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A B S T R A C T

Background: The World Health Organization (WHO) establishes as a top priority the early detection of
respiratory diseases. This detection could be performed by means of recognizing the presence of acoustic bio-
markers (adventitious sounds) from auscultation because it is still the main technique applied in any health
center to assess the status of the respiratory system due to its non-invasive, low-cost, easy to apply, fast to
diagnose and safe nature.
Method: Despite the novel deep learning approaches applied in this biomedical field, there is a notable
lack of research that rigorously focuses on different time–frequency representations to determine the most
suitable transformation to feed data into Convolutional Neural Network (CNN) architectures. In this paper, we
propose the use of the cochleogram, based on modeling the frequency selectivity of the human cochlea, as an
improved time–frequency representation to optimize the learning process of a CNN model in the classification
of respiratory adventitious sounds. Our proposal is evaluated using the largest and most challenging public
database of respiratory sounds.
Results: The cochleogram obtains the best binary classification results among the compared methods with an
average accuracy of 85.1% in wheezes and 73.8% in crackles, and a competitive performance evaluating a
multiclass classification scenario in comparison with other well-known state-of-the-art deep learning models.
Conclusion: The cochleogram provides a suitable time–frequency representation since it is able to model
respiratory adventitious content more accurately by means of non-uniform spectral resolution and due to its
increased robustness to noise and acoustic changes. This fact implies a significant improvement in the learning
process of CNN models applied in the classification of respiratory adventitious sounds.
1. Introduction

The World Health Organization (WHO) warns about the importance
of respiratory health and considers it a top priority in global decision-
making, identifying the main respiratory diseases due to their severity
and number of deaths worldwide [1]: (a) Chronic Obstructive Pul-
monary Disease (COPD) affects more than 200 million people, and is
underdiagnosed by 72 to 93%. Specifically, the direct cost of COPD
accounts for 6% of total healthcare expenditure (e38,6 billion per
year) in the European Union and represents 56% of the total cost of
treatment of respiratory diseases [2]; (b) Asthma affects up to 334
million people and it is often not detected early, causing about 489,000
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deaths annually [3]; (c) Lower respiratory tract infections (LRTIs) and
pneumonia are two of the leading causes of death, with pneumonia
being the leading cause of death in children under 5 years of age [4];
(d) Tuberculosis (TB) was suffered by almost 10,4 million people in
2015 [5]; and (e) Lung Cancer (LC) causes about 1,6 million deaths,
accounting for 19,4% of the total deaths attributable to cancer in
2012 [6]. Nevertheless, WHO also alerts that there are other respiratory
disorders such as sleep breathing (or sleep apnea), pulmonary hyper-
tension and pulmonary embolism that are gaining importance as they
affect an increasing number of the population in the last decades.
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Although auscultation requires acoustically trained physicians to
correctly detect and recognize adventitious sounds, auscultation is still
the earliest diagnosis in any health center facility to assess the status of
the respiratory system as it is non-invasive, low-cost, easy to apply, fast
to diagnose and safe [7] but further medical tests may be performed to
confirm or refine the diagnosis [8]. Thus, when a physician performs
auscultation to analyze the state of health of a patient’s respiratory
system, he/she usually hears adventitious respiratory sounds (ARS)
superimposed with the normal respiratory sounds, since the presence
of adventitious sounds implies the existence of pulmonary pathologies,
which allows early detection of respiratory disorders in order to prevent
the patient from not receiving the appropriate medical treatment and,
consequently, from returning to the hospital with an aggravation of the
initially undetected disorder. As a result, a great effort, both from the
medical and the signal processing and artificial intelligence community,
is being applied to the early detection of these acoustic bio-markers
(adventitious sounds) to be considered of utmost relevance in the
overall health diagnosis as early detection implies both a more effective
medical treatment of the patient as well as a better management of
economic resources as it is only a fraction of the cost of treatment in a
patient not diagnosed early [9].

In a general categorization, respiratory sounds are classified into
normal and abnormal (adventitious sounds) according to the Computed
Respiratory Sound Analysis (CORSA) [10]. Normal respiratory sounds
(RS) appear in healthy lungs and contain a broadband spectrum that
locates most of the energy between 60–1000 Hz [11]. Although there
are many types of adventitious sounds superimposed on RS (for exam-
ple, wheezes, crackles, pleural rub, stridor, and squawks), the main
ones are considered to be wheezes and crackles. Wheezes (WS) are
continuous and musical sounds that usually present a pitch located
between 100–1000 Hz with a duration greater than 100 ms, showing
narrowband spectral trajectories commonly known as ‘‘snakes’’ due to
the temporal evolution of the energy in the frequency domain [7,12].
Crackles (CS) are discontinuous, short and explosive sounds whose
spectral energy is located between 100–2000 Hz [13]. Specifically,
crackles are classified into coarse and fine. Coarse crackles have a
temporal duration below than 20 ms and usually have a low pitch
around 350 Hz due to the presence of air bubbles in the large bronchi.
In contrast, fine crackles usually have a maximum temporal duration
of smaller than 5 ms with a high pitch located around 650 Hz, usually
caused by the sudden opening of the small airways [14]. Pathologically,
wheezing is associated with obstructive lung diseases such as COPD,
asthma, bronchiolitis, bronchitis, bronchiectasis, or emphysema [15,
16]. Instead, crackles are associated with specific lung diseases such
as pneumonia, interstitial pulmonary fibrosis, pulmonary edema, or
idiopathic pulmonary fibrosis.

