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1. Introduction

We study the Dirichlet problem for the pseudo-parabolic equation

up — div (a(m,t)|Vu|p(w’t)72Vu) — Ay = b(z, t)[u| "2y for (2,t) € Qr,

(1.1)
u=0on 92 x (0,T), u(z,0) = up(x) in 2.

Here 2 ¢ R? is a bounded domain with the sufficiently smooth boundary 02, the exponents p(z,t),
q(z,t) and the coefficients a(x,t), b(z,t) are given functions whose properties will be specified later. We
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are interested in the questions of local in time existence of solutions and the conditions of finite time blow-
up. In the recent years, both questions were intensively studied. We refer here to papers [1-7] where these
issues were discussed for the model Eq. (1.1) with the constant coefficients a = b = 1 and independent of ¢
exponents p(x), g(x). These assumptions allow one to apply the traditional method based on the analysis
of the functionals

A P AL

A complete classification of behavior of the weak solutions of the model problem (1.1) in terms of J(ug),

o) IS given in [6].

I(up) and ||u0||W(},2(

In this work, we are interested in the situation where the coefficients and the exponents in Eq. (1.1) are
allowed to vary with ¢. To the best of our knowledge, for Eq. (1.1) this case has not yet been studied. We refer
to [8] for a discussion of these questions for parabolic equations with variable growth, blow-up in solutions
of Sobolev type equations is studied in the monograph [9]. The local existence and blow-up of solutions of
pseudo-hyperbolic equations were studied in [10,11].

This paper is organized as follows. In Section 2 we prove the existence of local solutions. The existence
theorem is proven under two different assumptions on the initial function ug. If ug € WO1 P ("0)(()) with

inf; neq, p(z,t) > 2 and

a(x,0) e (z p(w,O)_Mu @O gy
/9 (p(x,O)Iv o(@)l q(x’0)| o) )d <-M (1.2)

with a positive constant M, see (2.27) and (2.28), depending on sup, e, P(¥;1), SUp(, ¢)eq, 4(z,t) and

|2|, then problem (1.1) has a local solution provided that at every moment ¢ the functions p~(t) =
inf e p(z,t) and g1 () = sup,cq ¢(z,t) are subject to some conditions. These conditions coincide with those
known for the case of constant or independent of ¢ exponents p and ¢. Unlike this situation, if ug € WO2 2(())
and satisfies (1.2), then a local solution exists for p and ¢ within the ranges which are defined by the space
dimension d only, and do not depend on each other.

In Section 3 we derive sufficient conditions for finite time blow-up. Two different situations are considered:
p~ = inf, e, P(7,t) = 2, ie., the equation may become semi-linear, or p~ > 2, where the equation is
quasi-linear on the whole of the domain. In both cases, it is assumed that sup,c, p(z,t) < inf,ecp g(z,t) for
every t € (0,7). The proofs of the blow-up in the cases p~ = 2 and p~ > 2 are different. Moreover, in the
case p~ = 2 the reaction term has to satisfy the additional condition inf(, yeq, q(z,t) > 4.

2. Existence of a local solution

The solution of problem (1.1) will be sought as an element of a variable Sobolev space. The definition
and a brief description of these spaces are given in Appendix. Given 7 € (0,T), we denote Q. = 2 x (0, 7).

Definition 2.1. A function u(x,t) is called a local solution of problem (1.1) if there exists © > 0 such that

(1) u € Wyy(Qe) N LY (Qe), us € L*(Qe), Vus € (L*(Qe))%;
(2) for every test-function ¢ € W,()(Qe) N L1 (Qe)

/ (utqb + Vg - Vo + a|Vul’ >Vu - Vo — b\u|q_2uq§) dzdt = 0; (2.1)
Qo

(3) for every ¢ € C?(2) (u(-,t) —uo(+),#(*))2.0 — 0 as t — 0.

2
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It is assumed throughout the text that

0<a <a(z,t)<at <oo, 0<b™ <b(z,t) <bT < o0,
p, q, a, b € C%Y(Qp) with the Lipschitz constants L, Ly, La, Lp, (2.2)
ptﬁO, thO, atSO, thO a.e. inQT.

