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Climate-trait relationships exhibit strong
habitat specificity in plant communities
across Europe

Stephan Kambach 1,2 , Francesco Maria Sabatini 1,2,3,4, Fabio Attorre 5,
Idoia Biurrun6, Gerhard Boenisch7, Gianmaria Bonari 8, Andraž Čarni 9,10,
Maria Laura Carranza 11, Alessandro Chiarucci 3, Milan Chytrý 12,
Jürgen Dengler 13,14, Emmanuel Garbolino 15, Valentin Golub16, Behlül Güler17,
Ute Jandt 1,2, Jan Jansen18, Anni Jašková12, Borja Jiménez-Alfaro19,
Dirk Nikolaus Karger 20, Jens Kattge 2,7, Ilona Knollová12, Gabriele Midolo12,
Jesper Erenskjold Moeslund 21, Remigiusz Pielech 22,
Valerijus Rašomavičius 23, Solvita Rūsiņa 24, Jozef Šibík 25,
Zvjezdana Stančić 26, Angela Stanisci11, Jens-Christian Svenning 27,
Sergey Yamalov28, Niklaus E. Zimmermann 20 & Helge Bruelheide 1,2

Ecological theory predicts close relationships between macroclimate and
functional traits. Yet, global climatic gradients correlate only weakly with the
trait composition of local plant communities, suggesting that important fac-
tors have been ignored. Here, we investigate the consistency of climate-trait
relationships for plant communities in European habitats. Assuming that local
factors are better accounted for in more narrowly defined habitats, we
assigned > 300,000 vegetation plots to hierarchically classified habitats and
modelled the effects of climate on the community-weightedmeans of four key
functional traits using generalized additive models. We found that the pre-
dictive power of climate increased from broadly to narrowly defined habitats
for specific leaf area and root length, but not for plant height and seed mass.
Although macroclimate generally predicted the distribution of all traits, its
effects varied, with habitat-specificity increasing toward more narrowly
defined habitats. We conclude that macroclimate is an important determinant
of terrestrial plant communities, but future predictions of climatic effects
must consider how habitats are defined.

Predicting the effects of a changing climate on the diversity and func-
tioning of the ecosphere requires an understanding of how climate
drives the distribution of plant species and ecosystem properties1,2.
Ecosystem functioning, such as productivity and nutrient cycling, is
strongly determined by the functional composition of the plant
community3–6. Functional traits represent species’ life-history
strategies7, and are often summarized with a few main, largely inde-
pendent, axes of variation, such as the fast-slow continuum8, as

reflected in the leaf-economics spectrum9, the species’ reproductive
strategy10, the plant size spectrum7, and the continuumof collaboration
withmycorrhizal fungi11. A foundational, yet globally weakly supported,
assumption in trait-based ecology is that the geographical distribution
of dominant functional traits in plant communities is shaped bymacro-
environmental gradients, independently of taxonomy12–14. Here, we
addressed this assumption by studying the consistency of
macroclimate-trait relationships among European plant communities.
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Themost popular approach to studying climate-trait relationships
involves regression analysis between climatic gradients and the
community-weighted mean of plant functional traits (CWMs15). At the
global scale, however, CWMs have been weakly predicted by linear
gradients of climatic conditions13. Yet, in Australia, which can be con-
sidered a relatively homogeneous evolutionary unit, climate predicted
43% of the variation in CWMs16, suggesting that global climate-trait
relationships might be blurred by different phylogenetic histories
when modelled across biogeographic realms. Furthermore, these
relationships could also be significantly affected by habitat-specific
factors17. When considering local plant communities, CWMs are likely
shaped by soil conditions18,19, microclimate20, human land use21,
disturbance22, biotic interactions23 (e.g. herbivory or competition24)
and evolutionary history that constrainsthe available species pool25. All
of these factors likely interact with macroclimatic gradients. Hence,
theymaymask the actual effects of climate on local plant communities.