In the last decades, many works have been proposed in the anal-
ysis of the most common adventitious respiratory sounds, specifically,
crackles and wheezes. Focusing on the detection and classification of
crackles sounds, most of the approaches are based on spectrogram
analysis [17,18], auto-regressive (AR) models [19,20] wavelet trans-
form [21–24], fractal dimension filtering [25–28], entropy [29,30], em-
pirical mode decomposition (EMD) [31], fuzzy systems [32], gaussian
mixture models (GMM) [33], logistic regression [34], support vector
machines (SVM) [35–37], independent component analysis (ICA) [38],
multi perceptron networks (MPN) [39], non-negative matrix factoriza-
tion (NMF) [40], convolutional neural networks (CNN) [41,42], recur-
rent neural networks (RNN) [43] and hybrid neural networks [44].
Focusing on the detection and classification of wheezing sounds, most
of the approaches are based on spectrogram analysis [45–49], Higher-
order statistics [50], AR model [51], auditory modeling [52], wavelet
transform [53–55], tonal index [56,57], GMM [58,59], entropy [60],
Mel-Frequency Cepstral Coefficients (MFCCs) [61], Neural Networks
(NN) [62,63], Hidden Markov Model (HMM) [64] and NMF [65,66].

However, automatic classification of respiratory sounds has been
2

hindered by the lack of a large set of clinical respiratory data, until the
appearance of the public largest database ICBHI in 2019 [67,68], since
the process of acquiring and labeling respiratory sounds is very labori-
ous by consuming a lot of time and human resources. As a consequence,
several methods based on signal processing [69–71] were developed
to classify four types of respiratory sounds (such as, normal, crackles,
wheezes and both crackles and wheezes) using the ICBHI database.
The emergence of a large number of novel works based on convolu-
tional neural network (CNNs) architectures applied in the biomedical
field of adventitious respiratory sound analysis [72–80,80–98] obtained
promising performances as had already occurred in other areas, such
as audio [99,100], image [101,102] or biomedicine [103,104], since
CNNs reduce the human error made when applying feature extraction
techniques in conventional methods. This error reduction is due to
the fact that CNNs are able to automatically learn the most relevant
temporal and spectral features shown by respiratory sounds from large
datasets [105]. In [72], authors indicated that classifying spectrogram
images with CNN provides similar results compared to support vector
machine (SVM), and given the large amount of data, CNN and SVM
can accurately classify and pre-diagnose respiratory audio. Bardou
et al. [41] used CNNs using spectrograms, MFCC and local binary
pattern (LBP) features. Results reported that CNNs can replace conven-
tional classifiers through the use of fully-connected layers to train the
features (MFCC and LBP), summing up the output of Softmax activation
of four CNN models. In [106], a scalogram based optimized AlexNet
pre-trained CNN model is developed to extract the visual details from
the pixel values of lung sound images and for accurate classification and
detection. Demir et al. [80], by means of Short Time Fourier Transform
(STFT), proposed two deep learning based approaches for lung sound
classification. In the first approach, a pre-trained deep CNN was used
for feature extraction and a SVM classifier was used in classification
of the lung sounds. In the second approach, the pre-trained deep CNN
model was fine-tuned (transfer learning) via spectrogram images for
lung sound classification. The classification performance were tested
by using the ten-fold cross validation, obtaining accuracies for the
first and second proposed methods equals 65.5% and 63.09%. Zulfiqar
et al. [87] proposed a Fourier approach in order to classify seven
abnormal respiratory sounds based on the spectrum analysis using
Artificial Noise Addition (ANA) in conjunction with CNN architectures.
The purpose of ANA was to add the artificial noise of exact spectral
nature to enhance the actual spectrogram of faded sounds to make
them more strengthen and enhance their robustness. This robustness,
associated to sound features to be identified more accurately than the
respiratory sounds without ANA, increased the classification perfor-
mance of the proposal. Finally, a set of algorithms were evaluated using
different spectrograms and the optimal results were obtained using the
AlexNet algorithm. Chanane and Bahoura [86] proposed a CNN ar-
chitecture to improve the classification of respiratory sounds recorded
by electronic stethoscopes analyzing the impact of variant frequency
representations techniques using data normalization on top of data
augmentation techniques. In [107], authors demonstrated the ability
of CNN and bidirectional long short-term memory units (BiLSTM) to
recognize pulmonary diseases from lung sounds in order to extract
time-domain features. Results indicated an overall average accuracy of
99.62%. Tariq et al. [93] proposed a CNN model-based fusion (FDC)
from the three feature-based CNNs models to classify lung and heart
disease. It reported that is more effective to classify heart or lung
diseases with images transformed from three different sound features,
such as Spectrogram, MFCC, and Chromagram. Finally, three types of
data augmentation, such as Noise, Pitch-Shift, and Time-Stretch, have
been effectively applied for optimal training and testing. Nguyen and
Pernkopf [95] exploited transfer learning applied to architectures of
residual neural networks. Specifically, Batch Normalization is replaced
in order to avoid poor performance in case of a data distribution shift
between training and test data. Stochastic normalization is applied in

each residual block of the pre-trained architecture to reduce the effect
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of over-fitting on small datasets. Petmezas et al. [98] developed a CNN–
LSTM model using the focal loss function with training data imbalance.
Respiratory cycles were converted into STFT time–frequency represen-
tation images and processed with CNN in order to extract their most
predominant features. These features were used with LSTM identify-
ing long-term dependencies between them. In Rocha et al. [108], an
exhaustive evaluation is presented analyzing combinations of several
adventitious sounds by means of linear discriminant analysis (LDA),
SVM, boosted trees (RUSBoost) and CNNs using ICBHI [68]. The LDA,
SVM and RUSBoost classifiers were fed features extracted from the
spectrograms, including some novel acoustic features. On the other
hand, the CNNs received STFT and Mel spectrograms as inputs. Authors
reported that while CNNs have become state-of-the-art solutions in
several tasks, they were not enough to tackle this problem emphasizing
that there is still room for improvement in CNN-based respiratory sound
classification focusing on alternative time–frequency (TF) representa-
tions. In this paper, we focus on CNN-based approaches applied to
respiratory sounds classification.

Despite of the advanced machine learning techniques used in the
aforementioned works, there is a notable lack of research that rig-
orously evaluates the different TF representations to determine the
most appropriate transformation to feed data into the systems since
it is well known that remarkable differences can be observed using
different TF representations to replicate the performance of the human
ear [109,110]. In this work, we study the effect of the classical TF repre-
sentations (STFT and Mel spectrogram) and propose the use of a human
auditory based non-linear representation called cochleogram which has
already been applied in other scientific areas such as audio [111,112]
or heart sound detection [113] but, to our best knowledge, not to clas-
sify adventitious respiratory sounds. In particular, the non-uniformity
of this representations has demonstrated higher robustness against
noise and acoustic changes than the classical linear or speech-based
time–frequency signal representations [113].