We consider two different situations that correspond to different assumptions on the smoothness of the initial
function ug. Let us accept the notation

p~(t) = inf p(x,t), p"(t) =supp(x,t), ¢ (t)= inf g(x,t), ¢ (t)=supq(z,t), tel0,T],
xe (2 zeN e e

so that
p~ = inf p(t), pT = sup pT(t), ¢ = inf ¢ (t), ¢ = sup ¢ (1.
te(0,T) ®) te(0,T) (¥ t€(0,T) (t) te(0,T) (¥

By

o |25 ifd>2 (r-(1)" = L it d > p (1),
o ifd=2, 0 if p=(t)<d

we denote the critical Sobolev exponents for the embeddings W, ?(£2) C L*(£2) and Wol’p_(t)(ﬂ) C L*(82).
We will use the shorthand notation

Po :p(.'II,O), qo = Q(x,0)7 ag = G(QT,O), bO = b(.’IJ,O)

Theorem 2.1. Assume that conditions (2.2) are fulfilled. Let the data of problem (1.1) satisfy one of the
following conditions:

(i) o € Wo P 0(@), 02 € C*, k= 14+d (3 = % ), and
2<p™(t), 2<q () <qt()<( (1), tel0,T]; (2.3)

(i) uo € W3*(2), 002 € C3, and

2(d—2) |
2<p <ph<2%, 2<qt<{ d—4 ifd>4, (2.4)
00 if d < 4.
There exists a number M = M(|2],p%,q") > 0 such that if the initial energy is negative
po b q0
/ (a°|v“0| _ boluol ) dw < —M, (2.5)
Q Po q0

then there is t* such that for every © € (0,t*) problem (1.1) has a solution in the sense of Definition 2.1.
The solution satisfies the energy equality: for a.e. t € (0, O)

1d N .
2t (Do) */Q (alz, 0IVal™? = b, )ul"") dz =o. (2.6)

The energy

p(w,t) q(z,t)
B) = / (a(x,mw b bl ) ”
2

p(aj, t) Q(x7 t)

remains negative for all t € (0, ©) and

lurlaig, + E@) S0, Q=2 x (0,1). (2.7)
3
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It is worth noting that in the case (ii) the existence is proven without any assumption on the relation
between the exponents p(x,t) and g(z,t). The upper bounds for the their admissible values depend only on
the space dimension d.

A solution of problem (1.1) is constructed as the limit of the sequence of finite-dimensional approximations

ue = lim u(™, (m) (z,t) Zu”” Yi(z) € N,
m—ro0

where (v;, \;) are the eigenfunctions and eigenvalues of problem (A.1), and N, is defined at the end of

Appendix. The coefficients u; ., (t) are defined as the solutions of the Cauchy problem for the system of m

ordinary nonlinear differential equations

(:E,t)—Qu(m)d}i dl'7

{(H%m“@:—bM%mWwWW%%vamm+mwmmW” (2.8)

ui,m(0) = ug,i, 1=1,2,...,m,

where the constants ug ; are the Fourier coefficients of u in the basis {1;}. We may choose (see Appendix)

S in W "0 (2) if ug € Wy U0 (02
=Y woati(e) s uolw) M, () T €L ()
p n Wi~ (£2) if ug € W57 (02).
By the Peano theorem, for every natural m system (2.1) has a solution (w1, (), ..., Um,m(t)) on an interval

(0, o).
2.1. A priori estimates

Lemma 2.1. Let conditions (i) of Theorem 2.1 be fulfilled. There exists t* € (0,T] such that for every
O € (0,t*) the functions u(™ satisfy the estimate

q(z,t)

s [l + [0 o [ ™ e < 0
e e

te(0,0)

The constant C depends on © and ||ug|ly1.2() but does not depend on m.

Proof. Multiplying jth equation in (2.1) by u; ,, and summing over j = 1,...,m we obtain the equality

1d m m @0 m (at)
th (H ( )( >||€V1’2(9)) +/Qa($,t)|Vu( )(.’L‘ p /bgj t |u( ) )|q da. (2.9)

To estimate the source term on the right-hand side of (2.9) we fix ¢ € (0,7,,) and consider two cases.
1. Let 2 < ¢*(t) < 2*. By the Young inequality and the embedding theorem

J 1l e <1 ol <1+ Cloli

Notice that (p~(¢))* = 2* if p~ (t) = 2. Therefore, we get
1d (m) 2 + (m) ) at/2
zai (I ey <0 (1€ (WD) )

2. Let 2 < qT(t) < (p~(t))* and p~(t) > 2. By the Gagliardo-Nirenberg inequality, for every
ve Wol’p("t)(ﬂ) c WOLP (t)(g)

+
gt (t)(1-0(t)) <C/||V ”L] MOUG! v H(l 0(t))q™ (t) (2.10)

(t),02 wl.2(Q) )