The classification of plant communities into hierarchically arran-
ged habitat types (hereafter habitats) offers a promising approach to
studying climate-trait relationships because it accounts for interfering
local factors that define different habitats. Restricting analyses to
habitats with similar floristic composition, shared evolutionary history
and comparable environmental conditions could disentangle the
effects of interacting factors and result in tighter climate-trait rela-
tionships, as has been observed in analyses focused on specific habi-
tats (e.g. forest and tundra habitats20,26). Yet, it is unclear whether the
strength and expression of climate-trait relationships depend on the
thematic resolution (hereafter “narrowness”) of the habitat definition.
Analysing climate-trait relationships at different levels of habitat nar-
rowness could help us understand whether these relationships are
consistent across both levels (resolution-invariant) and habitats (i.e.,
habitat-specific). This understanding might be important for more
accurate predictions of the effects of a changing climate on the dis-
tribution and functioning of natural plant communities.

We used >300,000 geo-referenced vegetation plots (Supple-
mentary Fig. S1) from the European Vegetation Archive (EVA27), 19
high-resolution bioclimatic variables from the CHELSA database28,29

and species-level plant trait information from the TRY database30,31.
Each plot was characterized by the CWM of four key functional traits:
plant height, specific leaf area (SLA), seedmass and specific root length
(SRL) (Table 1). Previous research has shown that these four traits can
capture the major gradients in the global spectrum of plant form and
function (plant height, SLA and seed mass7) and in the root economic
spectrum (SRL11). Each plot was classified to three hierarchical levels of
the EUNIS habitat classification32,33 which include eight broadly defined
level 1 habitats (hereafter broad habitats), 40 more narrowly defined
level 2 habitats (intermediate habitats) and 216 of the most narrowly
defined level 3 habitats (narrow habitats)33. We applied generalized
additive mixed-effects models that accounted for spatial dependence
among plots to determine the linear effects of the principal compo-
nents of the European climatic gradients (climate PCs) on the dis-
tribution of the four CWMs. We hypothesized that (i) climate has a
general effect on CWMs across habitats (consistent with previous
findings, see Table 1), but (ii) classifying plots into more narrowly
definedhabitats increases theproportionofCWMvariation that can be
explained by climate. Furthermore, we examined whether narrowly
defined habitats exhibit climate-trait relationships similar to those
observed in the more broadly defined habitats. We show that the
observed effects of macroclimate on the distribution of plant func-
tional traits are sensitive to the type and narrowness of the plant
communities studied.

Results
Climate-trait relationships across broad habitats
We summarized the information from the 19 bioclimatic variables into
four principal components (PCs) using principal component analysis.

These four gradients jointly captured 88.4% of the variation in mac-
roclimatic conditions (Supplementary Fig. S1) and represented the
European gradients from subarctic to dry-summer Mediterranean cli-
mates (PC1, hereafter Mediterranean gradient), from colder con-
tinental to warmer coastal climates (PC2, temperature gradient), from
colder to warmer summer climates (PC3, summer-temperature gra-
dient) and a gradient of increasing seasonality of precipitation and
temperature regimes (PC4, seasonality gradient). All four climatic
gradientswere significant predictors of the fourCWMsacross all broad
habitats (Fig. 1 and Supplementary Fig. S2). An increase in the Medi-
terranean gradient was associated with higher community-weighted
plant height, seed mass and SRL and lower SLA. An increase in tem-
perature gradient was also associated with higher community-
weighted plant height, seed mass and SRL and lower SLA. The posi-
tions of the broad and intermediate habitat types along the four cli-
matic PCs are shown in Supplementary Figs. S3–S6.

Climate-trait relationships along the hierarchy of habitats
Within the broad habitats, we observed several deviations from the
general climate-traits relationships observed acrosshabitats. Along the
Mediterranean gradient, community plant height decreased in forest
and coastal habitats; SLA increased in wetlands and SRL decreased in
coastal saltmarshes, forests, and man-made habitats. Along the tem-
perature gradient, plant height decreased in coastal habitats; SLA
increased in four of the eight broad habitats and SRL decreased in
heathland and forest habitats. The effects of climate on community
seed mass were generally more consistent than for the other three
traits (Fig. 1 and Supplementary Fig. S2).