In order to demonstrate the benefits of using the human auditory
system based cochleogram rather than the standard time–frequency
representations (i.e. STFT and Mel-scaled spectrogram), we propose a
CNN architecture similar to the one presented in [108] and evaluate the
use of the different input time–frequency representation for the task
of adventitious respiratory sounds classification using the largest and
most challenging public database of breath sounds (ICBHI) [67,68].
In particular, we study the performance of our baseline CNN model
to detect the occurrence of crackles and wheezing in a binary and a
multiclass classification scenario. Finally, we study the effect of the
studied time–frequency representations on other state-of-the-art CNN
models including AlexNet [114], ResNet50 [115] and VGG16 [116].

The paper is organized as follows: the dataset, TF representations
and the baseline CNN architecture used in this work are detailed in
Section 2. The evaluation is described in Section 3 including the met-
rics, experimental setup and the parameter optimization. In Section 4,
the classification results are presented and the performance of the
baseline and other state-of-the-art CNN approaches compared using
as input data the STFT spectrogram, Mel-scaled spectrogram and the
cochleogram of individual respiratory cycles. Section 5 presents a
discussion about the comparison between the proposed method and
state-of-the art methods evaluating the four-classes (normal, wheezes,
crackles and both (crackles+wheezes)) classification performance in the
ICBHI database. Finally, conclusions and future work are addressed in
Section 6.

2. Materials and methods

This section details the characteristics of the dataset evaluated as
well as the formal concepts for each TF representation and finally, the
3

employed network architecture. a
Table 1
Cycle breakdown of ICBHI 2017 challenge dataset.

Number of cycles Total

Crackles 1.864
Wheezes 886
Crackles + Wheezes 506
Normal 3.642

Total number of cycles 6.898

2.1. Database

The publicly available ICBHI 2017 Challenge dataset [68] has been
used in this work, which consists of 920 annotated recordings with
lengths varying from 10–90 s with a total of 5.5 h. The sounds were
recorded using three different digital stethoscopes, with sampling fre-
quencies of 4 KHz, 10 KHz and 44.1 KHz, respectively. As depicted
n Table 1, the classes of this dataset consist of crackles, wheezes,
ormal, and wheezes plus crackles. A sound file may include one or
ore class tag since the sound files are separated into respiratory

ycles. Manual annotation about the start and end times for every
lass is also provided. Consequently, we divided the entire dataset
nto respiratory cycles using the text files appended with each audio
ile included in the database. In the ICBHI dataset, the length of
reathing cycles ranges from 0.2 s to 16.2 s with a mean cycle length of
.7 s. Although training CNN-based networks is possible using adaptive
verage pooling, this strategy uses to perform poorly in comparison
ith fixed size signals [91]. In this paper, a zero-padding was added to
ach respiratory cycle until a total length of 6 s was reached. Moreover,

as the respiratory events of interest (i.e. wheezing and crackles) do not
exceed 2 KHz [7,10,12], to standardize, we decided to downsample
each respiratory cycle to 𝑓𝑠 = 4 KHz.

2.2. Time–frequency representations

In this subsection, the mathematical and signal processing back-
ground associated to STFT spectrogram, Mel-scaled spectrogram and
cochleogram is briefly described.

2.2.1. STFT spectrogram
The Short Time Fourier Transform (STFT) is the most widely used

TF representation to perform signal analysis in the frequency domain.
Given an input signal 𝑥(𝑡), which is converted to 𝑥[𝑛] using a sampling
ate 𝑓𝑠 in Hz, the STFT spectrogram 𝐗𝑐 ∈ C𝐾×𝐿, composed of 𝐾
requency bins and 𝐿 frames, calculates each coefficient 𝑋𝑐 (𝑘, 𝑙) for

each 𝑘th frequency bin and 𝑙th time frame as follows,

𝑋𝑐 (𝑘, 𝑙) =
𝑁−1
∑

𝑛=0
𝑥
[

(𝑙 − 1) ⋅ 𝐽 + 𝑛
]

𝑤[𝑛]𝑒−𝑗
2𝜋
𝑁 𝑘𝑛, (1)

where 𝑤[𝑛] is a 𝑁 samples analysis window, 𝐽 represents the samples
ime shift, 𝑘 = [0,… , 𝐾 − 1] and 𝑙 = [1,… , 𝐿]. In general, classical
pproaches discard the phase information and the analysis of the
pectral content is performed based only on the magnitude spectrogram
, that is, 𝐗 = |𝐗𝑐 | ∈ R𝐾×𝐿

+ .
However, STFT spectrograms may not be the optimal TF representa-

ion for analyzing respiratory sounds because STFT provides constant
andwidth, which implies lower resolution at low frequencies where
ost of the relevant respiratory spectral content is present. Moreover,

t is well known that although STFT obtains satisfactory results in
uiet conditions, STFT significantly reduces its performance analyzing
uscultated sounds in noisy environments [113].
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Fig. 1. Middle-ear gain normalization of the frequency response of 64-channel
gammatone filter bank [111]. It can observed higher spectral resolution at low
frequencies.

2.2.2. Mel-scaled spectrogram
The Mel scale is inspired by the human auditory system and physi-

ological findings on speech perception [117]. In fact, the human ear is
more sensitive to differences between lower frequencies than higher
frequencies as well as the loudness is heard on a logarithmic scale
rather than linear as shown in Eq. (2),

𝑀(𝑓 ) = 1127 ⋅ 𝑙𝑜𝑔

(

1 +
𝑓 (𝐻𝑧)
700

)

(2)

The Mel-scaled spectrogram is computed using the energies ob-
tained from the so called Mel filter bank [117]. Specifically, the output
of the 𝑐th filter is obtained using Eq. (3) as,

𝐸(𝑐, 𝑙) = 𝑙𝑜𝑔10

(
𝑁
2 −1
∑

𝑘=0
𝑉 (𝑐, 𝑘) ⋅ |𝑋𝑐 (𝑘, 𝑙)|

)

,

𝑐 = 1, 2,… , 𝐶 (3)

where 𝐸(𝑐, 𝑙) is the energy associated to the 𝑐th filter applied in the 𝑙th
frame, 𝑉 (𝑐, 𝑘) is the normalized filter bank response which is equally
spaced on the Mel scale [118], 𝐶 is the total number of Mel filters,
the 𝑘th bin of frequency associated to the STFT spectrogram 𝐗𝑐 and 𝑁
samples window. In this work, the number of Mel filters 𝐶 has been set
to 64 as occurs in [119,120].