1l de < cpvul g

4



NONRWA: 103837

S. Antontsev, I. Kuznetsov and S. Shmarev Nonlinear Analysis: Real World Applications zzxz (zzzz) zzx
provided
1 ] gt (t) > 2%,
2F T gt 1 1, d=2 -
0(t) = 2+ — (t)l €(0,1) <« PETOI d:lr}(i) s p(t) > 2,
% d~ p(b) n _dp™ () B .
g (t) < —— < (p~ ()"
d—p=(t)

The second condition in (2.3) yields the inequality 0(;),'17:;)@) < 1. By Young’s inequality, we deduce from
(2.10) that for every € > 0

0(t)at (1)

= +
/Qb| 17O g < ot </ vum g ) Tl Qo)

_ p~ (et (1)
(=60 =G et

< ea_/ |Vu(m)|17_(t) dl‘-i—C/HU m) ||W12(Q)
2

( _ ()) p (t)q+(12
§e/ alVu™ [ dz 4+ C + CJu™ ||z r OO (2.11)
2

Set .
_ (m) 2 (m) p(z,7)
Y(t) = [[u™ () 120 + a(z, 7)|Vul™ (z,7)| dxdr.
0 Je

For a sufficiently small € > 0, from (2.9) and (2.11) we obtain the inequality

Y'(#) <C'+C"Y(t), te(0,Tn),
V(0) — [l < o2 _ _ o o-ew) o (212)
0) = flu'™ ( )”Wl 2(02) [|uol wi2o) = 9 7= SUPie(0,7) 200~ (H—-0(D)qT (1))
Consider the function
1 Nt
Z(t) = — Zy = max {0, (C/C” 1) K } ) (2.13)
(757" —20m(y=1))
which solves the problem
1
Z'(t) =2C"Z7(t) for 0 <t <t = ——v,
20" 2] (2.14)
Z(O) == ZO Z a.
Since C"Z7(t) > C"Z] > C', Z(t) satisfies the differential inequality
Z'(t) > C'"+ C"Z7(t) in (0,t%). (2.15)

Summing (2.12); and —(2.15), and using the Lagrange mean value theorem, we obtain the differential
inequality for the function X (¢) =Y (¢) — Z(¢):

1

X'(t) < 'yC”/ OZ(t) + (1 —-0)Y () tdoX(t) for 0 <t < min{T,,,t*}, X(0) <0.
0

By the Gronwall lemma X (¢) = Y (¢) — Z(t) < 0 for 0 < t < min{T,,,t*}. If T,,, < t*, then Y (T};,) <

Z(T,,) < oo. System (2.1) can be solved then on an interval (T,,, T}, + h) with the initial data taken at the

moment T},. Since the majorant function Z(t) does not change, the solution u(™) continues to the interval

(0,t*) and the estimate Y (t) < Z(¢) holds for all ¢t € (0,t*). O

Corollary 2.1. Inequality (2.12) yields the uniform lower bound of the time interval where ||u(™

d
remain bounded. If Y (t) — oo ast — t*, it is necessary that [ WSC“V <t*.
s

2
('at)le,Q(Q)

5
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Let us agree to use the shorthand notation |vy,|” = ijzl(Diizjv)2.

Lemma 2.2. Assume that conditions (ii) of Theorem 2.1 are fulfilled. Then there exists t* such that for
every O € (0,t*) the functions ul™) satisfy the uniform estimate

p(z,t)

m m) | P(z:t)—2
sup ™ Oyaa) + [T dudt

T ™) |2 dxdt + / |V ™|
t€(0,0) Qo Qo

< C (14 lluoldyazgay) - (2.16)

Moreover, fort € (0, O)
/ |Vu(m)|10(:r,t) d33+/ |u(m)|Q(x,t) do < Vo s
Q Q

with an independent of m constant C'.

Proof. Multiplying the jth equation of (2.1) by f)\jugm), summing over j = 1,...,m, and using the
embedding inequality [|v||o +_1),0 < CllAvl|2,0 Vv € W2 (£2), we obtain

(m)|12 ; m)P@D=25 (M)} Ay g —
3 dt (|| I3, ) +/Qd1v (a(sr:,t)|Vu | Vu ) Aut™ dx
b<x,t>|u<m>|q“”’“‘2u<m>Au<m> de < C (14 ™57 o) 1140 o
2 ’
< C (1+]14u™ 3 o) + | A . (2.17)

