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Introduction. The realization in refs. [1, 2] that the cosmological constant can be con-
sidered as a thermodynamical variable in the context of black-hole physics has led to a
host of new developments encompassed in the field of black-hole chemistry.1 As shown
in [5], other constants defining a theory can also be seen as thermodynamical variables; in
said reference, these constants occur as coefficients of higher-order curvature terms that
are Lovelock densities.

Clearly, the same ideas can be applied to f(R) theories. Such theories can, however,
be rewritten as theories of gravity coupled to a real scalar field with a non-trivial scalar
potential. The form of the potential is related to the function f(R) and therefore contains
the same constants as the function f(R). In ref. [6], one of the authors proposed that the
constants occurring in general scalar potentials can also be seen as thermodynamical vari-
ables in black-hole physics. In gauged supergravity,2 though, these constants are related to
the gauge coupling constants, which can be generically represented by the so-called embed-
ding tensor.3 This leads us to conjecture that the embedding tensor itself should also be
regarded as a thermodynamical variable. Testing this conjecture is one of the main goals
of this paper.

1For reviews with many references see refs. [3, 4].
2For a review with many references, see ref. [7].
3For a pedagogical introduction and references, see, for instance, ref. [8].
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Wald’s formalism [9–11] provides an efficient method to study black-hole thermody-
namics, once the gauge freedoms of the fields have correctly been taken into account as
explained in refs. [12–14].4 It is only by doing this that one obtains the work terms in the
first law of black-hole mechanics. However, one does not get all the work terms that are
usually admitted in the literature5 because there are no gauge symmetries associated to
all of them: the gauge symmetry of the electromagnetic field gives rise to a work term of
the form ΦδQ, where Q is the electric charge and Φ is the electric potential on the event
horizon, but there is no additional gauge symmetry that gives rise to the dual term Φ̃δP ,
where P is the magnetic charge and Φ̃ is the magnetic potential on the horizon. There
is no term proportional to the variation of the moduli, either, because there are no gauge
symmetries associated to them. In addition, closer to our concerns in this paper, there
is no term involving variations of the cosmological constant, for the same reason.6 One
can make such a term appear as in ref. [19], but since the action of diffeomorphisms on
constants is trivial, this does not happen in a natural way and the physics behind this
variation is unclear. The same happens to coupling constants.

Variations of the cosmological constant are possible in the context of supergrav-
ity/superstring theories, however. In higher-dimensional supergravity/superstring theories
there are higher-rank forms which give (d− 1)-form potentials after compactification to d
dimensions. These potentials are dual to constants which are determined dynamically by
the equations of motion of the potentials. The main example is provided by the 3-form
potential of 11-dimensional supergravity that gives rise to the cosmological constant of
N = 8, d = 4 supergravity [20, 21], but there are many others. Ultimately, however, it is
expected that all the parameters of lower-dimensional theories (which can be collected in
the embedding tensor) can be explained in a similar fashion.

The (d−1)-form potentials dual to the constants do have an associated gauge symmetry.
This suggests that the terms proportional to the variations of those constants in the first law
could arise associated to the gauge symmetry of the dual (d−1)-forms. This possibility was
first proposed in ref. [22] for the cosmological constant. In ref. [23] the full formalism was
worked out for a cosmological constant understood as the charge arising from a 3-form gauge
potential in four dimensions. Later on, in ref. [24] an explicit example of thermodynamics
with variable cosmological constant was first worked out for a Kerr-Newman black hole.
We will explore this idea in a more systematic way here, using Wald’s formalism, for the
cosmological constant and for all the components of the embedding tensor in a toy model.

In section 1, we are going to review the description of the cosmological constant in
terms of a (d − 1)-form potential in the simplest setting: no matter fields. We will show
that one can recover the first law of black-hole thermodynamics of refs. [1, 2] using Wald’s

4A different approach to handle gauge charges based on a “solution phase space” has been proposed in
ref. [15].

5See, e.g. ref. [16], in which terms proportional to the variations of the moduli are included. This
inclusion has been contested in ref. [17].

6One may argue that, perhaps, the procedure proposed in refs. [12–14] produces a Noether-Wald charge
that simply misses terms. However, as shown in ref. [18], the Noether-Wald charge found in this way leads
to a Smarr formula that also contains magnetic charges and potentials in a duality-invariant form, which
suggests that nothing is missing from it.
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formalism treating the gauge symmetry as in refs. [12–14].7 Furthermore, we will derive
the Smarr formula using the Komar integral as proposed in refs. [1, 5, 6, 18, 27, 28].

In section 2 we are going to consider a more general example in 4 dimensions, with two
real scalars and a 1-form field coupled to gravity. The theory is invariant under constant
shifts of one of the scalars and this global symmetry can be gauged using the 1-form and
its dual as gauge fields introducing at the same time two coupling constants that can be
combined into a 2-component embedding tensor. This provides the opportunity to test the
conjectured interpretation of the embedding tensor as a thermodynamical variable in black-
hole physics.8 As is well known [29–33] the consistency of this kind of electric/magnetic
gaugings demands the introduction of 2-form fields which, in their turn demand the intro-
duction of 3-form fields etc., giving rise to the so-called tensor hierarchy.

Complete tensor hierarchies have been constructed only in a few cases [34–37] and
they show a one-to-one relation between the (d−2)-forms and the global symmetries of the
theory that can be gauged (just 1-dimensional in our toy model), between the (d−1)-forms
and the deformation constants of the theory (just the 2 components of the embedding tensor
in our toy model) and between the d-forms and the constraints satisfied by the deformation
constants of the theory (0 in our toy model). In section 2 we will omit the construction
of the tensor hierarchy of the model and we will directly introduce its fields (the 2 real
scalars, the 1-form and its dual, the single 2-form dual to the Noether-Gaillard-Zumino
current [38, 39] and the two 3-forms dual to the coupling constants) and a democratic
action, based on the one in ref. [31], in which all of them are present and in which the
components of the embedding tensor are not constants, but functions which are forced to
be constant on-shell.9

Then, in section 2 we will study the symmetries and define the conserved charges,
including the Noether-Wald charge and the Komar charge, essentially along the lines of
ref. [42]. We will use the last two to prove the first law of black hole mechanics, to obtain
the Smarr formula and to study the role the embedding tensor plays in both of them.

We will discuss our results and their implications in section 3.

Finally, the appendix contains a, not so successful, search for black hole solutions of
our toy model to which our results can be applied. Unfortunately, it is very difficult to find
charged solutions and we only managed to find an embedding of the Reissner-Nordström-
(a)DS solution into the model.

7A derivation of the first law in the presence of a cosmological constant treated as the conserved charge
associated to a (d − 1)-form potential has been carried out in ref. [25] using the formalism proposed in
ref. [17]. The Smarr formula was found in ref. [26]. Our treatment is very similar to the one in these
references, but not identical because we need to work with a democratic action in which the cosmological
constant and its dual occur on equal footing in order to deal with the general problem in section 2.

8This conjecture is clearly related to and in agreement with the conjecture put forward in ref. [26] that
all dimensionful constants in the Lagrangian contribute to the Smarr formula.

9This democratic action is a true action, as opposed to the democratic action of ref. [40], which is a
pseudoaction [41] whose equations of motion must be supplemented by duality constraints to reproduce the
equations of motion of the theory.
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1 Dualizing the cosmological constant

The action for pure gravity (described by General Relativity) coupled to a cosmological
constant Λ in arbitrary dimension d is

S[gµν ] = 1
16πG(d)

N

∫
ddx

√
|g| [R(g)− (d− 2)Λ] , (1.1)

and leads to the equations of motion

Gµν + (d− 2)
2 gµνΛ = 0 , (1.2)

which can be reduced to just
Rµν = Λgµν . (1.3)

The dimension-dependent factor of Λ in the action has been chosen so as to obtain
this last equation. On the other hand, in the conventions that we are using, when Λ is
positive (negative), the maximally symmetric solution of the above equations is the (anti-)
De Sitter solution. If we interpret the cosmological term in the Einstein equations (1.2) as
an energy-momentum tensor

Tµν = − (d− 2)
16πG(d)

N

Λgµν , (1.4)

and we compare it with that of a perfect fluid −(ρ+p)uµuν +pgµν , we find that the perfect
fluid is characterized by

ρ = −p = (d− 2)
16πG(d)

N

Λ . (1.5)

In differential-form language, the action (1.1) takes the form

S[ea] = (−1)d−1

16πG(d)
N

∫ [
?(ea ∧ eb) ∧Rab − (d− 2) ? Λ

]
. (1.6)

The equations of motion that one obtains from this action, defined by the variation of
the action, up to total derivatives

δS =
∫

Ea ∧ δea , (1.7)

are given by
16πG(d)

N Ea = ıa ? (eb ∧ ec) ∧Rbc − (d− 2)ıa ? Λ , (1.8)

and it is not hard to see that they can be rewritten in the form

16πG(d)
N Ea = (−1)d2

{
Gab + (d− 2)

2 gabΛ
}
? eb , (1.9)

which provides a check of the equivalence of the actions eqs. (1.6) and (1.1).