Habitat was generally a better predictor of CWMs than the com-
bined fixed and habitat-specific effects of climate. In models that did
not account for the habitat-specificity of climate-trait relationships (Cl
+broad in Fig. 2), community plant height was the trait best explained
by broad habitats (with a maximum of 77.2% of explained variation),
followed by seed mass (67.1%), SLA (53.3%) and SRL (45.6%). When
accounting for habitat-specificity in narrow habitats (see Cl*narrow in
Fig. 2), these values increased to 92% for plant height, 73.9% for seed
mass, 63.7% for SLA, and 53.6% of the variation in SRL. Descending the
classification hierarchy towards more narrowly defined habitats, we
found that the proportion of variation in CWMs explained by climatic
conditions increased for two of the four plant traits (from Cl*broad to
CI*narrow in Fig. 2). For SLA and SRL, the proportion of explained
variation increased toward more narrowly defined habitats (with a
maximum of 10.3% and 8.0% of explained variance, respectively)
whereas plant height and seed mass showed no such pattern (with a
maximum of 5.7% and 6.8% of explained variance, respectively). For
plant height, SLA and seed mass, we found that climate-related varia-
tion in CWMswasmaximizedwhen habitat typewas not accounted for
(see Cl in Fig. 2). Nevertheless, the habitat-specific interaction terms in
our models explained a significant proportion of CWM variability for
all traits and all levels of the classification hierarchy (Supplementary
Table S1).

Climate-trait relationships in intermediate and narrow habitats
In the intermediate-level habitats, the observed climate-trait relation-
ships mostly matched those in the more broadly defined habitats,
albeit with an increased proportion of nonsignificant and sometimes
contrasting relationships (see Fig. 3 for the exemplary relationships of
the first and second principal components with plant height, Supple-
mentary Fig. S7 for the third and four principal components and
Supplementary Figs. S8–S13 for the other traits with the four principal
components). Within narrow habitats, we observed that climate-trait
relationships were frequently habitat-specific, often with contrasting
relationships among habitats that were part of the same superior
broad habitat (Fig. 4). This habitat-specificity of climate-trait relation-
ships was observed for all traits and in all broad habitats.
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Discussion
Understanding whether climate-trait relationships are habitat-specific
or general, and whether these relationships are invariant to the nar-
rowness of the applied habitat definition could improve our predic-
tions of how plant communities will be affected by future climate
change. In this study, we summarized the effects of climate on four key
functional plant traits—plant height, SLA, seed mass and SRL–from
broadly to more narrowly defined habitats in Europe. While climate
was found to be a significant predictor of CWMs for all four plant traits,
both within and across broad habitats, our results revealed three key
findings. First, habitat type was generally a better predictor of trait
distributions than climate per se. Yet, for plant height, SLA and seed
mass, climate and habitat shared some of the explained variation in
trait distribution, suggesting that climate also strongly influences the
broad distribution of habitat types (see Supplementary Figs. S3–S6).
Second, decomposing the analysis into increasingly narrow habitats
revealed stronger climate-trait relationships for SLA and SRL but not
for plant height and seed mass. Third, in the most narrowly defined
habitats, the effects of climate on the expression of all four traits were
strongly habitat-specific, regardless of which broad habitat type or
climatic gradient was considered. By using increasingly narrow habitat
definitions, we were able to reduce the effects of local factors on
CWMs and thus better unveil the effects of macroclimate on the
functional trait composition of plant communities.