Following the proof of [12, Lemma 3.2], we rewrite the second term on the left-hand side of (2.17) as follows:
—/ div <a|Vu(m)|p(I7t)72Vu(m)> Aul™ dp = — / a|Vu(m)|p(w’t)72|u¥£)|2 de+J1+Jo+Jo+ Jag, (2.18)
Q Q

whence

d
x,t)—4 m m 2
= /Q a(2 ~ pla, 1)) Vul™ " (Z (vu™ - ™), ) ) d,

k=1

Z / aul™ ;T) |Vu(m)|p_2pxk In |Vu(™)| dz,

i,k=1

d
= [P S ) i, i

i,k=1

Joo = —/ a\Vu(m)|p_ (Au(m)(Vu(m) n) — Vul™ . v(Vul™ . n)) ds.
o0

Each of the terms Ji, Ja, J,, Joso can be bounded by the quantities depending only on the data. Because
of the assumption p > 2, we get J; < 0. By Young’s inequality, for every § > 0

|| = Z/auw ") ulM|Vu )P, In [Vu™ | da

i,k=1
P
<C <|Vu( | 2 |u(m)|> (Vu(m)|2ln|Vu(m) ||) dx
e}
()P, (m) (m) (P 12 (Ve ()
<§ [ VU™ Tugd | de+C VU™ In® |Vu'™ | da (2.19)
I7) 7

6
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with C = C(d, Lp,a*,6). If § > 0 is sufficiently small, the first term on the right-hand side of (2.19) is
absorbed in the first term of (2.18). For every p > 0, the last term on the right-hand side of (2.19) is

+
estimated by C [, |Vau(m) P ™ 4z + O with a constant O’ depending on p. By the embedding theorem, for
u™ e WP2(0)
0
n
/ Va7 de < )l Au 8 (2.20)
Q

with p > 0 sufficiently small to fulfill the first condition of (2.4). The estimate on Jyp follows from
[12, Lemma 4.4] and (2.20):

oo < 5/ V™ P2 2 dg 4 C (1 +/ |Vu(m)pdx)
2 (9]
<4 / Fut P ) P o+ € (14 a5 ).
2

By using Young’s inequality we estimate

d
|| = / |Vu (m)| p(z,t)—2 Z ugg’g)ku Oz, dx §)\/ |Vu(m)|p*2|ug;‘)‘2dx+0/ \Vu(m)|Pd$
i,k=1 2 2

with an arbitrary A > 0 and a constant C = C(d, A, L,). Set Sp,(t) = |\Vu(m)(~,t)||§79 + ||Au(m)(',t)||§79.
Plugging the above estimates into (2.17) and dropping the nonnegative term on the left-hand side, we arrive
at the ordinary differential inequality for Sy, (¢):

+ +
S! (1) < C 4 C'Sn(t) + C"SuT (1) + C" ST (1) < C1 + CaSE (1), t € (0,Tpm), (2.21)

with the exponent 2y = max{p*+p, g} > 2. The existence of a barrier of the form (2.13) on an independent
of m interval (0,t*) follows as in the proof of Lemma 2.1. Inequalities (2.4), estimate (2.16) and the
embedding theorems yield the continuous inclusions W5 (£2) C L2 D) () C L (), W*(2) " (2)
and the last inequality of Lemma 2.2. [

Remark 2.1. If p is independent of z, the condition on p* in (2.4) can be omitted because J; = 0.

Corollary 2.2. [t follows from (2.21) that the functions Sy, (t) remain bounded on the interval (0,t*), where
t* is independent of m and satisfies the inequality

S* Cl"_CQSy'_ ’ H ’

whence S* = ||[Vuol|3, + [|Auo||3. - By the embedding theorem, [|lul™) (-, 3, 2y < CSp(t) fort € (0,t*).

Lemma 2.3. Assume that either the conditions of Lernma 2.1, or Lemma 2.2 are fulfilled. There is a positive
constant M = M(|2|,p",q") such that if the initial function satisfies (2.5), then for every © € (0,t%)

||u§m)||€v1,2(Q + Sup /\V m)|p(z’ dr + sup /| q(“)dng'* (2.22)
te(0,0)

with a constant C.. depending on |[uo|ly1.5(.0) (). o7 [[tollw22(0), and ©, but independent of m. Moreover,