– 4 –
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As is well known [21], the cosmological constant Λ can be dualized into a (d− 1)-form
potential that we will denote by C. The dualization can be carried out as follows: first of
all, in order to encompass both the Λ > 0 and Λ < 0 cases, we define

Λ = sign Λ λ2 , (1.10)

and promote the positive constant λ to a function λ(x) that we immediately constrain to
be constant by introducing a Lagrange-multiplier term in the action

S[ea] −→ S[ea, λ, C] = 1
16πG(d)

N

∫ [
(−1)d−1 ? (ea ∧ eb) ∧Rab

+(−1)d(d− 2)sign Λ ? λ2 − C ∧ dλ
]
,

≡
∫

L ,

(1.11)

with the dual (d− 1)-form C playing the role of Lagrange multiplier. A general variation
of this action

δS =
∫
{Ea ∧ δea + Eλδλ+ EC ∧ δC + dΘ(ϕ, δϕ)} , (1.12)

where ϕ stands for the fields ea, λ, C, gives the equations of motion and total derivative

16πG(d)
N Ea = ıa ? (eb ∧ ec) ∧Rbc − (d− 2) sign Λλıa ? λ , (1.13a)

16πG(d)
N Eλ = (−1)d−1 [dC − 2(d− 2)sign Λ ? λ] , (1.13b)

16πG(d)
N EC = (−1)ddλ , (1.13c)

16πG(d)
N Θ(ϕ, δϕ) = − ? (ea ∧ eb) ∧ δωab + (−1)dCδλ . (1.13d)

We can use λ’s equation of motion

λ = (−1)d−1sign Λ
2(d− 2) ? dC , (1.14)

to replace λ by G ≡ dC, the d-form field strength of C, arriving at the dual action

S[ea, C] = 1
16πG(d)

N

∫ [
(−1)d−1 ? (ea ∧ eb) ∧Rab + sign Λ

4(d− 2)G ? G

]
. (1.15)

The variation of the action, up to total derivatives,

δS =
∫
{Ea ∧ δea + EC ∧ δC} , (1.16)

gives the following equations of motion

16πG(d)
N Ea = ıa ? (eb ∧ ec) ∧Rbc + (−1)d

4(d− 2)sign Λ ıaG ? G , (1.17a)

16πG(d)
N EC = −sign Λ d ? G . (1.17b)

EC = 0 is solved by a constant ?G. If the constant is written in the form

? G = (−1)d−12(d− 2)sign Λ λ , (1.18)

we recover the cosmological Einstein equations eq. (1.9).

– 5 –
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This proves the classical equivalence of the original and the dual formulations, although
the second is slightly more general since the equation of motion of C can be solved by
piecewise constant λ(x)s whose discontinuities can be associated to (d− 2)-brane sources,
which couple in a natural way to the (d− 2)-form C.10

An important difference between C and λ is that the former has a gauge freedom,
under which it transforms as

δχC = dχ , (1.19)

where χ is an arbitrary (d− 2)-form. These gauge transformations leave the field strength
G and the dual action eq. (1.15) invariant. The action eq. (1.11) is also gauge invariant,
but only up to a total derivative. In any case, this invariance is associated to a conserved
charge, apparently not present in the original system. This charge can be understood in
terms of the branes that source C and is directly related to λ. We study the definition of
this charge in the next section.

Although the actions eqs. (1.15) and (1.11) are equivalent, in more complex cases in
which we want to dualize constants that occur in multiple places in the action, one promotes
the constants to fields and adds the Lagrange-multiplier terms with the dual potentials but
one does not take the next step (eliminating the constants using their equations of motion)
because the resulting actions are too complicated. Thus, one stays with actions similar to
eq. (1.11) and, therefore, in what follows, we will work with it.

1.1 The gauge conserved charge

Under the gauge transformation eq. (1.19), the action eq. (1.11) transforms as

δχS = − 1
16πG(d)

N

∫
dχ ∧ dλ = (−1)d

16πG(d)
N

∫
d (λdχ) . (1.20)

The total derivative is defined up to the total derivative of a total derivative, and we have
made a choice that we will show is adequate to get a non-trivial result.

From eq. (1.12), instead, upon use of the Noether identity dEC = 0, we get

δχS =
∫
−d (EC ∧ χ) = − (−1)d

16πG(d)
N

∫
d (dλ ∧ χ) , (1.21)

which, together with the previous result leads to the off-shell identity

dJ[χ] = 0 , with J[χ] = (−1)d−1

16πG(d)
N

(dλ ∧ χ+ λdχ) . (1.22)

This identity implies that, locally, there must exist a (d− 2)-form Q[χ] such that

J[χ] = dQ[χ] , (1.23)

and it is obvious that
Q[χ] = (−1)d−1

16πG(d)
N

λχ . (1.24)

10See, for instance, ref. [40].
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Given a particular solution of the equations of motion {ea, λ, C}, for each inequivalent
(d− 2)-form that preserves it (i.e. for each harmonic χh), we can get the conserved charge
contained in a closed (d − 2)-dimensional surface Σd−2 with no boundary by integrating
Q[χh] over it

Q[χh] = (−1)d−1λ

16πG(d)
N

∫
Σd−2

χh , (1.25)

where we have used the fact that on-shell λ is constant.
Up to normalization constants, this charge is just the volume of Σd−2 measured in

terms of the volume form χh. Observe that the value of the charge does not change under
the replacement of χh by χh + de for any (d− 3)-form e. Thus, it only depends on the De
Rahm cohomological class of χh, which is unique (up to normalization) on any compact,
orientable Σd−2 with no boundary. It is natural to use the induced volume form on Σ(d−2)

that we will denote by Ω(d−2)
Σ and, then,

Q = (−1)d−1λ

16πG(d)
N

ωΣ , where ωΣ ≡
∫

Σd−2
Ω(d−2)

Σ . (1.26)

Thus, up to numerical constants and the volume ωΣ (not present in rationalized units)
λ is the charge carried by C.11

1.2 The Noether-Wald charge

The action eq. (1.11) is also exactly invariant under diffeomorphisms and local Lorentz
transformations.12 We are interested in the Noether charge associated to the invariance
under diffeomorphisms (Noether-Wald charge) and, therefore, we start by considering the
variation of the action under diffeomorphisms generated by infinitesimal vector fields ξ

δξS =
∫
{Ea ∧ δξea + EC ∧ δξC + Eλ ∧ δξλ+ dΘ(ϕ, δξϕ)} . (1.27)

Observe that λ must be treated as a scalar field and, therefore

δξλ = −ıξdλ . (1.28)

However, the infinitesimal transformations δξ of ea and C must take into account the gauge
freedom of those fields as explained in refs. [12–14, 43] in such a way that the invariance of
the fields under those transformations for a certain parameter ξ (which we will denote by
k) is a gauge-invariant statement. Since, in particular, δk must leave invariant the metric, k
is always a Killing vector. The transformations δξea and δξC are combinations of standard
Lie derivatives and ξ-dependent “compensating” gauge transformations

σabξ = ıξω
ab − Pξab , (1.29a)

χξ = ıξC − Pξ , (1.29b)
11This is, essentially, the same result obtained in ref. [25].
12Under infinitesimal diffeomorphisms it is invariant only up to a total derivative that we will take into

account later.
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where
Pξ

ab ≡ ∇[aξb] , (1.30)

is the (scalar) Lorentz momentum map, which satisfies for ξ = k

DPkab = −ıkRab . (1.31)

On the other hand, Pξ is the (d− 2)-form momentum map associated to C, which is such
that, for ξ = k

dPk = −ıkG . (1.32)

After some massaging, we can write the transformations in the form

δξe
a = −(Dξa + Pξ

a
be
b) , (1.33a)

δξω
ab = −(ıξRab +DPξab) , (1.33b)

δξC = −(ıξG+ dPξ) . (1.33c)

The definitions of the momentum maps ensure that δkea = δkω
ab = δkC = 0 in a

gauge-invariant fashion.
Observe that, on-shell,

ıkG = (−1)d−12(d− 2) sign Λ λ ? k̂ , (1.34)

where k̂ = kµdx
µ if k = kµ∂µ.13Then,

Pk = (−1)d2(d− 2)sign Λ λωk , (1.35)

where the (d − 2)-form ωk is the d-dimensional generalization of the Killing co-potential
introduced in ref. [1] defined by

dωk = ?k̂ . (1.36)

Although the existence of Pk and, hence, of ωk was initially guaranteed by the in-
variance of G under δk, we see here that it is also related to k being a Killing vector.
Since on-shell G is, up to constants, the metric volume form, these two facts are obviously
related.

Substituting the transformations eqs. (1.33) into eq. (1.27), using the Noether identities
associated to the symmetries and performing simple manipulations we arrive at

δξS =
∫
d
{
Θ(ϕ, δξϕ) + (−1)dEaξ

a + EC ∧ Pξ
}
≡
∫
dΘ′ . (1.37)

Now we must take into account that the action eq. (1.11) is invariant under diffeomor-
phisms and gauge transformations up to total derivatives:

δξS =
∫
d

{
−ıξL + (−1)d−1

16πG(d)
N

[dλ ∧ ıξC + λdPξ]
}
, (1.38)

13With our conventions,
ık ? I = (−1)d−1 ? k̂ .
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where we have used the explicit form of the compensating δχξ transformation eq. (1.29b)
and the freedom that we have to add total derivatives of total derivatives to obtain a
convenient expression.