The habitat classification we used is based on floristic and bio-
geographic characteristics. As a result, plant communities were ana-
lysedwithin homogeneous groups that reflect common adaptations to
local environmental features that are either independent of global
climatic gradients34 or difficult to capture with global datasets on cli-
mate and soil conditions. We found that the effects of climate on plant
community composition inbroadhabitats arenot necessarily reflected
in similar effects in more narrowly defined habitats35. For instance,
community-weightedmean plant height increased overall in grassland
habitats along the Mediterranean gradient, but this pattern reversed
when focusing on seasonally wet and wet grasslands (habitat R3).
Similarly, we found that higher temperatures led to higher community
plant height in wetland habitats, except for periodically exposed
shores (Q6), where temperaturewas negatively related to plant height.
Our results on the habitat-specificity of climatic effects are in accor-
dance with previous findings on the distinct effects of precipitation on
vegetation productivity in grassland versus forest habitats in China36.
On the global scale, the predictive power of climate for thedistribution
of community leaf trait composition increased when 14 rather than
four broad habitat types were considered37. This finding provides an
explanation for why studies in more narrowly defined habitats
revealed more pronounced effects of climate on plant traits (e.g. as
shown in tundra habitats26) than studies across habitats13. The two
community traits that were less well predicted by habitat alone
(namely SLA and SRL) were increasingly better predicted by climate
when habitats were more narrowly defined. The underlying reason
might be that SLA depends more strongly on soil than on climatic
conditions19,38 and that the relationship between SRL and environ-
mental gradients also strongly depends on the habitat considered39.
Taken together, these observations suggest that broad habitats
include species with different life-history strategies (in terms of com-
petition for light and collaborationwithmycorrhizal fungi),whilemore
narrowly definedhabitats include specieswithmore similar life-history
strategies. Consequently, broad habitats might allow for a wider range
of alternative climatic responses, while in narrowhabitats, species tend
to share similar climatic responses. Thus, the effect of climate on the
proportion of species with high or low SLA (or SRL) becomes clearer.
The two traits that did not follow this pattern, i.e. community plant
height and seed mass, are strongly correlated within the global spec-
trum of plant form and function7,40 and most strongly determined by
habitat type. Community plant height is related to the occurrence ofTa
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woody species, which markedly depends on land use and is also more
strongly determined by soil moisture and nutrients than by broad
climatic conditions41.

Although the investigated climate-trait relationships were
mostly consistent across broadly defined habitats, we found several
habitat-specific relationships. For instance, the increase in plant height
along the Mediterranean and temperature gradients could be
explained by the longer growing season and higher light availability,
which both increase competition for light in warmer regions42,43. In
forest habitats, the decrease in plant height along the Mediterranean
gradient could be attributed to the limiting effects of higher

temperatures and lower water availability on the growth of canopy
trees. The distribution of forest understory traits, however, is fairly
independent of precipitationgradients in Europe20. Community height
in coastal habitats could be limited by precipitation because dune soils
are highly permeable (and thus edaphically dry) and the groundwater
is not available to most plants44. For SLA, we observed a decline along
the Mediterranean gradient (i.e., SLA decreased with increasing
drought stress), corresponding to the global13 and intra-specific
reduction of SLA under drought45. The same arguments apply to the
effects of temperature. Wetland communities, for instance, might be
able to maintain a higher SLA, even under higher temperatures,
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Fig. 1 | Effects of climate on four plant traits in broad habitats. The graphs show
the community-weightedmeans of four plant functional traits as linear functions of
the first and second principal components (PCs) of the 19 CHELSA bioclimatic
variables, obtained with generalized additive mixed-effects models. Slopes show

the relationships across all (black) and within the most broadly defined habitats of
the EUNIS classification (colours). Solid lines indicate significant relationships at
p <0.05 (based on separate two-sided t tests). Grey hexagons show the distribution
of plot-level observations. SLA specific leaf area, SRL specific root length.