(m) P (m)|?
Em(t)z/ (“'V“ | _b|“q | )dx<0. (2.23)
2

p
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Proof. Multiplying jth equation in (2.1) by uj m»> summing the results over j = 1,...,m, and integrating
over the interval (0,t), we obtain the equality
/ ||u ||W12 dT+Ia+Ib +7Z,+ I, + En(t) = En(0), (2.24)

where

Val bolul™)” Ty () [P (m)|a
Em(0)=/<“°| o | ‘“ | do, Tp = — a VN e 7, = |” " i,
7
t
1 In|Vu(™ 1 1 <m>
;r,,:/ /a|vu<m>P( n|Vu |>p dadr, T, = / /b| (m) ( n'“ 1) 4 dodr.
0 0

For a given u(™) and a fixed 7 € (0,t) we split the domain {2 into the subdomains

1
2 (r) = {x € 2 :In|u™ (z,7) > 7}

2,(1) = {x e :In|ul™(z,7) < q(;ﬂ_)}

Taking into account the assumption ¢; > 0, we may estimate

! 1 Infu™
- / blutm|? |- 1 4 )
25 (1)

q, dxdt

1 Ll (m)
// blu™|" |~ n|u | ¢r dzdr >
24 ()
1 (m)
_ / / b|u(m)‘q _ M ¢, dxdr
)
1 l
/ / b | | —— “'” ‘quxdT. (2.25)

Split 2 = 25 (1)U 2, (1), 7 € (0,t), with
1
+(r) = . (m) -
027 (7) {x €2 :In|Vu (:C’T)|>p(x,7) },

2, (1) = {w € Q:In|Vul™ (z,7)| < p(a:l,T)}'

Proceeding in the same way as in estimating 7, and using the assumption p, < 0, we obtain

(m)
T, —/ /a\Vu(m)| (1 1n|Vu |>p7dxdT:
1 m) 1
//a|V (m)|? (n|Vu |—> Ip+| dzdr =
1 m) 1
// o[ V™|’ (nW“ | _ 2>pT|dxdT
4 (r p

_ / / a|Vu™” ln|V7u| 1 | dwdr
0 J2, (1) p
¢ p | In [ Vaul™)|
—/ / a|Vum|" | —/———— — = | dedr >
0 Jo, (1)
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¢ 1 (m) 1
f/ /a\Vu(m)|p M,7 p-| dzdr =
0 JQ p p
t
1 (m) 1
:/ / a|Vu(m)|p M,ﬁ pr dxdT. (2.26)
0 J0 p
Set
— 1 In|6 L
M=b+sup{|9|q —q2+nq| ©oqelg, gt |9|§ef},

1 In|6) _
_7+7‘: pelp ,p], [0 <er }
2 D [p J, 0]

M = a*t sup {|9|p
Gathering (2.25), (2.26), we may write

I,-7,< | t | (T = 3p,) dear = [ (V(a(e.0) = a(2.0)) = 3ol = p(a.0))) do

< /Q (Mq(x,t) + Mp(e, 0)) dz < || (m* + Mp+) = M. (2.27)

Let us claim that

E(0) +M <. (2.28)
Since E,,(0) — E(0) as m — oo, it follows from the choice of the sequence {u(()m)} that E,,(0) + M < 0 for
the sufficiently large m. Moreover, since a; < 0 and b; > 0, it follows from (2.24) and (2.28) that

t
(m) (. 2 _
| I B g 4 B <

for the sufficiently large m. Hence, E,,(t) < 0 for all ¢t € (0,¢*).
Let the data satisfy the conditions of Lemma 2.1. By using (2.11) we deduce that

/ a|Vu™|’ dx S/ blu(™|? dz < e/ a|Vu(m)|pdx+C+C’||u(m)||§\,9 < e/ a|Vu™ | dz + C"
Q 0 Q 0

with an arbitrary ¢ > 0 and a constant C" depending on [|uo || yy1.5(.0) () and € but independent of m. Thus,
for every t € (0, ©) both terms of E,,(t) are bounded by an independent of m constant.
If the conditions of Lemma 2.2 are fulfilled, then both terms of E,,(t) are uniformly bounded by virtue

of the embeddings W22(2) € Li+(2), W22(02) c WP (0). O
2.2. Proof of Theorem 2.1

The uniform estimates of Lemmas 2.1, 2.2, 2.3 allow one to extract a subsequence with the following
convergence properties: there exist u(z,t) and n such that

u™ — win C°([0, O); L*(£2))and a.e. inQ o (Aubin-Lions Lemma), ugm) —uy in L2(0, 0; Wy 2 (2)),
Vu™ 5V uin C2([0, O]; (L2(2)%), Vu™ = V u in (L0 (Qe))*,
a(a:,t)\Vu(m)|p(x’t)72Vu(m) — 7 in (Lp/(')(QQ))d,
bz, )| "I 20 b, a7 20 in L9O(Qe) [13, Ch.1,Lemma 1.3].
By the method of construction, for every m and k < m
/ (u™ e+ V™ - Ve + al VIV - Ve, bul| " u™e,) dedt = 0
Qe