We arrive at the off-shell identity

dJ[ξ] = 0 , (1.39)

where

J[ξ] ≡ Θ′ + ıξL + (−1)d

16πG(d)
N

[dλ ∧ ıξC + λdPξ] , (1.40)

and it is not difficult to see that
J[ξ] = dQ[ξ] , (1.41)

where the Wald-Noether (d− 2)-form Q[ξ] is given by

Q[ξ] ≡ (−1)d

16πG(d)
N

{
?(ea ∧ eb)Pξ ab + λPξ

}
. (1.42)

1.3 The generalized, restricted, zeroth law

A crucial ingredient in the proof of the first law of black-hole mechanics along the lines
of refs. [12–14, 43] are the generalized, restricted zeroth laws. These laws are called “gen-
eralized” because they generalize the standard zeroth law of black-hole mechanics stating
that the surface temperature κ is constant over the event horizon H to other thermody-
namical potentials such as the electrostatic black-hole potential. On the other hand, they
are called “restricted” because their validity is restricted to the bifurcation surface BH,14

and because, rather than stating the constancy of a scalar quantity, they just state the
closedness of a given differential form over BH.15 This is enough for our purposes, though.

Thus, at this point we are going to focus on solutions of the action eq. (1.11) which
describe stationary black-hole spacetimes with a cosmological constant determined by the
value of λ, with bifurcate event horizons that coincide with the Killing horizon associated
to a certain asymptotically timelike Killing vector k. By definition, k vanishes over the
bifurcation surface which we denote by BH

k
BH= 0 . (1.43)

Thus, if all fields are regular over the horizon, it is clear that the inner products of their
field strengths with k must vanish on BH:

ıkG
BH= 0 , (1.44a)

ıkR
a
b
BH= 0 . (1.44b)

14One could use the arguments of ref. [44] to extend their validity to the complete event horizon, though.
15Actually, when dealing with forms of rank higher than 1 (1 would correspond to an electromagnetic

field), it is not clear which other covariant statement could play the role of zeroth law.
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Let us consider the first of these properties. According to the definition eq. (1.32), the
(d− 2)-form Pk is closed on BH. Being a (d− 2)-form on BH, it must be proportional to
the induced volume form of BH, ΩBH:

Pk = fΩBH . (1.45)

Then, the closedness of Pk implies that the coefficient f is a constant. This statement
is one of the generalized, restricted zeroth laws of black-hole mechanics that have been
used in refs. [12–14, 43, 45–47] to prove the first law. If we normalize the volume form
such that its integral is equal to 1, f will be proportional to the volume of BH. This is
the thermodynamical potential (“volume”) associated to the thermodynamical variable λ
(“pressure”). In order to make contact with the conventions of ref. [6], it is more convenient
to use the Killing co-potential (d−2)-form ωk, which due to eq. (1.35), must also be closed
on BH on-shell and, therefore, proportional to the volume form. Thus, we define the
volume Θλ by16

Pk

16πG(d)
N

= (−1)d−1Θλωk/Vk , with Vk≡
∫
BH

ωk , Θλ =−signΛ (d−2)λVk
8πG(d)

N

, (1.46)

so that the volume Θλ is positive for aDS black holes (signΛ < 0).
Following ref. [6], Θλ can written as

Θλ = (−1)d

16πG(d)
N

∫
B
ık ?

∂V
∂λ

, with V ≡ (d− 2)sign Λ λ2 , (1.47)

where B is a ball whose radius is that of the horizon and whose boundary is BH. This is
an expression that we will generalize later on.

The property eq. (1.44b) is related to the standard zeroth law of black-hole mechanics
because it implies

DPk ab
BH= 0 , (1.48)

and because, on the bifurcation surface

Pk ab
BH= κnab , (1.49)

where nab is the binormal to BH, with the normalization nabnab = −2. Since κ is constant
according to the zeroth law, nab must be covariantly constant on BH. We do not have an
independent proof of this property, which is of purely geometric nature. With this proof
in hand, the zeroth law on BH (dκ BH= 0) would be a consequence of eq. (1.48). All zeroth
laws (generalized or not) would follow the same pattern since they would state that the
coefficients of the expansion of certain closed (or covariantly-closed) forms in a properly
defined and normalized basis are constant as in refs. [12–14, 43, 45–47].

16Apart from the sign, there is another difference with most of the literature in black-hole chemistry: this
volume is proportional to λ, which is natural for a potential, but, perhaps, not for a volume.
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1.4 Komar integral and Smarr formula

Before we use the Noether-Wald charge and the restricted, generalized second laws to
prove the first law of black-hole mechanics [48], it is useful to test our results constructing
a Komar integral [49] following refs. [1, 5, 6, 18, 27, 28] and using it to derive a Smarr
formula [50] that can be tested in actual black-hole solutions.

On-shell17 and for a Killing vector k that generates a symmetry of the whole field
configuration, the Noether-Wald current defined in eq. (1.40) satisfies

J[k] .= ıkL + (−1)d

16πG(d)
N

λdPk . (1.50)

On the other hand, J[k] satisfies eq. (1.41) off-shell with ξ = k, which implies that

dQ[k]− ıkL−
(−1)d

16πG(d)
N

λdPk = 0 . (1.51)

We can write a Komar integral with volume terms, as in ref. [27], or we can take a step
further and rewrite the last two terms as total derivatives refs. [6, 18]. This is trivial for
the second term. As for the first additional term, if k generates a symmetry of the whole
field configuration,

0 .= £kL = dıkL , (1.52)

and ıkL must be locally exact. Therefore, there must exist a (d− 2)-form $k such that

d$k
.= ıkL + (−1)d

16πG(d)
N

λdPk , (1.53)

which leads to the identity
d {Q[k]−$k}

.= 0 . (1.54)

Then, the Komar integral over the codimension-2 surface Σd−2 can be defined as the integral
over the Komar charge −{Q[k]−$k} [6]

K(Σd−2) = −
∫

Σd−2
{Q[k]−$k} . (1.55)

In order to determine$k, we first calculate the on-shell value of the Lagrangian density:
tracing over the Einstein equations (1.13a)

ea ∧Ea = (d− 2) ? (eb ∧ ec) ∧Rbc − (d− 2)d sign Λλ ? λ

= (−1)d−1(d− 2)
{

L + (−1)d sign Λ
8πG(d)

N

? λ2
}
,

(1.56)

so
L .= (−1)d−1 sign Λ

8πG(d)
N

? λ2 . (1.57)

17Here we use the symbol .= for identities that only hold on-shell.
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Now, using the equation of motion of λ, eq. (1.13b), to replace ?λ by G and the
definition of the momentum map Pk in eq. (1.32) to replace ıkG by −dPk, we get

ıkL
.= d

{
(−1)d λPk

(d− 2)16πG(d)
N

}
, (1.58)

and
$k = (−1)d(d− 1)λPk

(d− 2)16πG(d)
N

. (1.59)

The Komar integral is, then

K(Σd−2) = (−1)d−1

16πG(d)
N

∫
Σd−2

{
?(ea ∧ eb)Pk ab −

λPk
(d− 2)

}
. (1.60)

Let us consider the anti-De Sitter case (sgn Λ < 0): if we integrate the exterior deriva-
tive of the integrand over a hypersurface whose boundary is the union of a spatial section
of a stationary black-hole Killing horizon (the bifurcation surface, BH, for the sake of
convenience) and spatial infinity, Sd−2

∞ , Stokes’ theorem tells us that

K(BH) = K(Sd−2
∞ ) . (1.61)

For the sake of simplicity, let us consider a static, spherically symmetric black-hole
solution: the Schwarzschild-aDS-Tangherlini solution [51], whose metric is given by

ds2 = Wdt2 −W−1dr2 − r2dΩ2
(d−2) , with W = 1− 2m

rd−3 + |Λ|
d− 1r

2 , (1.62)

where

m = 8πG(d)
N M

(d− 2)ω(d−2)
, (1.63)

ω(d−2) being the volume of the unit, round, (d− 2)-sphere, and M the ADM mass.
The event horizon of this solution is placed at some value rh at which W (rh) = 0. The

Hawking temperature and Bekenstein-Hawking entropy can be expressed in terms of rh
even if its value cannot be determined explicitly. They are given, respectively, by [2]

T = 1
2π(d− 1)rd−2

h

[
(d− 1)(d− 3)m+ |Λ|rd−1

h

]
, (1.64a)

S =
ω(d−2)r

d−2
h

4G(d)
N

, (1.64b)

and the product ST leads to the Smarr formula

(d− 3)
(d− 2)M = ST − 1

8πG(d)
N

ω(d−2)r
d−1
h

(d− 1) |Λ| . (1.65)

We can evaluate the Komar integral on a constant r surface Sd−2
r

K(Sd−2
r ) =

ω(d−2)

16πG(d)
N

{
rd−2W ′ − 2rd−1 |Λ|

(d− 1)

}
. (1.66)

– 12 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
5

At infinity, the second term on the r.h.s. cancels a divergent term coming from W ′ and
we get the left-hand side of the Smarr relation eq. (1.65). At the horizon, the first term
gives directly ST and we get the right-hand side of eq. (1.65) and we recover the complete
Smarr relation from the Komar integral.