Article https://doi.org/10.1038/s41467-023-36240-6

Nature Communications |          (2023) 14:712 4



because they are not constrained by water availability. Grassland
species might benefit from higher SLA in warmer temperatures if they
are able to compensate for natural or human-induced disturbances by
regrowing relatively quickly. In man-made habitats, the response of
SLA might depend on the relative abundance of different life forms,
with therophytes being relatively more abundant at higher
temperatures46. Community seed mass showed the greatest con-
sistency in climate-trait relationships across all broad habitats. Yet, the
increase in seed mass along the Mediterranean gradient was quite
unexpected, as seed mass tends to increase with precipitation and
decrease with aridity on the global scale13 or is only weakly related to
precipitation in Mongolia, China47 and Australia48. In habitats where
water availability depends on groundwater, such as coastal salt mar-
shes, coastal habitats and wetlands, community seed mass was inde-
pendent of the Mediterranean gradient. An explanation might be that
larger seeds, which can buffer the survival of seedlings and saplings49,
aremost important during hot and dry summers. For community SRL,
the observed increase along the Mediterranean and temperature gra-
dients refuted our expectations. In coastal saltmarshes, heathland and
foresthabitats, however,we alsoobserveddecreases inSRL alongboth
gradients, suggesting that the effects ofmacroclimatemay be strongly
habitat-specific or masked by local factors, such as local soil
conditions19. These local conditions were increasingly accounted for
by including more narrowly defined habitats in the models of climate-
SRL relationships.

In order to synthesize the effects of macroclimate across a large-
scale dataset, we had to accept some shortcomings in our analysis. We
focused only on the linear effects of climate and ignored interactions
among the different dimensions of climate, although we can assume
that the distribution of the four plant traits is also shaped by nonlinear
and interaction effects (c.f. tree height50 and leaf traits20). We partially
accounted for non-linearity by using log-transformed CWMs. Still, our
models identified stronger linear effects of climate on community
traits compared to global-scale analyses13. Whether the classification
into narrower habitats might have strengthened or alleviated any
nonlinear or interaction effects has, to our knowledge, not been tested
yet. By focusing exclusively on climate, we did not account for
important interactions with edaphic conditions (such as evapo-
transpiration), which are the best predictor for leaf area andmaximum

plant height distributions across Australia16. Furthermore, it is con-
ceivable that the effects of climate on community trait composition
could change at the end of climatic gradients. This assumption could
be tested by comparing trait-environment relationships under benign
versus extreme conditions39. In forests, we did not differentiate
between the canopy and understory layers, although these layers
might show contrasting responses to climate20. Finally, we calculated
CWMs based on species-level trait averages rather than in situ mea-
surements, which precluded any analysis of intra-specific trait varia-
tion. These shortcomings may have diluted the effects of climate on
CWMs, but were unavoidable given the large geographic extent of
our study.

Our results show that macroclimate is a consistent predictor of
the CWMs of plant traits in all habitats and across all climatic gradients
in Europe. These effects of climate vary across habitats, depending on
the thematic resolution of the habitat definition and the identity of the
habitat. We thus anticipate that climate-change effects will not be
limited to particularly sensitive communities51, but will have diverse
effects on a wide range of plant communities52. To accurately predict
the effects of a changing climate on the composition and functioning
of the ecosphere, we recommend considering the habitat-specificity of
climate-trait relationships.

Methods
Vegetation data
The raw vegetation survey data consisted of 1,741,856 plots with
37,318,600 species records from 107 databases, collated and curated
by the European Vegetation Archive (EVA)27 and accessed onMay 12th,
2021. Individual databases are listed in Supplementary Data 1. Species
abundances were measured or converted to percentage cover. Before
the analysis, we removed all plots (1) with only presence/absence data,
(2) without geographic coordinates, (3) situated in Greenland, (4) with
latitudinal coordinates lower than the southernmost point of 34° N or
higher than the northernmost point of 82° N, (5) with trait information
for less than 80% of the total plant cover and (6) for which climatic
variables could not be calculated due to empty pixels around the focal
plot. To reduce the effects of spatially clustered and repeated cen-
suses, we only retained the most recent census for each unique loca-
tion and randomly stratified the dataset to include only one plot per
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0.01° grid cell (approximately 1.11 × 0.69 km in Central Europe). The
resulting dataset contained 300,021 vegetation plots with 7,320,239
individual species occurrence observations that were conducted
between 1873 and 2020 and distributed between 34.8° N to 80° N
latitude and 10° W to 59.3° E longitude with a focus in Central Europe
(Supplementary Fig. S1).