This Mel-log or variants such as Constant-Q transform have been
extensively used in the literature of speech and music signal process-
ing [121]. In fact, this representation has shown moderate success in
low noisy situations. However, adventitious sounds are superimposed
on normal respiratory sounds and sometimes also on high noises from
stethoscope rubbing together with different types of ambient noises.
Therefore, more robust representations are needed to improve the
performance against noise and environmental acoustic changes.

2.2.3. Cochleogram
The gammatone filter attempts to model the frequency selectivity of

the human cochlea [122,123], using non-uniform spectral resolution
by associating wider frequency bandwidths with higher frequencies
in order to mimic the performance of the human ear as shown in
Fig. 1. This variable resolution provides a TF representation capable
of extracting more accurate spectral content from the input signal due
to higher robustness against noise and acoustic changes [111,113,124].

The cochleogram is computed using a gammatone filter bank in
which the impulse response of gammatone filter 𝑔(𝑡) is obtained mul-
tiplying a gamma distribution and a sinusoidal function [111,113],

𝑔(𝑡) = 𝑡𝑜−1𝑒2𝜋𝑏(𝑓𝑐 )𝑡𝑐𝑜𝑠(2𝜋𝑓 𝑡), 𝑡 > 0 (4)
4

𝑐

Table 2
Baseline CNN Architecture. .

Layer type Kernel Atribute Activation

Conv2D 3 × 3 32 Filters LeakyReLu
MaxPool2D 2 × 2 –
Dropout 0.25 –
Conv2D 3 × 3 64 Filters LeakyReLu
MaxPool2D 2 × 2 –
Dropout 0.25 –
Flatten – –
Dense 200 units LeakyReLu
Dropout 0.5 –
Dense 200 units Softmax/Sigmoid*

where the parameters are the filter order 𝑜 and the exponential decay
coefficient 𝑏(𝑓𝑐 ) associated to the center frequency 𝑓𝑐 Hz that decides
the bandwidth [111]. The center frequencies are equally spaced on the
equivalent rectangular bandwidth (ERB) scale as shown in Eq. (6). In
this work, we have selected the lower and upper central frequencies
𝑓𝑐 equal to 100 Hz and 𝑓𝑠

2 Hz on the linear frequency scale because
most adventitious respiratory sounds, mainly wheezing and crackles as
previously mentioned in Section 1, contain most content in this spectral
range. The order has been set 𝑜 = 4 because it provides satisfactory
results replicating the human auditory filter as depicted in [113].

𝑏(𝑓𝑐 ) = 1, 019 ⋅ 𝐸𝑅𝐵(𝑓𝑐 ) (5)

𝐸𝑅𝐵(𝑓𝑐 ) = 24, 7 ⋅
(

4, 37 ⋅
𝑓𝑐

1000
+ 1

)

(6)

Then, the input signal 𝑥[𝑛] is filtered by each response filter 𝑔(𝑡)
and subsequently, each filtered signal is windowed into frames of 𝑁
samples with an offset equal to 𝐽 samples in order to calculate the
cochleogram by computing the power of each frame in each channel
as occurs in [111].

Fig. 2 shows the TF representations computed by STFT, Mel-scaled
and cochleogram. It can be observed that the adventitious sounds
shown by the cochleogram are easier to identify and recognize com-
pared to the other spectrograms. It seems that the low spectral respira-
tory content is more accurate modeled by the gammatone filtering by
means of non-uniform resolution, a fact that does not occur in the STFT
spectrogram and in a worse way in the Mel spectrogram that both of
them tend to show more dispersed spectrograms in the frequency range
in which respiratory sounds are often located [124]. Moreover, the
cochleogram provides less uncertainty to define the spectro-temporal
pattern associated with the wheeze found around 2.35 s compared to
the other TF representations.

2.3. Neural network architecture

As our main objective in this work is performing a comparison
between different TF representations, we decided to use as our baseline
model a standard Convolutional Neural Network (CNN) model such as
the one implemented in [108] as shown in Fig. 3. More details can be
found in [108].

In order to perform the different experiments, we evaluated each TF
representation individually as an input for the baseline CNN. Apart of
the parameters shown in Fig. 3, a detailed table of the different layers
is displayed in Table 2. A total of 30 epochs were used with a batch
size of 16, a learning rate of 0.001 and the adaptive data momentum
(ADAM) optimization algorithm. In order to avoid an over-fitting, the
early stopping strategy employed during the training was set at 10
consecutive epoch, taking as monitor parameter the validation loss.
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Fig. 2. Magnitude, in logarithmic scale, of the TF representations analyzing a respiratory cycle with a time duration of 2.9 s associated to the patient number 103 from ICBHI [67].
The respiratory cycle is composed by one wheeze sound located in the temporal range [2.1–2.6] s. STFT spectrogram (top), Mel-scaled spectrogram (center) and Cochleogram
(bottom).
Fig. 3. Baseline CNN Network.
3. Evaluation setup

A systematic comparison is presented throughout this section an-
alyzing the classification results provided by each TF representation
using a set of CNN architectures. First, the different setups for the
three TF representations will be presented. Then, the metrics employed
to evaluate each experiment are described in Section 3.1. The train-
ing/testing conditions are detailed in Section 3.2. Finally, results for
the tasks of detecting wheezing and crackles and the performance
compared with other state-of-the-art methods are reported.