Observe that, since the restricted, generalized, zeroth law guarantees that, over the
bifurcation surface, Pk is a constant times the volume form, in general we can take that
constant outside of the Komar integral K(BH). In this simple case, also λ can be taken
out of the integral, but in more general cases, only the constant defining the momentum
map can be taken outside the integral. The integral of λ is also the integral of ?G on-shell,
which gives, up to normalization constants, the associated charge.

Finally, using the definition of Θλ in eq. (1.47) and

Vk =
rd−1
h ω(d−2)
d− 1 , (1.67)

the Smarr formula can be written in the form

(d− 3)M = (d− 2)ST −Θλλ , (1.68)

which is the form that follows from the usual scaling and homogeneity arguments [2, 26,
50].18

1.5 The first law and black-hole chemistry

We are ready to prove the first law of black-hole mechanics in this theory using Wald’s
formalism [9–11].

We consider field configurations that describe stationary, black-hole spacetimes admit-
ting a timelike Killing vector k whose bifurcate Killing horizon coincides with the black
hole’s event horizon H. k, then, will be given by a linear combination with constant coeffi-
cients Ωn of the timelike Killing vector associated to stationarity, tµ∂µ, and the [1

2(d− 1)]
generators of inequivalent rotations in d spacetime dimensions φµn∂µ

kµ = tµ + Ωnφµn . (1.69)

The constant coefficients Ωn are the angular velocities of the horizon.
The starting point of the proof is the fundamental relation [9–11]

d
(
δQ[k] + ıkΘ′

)
= 0 , (1.70)

valid for on-shell field configurations ϕ satisfying the equations of motion and perturbations
of the fields δϕ satisfying the linearized equations of motion.

We are going to integrate this relation over the hypersurface Σ defined as the space
bounded by infinity and the bifurcation sphere BH on which k = 0. Therefore, its boundary,
∂Σ, has two disconnected pieces: a (d − 2)-sphere at infinity, Sd−2

∞ , and the bifurcation
181/λ has dimensions of length.
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sphere BH. Using Stokes theorem and taking into account that k = 0 on BH, we obtain
the relation

− δ
∫
BH

Q[k] = −
∫

Sd−2
∞

(
δQ[k] + ıkΘ′

)
, (1.71)

where we have added conventional minus signs that take into account the minus sign in
our definitions of the variations of the fields under diffeomorphisms.

As explained in refs. [11, 46], the right-hand side can be identified with δM − ΩnδJn,
where M is the total mass of the black-hole spacetime and Jn are the independent compo-
nents of the angular momentum.

Using the explicit form of the Noether-Wald charge eq. (1.42)

− δ
∫
BH

Q[k] = (−1)d−1

16πG(d)
N

δ

∫
BH

?(ea ∧ eb)Pk ab + (−1)d−1

16πG(d)
N

δλ

∫
BH

Pk . (1.72)

The right-hand side of this identity is expected to be of the form TδS+ ΦδQ for some
charges Q and potentials Φ and/or “pressures” ϑ and “volumes” Θϑ. In this expression
λ plays the role of charge or pressure, while Θλ, defined in eq. (1.46), plays the role of
conjugate potential or volume. Using eqs. (1.18) and (1.46) (sign Λ = −1)

(−1)d−1

16πG(d)
N

δλ

∫
BH

Pk = Θλδλ . (1.73)

Using also eq. (1.49) we arrive at

δM = TδS + ΩnδJn + Θλδλ . (1.74)

The (unconventional, in black-hole chemistry literature) factor of λ present in the
definition of Θλ can be absorbed in δλ. However, when the cosmological constant arises
as the square of another, more fundamental constant, as in gauged supergravity, this form
of the first law is more natural. Also, in these theories, the coupling constant is often
associated to (d− 1)-form potentials coming from higher dimensions [20].

As a matter of fact, it is always possible to introduce a (d − 1)-form potential dual
to the coupling constants, masses or any other parameters occurring in the action. These
(d−1)-forms are part of what is known as the tensor hierarchy of the theory. At the level of
the action they can always be introduced in the same way we introduced the potential dual
to the cosmological constant: promoting first the parameters to fields and introducing the
dual (d − 1)-form potentials as Lagrange multipliers that constrain the fields/parameters
to be constant. Intuitively, we expect terms in the first law and Smarr formula associated
to all those (d− 1) potentials and, henceforth, to all those coupling constants, masses and
other parameters.

In the next section we are going to consider a very simple model inspired by gauged
supergravity, in which we can test these ideas.
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2 A more general example

In this section we want to consider a more general model which essentially describes two
scalars φ1, φ2 and a 1-form field A coupled to gravity, represented by the Vierbein ea, in
d = 4. In this model, the invariance under constant shifts of φ2 has been gauged using a
combination of the 1-form A and its dual Ã as gauge fields with two coupling constants
ϑ and ϑ̃. By consistency, it is necessary to introduce a 2-form B which can be taken to
be the dual of the Noether current j associated to the invariance under constant shifts of
φ2, so no additional degrees of freedom are added to the theory. Actually, one can write
an action for all these fields which gives the expected equations of motion plus the duality
relations between j and B and between A and Ã (see ref. [31]).

One can go further, dualizing the two coupling constants into 2 3-forms C and C̃ as we
have done with the cosmological constant in the previous section, completing the tensor
hierarchy as in refs. [34, 35]. Again, this introduces no new local degrees of freedom.

Before introducing the action that describes this system, we introduce some notation:
the coupling constants, their dual 3-forms, the 1-form and its dual and the 0- and 2-form
gauge parameters are collected in symplectic vectors ϑM , CM , AM , σM , χM as follows:

(ϑM ) ≡
(
ϑ, ϑ̃

)
,

(
AM

)
≡
(
A

Ã

)
,

(
CM

)
≡
(
C

C̃

)
,

(
ϑM

)
=
(
−ϑ̃
ϑ

)
,

(
σM

)
≡
(
σ

σ̃

)
,

(
χM

)
≡
(
χ

χ̃

)
.

(2.1)

The field strengths are defined as

Dφ2 ≡ dφ2 − ϑMAM , (2.2a)
FM = dAM + ϑMB , (2.2b)
H = dB , (2.2c)

GM ≡ dCM +AM ∧ ?j + 1
2ϑ

MB ∧B + δM,2B ∧ (?F − F̃ ) , (2.2d)

where
j ≡ (φ1)2Dφ2 , (2.3)

and δM .̃ is 1 for C̃ and zero for C. Under the gauge transformations

δφ2 = ϑMσ
M , (2.4a)

δAM = dσM − ϑMΛ , (2.4b)
δB = dΛ , (2.4c)

δCM = dχM − σM ? j − ϑMΛ ∧B − δM,2Λ ∧ (?F − F̃ ) , (2.4d)

the above field strengths are on-shell invariant only. More precisely, Dφ2, FM and H are
gauge invariant up to terms proportional to dϑM , while the 4-form fields strengths GM are
gauge invariant up to terms proportional to dϑM and to equations of motion that establish
relations of duality among the fields. Nevertheless, the action that we are going to use is
off-shell gauge invariant, up to total derivatives.
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Suppressing the normalization factor (16πG(4)
N )−1, for the moment, the action takes

the form

S =
∫ {
− ? (ea ∧ eb) ∧Rab + 1

2dφ
1 ∧ ?dφ1 + 1

2(φ1)2Dφ2 ∧ ?Dφ2

+1
2F ∧ ?F + ϑ̃B ∧

(
F̃ − 1

2ϑB
)
− CM ∧ dϑM + ?V (φ)

}
,

(2.5)

where the potential is assumed to be a function of φ1 only and of the two coupling constants
ϑ, ϑ̃ which are needed for dimensional reasons; for the same reason they must appear in
it quadratically, so that the potential is a homogeneous function of degree two, i.e. the
potential satisfies

ϑM
∂V

∂ϑM
= 2 V . (2.6)

The second and third terms in the second line of the action are gong to be referred to
as “additional”: they are topological and do not contain kinetic terms.

The equations of motion are defined by the general variation of the action

δS =
∫ {

Ea ∧ δea + E1δφ
1 + E2δφ

2 + EAM ∧ δAM + EB ∧ δB + ECM ∧ δCM

+EϑM
∧ δϑM + dΘ(ϕ, δϕ)

}
.

(2.7)

The equations of the 3-forms are just

ECM = dϑM , (2.8)

so that the ϑM are (piecewise) constant on-shell, as intended.
The Einstein equations only involve the field strengths of the fundamental fields φ1, φ2

and A because the additional terms are all topological:

Ea = ıa ? (ec ∧ ed) ∧Rcd + 1
2

(
ıadφ

1 ? dφ1 + dφ1 ∧ ıa ? dφ1
)

+ 1
2(φ1)2

(
ıaDφ2 ?Dφ2 +Dφ2 ∧ ıa ?Dφ2

)
+ 1

2 (ıaF ∧ ?F − F ∧ ıa ? F )− ıa ? V .

(2.9)

Observe that the dual fields Ã, B occur in the energy-momentum tensor through the field
strengths Dφ2 and F .