9
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for every &, € N},. By letting m — oo we obtain the equality
/ (utﬁk V- VE 1 VE, — b|u|q_2u£k) dadt = 0. (2.29)
Qo

Since W,,y(Qo) = Upey Ni (see Appendix), the same equality holds for every & € W,)(Qe). For the
proof we take a sequence & — & in W,,y(Qe) and pass to the limit in (2.29) as k& — oo. The limit 7 is
identified by the standard monotonicity arguments. The initial condition is fulfilled by continuity.

To prove identity (2.6) we fix t,t + h € (0,t*), h > 0, and choose u for the test-function in identity (2.1).
Dividing by h we have

t+h
- / / (uru + Vu, - Vu+ a|Vul’ — blu|?) dedr = 0.
Q

By the Lebesgue differentiation theorem, for a.e. ¢ each term of this equality has a limit as h — 0, whence
(2.6). Inequality (2.7) follows from (2.23) and the Fatou lemma, the inequality E(t) < 0 is an immediate
consequence of (2.7).

3. Blow up of a local solution

Let u(x,t) be a local solution of problem (1.1). Introduce the function

/ s Pz (3.1)

and assume that the solution u(x,t) satisfies inequality (2.7). By choosing u for the test-function in (2.1)
we conclude that the energy equality (2.6) is fulfilled. By virtue of this inequality, for every t € (0, t*)

1 _1 ¢
710 = 31Oz = glunlBrnacay + [ /Q (blul? — a|Vul?) dzdr > 0. (3.2)
0
It follows then from (2.7) that for a.e. t € (0,t*)
@) = / (uug + Vu - Vuy) do = / (blu|? — a|Vul|’) dz. (3.3)
2 2

Theorem 3.1. Let u(x,t) we a local solution of problem (1.1) such that inequality (2.7) is fulfilled. Assume
that the exponents p(x,t), q(x,t) satisfy one of the following conditions:

(i) there is § > 0 such that
2<p” <p"(t) <max{4(1+4),p" (1)} <q¢ (1), t€[0,T}; (3.4)
(i)
2<p (t)<pt(t)<q (), te[0,T]. (3.5)

Then the local solution u(z,t) blows-up in a finite time: there exists T* < oo such that

[u(, )32y /00, ast /T

Remark 3.1. The assertions of Theorem 3.1 are independent of the conditions of the existence Theorem 2.1
and apply to every local solution of problem (1.1), provided (2.7) is fulfilled. The conditions of these theorems
are compatible. Assumptions (3.4) agree with the assumptions (ii) of Theorem 2.1 if ug € W02’2(!Z), 0N € C3,
and (2.4) holds. Under assumptions (3.5) problem (1.1) admits a local solution if ug € Wol’p("o)(()), o0 € C*,
and the second inequality of (2.3) is fulfilled.

Remark 3.2. Under the conditions of the existence theorem, the lower bounds for the blow-up moment
T* follow from Corollaries 2.1, 2.2.

10
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3.1. Proof of Theorem 3.1(i)

Assumption (3.4) allows one to find a positive function A(¢) such that

max{4(1 +§),pt(t)}"

(3.6)

We multiply equality (3.3) by A(t) and add the resulting equality to inequality (2.7) integrated over the
interval (0, t):

B+ MO [ (alVul’ < bjuf*) o+ [ ) s dr < A0S0

This inequality can be continued as follows:

/Ot otr (s )2 12 -+ /Q (a (pf(t) - /\(t)> Val” 4+ b ()\(t) - ql(t)) |u|q> de < O (). (3.7)

We adapt the method from [8, pp. 258-261], which was applied to parabolic equations with variable

nonlinearity. Let us denote by T™ the time of existence of the solution w:
T* =sup{t > 0: f'(s) < oo for s < t}.