3.1. Metrics

To evaluate the performance of the developed model, several met-
rics were included in this study to analyze the classification confusion
matrix: Accuracy (𝐴𝑐𝑐), Sensitivity (𝑆𝑒𝑛), Specificity (𝑆𝑝𝑒), Precision
(𝑃𝑟𝑒𝑐) and Score (𝑆𝑐𝑜). The confusion matrix was generated sequen-
tially after every fold, and all evaluation metrics were calculated from
5

the overall confusion matrix after the 10-fold cross validation of the
training/classification scheme. For the purpose of these metrics, 𝑇𝑃
(true positive) indicates the number of correctly detected adventitious
events, 𝑇𝑁 (true negative) is the number of correctly classified normal
events, 𝐹𝑃 (False Positives) are events that are incorrectly classified
as the adventitious class and 𝐹𝑁 (False Negatives) are events of the
adventitious class that are incorrectly classified as normal events. These
metrics are mathematically defined as:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (7)

𝑃𝑟𝑒𝑐 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (8)

𝑆𝑒𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (9)

𝑆𝑝𝑒 = 𝑇𝑁 , (10)

𝑇𝑁 + 𝐹𝑃
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Fig. 4. Overall accuracy results evaluating 4 classes, in terms of mean values for the
whole range of window lengths, using the ICBHI dataset.

𝑆𝑐𝑜 =
𝑆𝑒𝑛 + 𝑆𝑝𝑒

2
, (11)

As occurs in [108,113], we selected the accuracy (Eq. (7) as the
main general metric to study the effect of the parameters tuning
whereas all the metrics are presented for comparison with other state-
of-the-art methods in the standard ICBHI multiclass classification chal-
lenge [87,108].

3.2. Experimental setup

First, preliminary analysis was accomplished by evaluating several
window lengths for each TF representation. Specifically, the following
window lengths were tested, 𝑁 = [8, 16, 32, 64, 128, 256] ms. Regarding
the window type and the time shift between windows, we used a
Blackman–Harris window and a 75% overlap size as this was the
optimal setup in [108].

Regarding the training/testing conditions, in this paper, 10-fold
cross validation was computed five times and the average results are
reported [125]. For each fold, the dataset was divided using a 75%-
25% distribution for the training–testing subsets respectively. Once the
subsets were defined, a 25 percent from the training set was used
for validation. Due to there is a unbalanced number of crackles and
wheezes events as previously detailed in Table 1, we ensure that all of
them have been distributed in an proportional manner in every fold.

The experimental works were applied using Tensorflow and Keras
installed on a computer with an Intel(R) Core(TM) i7-5500 CPU
@2.4 GHz with 4 core, NVIDIA GeForce GTX1080Ti GPU and 64 GB
RAM. For reproducible research, the code can be publicly accessed at1.

3.3. Optimal parameters estimation

As previously explained in Section 3.2, different window lengths are
studied for each TF representation. In order to estimate the optimal
parameters, we evaluate the classification performance between four
classes: normal, crackles, wheezes and both (crackles + wheezes). Fig. 4
shows the averaged accuracy values obtained from the 10-fold cross-
validation for each TF representation used as input for our baseline
CNN model. As can be seen in Fig. 4, the best performance with the
STFT-based model is obtained between 32 and 128 ms and the optimal
performance is obtained using a 64 ms window length. Regarding
the Mel-scaled model, the best performance is obtained with a 32 ms
window length, these optimal values for both the STFT and Mel models
being in line with those presented in [108].

On the contrary, in the case of the human auditory system based
cochleogram, better performance was obtained using smaller window

1 https://github.com/loredanadariamang/CODE_EAMBES2022.git.
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sizes which confirms previous studies performed in [124]. In fact, the
optimal value was obtained using 8 ms window length as shown in
Fig. 4. This optimal window length seems to be more suitable for
modeling the explosive and transient nature that crackle sounds often
exhibit. Hence, worse performance is obtained as the window length
increases, as the high temporal resolution required for the correct mod-
eling of such short time signals is lost, causing the system to become
confused at a higher rate. Note that, as explained in Section 2.2.3,
the human auditory based filterbank used in this transform operates
in the logarithmic ERB scale, however, a windowing is required for
each resulting channel of the filtering process in order to obtain a
discrete TF representation. Initially, preliminary analysis based on the
Multi-Resolution cochleogram (MRCG) approach [111] were analyzed
in which a high temporal resolution cochleogram and several low
temporal resolution cochleograms were combined attempting to model
local and temporal context information. Results indicated that using
only a high temporal resolution cochleogram provides better classifi-
cation performance for respiratory adventitious sounds compared to
the combination of the previous cochleograms of different temporal
resolution. This fact suggests that a high temporal resolution is a crucial
feature to be taken into account in order to improve the modeling of
crackle sounds. For this reason, only the TF representation based on a
single high temporal resolution cochleogram has been used throughout
the paper.

4. Classification results

Further experiments are conducted to assess the classification per-
formance of the proposed TF representation once the parameter opti-
mization has been addressed.

4.1. Binary classification results

Here, the classification performance of the cochleogram is evaluated
on a binary classification problem where the objective is to detect the
occurrence of crackles or wheezes when the input is composed of a
monaural sound signal corresponding to individual respiratory cycles.

Results of the classification performance of the baseline model using
as input the three TF representations (STFT, Mel-scaled spectrogram
and the Cochleogram) are shown in Fig. 5. It can be observed that
the best performance, for both crackles and wheezing classification, is
provided by the Cochleogram representation (an average 𝐴𝑐𝑐 = 85.1%
for wheezes and 𝐴𝑐𝑐 = 73.8% for crackles). It is interesting to observe
that the STFT representation provides competitive results (𝐴𝑐𝑐 = 84.9%
for wheezes and 𝐴𝑐𝑐 = 71.5% for crackles) and clearly outperforms
the Mel-scaled representation. In fact, applying a low-pass filtering to
the frequencies of interest and using a proper window length and hop
size provides sufficient resolution to accurate detect these adventitious
sound events. Finally, it is noticeable that the Mel-scaled represen-
tation provides the worst results in terms of accuracy, specifically,
𝐴𝑐𝑐 = 81.5% for wheezes and 𝐴𝑐𝑐 = 68.7% for crackles. Results suggest
that although Mel-scaled spectrogram is well suited to model music
and speech signals, the frequencies of interest might not be sufficiently
highlighted using this type of spectrogram in the case of adventitious
sounds.