The additional terms do not involve the scalars, either, and, therefore

E1 = −d ? dφ1 + φ1Dφ2 ∧ ?Dφ2 + ?
∂V

∂φ1 , (2.10a)

E2 = −d ? j , (2.10b)

Furthermore, they do not involve A and, therefore,

EA = −d ? F + ϑ ? j . (2.11)

Now, let us consider the equations of motion of the dual fields which give duality
relations. The equation of motion of Ã,

EÃ = ϑ̃ ? j − d
(
ϑ̃B
)
, (2.12)
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gives the duality relation between φ2 (the current j) and B (its field strength H) on-shell,
when dϑ̃ = 0.

The equation of motion of B,

EB = −ϑ̃
(
?F − F̃

)
, (2.13)

is the duality relation between Ã and A.
The equations of motion of the components of the embedding tensor are

EϑM
= −GM + ?

∂V

∂ϑM
. (2.14)

On-shell these equations are the duality relations between the components of the embedding
tensor ϑM and the 3-forms CM as given in [34]

GM = ?
∂V

∂ϑM
. (2.15)

In the framework of this theory, these duality relations are only non-trivial when the
corresponding component of the embedding tensor occurs in the scalar potential. However,
it is clear that if those parameters19 also occur as coefficients of terms of higher order in
the Riemann curvature, the duality relations will be non-trivial as well.

Once the duality relations implied by the equations of motion of the dual fields
Ã, B,CM and the embedding tensor ϑM are taken into account, the action we are studying
describes a very simple model of a vector field and two scalars, one of which is charged
with respect to the vector field, its dual or a combination of both, coupled to gravity. The
use of the dual vector field as a gauge field is, perhaps, unusual, and demands the presence
of the 2-form B, but we can always eliminate this aspect of the model by setting ϑ̃ = 0.

Finally, Θ receives contributions from the variations of ea, φ1, φ2, AM , ϑM but not from
those of B or CM , which occur in the action with no derivatives:

Θ(ϕ, δϕ) = − ? (ea ∧ eb) ∧ δωab + ?dφ1δφ1 + ?jδφ2 + ?F ∧ δA
+ ϑ̃B ∧ δÃ+ CMδϑM .

(2.16)

As we have mentioned, the action is invariant under gauge transformations up to a
total derivative that takes the form

δgaugeS =
∫
d
{
ϑ̃Λ ∧ dÃ+ ϑMdχ

M
}
. (2.17)

This total derivative is only defined up to total derivatives and we can make use of
this freedom to obtain gauge-invariant results, if need be.

19Here we are referring to all dimensionful parameters of the theory, not necessarily associated to gaugings
and, therefore, not conventionally included in the concept of embedding tensor.
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2.1 Gauge conserved charges

We are going to study the effect of all the independent gauge transformations simultane-
ously. We will denote all of them by δg. From the general variation of the action eq. (2.7)
we get

δgS =
∫ {

E2δgφ
2 + EAM ∧ δgA

M + EB ∧ δgB + ECM ∧ δgC
M + dΘ(ϕ, δgϕ)

}
, (2.18)

with
Θ(ϕ, δgϕ) = ?jδgφ

2 + ?F ∧ δgA+ ϑ̃B ∧ δgÃ . (2.19)

Substituting the above δg variations and the expressions for the equations of motion
and operating, we arrive at

δgS =
∫
dΘ′(ϕ, δgϕ) , (2.20)

with

Θ′(ϕ, δgϕ) = Θ(ϕ, δgϕ)− ?jϑMσM + σd ? F + σ̃d
(
ϑ̃B
)
− ϑ̃

(
?F − F̃

)
∧ Λ− dϑM ∧ χM

= d
(
σ ? F + σ̃ϑ̃B

)
+ ϑ̃dÃ ∧ Λ− dϑM ∧ χM . (2.21)

On the other hand, the action is only gauge invariant up to the total derivative in
eq. (2.17) that we can write, for the sake of convenience, in the form

δgS =
∫
d
[
ϑ̃dÃ ∧ Λ + ϑMdχ

M − d
(
ϑ̃Ã ∧ Λ

)]
=
∫
d
[
Ã ∧ d

(
ϑ̃Λ
)

+ ϑMdχ
M
]
, (2.22)

and combining this result with the previous one we arrive at the off-shell identity∫
dJ = 0 , with J ≡ Θ′(ϕ, δgϕ)− Ã ∧ d

(
ϑ̃Λ
)
− ϑMdχM , (2.23)

which implies, locally
J = dQ , (2.24)

where
Q = σ ? F + σ̃ϑ̃B + ϑ̃Ã ∧ Λ− ϑMχM . (2.25)

Now we must identify the Killing parameters σM ,Λ, χM that generate transformations
that leave invariant all the fields.

The 2-form B is left invariant by 1-forms which are closed, so Λ = h + dα, for a
harmonic 1-form h and an arbitrary function α. However, the 1-forms AM are invariant
for functions σM such that dσM = ϑM (h + dα), which implies that h = 0 and σM =
ϑMα + βM , for arbitrary, constant symplectic vectors βM . The invariance of φ2 implies
that ϑMβM = 0. If ϑM 6= 0, then βM = ϑMβ for a single arbitrary constant β, but
when ϑM = 0, βM is arbitrary. Finally, the invariance of CM implies that the 2-forms
χM = ϑMα+ βMB + ΩM + dεM where εM and ΩM are, respectively, symplectic vectors of
1-forms and harmonic 2-forms. The (pullback of the) latter are proportional to the volume
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of the 2-dimensional space on which the charge 2-form is going to be integrated and we
can write, with a slight abuse of language ωM = γMΩ∂V . Summarizing:

σM = ϑMα+ βM , (2.26a)
Λ = dα , (2.26b)

χM = ϑMα+ βMB + γMΩ∂V + dεM , (2.26c)

with
ϑMβ

M = 0 , d ? ΩM = 0 . (2.27)

When the fields are on-shell, these Killing parameters give rise to several independent
conserved charges in the 3-volume V with compact boundary ∂V :

Electric charge: associated to β, which can set to 1:20

Q ≡ −1
16πG(4)

N

∫
∂V

(?F − ϑB) . (2.28)

If we deform ∂V without crossing any sources (i.e. points at which the equations
of motion are not satisfied.), the difference between the charges will be, via Stokes
theorem, the volume integral

∆Q = −1
16πG(4)

N

∫
V
d (?F − ϑB) , (2.29)

whose integrand vanishes on-shell.

2-form charge: associated to the function α

Q[α] ≡ −1
16πG(4)

N

∫
∂V

[
α (?F − ϑB) + dα ∧ Ã

]
= 1

16πG(4)
N

∫
∂V
d
(
ϑαÃ

)
= 0 . (2.30)

3-form charge: associated to the space which we are going to integrate over,21 it is just
its volume (surface)

Q[V ] ≡
∫
∂V

Ω∂V . (2.31)

We can also define a magnetic charge

P ≡ −1
16πG(4)

N

∫
∂V

(
F + ϑ̃B

)
, (2.32)

which is conserved in the same sense as the electric one thanks to the Bianchi identity
instead of the equations of motion. This charge can be combined with the electric one in
a symplectic vector(

P

Q

)
=
(
QM

)
, QM = −1

16πG(4)
N

∫
∂V

(
FM − ϑMB

)
. (2.33)

20This is the upper component of βM .
21There are no non-trivial charges associated to the 1-forms εM because the integrand is, again, a total

derivative. We have normalized ϑMγM = 1.
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2.2 The Noether-Wald charge

2.2.1 Transformations of the fields

As usual, we want to define transformations δξ that annihilate all the fields of a given solu-
tion in a gauge-invariant way for certain parameters ξ = k which are, in particular, Killing
vectors. We have to combine standard Lie derivatives and k-dependent (“compensating”)
gauge transformations into gauge-covariant Lie derivatives.

It is convenient to start by analyzing the 2-form B through its gauge-invariant 3-form
field strength H = dB. Due to the Bianchi identity dH = 0

δξH = −dıξH . (2.34)

When ξ = k, there must exist a momentum map 1-form Pk such that

dPk = −ıkH . (2.35)

Now, the transformation of B is the Lie derivative plus a gauge transformation with a
ξ-dependent 1-form parameter Λξ

δξB = −dıξB − ıξH + dΛξ . (2.36)

When ξ = k we can use the definition of the momentum map 1-form Pk to get

d (ıkB −Pk − Λk) = 0 (2.37)

which is solved by the choice
Λk = ıkB −Pk . (2.38)

Then, we define
δξB = − (ıξH + dPξ) , (2.39)

where the 1-form Pξ is the momentum map 1-form Pk when ξ = k. With these definitions,
δkB = 0 automatically and in a gauge-invariant fashion.