Since u; € L2(0, O; W,*(2)) for some © > 0, and f'(0) < oo, it is necessary that T* > 0. The solution
u(x,t) blows-up in finite time if 7% is finite. By virtue of (3.6) and (3.7)

0< /0 [ (-, T 1,2y A7 < A (1) (3.8)

Using Holder’s inequality and (3.8), we obtain the following chain of relations:

#0710 = ([ 2 (S lpna) ar) = ([ ([ e+ 5090 ao) ar)
< ( / t <|u||2,.o|uT oo + ||Vu||2,g|w||2,g> dT>2 < ( / @ ()3 (s

t 2 t
<2f(t) / <||ur||2,rz+||vur||2,f2> dr < 4£(t) / e (P12 dr < MO SO (1)

1
< =
“ 1490

2 2

2

o0 + [ Vs o) dr)

) f"(t). (3.9)
The last inequality leads to the second-order differential inequality for f(t):

(1+8) (f/(1) = '(0))” < FO (1), £(0) =0, f'(t) >0, f"(t) >0. (3.10)

We want to prove that the function f’(¢) becomes unbounded at a finite moment. Let us show first that
if f'(t) exists for all ¢ > 0, it is necessary that f'(t) ,/* 0o as ¢ — co. Assume the contrary: there exists a
positive constant L such that 0 < f/(¢) < L for all ¢ > 0. The function f is strictly positive by definition, f”
is strictly positive and increasing by virtue of (3.8), while f’ is strictly positive and monotone increasing due
to the Lagrange intermediate value theorem. Fix an arbitrary 7 > 0. By assumption f(¢) < f(0) + Lt = Lt,
and by virtue of (3.10)

148 _ ()
Lt = (/1) = (0))*

11

in (7,t).
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A straightforward integration of this inequality over the interval (7,t) leads to the contradiction:
/ el
=2 - fo)n

provided that t > 7 exp (1—{;5 (m — ﬁ)) Thus, if f/(t) exists for all ¢ > 0, then f'(¢t) * oo as
t — oo. It follows that there exists a moment ¢y and a constant 1 < v < 1+ § such that

(') = £10)* = 5 n 5 (f/(8))* for t > to.

This observation allows one to continue (3.9) as follows:

(' ()% < (140) (f(t) = 1'(0))” < " (£) £ (2) for t > to.
Assuming that f’(¢) remains bounded for all finite ¢, we rewrite this inequality in the form

vf'(®) _ (%)
ONREEC)

Integrating the last inequality over the interval (¢o,t), we derive:

t > tg.

f'(t) _ f'(to)
@ 2 K, K= may U 1. (3.11)
Integration of (3.11) yields the inequality
ve1 fY7 1 (to) ™ [f(to)
= - -l St S G )

f(to)
Substituting it into (3.11), we conclude that f’(¢) becomes infinite as ¢ * T*.

3.2. Proof of Theorem 3.1(ii)

Combining (2.7) with

(3.3), and using a(z, )< (;)(zzzgw > g4 (;) 5) MU , we obtain the inequality

q q P
(@) z/ ablul dx —/ a|Vul? de > q_(t)/ blul dx —/ a|Vul? dx:l:q_(t)/ a[Vel dx =
o 4 Q 2 4 Q Q

q(t)/Q<Wa|V;|p>dx+/n( ORI p

q p
zq_(t)/ﬂ (b“;'— “'Z“') dz +a~ (t)f;/ (Vul? dz = 1, (t) + L (¢). (3.12)
Since E(t) <0, then I1(t) = —¢~ (¢)E(t) > 0, and (3.12) takes on the form
1" —q_(t) _p+(t) ul) T
'@t >a T [Vul? da. (3.13)

Splitting 2 into the subsets 27 (t) = {z € 2: |Vu| > 1}, 27 (t) = 2\ 27 (¢), and using Holder’s inequality,

we estimate:
/ |Vul? da < / [Vul? O gy '< / |Vul|” dz
0E(t) %t 0E(t)
12

pT(®»
2
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Inequality (3.13) leads then to the inequality

gy s -0 =P (D) ul?"® g WP~ O gy
) = pt(t) (/Q(t) [Vl I +/.Q+(t) [V I )
—q (t) —p*(t) .
>4 0 (jap- 12 )

L -pt) Cal DRy
>a T)mm o=, (Ivalz 2, +\|Vu||2m<t)

c. (Ivully 2, + IVl

2, :z+ t)) (3.14)

t
with the constant C, = a~ infico1) %fg()mf,ﬁe(oyﬂ min{|()| Tz 0|

(t)
2 } Inequality (3.14)
yields the inequalities

2 -2 _2 2
(f"()»*® > cr® / Vulde, (f()7 @ =l O / Vul de,
t(t)
whence

te(0,T)

