22] M.-H. Gozin, A.-K. Mehrdad, Quarter elliptical crack growth using three dimensional finite el-
ement method and crack closure technique, Journal of Mechanical Science and Technology 28
(2014) 2141–2151. doi:https://doi.org/10.1007/s12206-014-0503-x.
URL https://link.springer.com/article/10.1007/s12206-014-0503-x{#}citeas

[23] C. Gardin, S. Fiordalisi, C. Sarrazin-Baudoux, M. Gueguen, J. Petit, Numerical prediction of crack
front shape during fatigue propagation considering plasticity-induced crack closure, International
Journal of Fatigue 88 (2016) 68 – 77. doi:https://doi.org/10.1016/j.ijfatigue.2016.03.

018.
URL http://www.sciencedirect.com/science/article/pii/S014211231630024X

[24] M. Escalero, M. Muniz-Calvente, H. Zabala, I. Urresti, R. Branco, F. Antunes, A methodology
for simulating plasticity induced crack closure and crack shape evolution based on elastic–plastic
fracture parameters, Engineering Fracture Mechanics 241 (2021) 107412. doi:https://doi.org/

10.1016/j.engfracmech.2020.107412.
URL https://www.sciencedirect.com/science/article/pii/S0013794420309863

[25] V. Tvergaard, Effect of underloads or overloads in fatigue crack growth by crack-tip blunting,
Engineering Fracture Mechanics 73 (7) (2006) 869 – 879.

[26] H. A. Tinoco, C. I. Cardona, T. Vojtek, P. Hutař, Finite element analysis of crack-tip opening
displacement and plastic zones considering the cyclic material behaviour, Procedia Structural
Integrity 23 (2019) 529 – 534.

[27] H. Xin, M. Veljkovic, Residual stress effects on fatigue crack growth rate of mild steel S355 exposed
to air and seawater environments, Materials & Design 193 (2020) 108732.

[28] P. Cui, W. Guo, Crack-tip-opening-displacement-based description of three-dimensional elastic-
plastic crack border fields, Engineering Fracture Mechanics 231 (2020) 107008.

[29] F. V. Antunes, R. Branco, P. A. Prates, L. Borrego, Fatigue crack growth modelling based on
ctod for the 7050-t6 alloy, Fatigue & Fracture of Engineering Materials & Structures 40 (8)
(2017) 1309–1320. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/ffe.12582,

22



doi:10.1111/ffe.12582.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/ffe.12582

[30] F. Antunes, S. Serrano, R. Branco, P. Prates, Fatigue crack growth in the 2050-T8 aluminium
alloy, International Journal of Fatigue 115 (2018) 79 – 88, crack tip fields 4. doi:https://doi.

org/10.1016/j.ijfatigue.2018.03.020.
URL http://www.sciencedirect.com/science/article/pii/S0142112318301129

[31] P. Paris, F. Erdogan, A critical analysis of crack propagation laws (1963) 528–533.

23