Let us now consider the gauge-invariant 2-form field strengths FM :

δξF
M = −dıξFM − ıξdFM = −dıξFM − ıξ

(
dϑM ∧B + ϑMH

)
. (2.40)

On-shell and for ξ = k

δkF
M = −dıkFM − ϑM ıkH = −d

(
ıkF

M − ϑMPk

)
= 0 , (2.41)

upon use of the definition of Pk. Then, locally, there must exist momentum maps PMk such
that

ıkF
M − ϑMPk = −dPMk . (2.42)

The transformation of the 1-forms AM is (minus) their Lie derivative plus a gauge
transformation with a ξ-dependent 1-form parameter Λξ which has to be the same we
determined before and a gauge transformation with ξ-dependent 0-form parameters σMξ

δξA
M = −dıξAM − ıξdAM + dσMξ − ϑMΛξ

= −dıξAM − ıξFM + dσMξ + ϑMPξ .
(2.43)
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When ξ = k

δkA
M = −d

(
ıkA

M − PMk − σMk
)

= 0 , (2.44)

which is solved by the choice
σMk = ıkA

M − PMk . (2.45)

Therefore, we define
σMξ ≡ ıξAM − PMξ , (2.46)

and
δξA

M = −
(
ıξF

M + dPMξ − ϑMPξ

)
, (2.47)

where, when ξ = k, PMξ and Pξ are, respectively, the momentum map 0- and 1-forms.
Again, δkAM = 0 automatically and in a gauge-invariant form.

φ1 is a scalar, and transforms in the standard way

δξφ
1 = −£ξφ

1 = −ıξdφ1 . (2.48)

This transformation is assumed to vanish for ξ = k.
The scalar φ2, however, transforms non-trivially under gauge transformations. It is

convenient to analyze, first, its covariant derivative, which is, actually, gauge-invariant.

δξDφ2 = −dıξDφ2 − ıξdDφ2 = −dıξDφ2 + ϑM ıξF
M . (2.49)

On-shell and for ξ = k the following identity must hold

− d
(
ıkDφ2 + ϑMP

M
k

)
= 0 , ⇒ ıkDφ2 = −ϑMPMk , (2.50)

where σMξ defined in eq. (2.46). The transformation of φ2 is a combination of (minus) the
Lie derivative and a gauge transformation with parameter σMξ

δξφ
2 = −ıξdφ2 + ϑMσ

M
ξ = −ıξDφ2 − ϑMPMξ , (2.51)

and δkφ2 vanishes identically by virtue of eq. (2.50).
Let us consider, finally, the 3-forms. As usual, it is convenient to study their 4-form

field strengths first. They are gauge-invariant on-shell only. By assumption, and because
these are 4-forms in 4 dimensions

0 = δkG
M = −dıkGM , ⇒ dPMGk = −ıkGM , (2.52)

defining the momentum map 2-forms PMGk. The transformations of the 3-forms CM must
be a combination of their Lie derivatives and gauge transformations with the parameters
σMξ ,Λξ that we have already determined and, possibly χMξ :

δξC
M = −dıξCM − ıξdCM + dχMξ − σMξ ? j − ϑMΛξ ∧B − δM .̃Λξ ∧ (?F − F̃ )

= −d
(
ıξC

M − χMξ
)
− ıξGM + PMξ ? j −AM ∧ ıξ ? j

+ ϑMPξ ∧B + δM .̃
[
Pξ ∧ (?F − F̃ ) +B ∧ ıξ(?F − F̃ )

]
.

(2.53)
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On-shell and for ξ = k

δkC
M = −d

(
ıkC

M − χMk − PMGk −Pk ∧AM
)

+ PMk H + Pk ∧ FM . (2.54)

We can show that the last two terms are, locally, a total derivative:

d
(
PMk H + Pk ∧ FM

)
= dPMk H + dPk ∧ FM − ϑMPk ∧H

= −ıkF ∧H − ıkH ∧ FM = −ık (F ∧H) = 0 .
(2.55)

Thus, we define the 2-form XM
2 k by

PMk H + Pk ∧ FM ≡ dXM
2 k . (2.56)

Absorbing it in the definition of PMGk, which now satisfies

dPMGk = −ıkGM + PMk H + Pk ∧ FM , (2.57)

we conclude that

δkC
M = −d

(
ıkC

M − χMk − PMGk −Pk ∧AM
)

= 0 , (2.58)

which is solved by
χMk = ıkC

M − PMGk −Pk ∧AM . (2.59)

Then, we arrive at the definition

δξC
M = −ıξGM − dPMGξ + Pξ ∧ FM + PMξ ? j −AM ∧ (ıξ ? j + dPξ)

+ δM .̃
[
Pξ ∧ (?F − F̃ ) +B ∧ ıξ(?F − F̃ )

]
,

(2.60)

which vanishes automatically for ξ = k.
Summarizing, the transformations that we are going to consider are

δξe
a = −(Dξa + Pξ

a
be
b) , (2.61a)

δξω
ab = −(ıξRab +DPξab) , (2.61b)

δξφ
1 = −ıξdφ1 , (2.61c)

δξφ
2 = −

(
ıξDφ2 + ϑMP

M
ξ

)
, (2.61d)

δξA
M = −

(
ıξF

M + dPMξ − ϑMPξ

)
, (2.61e)

δξB = − (ıξH + dPξ) , (2.61f)

δξC
M = −

(
ıξG

M + dPMGξ −Pξ ∧ FM − PMξ ? j
)
−AM ∧ (ıξ ? j + dPξ)

+ δM .̃
[
Pξ ∧ (?F − F̃ ) +B ∧ ıξ(?F − F̃ )

]
, (2.61g)

δξϑM = −ıξdϑM , (2.61h)
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and the momentum maps 0-, 1-, and 2-forms satisfy

DPkab = −ıkRab , (2.62a)
dPMk = −ıkFM + ϑMPk , (2.62b)
dPk = −ıkH , (2.62c)
dPMGk = −ıkGM + PMk H + Pk ∧ FM . (2.62d)

Furthermore, when ξ = k

ıkDφ2 = −ϑMPMk . (2.63)

2.2.2 Transformation of the action

Substituting the above transformations of the fields in

δξS =
∫ {

Ea ∧ δξea + E1δξφ
1 + E2δξφ

2 + EAM ∧ δξAM + EB ∧ δξB + ECM ∧ δξCM

+EϑM
∧ δξϑM + dΘ(ϕ, δξϕ)

}
,

(2.64)
integrating by parts and using the Noether identities we are left with

δξS =
∫
dΘ′(ϕ, δξϕ) , (2.65)

with

Θ′(ϕ, δξϕ) ≡ Θ(ϕ, δξϕ)+ξaEa+PMξ EAM −Pξ∧
(
EB + ECM ∧AM

)
+PMGξ∧ECM . (2.66)

Under these transformations, the action transforms into the integral of a total deriva-
tive, that we have chosen so as to obtain a final gauge-invariant result:

δξS =
∫
d
{
−ıξL + ϑ̃ıξB ∧ dÃ+ Ã ∧ d

(
ϑ̃Pξ

)
− dϑM ∧

(
ıξC

M −Pξ ∧AM
)
− ϑMdPMGξ

}
.

(2.67)
Equating this result for δξS with the one in eq. (2.65) we arrive to the identity∫

dJ[ξ] = 0 , (2.68)

with

J[ξ] = Θ′(ϕ, δξϕ)+ ıξL− ϑ̃ıξB∧dÃ− Ã∧d
(
ϑ̃Pξ

)
+dϑM ∧

(
ıξC

M −Pξ ∧AM
)

+ϑMdP
M
Gξ .

(2.69)
Simplifying this expression we get

J[ξ] = dQ[ξ] , (2.70a)

Q[ξ] = ?(ea ∧ eb) ∧ Pξ ab −
(
Pξ ? F + ϑ̃P̃ξB + ϑ̃Ã ∧Pξ − ϑMPMGξ

)
. (2.70b)

The second term in this formula, the one in parenthesis, should be compared with the
2-form charge associated to gauge transformations eq. (2.25).
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2.3 Generalized, restricted, zeroth laws

We just need to adapt the discussion in section 1.3 to the model at hand, which has more
fields. On the bifurcation surface BH we have

dPMk − ϑMPk
BH= 0 , (2.71a)

dPk
BH= 0 , (2.71b)

dPM
Gk − PMk H −Pk ∧ FM

BH= 0 , (2.71c)

ϑMP
M
k
BH= 0 . (2.71d)

These equations are equivalent to the equations that the Killing parameters discussed
on page 18 must satisfy: first of all, the second equation implies that Pk = h+dα, where h
is a harmonic 1-form on the bifurcation surface and α and arbitrary function. However, the
first equation tells us that h has to be removed from that identity and PMk = ϑMα + βM

for βM which is constant over the bifurcation surface. The last equation implies that
βM = ϑMβ if ϑM 6= 0, but it is arbitrary when ϑM = 0. The third equation takes the form

dPM
Gk −

(
ϑMα+ βM

)
dB − dα ∧ FM = d

(
PM
Gk − αFM − βMB

) BH= 0 , (2.72)

and, summarizing, we have22

PMk
BH= ϑMα+ βM , (2.73a)

Pk
BH= dα , (2.73b)

PM
Gk
BH= αFM + βMB + γMΩBH , (2.73c)

where γM is a constant symplectic vector and ΩBH is the volume 2-form of the bifurcation
surface; from eq. (2.71d) we have

ϑMβ
M = 0 . (2.74)

The components of the constant vector βM can be interpreted as the electric and
magnetic potentials over the bifurcation surface and the fact that they are constant is
the generalized zeroth law restricted to the bifurcation surface. It is unclear whether this
property can be extended to the whole event horizon in this particularly complex model
or, at least, it is unclear how to prove it. However, we will not need this proof. As the
βM are the thermodynamical potentials associated to the electric and magnetic charges,
we will denote them by

ΦM ≡ βM , with (ΦM ) =
(

Φ
Φ̃

)
. (2.75)

Observe that eq. (2.74) becomes a constraint on these potentials:

ϑMΦM = 0 . (2.76)
22Compare with eqs. (2.26).
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Even though this constraint follows directly from our definitions, it is nonetheless
surprising and the following interpretation may be helpful: observe that the gauge trans-
formations (2.4a) and (2.4b) imply that, on-shell, the field φ2 is a Stückelberg field for the
combination ϑMAM , which therefore behaves, on-shell, as a massive vector field. The con-
straint (2.76) then states that the electric part of the (massive) combination ϑMAM cannot
give contributions on bifurcate surfaces, which is in accordance with previous results on
massive vector fields in black hole spacetimes, see e.g. refs. [52–54].