Taxonomy
We harmonized species names from the European Vegetation Archive
using the Taxonomic Name Resolution Service 5.0 (tnrs.biendata.org).
Subspecies and varieties were merged at the species level. Species
names were matched to the taxonomic backbone 3.0 of the sPlot
global vegetation database53 to maximize compliance with species
names from the TRY plant trait database30. Fungi, bryophytes, algae,
and lichens were removed from the data, resulting in 13,758 vascular
plant species.

Community-weighted trait means
We extracted species- and genus-level average values for plant height,
SLA, seed mass and SRL from the TRY plant trait database30 version 5,
which covered species-level mean values of 33 traits for 50,404 spe-
cies, derived with Bayesian Hierarchical Probabilistic Matrix Factor-
ization. This algorithm predicts individual-level trait values based on
the observed trait records, observed trait-trait correlations, and the
taxonomic hierarchy reflecting phylogeny54,55. The root-mean-square
error of the z-transformed predicted versus available trait values ran-
ged from 0.07 (seed mass) to 0.2 (SLA) (see Supplementary Fig. S14).
From this gap-filled dataset, we assigned species-level mean trait
values to 6,025 species from our dataset and to an additional
690 species, we assigned genus-level mean trait values from the gap-
filled dataset. The relationships between the four focal traits and 24
traits from the gap-filled dataset are shown in Supplementary Fig. S15.
The original publications for the data used are listed in Supplementary
Table S2.Without imputed values,wewereable to assign trait values to
45% (plant height), 28.4% (SLA), 34.4% (seedmass) and 5.4% (SRL) of all
species in the dataset used for the analysis, which accounted for an
average of 95.6%, 91.4%, 90.8% and 47.4% of plant cover at the plot
level, respectively. For each plot, we calculated the CWM of the four
plant traits according to the equation in13.

Habitat classification
Each plot was assigned to a habitat type based on the classification
expert system EUNIS-ESy (European Nature Information System32,33),
updated on October 25th, 2021. We used the first three levels of the
classification hierarchy, ranging from the highest level 1 (broad habitat
types, e.g. forests—habitat code T) through the intermediate level 2
(intermediate types, e.g. broadleaved deciduous forests – T1) to the
lowest level 3 (narrow types, e.g. temperate Salix and Populus riparian
forest – T11). This classification system included the following broadly
defined habitat types at level 1: coastal salt marshes (MA, 3,085 plots),
coastal habitats (N, 5,045 plots), wetlands (Q, 28,931 plots), grasslands
(R, including lands dominated by forbs, mosses or lichens, 107,457
plots), heathlands (S, including shrubland, scrub and tundra, 25,866
plots), forests (T, including other wooded land, 98,311 plots), inland
sparsely vegetated habitats (U, 2,932 plots) and vegetated man-made
habitats (V, 28,394 plots). All intermediate and narrow habitats are
listed in SupplementaryData 2. Factsheets on the floristic composition
of EUNIS habitats are listed in33 and56.

Climatic data
For each plot, we extracted the 19 bioclimatic variables from the
CHELSA Climatologies version 1.228,29 at a pixel resolution of 30 arc sec
(~1 km) using the cloud-based Google Earth Engine platform. Biocli-
matic values were calculated as the average value from all pixels within
500m from the plot coordinates. Plots with missing climate data in

adjacent pixels were omitted from further analyses. Covariation
among the 19 bioclimatic variables was removed by a principal com-
ponent analysis. The first four principal components (PCs) jointly
explained 88.4% of the climatic variation (Supplementary Fig. S1). We
used the loadings of the 19 bioclimatic variables to extract the posi-
tions of all plots along these four PCs, whichwere used as predictors in
the subsequent analyses.