_2 _2 2
(f" ()P O 4 (f'(t))r ® 20*/ |Vul*dz, C*= inf mm{cp ®) CW”} (3.15)
2

By the Poincaré inequality ||uH2 o< )\LHVUH2 o where A; is the least eigenvalue of problem (A.1), it follows
that
f’(t):l/(u+|Vu\)dx<c/|vu| da, cff 1+
2 /o A1
and (3.15) takes on the form
2 2 ~ ~ ~
(f"@)rF @+ (f'(1)r~ @ = Cf'(t), C=C"C7h

Since f'(t) > f'(0) > 0, it follows that

)
= jmin {5@) L } min{ (5581) N (ron=, (}c((é%) - <f’<o>>p2m}
o (FO)5 (L)L (VT s e

~pT () ~p ()

with the constants D := 3 inf,¢ (g 7 min {C 2,02 }infte(o)T) min {(f’(O))p 2
D

— . Integration of (3.16) leads to the estimate
f1(0) 2

f(o)2 O o=

(1= (= DeD(F (@)

whence

1
F(t) = Sl Do) Sooast AT < —

13
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Appendix. The function spaces

The natural framework for the study of PDEs with variable nonlinearity is furnished by the variable
Lebesgue and Sobolev spaces. A detailed exposition of the theory of these spaces can be found in a number
of sources, see, e.g. [14]. Below we collect several basic facts on the variable spaces, which are used throughout
the text. Let §2 be a Lipschitz domain and p : £ + [p~, pT] C (1,00) be a given continuous function, p* are
known constants. Let

LPO(R) = {u is measurable on 2 : p,)(u) = / lu(z)|P™) da < oo} .
Q

The set LP()(£2) equipped with the norm [|ul,(),0 = inf{)\ >0: pey (%) Sl} becomes a Banach space.

The space LPO)(£2) is separable if 1 < p~ < p(z) < pt < oo. We will use the following properties of the
spaces LPO)(02).

o If p1,po € CO°(R) and pi(z) > po(x) in 2, then LP1O)(2) ¢ LP1O)(2) and for every u € LP1()(0)
el < CULLpE )l .0 |

o The generalized Holder inequality: if u € LP()(2), v € LP ()(£2), where p'(x) = p(pw()wll is the conjugate
of p(z), then [, uvdz < 2ull,.),0llvlly )0

» The relations between the norm || - ||,),o and the modular p,.)(-) are given by the inequalities
1 .

1 1
. pF P T e
min{p; (). pfy ()} < ullp,0 < max{ g (). pj ()}

The variable Sobolev space W) () is the set {u € LPO)(2) : |[Vu| € LPU)(2)} equipped with the norm
Lp(: . )
ullyroo @) = llpey.e + 1Vullpe). 00 and Wo P (2) = WO () AWy (2).

e Ifpe C%N) and u € Wol’p(')(()), then the Poincaré inequality holds, ||ul,.),0 < C||Vull,(.),o, which
makes ||Vul|,.) o the equivalent norm of Wyt ().

o If p € Ciog(R2), ie., is continuous with the logarithmic modulus of continuity, |p(z) — p(y)| < C'ln P
for all z,y € 2, |z —y| < %, then the set C§°(§2) (smooth functions with compact support) is dense in
VVO1 P (')(.Q). The space I/VO1 P (')(.Q) can be equivalently defined as the closure of C§°(§2) with respect to
the norm [ - [ y1.50) (-

o Let {#;}, {\:} be the sequences of eigenfunctions and eigenvalues of the Dirichlet problem for the Laplace
operator in {2:

(Vi Vo) = NP, d)aa Vo € Wy (02). (A1)
Let us denote P,, = span{t1,...,¥m}. If p € Cloe(2) and 912 € C*F with k > 1+4+d (% — p%r), then

Uro_1 Py, is dense in Wol’p(')(ﬂ) (see [15, Lemma 2.1] for the proof). If 92 € C?, the set {1} is dense
in W22(0).

e Let Qr = 2 x (0,T) and p : Qr — [p~,p*] be a function from Cj,y(Qr). We define the spaces of
functions defined on Qr

V(@) = {usue L) W (@), [Var™ e LN @)}, te (0.7),

14



NONRWA: 103837

S. Antontsev, I. Kuznetsov and S. Shmarev Nonlinear Analysis: Real World Applications zzxz (zzzz) zzx

W) (Qr) = {u (0,7) = V. (2) tw e L2Qr), [Vul"™ € L'(@Qn) }

and equip W,.)(Qr) with the norm HUHWP(.)(QT) = |lull2,op + [IVUullpe),0r-
The set (J7r_; No is dense in Wy, (Qr), where N, = {37 60;(t)¢i(x), 6; € C[0,T]}.
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