The components of the constant vector γM are the thermodynamical potentials (“vol-
umes”) associated to the thermodynamical variables ϑM (“pressures”). Again, in order to
make contact with the conventions of ref. [6], we can define the potentials ΘM

γM

16πG(4)
N

≡ −ΘM/VBH , (2.77)

where VBH is the volume of the bifurcation surface

VBH =
∫
BH

ΩBH . (2.78)

The fact that the vector ΘM is constant over the bifurcation surface is another gener-
alized, restricted, zeroth law

There is no role for the function α: there are no conserved charges associated to the
gauge transformations δΛ and α will also drop out of the Smarr formula.

2.4 Komar integral and Smarr formula

We are now ready to construct the Komar integral for this theory along the lines explained
in section 1.4. It provides a highly non-trivial check of the Noether-Wald charge.

Let us consider a field configuration that satisfies the equations of motion and an
infinitesimal diffeomorphism ξ = k that generates a symmetry of the whole field configura-
tion. Then, since Θ(ϕ, δξϕ) is linear in δξϕ, it vanishes when ξ = k and, since the equations
of motion are satisfied, so does Θ(ϕ, δξϕ). Then, from the definition eq. (2.69) we find that23

J[k] .= ıkL− ϑ̃ıξB∧dÃ−Ã∧d
(
ϑ̃Pξ

)
+dϑM ∧

(
ıξC

M −Pξ∧AM
)

+ϑMdP
M
Gξ . (2.79)

On the other hand, by construction,

δkS = 0 , (2.80)

and, thus, the total derivative in eq. (2.67) evaluated for ξ = k, which coincides with the
on-shell value of J[k] in eq. (2.79), must vanish identically and, locally, there is a 2-form
$k such that

d$k
.= ıkL− ϑ̃ıξB ∧ dÃ− Ã ∧ d

(
ϑ̃Pξ

)
+ dϑM ∧

(
ıkC

M −Pk ∧AM
)

+ ϑMdP
M
Gk = J[k] .

(2.81)
23As before, we use .= for identities that only hold on-shell.
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Since we also have J[k] = dQ[k], we conclude that

d {Q[k]−$k}
.= 0 . (2.82)

In order to compute the Komar charge −{Q[k]−$k} we proceed as before, taking
the trace of the Einstein equations (2.9)

ea ∧ Ea = −2L + F ∧ ?F + 2ϑ̃B ∧
(
F̃ − 1

2ϑB
)
− 2CM ∧ dϑM − 2 ? V . (2.83)

and, on-shell (?F = F̃ and dϑM = 0)

ıkL
.= 1

2

(
ıkF + 2ϑ̃ıkB

)
∧ F̃ + 1

2

(
F + 2ϑ̃B

)
∧ ıkF̃ − ϑ̃ϑıkB ∧B − ık ? V . (2.84)

Combining this result with the other terms and operating, we get

ıkL− ϑ̃ıξB ∧ dÃ− Ã ∧ d
(
ϑ̃Pξ

)
+ dϑM ∧

(
ıkC

M −Pk ∧AM
)

+ ϑMdP
M
Gk

.= 1
2ϑM

(
Pk ∧ dAM −B ∧ dPMk

)
− ık ? V + d

(
ϑMP

M
Gk − 1

2PkdÃ−
1
2 P̃kdA− ϑ̃Ã ∧Pk

)
.

(2.85)
Let us now consider the term involving the scalar potential: using the fact that the

potential is a homogeneous function of the embedding tensor, eq. (2.6), and the on-shell
ϑM equation of motion, eq. (2.14), we obtain

ık ? V = 1
2ϑM ıkG

M = 1
2ϑM

(
−dPMGk + PMk H + Pk ∧ FM

)
. (2.86)

After use of the definition of the 2-form momentum map PMGk in eq. (2.62d), we arrive at

d$k = ıkL− ϑ̃ıξB ∧ dÃ− Ã ∧ d
(
ϑ̃Pξ

)
+ dϑM ∧

(
ıkC

M −Pk ∧AM
)

+ ϑMdP
M
Gk

.= d
(

3
2ϑMP

M
Gk − 1

2PkdÃ−
1
2 P̃kdA−

1
2ϑMP

M
k B + ϑ̃Ã ∧Pk

)
.

(2.87)

Combining this result with eq. (2.70b) we obtain the Komar charge

− {Q[k]−$k}
.= −1

16πG(4)
N

{
?(ea ∧ eb) ∧ Pk ab + 1

2PkMF
M − 1

2ϑMP
M
Gk

}
. (2.88)

This is a manifestly (formally) symplectic-invariant result [18] that reduces to the
result obtained in section 1.4 if we eliminate the scalar and 1-form fields; it reduces to the
Einstein-Maxwell result upon setting the embedding tensor to zero.

We can now proceed as in section 1.4 to derive the Smarr formula through the identity
between the Komar integrals over the bifurcation surface and at spatial infinity eq. (1.61).
At infinity

K(S2
∞) = −1

16πG(4)
N

∫
S2
∞

{
?(ea∧eb)∧Pkab+ 1

2PkMF
M− 1

2ϑMP
M
Gk

}
= 1

2 (M−ΩJ) , (2.89)

essentially by definition. Over the bifurcation surface, using the generalized, restricted, ze-
roth laws eqs. (2.73), the definitions of the potentials eqs. (2.75) (2.77) and of the definitions
of electric and magnetic charges eq. (2.33), we get

K(BH) = ST + 1
2ΦMQ

M − 1
2ϑMΘM , (2.90)
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and we obtain the Smarr formula

M = 2ST + ΩJ + ΦMQ
M − ϑMΘM . (2.91)

In the derivation of this formula we have implicitly assumed that the momentum maps
which give the electrostatic and magnetostatic potentials vanish at spatial infinity and,
thus, only their values at the horizon (or, more precisely, at the bifurcations surface BH)
occur in the Smarr formula. Otherwise, ΦM would be replaced by the differences between
the potentials at BH and at infinity. Similar boundary conditions can be demanded to
higher-rank momentum maps in asymptotically-flat spaces and, obviously, they will be
assumed in the derivation of the first law as well. Imposing these boundary conditions
is possible because the restricted, generalized, zeroth laws only indicate the closedness of
certain differential forms which, therefore, are only defined up to the addition of exact forms
(constants for scalar momentum maps). We would like to stress that this ambiguity, which
has no effect on the final results, does not indicate dependence on the gauge transformations
of the fields of the theory even it is similar to a gauge freedom.

In order to check the Smarr formula eq. (2.91) we need explicit analytic solutions of
the equations of motion of this model, but this is quite difficult, as the attempt made in the
appendix shows. However, it is clear that, had we considered an additional cosmological-
constant parameter λ in the theory, we would simply have obtained an additional term
−λΘλ in the above formula. That formula should remain valid when the embedding tensor
is set to zero, in which case the theory reduces to the cosmological Einstein-Maxwell theory.

Observe that, due to the constraint eq. (2.76), only one combination of the electric and
magnetic potentials occurs in the above formula and, henceforth, only one combination of
the electric and magnetic charges does.

2.5 The first law and black-hole chemistry

It is not necessary to repeat here all the steps that lead to the first law

δM = TδS + ΩδJ + ΦδQ+ ΘMδϑM . (2.92)

Observe that, as usual, only the variation of the electric charge and its associated
electric potential occur in the first law. This could be due to a limitation of the techniques
that we are using. Nevertheless, if the magnetic counterpart of the ΦδQ term was present,
due to the constraint eq. (2.76), there would be a combination of electric and magnetic
charges the mass of the black whole would be independent of. We will comment upon this
point in the discussion section.

3 Discussion

In this paper we have shown how the variations of the cosmological constant and other
dimensionful constants occurring in a theory of gravity can be consistently dealt with and
understood in the framework of Wald’s formalism and how they enter the first law of black-
hole thermodynamics and the Smarr formula. In the example that we have completely
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worked out in section 2, the constants that we have considered can be seen as components
of the embedding tensor (a very simple one since there is only a 1-dimensional symmetry
to be gauged) and our result proves the conjectured role of the embedding tensor as a
thermodynamical variable.