In order to test the statistical significance of the results in Fig. 5, we
propose to use two of the most widely used and robust non-parametrical
tests to compare two sets of distributions, the Man–Whitney U Test and
the Wilcoxon signed-rank test [126,127]. Specifically, Table 3 shows
the Man–Whitney U Test and Wilcoxon signed-rank test results compar-
ing the Cochleogram, STFT spectrogram and Mel-scaled spectrogram.
These tests define both; a null hypothesis (𝐻𝑜) and an alternative
hypothesis (𝐻1) where the null hypothesis describes the status quo
(both results sets compared are statistically equal) and it is assumed
to be true unless there are enough arguments to prove the contrary.
The 𝑝-value determines if we accept or reject the status quo. As can be

https://github.com/loredanadariamang/CODE_EAMBES2022.git
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Table 3
Man–Whitney U Test and Wilcoxon signed-rank test Results for the sets of results obtained in the Fig. 5, using a significance level 𝛼 = 0.05.

Comparison Mann–Whitney U Test (𝑝-value) Wilcoxon signed-rank test (𝑝-value) Significantly better

Crackles

Cochleogram vs. STFT 2.21e −10 3.78e −09 yes
Cochleogram vs. Mel 1.38e −17 7.55e −10 yes

Wheezes

Cochleogram vs. STFT 1.91e −06 8.01e −06 yes
Cochleogram vs. Mel 1.49e −17 7.55e −10 yes
Fig. 5. Overall accuracy results evaluating the ICBHI dataset for the Cochleogram
(window length of 8 ms), STFT (window length of 32 ms) and Mel-scaled (window
length of 32 ms) spectrograms using both the optimal values for the window lengths
and overlap sizes. Each box represents 50 data points, each of them associated to a
10-fold cross-validation of the database evaluated. The lower and upper lines of each
box show the first and third quartile. The line in the middle of each box represents
the median value. The diamond shape in the center of each box represents the average
value. The lines extending above and below each box show the extent of the rest of
the samples, excluding outliers. Finally, outliers are defined as points that are over 1.5
times the interquartile range from the sample median, which are depicted as crosses.

seen in Table 3, the 𝑝-value obtained in all cases does not overpass the
significance level 𝛼 = 0.05 used in this analysis, so we can reject the null
hypothesis and confirm that the classification performance provided by
the Cochleogram is significantly higher compared to both STFT and
Mel-scaled spectrograms evaluating both types of adventitious sound
such as, crackles and wheezes.

4.2. Four-class normal/crackles/wheezing/both classification results

In this section, we evaluate the performance of the proposed
cochleogram representation on a multiclass classification scenario
[108] where the aim is to classify a given input breathing sound
between healthy (normal respiratory sounds) and unhealthy (crackles,
wheezes and crackles+wheezes) respiratory cycle.

Together with the baseline CNN model explained in Section 2.3,
we also compare the performance of the different TF representations
in Section 2.2 w.r.t a recent approach in [87] which proposes to use
artificial noise addition (ANA) by means of an adaptive mechanism
of adding a similar type of noise to unhealthy respiratory sounds to
enhance the features of ARS and increase the system robustness. More-
over, several state-of-the-art deep learning architectures have been
tested including AlexNet [114], ResNet50 [115] and VGG16 [116].
Since the aforementioned deep learning architectures used images as
input, we have transformed each computed TF representation matrix
into image format by using the Viridis Color Map, which is a homo-
geneous mapping that utilizes colors changing from blue to green to
yellow [80].

Fig. 6 indicates that the use of Cohleagram obtains the best accuracy
results using any TF representation and CNN architecture evaluated in
this work. In fact, VGG16 provides the best classification performance
followed by our baseline CNN model whereas AlexNet and ResNet50
7

provide similar results in terms of accuracy at the expense of drastically
reducing their classification rates. Similar performances were observed
in [80] but using pretrained image models from the general purpose
Imagenet dataset [128]. On the contrary, in this paper we focus on
analyzing the advantages of using alternatives TF representation rather
than exploring the possible transfer learning solutions. Regarding the
state-of-the-art method in [87], it can be observed that the Spec-
trogram+ANA strategy obtains competitive results using AlexNet and
ResNet50 but its performance drops drastically with respect to the
other TF representations when using VGG16 and the Baseline CNN.
It suggests that the performance achieved by the Spectrogram+ANA
in this work differs from that obtained in [87] probably since the
ICBHI database is more complex to analyze because it includes high
sound interferences in most respiratory cycles to simulate real acoustic
environments.

In Fig. 7, other classification standard metrics are presented includ-
ing the sensitivity (Fig. 7(a))), specificity (Fig. 7(b))), score (Fig. 7(c)))
and precision (Fig. 7(d))). These metrics were introduced in Section 3.1
and provide a further understanding of the methods performance
and facilitates the comparison with other approaches evaluated using
the ICBHI dataset. Higher values are obtained in terms of speci-
ficity (Fig. 7(b)) indicating that all TF representations and CNN ar-
chitectures evaluated perform better to accurately classify normal
(healthy) sounds. Additionally, precision (Fig. 7(d)) and sensitivity
values (Fig. 7(a)) report the amount of adventitious sounds correctly
classified w.r.t the erroneously classified normal events (precision)
and wrongly classified ARS (sensitivity). In this case, the compared
methods provide slightly better results in terms of sensitivity which
means that, in general, the methods are more reactive to predict adven-
titious sounds than to classify ARS as normal events. Finally, the score
(Fig. 7(c)) represents the average between sensitivity and specificity.
In general, it can be observed that the classification behavior of the
evaluated TF representations can be considered similar independently
of the scenario, binary or four-class, and the deep learning architecture
applied as shown in Fig. 5, Fig. 6 and Fig. 7.