Statistical analysis
Prior to the following analyses, all plot-level CWMs were log trans-
formed to approximate normality. We estimated the effects of the
four climatic PCs on the CWMs of the four traits using separate
generalized additive mixed-effects models that always included a
spline-on-the-sphere smoothing term (based on latitude and
longitude57) to account for spatial dependence among plots58. For
each of the four traits, we created the following five different
models: Model 1 included only the fixed-effects of the four climatic
PCs without any interactions. Only in this model, we accounted for
the different number of observations per habitat type by including
only the same number of randomly selected plots from each of the
broad habitats (based on the minimum number of 2,932 plots in U –

Sparsely vegetated habitats). Model 2 included the fixed-effects of
the four climatic PCs plus the random effects of the broad level 1
habitat types. Model 3 included the fixed-effects of the four climatic
PCs, the random effects of the broad level 1 habitat types plus
random interaction terms between the fixed effects of the climatic
PCs and the broad level 1 habitat types. Models 4–5 were similar to
model 3 except that the broad level 1 habitat types and their random
interaction terms were replaced with the intermediate level 2 or the
narrow level 3 habitat types and their respective interactions with
the climatic PCs. The implementation of all models is documented
on GitHub. Model residuals were visually checked and are shown in
Supplementary Figs. S16-S20.

For models 3–5, we quantified the effects of climate on trait
CWMs, both across and within habitats, with predicted marginal
mean regression slopes. All regression slopes were assigned an
approximate confidence interval (slope estimate ± 1.96 * standard
error) and confidence intervals that did not include zero were con-
sidered significant at approximately p < 0.05. We did not test
regression slopes that were based on fewer than 100 plot observa-
tions. For each model, we calculated the proportion of variation in
CWMs that could be explained by climatic gradients (fixed effects of
climatic PCs and interactions between climatic PCs and habitat types)
and habitat type (random effects). The proportion of explained var-
iation was quantified using the marginal and conditional R²59, whose
calculation for random-slope models was based on the variance
components of the fixed and random effects and whose imple-
mentation we adopted from the R script provided by60. To check
whether the obtained results depended on the proportion of species
with actual trait measurements, we repeated all analyses withmodels
in which the contribution of each plot was weighted according to the
summed cover of species with trait values divided by the total plant
cover. The results of these weighted analyses were qualitatively
similar to the results of the unweighted analyses and are shown in
Figs. Supplementary S21–S25. The code implemented to calculate the
marginal and conditional R² for generalized additive mixed-effects
models is documented on GitHub.

All analyses were conducted in R61 using the package mgcv for
generalized additive mixed-effects models57,58, emmeans and ggeffects
for marginal mean regression slopes62,63, dismo for geographical stra-
tification of plots64 and ggplot2 for data visualization65.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The data generated in this study (plot-level information on plot coor-
dinates, survey year, CWMs and climatic PCs) were deposited in the
data repository of the German Centre for Integrated Biodiversity
Research (iDiv) Halle-Jena-Leipzig (https://doi.org/10.25829/idiv.3527-
g89efk). Raw vegetation data are available under restricted access
because they belong to the owners of each vegetation database, but
can be requested at euroveg.org/eva-database-obtaining-data. The
bioclimatic and plant trait data used in this study can be downloaded
from chelsa-climate.org/bioclim and www.try-db.org/TryWeb/dp.php,
respectively.

Code availability
The code used to conduct the following steps of the analyses is
available at github.com66 (https://doi.org/10.5281/zenodo.7404176): (i)
extracting the plot-level bioclimatic variables, (ii) running and analys-
ing the generalized additive mixed-effects models, (iii) creating the
presented figures.
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