A very interesting aspect of the Smarr formula is that, if it is general enough and
it includes all the charges a black hole can carry and all the moduli of the theory under
consideration, then it has to be invariant under all the duality transformations. Observe
that duality transformations act on the moduli and charges but leave the mass, temperature
and entropy invariant because the Einstein metric is left invariant by them. In ref. [18]
we showed that, in the context of pure N = 4, d = 4 supergravity, indeed, the term
involving the electric and magnetic potentials and charges is formally symplectic invariant.
This automatically implies its invariance under the SO(6)×SL(2,R) duality group of N =
4, d = 4 supergravity since all the 4-dimensional duality groups act on the 1-form fields as a
subgroup of the symplectic group [38]. The same happens in the very simple example that
we have considered here but we have also seen that the term involving the embedding tensor
and its conjugate thermodynamical potential is also electric-magnetic duality invariant as
it should, according to the general arguments given above. In more general models the
embedding tensor is denoted by ϑAM , where the index A runs over the Lie algebra of the
symmetry group of the theory. The terms that must occur in the first law and in the Smarr
formula must be, respectively, of the form

−ΘA
MδϑA

M , and + ΘA
MϑA

M . (3.1)

Thus, in general 4-dimensional theories with an arbitrary number of 1-form fields
labeled by I, we expect the first law and the Smarr formula to take the general form24

δM = TδS + ΩδJ + ΦIδQ
I −ΘA

MδϑA
M , (3.2a)

M = 2ST + ΩJ + ΦMQ
M + ΘA

MϑA
M . (3.2b)

We expect to verify the validity of this general formula in more general models of gauge
supergravity in forthcoming works.

Concerning the particular model that we have constructed and studied in section 2
to test these ideas, as we pointed out before, only one combination of the electric and
magnetic potentials may occur in the first law. Therefore, there would be a combination of
electric and magnetic charges the mass of the black holes of this theory would not depend
on. In order to check this quite unusual property it is necessary to find the most general
black-hole solutions of the theory. This is a very complicated problem. In the appendix we
have managed to find solutions with one charge (the embedding of the Reissner-Nordström-
(A)DS black hole in this theory) for a particularly simple choice of embedding tensor, but
these solutions are not general enough to check whether this property, predicted by the
first law, that is true.25 Further work in this direction is necessary and under way.

24ΦMQM = ΦIQI − Φ̃IP
I .

25Here we are assuming that the complete first law should include a term proportional to the variation
of the magnetic charge that we still do not know how to incorporate in our formalism. This is a problem
on which we hope to report in forthcoming work.
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A Searching for solutions

We would like to have a black-hole solution of the theory introduced in section 2 in order
to test the general results that we have derived. For the sake of simplicity, we set ϑ̃ = 0
(electric gauging) and we set ϑ = g, constant. We can set B = 0 (so F = dA) and ignore
C. The equations of motion that remain to be solved are

Ea = ıa ? (ec ∧ ed) ∧Rcd + 1
2

(
ıadφ

1 ? dφ1 + dφ1 ∧ ıa ? dφ1
)

+ 1
2

(
ıaDφ2 ? j +Dφ2 ∧ ıa ? j

)
+ 1

2 (ıaF ∧ ?F − F ∧ ıa ? F )− ıa ? V , (A.1a)

E1 = −d ? dφ1 + φ1Dφ2 ∧ ?Dφ2 + ?
∂V

∂φ1 , (A.1b)

E2 = −d ? j , (A.1c)
EA = −d ? F + ϑ ? j , (A.1d)

equated to zero.
In the search for solutions, it is convenient to express these equations in component

language:

Gµν + 1
2

(
∂µφ

1∂νφ
1 − 1

2gµν(∂φ1)2
)

+ 1
2

(
Dµφ2jν − 1

2gµνD
ρφ2jρ

)
−1

2

(
Fµ

ρFνρ − 1
4gµνF

2
)

+ 1
2gµνV = 0 , (A.2a)

−∇2φ1 + φ1
(
Dφ2

)2
− ∂φ1V = 0 , (A.2b)

−∇µjµ = 0 , (A.2c)
∇µFµν − gjν = 0 . (A.2d)

We are interested in static, spherically-symmetric solutions with a metric of the form

ds2 = λdt2 − λ−1dr2 −R2dΩ2
(2) , (A.3)

where λ and R are functions of r to be determined and

dΩ2
(2) = dθ2 + sin2 θdϕ2 . (A.4)
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The timelike Killing vector is k = ∂t and we assume that it generates a diffeomorphism
that leaves invariant all the fields. This means that

∂tφ
1 = 0 , (A.5a)

Dtφ2 = ∂tφ
2 − gAt = −gPk , (A.5b)

Ftµ = −∂µPk . (A.5c)

If we assume that the electromagnetic field is electric and we work in the gauge in
which the only non-trivial component is At and it is only a function of r, then the scalars
φ1,2 only depend on r as well and

Pk = At . (A.6)

The r component of the Maxwell equation (A.2d), tells us that

jr = 0 , ⇒ φ2 = constant . (A.7)

This automatically solves eq. (A.2c) and simplifies eq. (A.2b), which can be written in
the form upon use of eq. (A.6)

1
R2

(
R2λφ1 ′

)′
+ g2φ1λ−1P 2

k − ∂φ1V = 0 . (A.8)

The t component of the Maxwell equation takes the form

− 1
R2

(
R2P ′k

)′
+ g2λ−1(φ1)2Pk = 0 . (A.9)

Now it is the turn of the Einstein equations. We can, first, take the trace

R+ 1
2(∂φ1)2 + 1

2(φ1)2(Dφ2)2 − 2V = 0 , (A.10)

and use it in the original equations to simplify them

Rµν + 1
2∂µφ

1∂νφ
1 + 1

2(φ1)2Dµφ2Dνφ2 − 1
2

(
Fµ

ρFνρ − 1
4gµνF

2
)
− 1

2gµνV = 0 , (A.11a)

The components of the Ricci tensor for the above metric are

Rtt = −1
2λR

−2
(
R2λ′

)′
, Rrr = −λ−2Rtt + 2R′′/R ,

Rθθ = 1
2

[
λ(R2)′

]′
− 1 Rϕϕ = sin2 θRθθ .

(A.12)

We only need to consider the θθ, tt, rr, components. In this order, they are

1
2

[
λ(R2)′

]′
− 1 + 1

4R
2 (P ′k)2 + 1

2R
2V = 0 , (A.13a)

−1
2λR

−2
(
R2λ′

)′
+ 1

2g
2(φ1)2P 2

k + 1
4λ
(
P ′k
)2 − 1

2λV = 0 , (A.13b)

1
2λ
−1R−2

(
R2λ′

)′
+ 2R′′/R+ 1

2(φ1 ′)2 − 1
4λ
−1 (P ′k)2 + 1

2λ
−1V = 0 . (A.13c)
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Eliminating common factors etc.[
λ(R2)′

]′
− 2 + 1

2R
2 (P ′k)2 +R2V = 0 , (A.14a)(

R2λ′
)′
− g2R2λ−1(φ1)2P 2

k − 1
2R

2 (P ′k)2 +R2V = 0 , (A.14b)(
R2λ′

)′
+ 2RR′′ + λR2(φ1 ′)2 − 1

2R
2 (P ′k)2 +R2V = 0 . (A.14c)

The difference between the last two equations is

− g2λ−1(φ1)2P 2
k − 2R′′/R− λ(φ1 ′)2 = 0 . (A.15)

These equations are very difficult to solve in general. We are going to make a simpli-
fying assumptions that φ1 = 0 and

∂φ1V
∣∣∣
φ1=0

= 0 , and V (φ1 = 0) ≡ 2Λ . (A.16)

Eq. (A.8) is solved automatically and the combination eq. (A.15) is solved by

R = ar , (A.17)

where we have eliminated an integration constant through a shift of r and where the integra-
tion constant a will be set to 1 to give metric at spatial infinity the standard normalization.
We are left with the following equations: (

r2P ′k

)′
= 0 , (A.18a)

2 (λr)′ − 2 + 1
2r

2 (P ′k)2 + 2Λr2 = 0 , (A.18b)(
r2λ′

)′
− 1

2r
2 (P ′k)2 + 2Λr2 = 0 . (A.18c)

The first equation is solved by
P ′k = a

r2 , (A.19)

for some other integration constant that we call, again, a. Then the other two equations
take the form

2 (λr)′ − 2 + 1
2a

2r−2 + 2Λr2 = 0 , (A.20a)(
r2λ′

)′
− 1

2a
2r−2 + 2Λr2 = 0 . (A.20b)

Combining these two equations we can eliminate the terms that depend on a:(
r2λ

)′′
− 2 + 4Λr2 = 0 . (A.21)

We can integrate it immediately:

λ = 1 + b

r
+ c

r2 −
Λ
3 r

2 , (A.22)
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which corresponds to the Reissner-Nordström-(anti-)De Sitter (RN(A)DS) metric [51]. As
a matter of fact, substituting the above value of λ in either of the previous equations, we
find that

c = a2/4 , (A.23)

and, since a is, up to constants, the electric charge, the identification of the solution with
the RN(A)DS solution is confirmed.

The amount of charges and fields active in this solution are clearly unsufficient to test
the results obtained in the main body of this paper. However, it has proven impossible for
us to obtain more general solutions using more general ansatzs and more careful gauge-
fixing procedures. Finding black-hole solutions of systems like the one at hands is usally
a very difficult problem (see, e.g. ref. [54]). Other methods or (much better) other, more
interesting and richer models should be used and work in this direction is already under
way.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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