In the same way than explained in Section 4.1, a Mann–Whitney U
Test and a Wilcoxon signed-rank test were performed, applying a sig-
nificance level of 𝛼 = 0.05, in order to prove the statistical significance
of the Cochleogram as an input of four different CNN architectures
in comparison to using spectrograms based on STFT, Mel-scaled and
the ANA-based method [87]. As shown in Table 4, results obtained by
the Cochleogram indicate a statistic difference with regard to the other
studied TF representations for each deep learning architecture so, we
can confirm that our proposal based on the Cochleogram significantly
improves the learning process of CNN architectures in the field of
classification of respiratory sounds compared to the other standard TF
representations evaluated.

Fig. 8 shows the accuracy models, loss models and ROC curves for
the baseline CNN model using as input data representation the STFT
(Figs. 8(a)–8(c)), Mel ((Figs. 8(d)–8(f)), Spectrogram+ANA (Figs. 8(g)–
8(i)) and Cochleogram (Figs. 8(j)–8(l)). It can be observed that the
behavior of both accuracy and loss models are more stable towards
convergence for the Cochleogram in comparison with the rest of the
time–frequency representation. In fact, in this work we have used early

stopping criteria, to avoid overfitting, accounting to the validation
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Fig. 6. Performance results, in terms of accuracy, for different CNN networks AlexNet, ResNet50, VGG16 and the CNN implemented in [108] of the STFT spectrogram, Mel-scaled
pectrogram, the spectrogram+ANA features in [87] and Cochleogram evaluating four-classes scenario: normal vs. wheezes vs. crackles vs. wheezes+crackles. Each box represents
0 data points, each of them associated to a 10-fold cross validation of the database evaluated. The lower and upper lines of each box show the first and third quartile. The line
n the middle of each box represents the median value. The diamond shape in the center of each box represents the average value. The lines extending above and below each
ox show the extent of the rest of the samples, excluding outliers. Finally, outliers are defined as points that are over 1.5 times the interquartile range from the sample median,
hich are depicted as crosses.
Fig. 7. Performance results of different CNN networks (AlexNet, ResNet50, VGG16 and the CNN implemented in [108]) of the STFT spectrogram, Mel-scaled spectrogram, the
Spectrogram+ANA features [87] and Cochleogram evaluating four-classes scenario (normal vs. wheezes vs. crackles vs. wheezes+crackles) in the ICBHI database.
loss parameter which limits the number of epochs in training stage
(approximately 16) for the compared methods. As mentioned in [91],
this reduced number of epochs could be due to the reduced size
of the ICBHI database despite the fact that it is composed of 6898
breathing cycles. Finally, the rightmost subfigure column of Fig. 8
indicates that the Cochleogram can be considered as the most suitable
TF representation based on the largest area under the ROC curve
which describes quantitatively the classification robustness. This fact,
observed in Fig. 8(l), reveals a clearer distinction between all groups of
8

pairs compared to the other time–frequency representations shown in
Figs. 8(c), 8(f) and 8(i).

5. Discussion

The ARS classification task has become a challenging research topic
in recent years due to growing interest in the promising results obtained
using machine learning approaches. However, most of the methods re-
lied on the use of the STFT or the Mel spectrogram to feed data into the
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Table 4
Man–Whitney U Test and Wilcoxon signed-rank test Results for the sets of results obtained in the Fig. 6, using a significance level 𝛼 = 0.05.

Comparison Mann–Whitney U Test Wilcoxon signed-rank test Significantly better

AlexNet (𝑝-value) (𝑝-value)

Cochleogram vs. STFT 0.018873 0.002397 yes
Cochleogram vs. Mel 0.004352 0.000374 yes
Cochleogram vs. Spectrogram+ANA 0.020690 0.026728 yes

ResNet50

Cochleogram vs. STFT 1.94e −05 0.0001595 yes
Cochleogram vs. Mel 4.69e −07 1.74e −06 yes
Cochleogram vs. Spectrogram+ANA 1.13e −07 6.16e −07 yes

VGG16

Cochleogram vs. STFT 0.006779 0.002555 yes
Cochleogram vs. Mel 1.19e −12 2.66e −09 yes
Cochleogram vs. Spectrogram+ANA 6.94e −18 7.55e −10 yes

Baseline CNN

Cochleogram vs. STFT 6.94e −05 3.37e −05 yes
Cochleogram vs. Mel 5.39e −14 1.41e −08 yes
Cochleogram vs. Spectrogram+ANA 8.84e −18 7.55e −10 yes
Table 5
Comparison between the proposed method and state-of-the art methods evaluating the four-classes (normal vs. wheezes vs. crackles vs. crackles+wheezes) classification performance
in the ICBHI database. Respiratory cycle (RC) represents the temporal length (in seconds) including zero padding to create respiratory cycles of fixed duration. bi-ResNet: bilinear
ResNet, NL: non-local, SE: Squeeze-and-Excitation, SA: Spatial Attention, bi-LSTM: bi-directional LSTM, DAG: Directed Acyclic Graph. The rest of the acronyms have been previously
mentioned. The references followed by ∗ means that the method has been implemented in this work following the authors description. The results for other methods have been
irectly extracted from the corresponding works. In bold letter is indicated the maximum value for each metric..
Authors Time–frequency representation RC(s) Technique Train/Test Results (%)

Type Parameters 𝑆𝑒𝑛 𝑆𝑝𝑒 𝑆𝑐𝑜 𝐴𝑐𝑐

[70] STFT 30 ms – HMM 60∕40 – – 39.6 –

[73] STFT 500 ms – RNN - (5-fold) 58.4 73.0 65.7 –

[71] STFT 512 ms – HMM SVM 60∕40 20.81 78.5 49.65 49.43

[75] Mel 250 ms – RNN 80∕20 𝟔𝟒.𝟎 𝟖𝟒.𝟎 𝟕𝟒.𝟎 –

[77] STFT, Wavelet 20 ms, 𝐷2 −𝐷7 , 𝐴7 – bi-ResNet - (10-fold) 31.1 69.2 50.2 52.8

[76] STFT, Scalogram 40 ms – CNN 60∕40 28.0 81.0 54.0 –

[80] STFT 64 − 128 − 524 ms – CNN SVM - (10-fold) – – – 65.5

[82] STFT 20 ms – ResNet NL 60∕40 41.3 63.2 52.3 –

[79] Mel 60 ms – CNN RNN 80∕20 – 58.01 – –

[83] STFT 100 ms 2.5 ResNet SE SA 70∕30 17.8 81.3 49.6 –

[81] STFT – 5 CNN 70∕30 – – – 74.3

[86] Mel – – CNN 60∕40 – – – 𝟖𝟎.𝟒

[84] STFT 40 ms – CNN bi-LSTM - (5-fold) 63.0 83.0 73.0 –

[85] Wavelet 30 ms – DAG HMM – – – – 50.1

[91] Mel – 7 CNN 60∕40 40.1 72.3 56.2 –

STFT
32 ms64 filters 6 CNN

80∕20(10-fold) 51.61 65.45 58.53 60.61
[108]* Mel CNN 47.83 63.33 55.58 57.56

STFT + Mel CNN 46.97 63.97 55.47 57.33

[95] STFT, Log-mel 𝐿32 ms, 50 bins 8 ResNet 60∕40 37.2 79.3 58.3 –

[87]* Spectrogram + ANA 8 ms64 filters 6
CNN (AlexNet)

80∕20(10-fold)
44.77 58.37 51.57 53.49

CNN (ResNet50) 40.42 56.03 48.23 50.43
CNN (VGG16) 43.08 58.61 50.85 53.24
CNN (Baseline) 45.88 61.08 53.48 55.71

This work Cochleagram 84 ms64 filters 6

CNN (AlexNet)

80∕20(10-fold)

45.12 59.75 52.43 54.48
CNN (ResNet50) 41.78 57.78 49.78 52.31
CNN (VGG16) 53.45 68.71 61.08 62.94
CNN (Baseline) 52.71 68.84 60.78 62.93
neural network architectures. In this work, we have rigorously studied
the effect of using different time–frequency representations and propose
the use of the Cochleogram to model the specific temporal and spectral
features shown by most of the adventitious respiratory sounds. In addi-
tion, a study of the effect of such time–frequency representations on a
set of state-of-the-art CNN-based architectures is also presented. Results
from the ICBHI database indicate that the Cochleogram, compared to
the other evaluated spectrograms, is the most suitable time–frequency
9

representation when it is applied in the task of classifying binary
(normal vs. ARS) and four classes of adventitious respiratory sounds
(normal vs. crackles vs. wheezes vs. crackles+wheezes).

Table 5 shows a comparison taking into account most of the recent
and relevant state-of-the-art methods in the literature for the classifi-
cation of adventitious respiratory sounds by evaluating the four classes
of the ICBHI database. It can be seen that most of these methods use
STFT in the preprocessing step in order to compute time–frequency
representation of the input data and CNN-based approaches in the

classification step.
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Fig. 8. Model accuracy, model loss and ROC curves when the STFT (a, b, c), Mel (d, e, f), Spectrogram+ANA (g, h, i) and Cochleogram (j, k, l) are used with the Baseline CNN.
For each multiclass ROC curve (c, f, i and l), breathing cycles are composed with: Class 0 (crackles), Class 1 (wheezes), Class 2 (crackles+wheezes) and Class 3 (normal).
It should be noted that results show a wide range of performance
values due to the lack of uniformity in the evaluation. In fact, some of
the methods use only a subset from the ICBHI database [86] instead
of using the entire database as we have done in this work. In addition,
the metrics used in the evaluation of the different methods differ from
10
one another, which makes it difficult to compare them all [70,79–
81,85,86]. With this in mind, the best performance [86] achieves 80.4%
in terms of 𝐴𝑐𝑐. As for the standard ICBHI database metrics, the best
performance is obtained by the Mel+RNN approach [75] achieving
𝑆𝑒𝑛 = 64.0%, 𝑆𝑝𝑒 = 84.0% and 𝑆𝑐𝑜 = 74.0% respectively, which
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suggests that there still room for improvement in this biomedical signal
processing and machine learning field.

In general terms, it can be observed that 𝑆𝑝𝑒 results are higher
compared to 𝑆𝑒𝑛 results. It suggests that the generalization of features
exhibiting normal respiratory sounds is better learned by the CNN-
based model due to the larger number of such sounds existing in the
database, which amount to 53% of the entire ICBHI database and 26%
more than any other sound so, its feature modeling is more reliable
compared to adventitious sounds. In any case, the main purpose of this
work is to demonstrate that Cochleagram improves the learning process
of a deep learning architecture in the classification of adventitious
respiratory sounds.

6. Conclusions and future work

In this paper, we propose the use of the cochleogram-based TF
representation to improve the learning process of a CNN model in
the classification of respiratory adventitious sounds which has not
being applied in this context to the best of our knowledge. Moreover,
several TF representations including the STFT spectrogram, Mel-scaled
spectrogram the artificial noise addition (ANA) based method in [87]
have been considered for comparison. The effect of the different TF
representations has been rigorously evaluated using a baseline CNN
model for the task of classification of adventitious sounds composed
of normal, wheezes, crackles and wheezes+crackles in binary and mul-
ticlass scenarios using the largest and most challenging public database
of respiratory sounds (ICBHI dataset). Moreover, comparison with sev-
eral state-of-the-art deep learning models has been performed demon-
strating the higher robustness and average accuracy performance of
Cochleogram w.r.t the other studied TF representations due to its ability
to improve the modeling of respiratory adventitious sounds through
more reliable non-uniform spectral resolution and better performance
when noise and acoustic changes are active.

Future work will focus on two directions to improve the learn-
ing process of deep learning approaches on databases composed of
a reduced set of respiratory sounds: (i) novel TF representations to
maximize detection/classification performance when simultaneously
feeding and integrating dual deep learning architectures; (ii) new ap-
proaches combining conventional signal processing techniques that
correctly model the spectro-temporal behavior exhibited by specific
respiratory sounds, associated with lung pathologies, in cascade with
deep learning approaches.
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